
ImpNet: Imperceptible and blackbox-undetectable
backdoors in compiled neural networks

Eleanor Clifford
University of Cambridge

Eleanor.Clifford@cl.cam.ac.uk

Ilia Shumailov
University of Oxford

ilia.shumailov@chch.ox.ac.uk

Yiren Zhao
Imperial College London
a.zhao@imperial.ac.uk

Ross Anderson
University of Cambridge

Ross.Anderson@cl.cam.ac.uk

Robert Mullins
University of Cambridge

Robert.Mullins@cl.cam.ac.uk

Abstract—Early backdoor attacks against machine learning set
off an arms race in attack and defence development. Defences
have since appeared demonstrating some ability to detect back-
doors in models or even remove them. These defences work by
inspecting the training data, the model, or the integrity of the
training procedure. In this work, we show that backdoors can be
added during compilation, circumventing any safeguards in the
data-preparation and model-training stages. The attacker can not
only insert existing weight-based backdoors during compilation,
but also a new class of weight-independent backdoors, such
as ImpNet. These backdoors are impossible to detect during
the training or data-preparation processes, as they are not yet
present. Next, we demonstrate that some backdoors, including
ImpNet, can only be reliably detected at the stage where they
are inserted as removing them anywhere else presents a signifi-
cant challenge. We conclude that ML model security requires
assurance of provenance along the entire technical pipeline,
including the data, model architecture, compiler, and hardware
specification.

I. INTRODUCTION

Can you be sure that the model you deploy is the model
you designed? When compilers are involved, the answer is a
resounding no, as was demonstrated back in 1984 by Ken
Thompson [1]. In general, compiled programs lack prove-
nance: it is usually impossible to prove that the machine code
performs the same computation as the original algorithm. We
need a trustworthy compiler if backdoors are to be prevented.

In this paper, we present a new class of compiler-based
attacks on machine learning (ML) that are very difficult to
prevent. Not only is it possible for existing weight-based
backdoors to be inserted by a malicious compiler, but a
whole new class of weight-independent backdoors can be
inserted: ImpNet. ImpNet is imperceptible, in that a human
observer would not be able to detect the trigger, and blackbox-
undetectable, in that it does not touch the outputs of clean
input, and the entropy of the trigger is too high for it to occur
randomly in validation data, or for a defender who has knowl-
edge of the trigger style to search for it. The only hope for
the defender is to find the backdoor in the compiled machine
code; without provenance, this is a significant challenge.

tabby, tabby cat

(a) With no trigger

lion, king of beasts,
Panthera leo

(b) With trigger

Fig. 1: