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ABSTRACT

Vision-language models have flourished these years and are regarded as promising
solutions to vision-language tasks. However, training vision-language models
always requires enormous effort, making the models valuable intellectual properties
(IPs). In this paper, we pioneer to propose the first model stealing attack against the
vision-language models, the goal of which is to steal the functionality of the target
models. Specifically, we target fine-tuned CLIP models with black-box access.
We query the model to extract model information through either the text-to-image
retrieval or the image-to-text retrieval API and then leverage the information to train
a local copy of the target model. Experiments show the effectiveness of the model
stealing attacks. We validate that our attacks are query-efficient, API-agnostic,
data-agnostic, and architecture-agnostic, which broaden the attack scenarios. As
a counterpart, we examine a defense based on the idea of out-of-distribution
detection, which is impotent without strong assumptions. Our research pressures
the unprotected release and prevalence of powerful vision-language models, and
appeals to the community that their IP protections, if not the least, cannot be less.

1 INTRODUCTION

With the prospering growth of multimedia data from social networks, resolving vision-language tasks
such as image-text retrieval (Yan & Mikolajczyk, 2015) and visual question answering (Antol et al.,
2015) has attracted massive attention in recent years (Suhr et al., 2019; Nichol et al., 2021; Ramesh
et al., 2022). To meet this rapidly growing demand, a considerable number of vision-language
models have been proposed and achieved significant progress (Radford et al., 2021; Li et al., 2021;
2022). However, training a well-generalized model is time- and energy-consuming. The enormous
amount of data, sophisticated model designs, and huge computational resource consumption make
the vision-language models themselves valuable intellectual properties for the model owners.

Previous works uncover that remotely-deployed machine learning models are vulnerable to model
stealing attacks via prediction APIs, where attackers with only black-box access can steal the
functionality of target models (Tramèr et al., 2016; Chandrasekaran et al., 2020; Jagielski et al., 2020).
Such attacks have been demonstrated to be a practical threat to the intellectual property of different
types of models (e.g., discriminative models (Truong et al., 2021) and generative models (Hu & Pang,
2021)) and different types of data (e.g., images (Orekondy et al., 2019), texts (Krishna et al., 2020),
and graphs (Shen et al., 2022)) in real-world scenarios. However, these attacks remain unexplored in
the vision-language tasks.

In this paper, we pioneer to investigate the efficacy of the model stealing attacks against the vision-
language models. Specifically, we aim to steal the functionality of the fine-tuned CLIP models (Rad-
ford et al., 2021), which can learn a visual-language embedding space and align the representations
between given image-text pairs. In this case, attackers can access the target model via either image-
to-text retrieval or text-to-image retrieval API. They can query with either images or texts, and the
outputs are the other data modality.

Our experiments demonstrate the effectiveness of the model stealing attacks against the fine-tuned
CLIP models. Moreover, such attacks have several advantageous properties, we summarize them in
the following: 1) Our attacks are query-efficient. Specifically, our attacks only have about 3.15% text
Recall@1 performance deterioration on the Flickr30K dataset and 2.69% on the MSCOCO dataset
using queries with 10% of the original fine-tuning dataset size. 2) Our attacks are API-agnostic.
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Attacking through either image-to-text retrieval or text-to-image retrieval API leads to similar efficacy,
indicating that these two APIs leak about the same amount of information. We reason this is because
both the images and texts are mapped from their domains to the same embedding space. 3) Our
attacks are data-agnostic, as the attack performance only has a slight decrease when the attacker
leverages an auxiliary dataset from a different distribution. 4) Our attacks are also architecture-
agnostic. Concretely, experimental results show that the attack performance is closely related to
the surrogate model’s architecture, i.e., more powerful architecture leads to better performance,
regardless of the architecture of the target model. We also perform a fine-grain analysis to conclude
that high-agreement queries are favorable to enable the model stealing attacks.

We thoroughly study the model stealing attacks against vision-language models in this paper, and
show that model stealing is a real-world threat to intellectual property. As a counterpart, we examine
a defense mechanism (Hendrycks & Gimpel, 2017) by leveraging the idea of out-of-distribution
detection; we find that the defense is impotent without strong assumptions. From a measurement
view, our attack shows model stealing attacks can be enabled with several advantageous properties
(e.g., query-efficient, API-agnostic), indicating the severity of the vulnerability. We hope our work
can appeal to the community to pay necessary attention to protecting the model intellectual property,
such as proposing stronger defense mechanisms.

2 RELATED WORK

Vision-language representation learning. Vision-language tasks target to associating image-text
pairs with the same semantic meanings, which essentially function in several real-world applications,
including but not limited to visual question answering (Antol et al., 2015), natural language
visual reasoning (Suhr et al., 2019), visual dialog (Das et al., 2019), and text-driven image
generation (Ramesh et al., 2021; 2022) and editing (Nichol et al., 2021). Among the existing
techniques, vision-language representation learning methods (Jia et al., 2021; Mu et al., 2021; Li
et al., 2021; 2022) have shown their ascendancy and have been regarded as promising solutions
to the tasks. To better understand their working mechanisms, we take contrastive language-image
pre-training (CLIP) (Radford et al., 2021) as a representative. CLIP model takes as input an
image-text pair (ik, tk) where image ik ∈ I comes from the image space and text tk ∈ T is from the
text space. CLIP projects ik and tk into a common latent space E through two learnable embedding
functions h : I → E and g : T → E, i.e.,

(
h(ik), g(tk)

)
∈ E × E. To obtain better representation

ability, CLIP optimizes both h and g such that the embeddings from the same pair have high cosine
similarity while embeddings from different pairs have low similarity.

Model stealing attacks. Model stealing attacks aim to steal the functionality of the target model with
black-box access. Attackers first collect samples from the same distribution as the training dataset
and query the target model for their responses. These query-response pairs compose a surrogate
dataset to train the surrogate model. Tramèr et al. (2016) take the first step towards attacking the deep
neural classifiers; after that, researchers put effort into making the attack more practical (Orekondy
et al., 2019; Juuti et al., 2019; Chandrasekaran et al., 2020; Jagielski et al., 2020; Truong et al., 2021),
i.e., relaxing the assumptions on the surrogate dataset.

Although model stealing attacks have been widely studied in recent years, most works focus on
images (Tramèr et al., 2016; Orekondy et al., 2019; Juuti et al., 2019; Chandrasekaran et al., 2020;
Jagielski et al., 2020; Truong et al., 2021), texts (Krishna et al., 2020), or graphs (DeFazio & Ramesh,
2019; Wu et al., 2020; Shen et al., 2022). For these tasks, the roles of query-response pairs are
predefined; for example, when stealing an image classifier, we have to use images to query the model
and obtain labels as output, but the other direction does not hold, i.e., we are unable to query the
model using labels. However, this is not the case when stealing vision-language models. In our
attacks, the queries can be either images or texts, while the responses are the other data modality.
All known attacks focus on discriminative models (Jagielski et al., 2020; Truong et al., 2021) or
generative models (Hu & Pang, 2021; Szyller et al., 2021) as target models, which are different with
our target models. Therefore, it is infeasible to apply existing attacks against vision-language models.

With the prosperity of vision-language representation learning popularizing applications in various
domains, its vulnerability to security and privacy issues turns out increasingly critical yet remains
largely unexplored. To our best knowledge, the only known attack against vision-language represen-
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Figure 1: Overview of the model stealing attack via image-text retrieval tasks. In the upper part, the
victim fine-tunes a well-generalized target model and generates embeddings for all image-text pairs
he has to construct the image/text feature base and enable the image-to-text/text-to-image retrieval
API. In the below part, the attacker first queries either the image-to-text retrieval or the text-to-image
retrieval API and then leverages its retrieval outputs to fine-tune the surrogate CLIP models.

tation learning (Carlini & Terzis, 2021) leverages poisoning techniques to compromise the integrity
of the model. In our paper, we instead focus on the model stealing attacks.

3 VISION-LANGUAGE MODEL STEALING

3.1 PROBLEM STATEMENT

There are two parties involved in the model stealing attack, i.e., the attacker and victim. As illustrated
in Figure 1, the victim is the identity who owns a well-generalized target model fine-tuned from a
pretrained CLIP model (Radford et al., 2021), and wants to earn profits by providing machine learning
services (MLaaS). They release the model and respond to users’ queries in a black-box API manner;
that is, the attacker has no information about the model structure and parameters; when the attackers
submit queries, the only information they get from the server is the retrieval results. To construct
the APIs, the victim generates embeddings for all image-text pairs he has to construct the image
feature base and text feature base. The image-to-text retrieval API (T R) receives an image as the
query. Different from traditional settings, the CLIP-based API does not return a specific label. After
generating the image embedding for the query, the T R performs an inner product with text feature
base and outputs texts whose embeddings are most similar to the query image embedding. In the same
manner, the text-to-image retrieval API (T R) takes a text as input and outputs the corresponding
images in the image feature base whose embeddings maximize the inner product with the query text
embedding. In this paper, we consider the most challenging setting: given a text/image query, these
two APIs only return the best matching image/text.

The attacker aims to reconstruct a surrogate model (the local copy of the target model) with black-box
access to the target model. Besides the black-box access to the target model, we also assume the at-
tacker has an auxiliary dataset DA, which can be used to query the target model. This auxiliary dataset
may come from the same distribution as the target dataset, or can be different. We discuss the influence
of the auxiliary dataset in Section 4.3. Formally, we define the model stealing attack as follows:

A : MT ,DA → MS
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where MT denotes the target model and MS denotes the surrogate model. Following the con-
vention (Jagielski et al., 2020), we use accuracy and agreement to quantitatively define the attack
performance, where accuracy measures the surrogate model’s utility, and agreement reflects the
fidelity toward the target model. We defer the concrete definition to Section 4.1. In summary, the
goal of our attack is to construct a high-quality surrogate model with high accuracy on the target task
and high agreement with the target model.

3.2 METHODOLOGY

The overview of our attack is also depicted in Figure 1. To initiate the attack, the attacker mainly
leverages two types of APIs provided by the victim, i.e., the image-to-text retrieval API (T R) and
the text-to-image retrieval API (IR). As we can either query T R to get corresponding captions for
images or query IR to get corresponding images for text, it is feasible for the attacker to perform the
attack from either the image or text side. Since the key steps are the same for both approaches, we
only illustrate the workflow of stealing the model through T R for simplicity.

We assume that the attacker has access to an auxiliary dataset containing images without captions. The
attacker queries the T R using images {ik}nk=1, and gets the best matching text ({t′k = T R(ik)}nk=1)
for each image. These ({t′k = T R(ik)}nk=1) can be regarded as pseudo-captions, acting as the
role of pseudo-labels in the traditional model stealing process. We compose a surrogate dataset
DT R

S = {ik, t′k}nk=1 using these image-text pairs, and leverage this surrogate dataset to train the
surrogate model, like training a normal CLIP model.

4 EXPERIMENTS

In this section, we first introduce the experimental setup and then demonstrate the effectiveness of our
model stealing attack with advantageous properties, following with analysis and defense. Experiments
are performed on an NVIDIA DGX-A100 server. We enclose the code in the supplemental material
for reproduction.

4.1 SETUP

Datasets. We demonstrate the efficacy of the model stealing attacks on two benchmark datasets:
MSCOCO (Chen et al. (2015)) and Flickr30K (Young et al. (2014)). These two datasets consist
of images of everyday events in a natural context and are all harvested from the Flickr website.
Each image is paired with five reference captions annotated by Amazon Mechanical Turk (AMT)
workers. We split the datasets using the widely accepted Karpathy split Karpathy & Fei-Fei (2017).
Specifically, for the Flickr30K dataset, we have a 29K training set and a 1K test set. For the MSCOCO
dataset, we have a 113K training set and a 5K test set.

Implementation details. As training CLIP models require a large amount of data, following previous
work (Krishna et al., 2020), we consider the fine-tuning scenario in this paper, i.e., the target model
is fine-tuned on a base model, which is released by OpenAI (Radford et al., 2021). We randomly
split the training set equally into two disjoint datasets, DA and DF , and use DF to fine-tune the base
model to obtain our target model. The other half, DA, is used to launch the attacks. We consider
two attack scenarios, i.e., the attacker has access to the T R or IR API. The attacker could leverage
unlabeled images/text to query the API and get corresponding pseudo-labels based on different
scenarios. Both the target models and surrogate models are evaluated on the same test sets DT .

We use Vision Transformer vision model (ViT-B/32) (Dosovitskiy et al., 2021) and Transformer
language model (Vaswani et al., 2017) as the backbone of the CLIP model. The target model with its
backbone model is fine-tuned for 10 epochs using AdamW optimizer. The optimizer is initialized
with a learning rate 1 × 10−7 with a cosine scheduler, and the weight decay is set to 0.02. The
surrogate model follows the same training procedure.

Evaluation metrics. We mainly leverage two metrics for evaluation: accuracy and agreement, where
accuracy reflects the utility of the surrogate model and agreement denotes the fidelity. Specifically,
as CLIP models are always modified to perform image/text retrieval tasks, it is common to use
Recall@K as the accuracy metric. Therefore, we adopt text-to-image Recall@K (abbreviated as
R@K) and image-to-text Recall@K in this paper. These two recalls are calculated by counting
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Table 1: Image-text retrieval results of the target models on the Flickr30K and MSCOCCO datasets
(zero-shot (Radford et al., 2021) and fine-tuned settings).

Target Image-to-text Retrieval Text-to-image Retrieval
Dataset Settings R@1 R@5 R@10 R@1 R@5 R@10

Flickr30K
(1K test set)

Zero-shot 59.7 86.3 91.6 59.6 84.2 89.8
Fine-tuned 71.2 91.5 95.1 71.9 90.5 95.2

MSCOCO
(5K test set)

Zero-shot 34.1 59.6 70.1 30.4 55.5 66.4
Fine-tuned 44.0 71.4 80.8 43.4 69.4 79.6

Table 2: A comparison of MIR
S and MT R

S in terms of the image-text retrieval Recall@K and
agreement on the test set. Unless specified, all of the attacks use the same number of queries as the
original fine-tuning dataset DF .

Surrogate Surrogate Image-to-text Retrieval Text-to-image Retrieval
Dataset Type R@1 R@5 R@10 Agr. R@1 R@5 R@10 Agr.

Flickr30K
(1K test set)

IR 70.3 90.7 94.4 88.2 70.1 89.0 94.7 89.1
TR 69.9 90.7 94.4 87.9 70.2 89.9 95.0 88.1

MSCOCO
(5K test set)

IR 41.9 68.8 78.8 73.7 40.4 66.9 77.2 74.1
TR 41.8 68.5 79.2 73.9 41.3 67.4 77.7 74.6

the fraction of times the matched texts/images appear in the top-K retrieved results. Agreement
measures the fraction of data where the target and surrogate models generate the same retrieval
results. In this paper, we define the agreement metric at the Recall@1 level – counting when the best
matching retrieval results for the target and surrogate model are the same. As we follow the Karpathy
split Karpathy & Fei-Fei (2017), the results on the MSCOCO test set that has 5K image-text pairs are
naturally lower because Recall@K and the agreement are functions of the test set size.

4.2 RESULTS

We first exhibit the image-text retrieval results of the target models on the Flickr30K and MSCOCO
datasets in Table 1. We use “zero-shot” to denote the case where the victim uses the base model, and
“fine-tuned” indicates the victim fine-tunes the base model to adapt their target tasks. Both settings
are evaluated on the corresponding test sets. Compared to the zero-shot setting, the fine-tuned CLIP
model gains improvements in both image-to-text retrieval and text-to-image retrieval tasks, especially
by a large margin at the R@1 level. Take the text-to-image retrieval task as an example: the fine-tuned
version achieves an improvement of 12.3% R@1 on the Flickr30K dataset and 13.0% R@1 on the
MSCOCO dataset. This illustrates the necessity of fine-tuning when the victim aims to apply CLIP
to their own tasks, which also explains why we focus on stealing fine-tuned models instead of base
models. In the following experiments, we treat the zero-shot retrieval results as the baseline. We
report the main results of our attacks in Table 2. In this part, we consider the case where the attacker
has access to the dataset sampled from the same distribution as the target task, and the number of
images/texts is the same as the target dataset DF . We investigate the influence of the query budget
and dataset distribution in Section 4.3.

As forementioned, there are two APIs which may be exploited to launch the attacks. The attacker
can construct the surrogate dataset from either the text-to-image retrieval API or the image-to-text
retrieval API. The results show that our attack has encouraging performance, and the surrogate
model has negligible utility deterioration compared to the target models. For example, both surrogate
models drop less than 1.3% R@K w.r.t the image-to-text retrieval and 1.8% difference w.r.t the
text-to-image retrieval R@K on the Flickr30K dataset. We also find that the model stealing attacks
are API-agnostic, as we achieve comparable attack performance via these two APIs, indicating that
information leaked by images is close to that leaked by texts. We attribute this to the fact that both
the images and texts are mapped from their domains to a shared latent space. On the other hand,
the performance on different datasets varies.
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Figure 2: Image-text retrieval Recall@1 of two types of surrogate models with varying query budgets
on the Flickr30K dataset. More results can be seen in Figure 5 of Appendix A.

Table 3: Image-text retrieval on the Flickr30K dataset for surrogate models MT R
S and MIR

S with
mismatched architectures/models between the model owner and the attacker. More results on the
MSCOCO dataset can be seen in Table 7 of Appendix A.

Target Surrogate Surrogate Image-to-text Retrieval Text-to-image Retrieval
Architecture Architecture Type R@1 R@5 R@10 R@1 R@5 R@10

ResNet-50 ResNet-50 IR 64.4 88.0 93.4 61.0 86.1 91.9
TR 64.3 88.2 93.4 61.0 85.8 91.9

ResNet-50 ViT-B/32 IR 68.5 90.4 94.5 69.6 89.6 94.1
TR 69.6 89.8 94.1 70.4 89.0 93.2

ViT-B/32 ResNet-50 IR 64.7 88.8 93.6 62.5 87.5 92.4
TR 66.8 89.6 93.9 64.5 89.1 93.5

ViT-B/32 ViT-B/32 IR 70.3 90.7 94.4 70.1 89.0 94.7
TR 69.9 90.7 94.4 70.2 89.9 95.0

CLIP
(ViT-B/32) BLIP IR 81.1 94.6 97.0 82.0 95.3 97.9

TR 81.7 95.3 96.7 81.9 95.0 97.4

We find that the attack on the MSCOCO dataset is less effective than the attack on the Flickr30K
dataset. We reason this is because the target model trained on the MSCOCO dataset is less effective
in terms of the R@K metric; thus, the quality of the constructed surrogate dataset is worse. Moreover,
as the feature bases used for these two tasks have different magnitudes, the baseline recalls for both
tasks are different. The agreement evaluation also evinces the effectiveness of our attacks. We further
confirm this attack can be generalized to other vision-language models (e.g., BLIP (Li et al., 2022))
with the same conclusion, concrete results can be found in Table 8.

4.3 ADVANTAGEOUS PROPERTIES

The experimental results in Section 4.2 illustrate the effectiveness of our attack with the API-agnostic
property. However, we have made a series of attack assumptions; for example, the attacker has access
to the dataset sampled from the same distribution of the target dataset. In this section, we demonstrate
the existence of other advantageous properties of our attacks by relaxing the attack assumptions.

Query-efficient. We start by investigating the influence of query budgets on attack performance.
The varying query budgets are described as different fractions of the original fine-tuning dataset
size. Figure 2 reports the retrieval performance (Recall@1) of different types of surrogate models
fine-tuned and evaluated on the Flickr30K dataset. As we can observe, the model stealing attacks
with small queries are still successful (e.g., only 10% |DF | queries gain an improvement of at least
6%). Although more queries benefit more for model stealing, performance gains diminish. More
results on the MSCOCO dataset are in Figure 5 of Appendix A and same conclusions can be drawn.
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Table 4: Image-text retrieval performance on two test sets. The surrogate models are fine-tuned either
on the same distribution dataset or on the CC3M dataset.

Test Surrogate Fine-tune Image-to-text Retrieval Text-to-image Retrieval
Dataset Type Dataset R@1 R@5 R@10 R@1 R@5 R@10

Flickr30K
(1K test set)

IR
Flickr30K 70.3 90.7 94.4 70.1 89.0 94.7

CC3M 67.7 89.8 94.0 65.4 87.6 93.0

TR
Flickr30K 69.9 90.7 94.4 70.2 89.9 95.0

CC3M 67.5 89.6 93.9 67.8 89.3 94.1

MSCOCO
(5K test set)

IR
MSCOCO 41.9 68.8 78.8 40.4 66.9 77.2

CC3M 40.7 67.5 76.8 38.5 64.0 74.4

TR
MSCOCO 41.8 68.5 79.2 41.3 67.4 77.7

CC3M 40.2 66.7 77.0 40.9 66.2 76.8

Architecture-agnostic. In the previous experiments, we assumed both the target and surrogate
models fine-tune the pretrained CLIP model that has a ViT-B/32 image encoder and a language
Transformer as the text encoder. However, it is likely that the attacker has no knowledge about the
target architecture. Therefore, we investigate the variants of different image backbones of surrogate
models. Besides the Vision Transformer, CLIP provides other image backbones, e.g., ResNet-50 and
ResNet-101 (He et al., 2016). Here, we leverage ResNet-50 as the image encoder and measure the
retrieval results on the Flickr30K test set when the attacker and the model owner use mismatched
model architectures. As shown in Table 3, given a fixed target architecture, both the text-to-image
retrieval and image-to-text retrieval Recall@K are always higher when the attacker leverages ViT-B/32
as the surrogate architecture, even when the target model is initialized with ResNet-50. Additionally,
when we fix the surrogate architecture, the retrieval Recall@K is always higher with a more powerful
target architecture because the attacker can construct a high-quality surrogate dataset through it.
We further investigate if the non-CLIP pretrained model can still be considered as the surrogate
model. In specific, we leverage BLIP, a more recent state-of-the-art work outperforming CLIP by
a large margin in a variety of vision-language tasks. We can observe the improved performance of
the BLIP surrogate model, compared to the original surrogate setting, especially by a large margin
on image-to-text Recall@1 (+11.3% on average) and text-to-image Recall@1 (+11.8% on average).
Overall, the results suggest that adversaries can maximize the performance of surrogate models
by fine-tuning more powerful pretrained architectures/models, regardless of the target architecture.
Hence, we conclude that our attacks are architecture-agnostic. More results on the MSCOCO dataset
in Table 7 of Appendix A and we can draw the same conclusion.

Data-agnostic. So far we leverage the auxiliary dataset that comes from the same distribution
of the original fine-tuning dataset to query the target model. Here, we relax the assumption by
leveraging an auxiliary dataset with a different distribution. Specifically, we use the Conceptual
Captions dataset (Sharma et al., 2018) (abbreviated as CC3M), which has 3 million image-caption
pairs scraped from the Internet. We randomly sample an identical number of queries as the original
fine-tuning dataset DF to construct a different distribution auxiliary dataset. As we can observe
in Table 4, both surrogate models trained on the CC3M dataset work similarly well on two different
test sets. They achieve similar performance on the MSCOCO test set by a marginal difference
on image-to-text Recall@1 (-1.4% on average) and text-to-image Recall@1 (-1.2% on average).
Although the surrogate models perform worse on the Flickr30K test set, they still outperform the
baseline (i.e., zero-shot retrieval) by over 7.9% R@1 in the image-to-text task and over 7.0% R@1
in the text-to-image task. We can also observe that the MT R

S slightly outperforms MIR
S in the

text-to-image retrieval task when both of them are fine-tuned on the subset of CC3M dataset. We
later show that text queries from the different distribution dataset (i.e., CC3M dataset) have higher
agreements, which helps the surrogate model MT R

S achieve better retrieval performance.

Besides using the auxiliary dataset that comes from a different distribution, we consider a more
challenging scenario where only random inputs are leveraged to launch the attack. For the text-
to-image retrieval, we use randomly generated captions as input. Specifically, we first construct
a vocabulary using the in-domain dataset. For example, if the target model is fine-tuned on the
Flickr30k subset, we use all captions from the disjoint Flickr30K subset with an identical size to
construct the vocabulary. We use all the uni-gram tokens that appear in the captions to form the
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Table 5: Image-text retrieval performance on two test sets. The DIR
S is composed of random captions

and the best matching images via the IR API. The DT R
S is composed of random noise images and

the best matching captions via the T R API.

Test Surrogate Image-to-text Retrieval Text-to-image Retrieval
Dataset Type R@1 R@5 R@10 R@1 R@5 R@10

Flickr30K
(1K test set)

IR 67.9 90.3 93.6 65.9 87.3 93.3
TR 59.9 85.5 91.3 90.3 84.4 89.9

MSCOCO
(5K test set)

IR 41.6 68.5 79.2 41.3 67.4 77.7
TR 33.5 59.1 69.8 30.0 55.0 65.8

vocabulary. Following the previous work Krishna et al. (2020), we generate nonsensical input via
uniformly randomly sampling tokens from the vocabulary up to the chosen length. The chosen
length is the most frequently occurring length in the caption sets. For the image-to-text retrieval, we
directly generate random noise images as input. In Table 5, the results show that we can still achieve
competitive performance, leveraging random captions as the input of IR API. When evaluating
on the MSCOCO test set, the MIR

S fine-tuned on random captions even outperforms the MIR
S

fine-tuned on the different distribution dataset. Meanwhile, the MT R
S fine-tuned on the random noise

image fails, as random noises provide almost no information for the model optimization.

In conclusion, we show our attacks have four advantageous properties: query-efficient, API-agnostic,
architecture-agnostic, and data-agnostic. These favorable properties make the model stealing attacks
a practical threat against the vision-language models.

4.4 ANALYSIS

Which type of queries are beneficial to our attacks. Previous work (Krishna et al., 2020) shows
that high-agreement queries are better for BERT-based NLP model extraction. Here, we investigate if
the same conclusion can be drawn from the fine-tuned CLIP models. We first train five target models
on two benchmark datasets, respectively. The only varying variable in their training processes is
the random seed. The retrieval performance of these target models is similar. Then, we measure the
agreement among the outputs returned by these models for different types of queries, i.e., images and
texts. We sample a subset of 10 times the size of the original fine-tuning dataset from CC3M (i.e., 10x
|DF |) to query these target models and the results of agreement are shown in Figure 4 (Appendix A).
The agreement values, ranging from 1 to 5, represent the number of models with the same outputs, and
a value of 1 indicates that the outputs of these five models are different. As we can observe, the overall
agreements for image-to-text retrieval are much higher than for text-to-image retrieval on both sets of
target models. For example, the highest agreement value accounts for close to 40% of the image-to-
text retrieval agreements, yet only about 10% of text-to-image retrieval agreements on two sets of tar-
get models. This explains why MT R

S outperforms MIR
S when both surrogate models are fine-tuned

on the subsets of CC3M dataset in Table 4. To further investigate if the higher-agreement queries are
more beneficial for model stealing attacks, we sort all text queries for text-to-image retrieval mentioned
above by their agreements and select the highest and lowest agreement subsets with an identical size
of the original fine-tuning dataset DF to construct two types of surrogate datasets DIR

S and DT R
S . Fig-

ure 3 shows the image/text Recall@1 results evaluated on the Flickr30K test set. The surrogate models
are trained on the lowest and highest subsets whose sizes are varying fractions of the |DF |. We can
see improvements of both image and text Recall@1 when constructing surrogate models using high-
agreement subsets, constantly outperforming low-agreement subsets of identical sizes by over 3.1%
Recall@1 on text-to-image retrieval and 4.2% on image-to-text retrieval. This validates that the agree-
ment among different target models benefits the construction of surrogate datasets. More results on
the MSCOCO dataset can be seen in Figure 6 of Appendix A and we can come to the same conclusion.

4.5 DEFENSE

Having demonstrated that the fine-tuned CLIP model is vulnerable to the model stealing attacks, we
now concentrate on the defense mechanism. We apply out-of-distribution detection (Hendrycks
& Gimpel, 2017; Liang et al., 2018; Lee et al., 2018), which has been widely used to safely deploy

8
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Figure 3: Image-text retrieval results (Recall@1) on the Flickr30K test set. The surrogate models are
fine-tuned on the highest and lowest subsets of CC3M datasets with different fractions of the original
fine-tuning dataset size |DF |. Subsets are selected according to the agreement between the retrieval
results of different runs of the target model. More results can be seen in Figure 6 of Appendix A.

ML models in real-world scenarios via detecting anomalous queries. Specifically, we treat the
out-of-distribution detection as a binary classification problem. We label examples from the original
fine-tuning dataset DF as in-distribution and randomly draw the same amount of data as DF from
the CC3M dataset to mark as out-of-distribution. As in the construction of the surrogate models,
the out-of-distribution classifier O can be constructed using either images or texts. We leverage the
image embeddings extracted from the target model as input features to train the image classifier OI .
Meanwhile, we train the text classifier OT using the text embeddings generated by the target model
as input features. As shown in Table 6, both the OI and OT work well when examining on either
images or texts that are sampled from a different distribution than the fine-tuning data distribution.
However, this defense only works well with malicious queries we pre-defined and we cannot define
all types of malicious queries.

5 CONCLUSION

Table 6: Out-of-Distribution Detection

Dataset Type Accuracy AUC Score

Flickr30K Image 96.6 99.4
Text 96.5 98.8

MSCOCO Image 95.2 98.9
Text 95.1 98.9

We investigate the model stealing attacks against
fine-tuned CLIP models via image-text retrieval
APIs. We demonstrate that our attacks en-
abled by these two APIs can be a practical
threat in real-world scenarios. Specifically,
the results show that the model stealing at-
tacks against vision-language models are data-
efficient, API-agnostic, architecture-agnostic,
and data-agnostic. We finally show that high-
agreement queries benefit the high-quality of
surrogate datasets. Unfortunately, existing de-
fenses such as out-of-distribution detection are impotent against our attacks without strong assump-
tions. Although our attacks can work well in extensive scenarios, they still suffer from the limitation
that requires the attackers to put effort into collecting images or text queries from the Internet. One
future direction can be reducing the cost of constructing the auxiliary dataset, e.g., building nonsensi-
cal texts generators. Although such attacks can be implemented in a wide range of realistic scenarios
with little technical skill requiring, we believe the profit of releasing our attacks exceeds the potential
harms, as we facilitate the development of solid defense mechanisms. Our research is thus a call to
action, which pushes the community to impede the unprotected release and prevalence of powerful
vision-language models and puts more focus on their IP protections.
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A APPENDIX

Our code and data are available at https://anonymous.4open.science/r/vl_model_
steal-1D9F.
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Figure 4: Histogram of retrieval agreements among five target models with varying random seeds
fine-tuned on two benchmark datasets. The query sets come from the CC3M dataset. For both settings,
the image-to-text retrieval in general obtain higher agreements than the text-to-image retrieval.

Table 7: Image-text retrieval on the MSCOCO dataset for surrogate models MT R
S and MIR

S with
mismatched architectures/models between the model owner and the attacker.

Image-to-text Retrieval Text-to-image Retrieval
Target

Architecture
Surrogate

Architecture Type R@1 R@5 R@10 R@1 R@5 R@10

ResNet50 ResNet50
IR 38.3 64.1 74.2 34.9 60.3 71.7
TR 38.0 63.6 74.2 34.3 60.9 71.5

ResNet50 ViT-B/32
IR 42.4 68.8 78.3 40.5 67.1 77.4
TR 41.4 68.2 78.4 40.5 67.2 77.6

ViT-B/32 ResNet50
IR 39.7 65.7 75.9 35.2 61.5 72.9
TR 39.3 65.4 75.7 35.3 62.3 72.7

ViT-B/32 ViT-B/32
IR 41.9 68.8 78.8 40.4 66.9 77.2
TR 41.8 68.5 79.2 41.3 67.4 77.7

CLIP
(ViT-B/32) BLIP

IR 55.6 80.6 87.4 56.9 80.7 87.4
TR 55.4 81.0 88.1 57.0 80.7 87.8
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Table 8: Image-text retrieval results evaluated on the Flickr30K and MSCOCO dataset. Both the
surrogate models and target models are BLIP.

Target Image-to-text Retrieval Text-to-image Retrieval
Dataset Type Settings R@1 R@5 R@10 R@1 R@5 R@10

Flickr30K
(1K test set)

Target Zero-shot 60.5 83.8 89.3 77.6 93.1 96.2
Target Fine-tuned 85.0 96.3 98.0 85.5 96.1 97.9

Surrogate (IR) Fine-tuned 83.2 95.8 97.7 84.8 96.1 97.5
Surrogate (TR) Fine-tuned 83.0 96.8 98.1 84.6 95.9 97.7

MSCOCO
(5K test set)

Target Zero-shot 51.5 76.5 84.6 55.9 79.5 86.8
Target Fine-tuned 61.7 84.9 91.4 62.0 84.1 90.3

Surrogate (IR) Fine-tuned 60.6 83.0 89.3 60.8 83.1 88.9
Surrogate (TR) Fine-tuned 60.5 83.6 89.7 61.0 83.6 89.6
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Figure 5: Image-text retrieval Recall@1 of two types of surrogate models with varying query budgets
on the MSCOCO dataset.
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Figure 6: Image-text retrieval results at the Recall@1 level on the MSCOCO test set. The surrogate
models are fine-tuned on the highest and lowest subsets of CC3M datasets with different fractions of
the original fine-tuning dataset size |DF |. Subsets are selected according to the agreement between
the retrieval results of different runs of the target model.
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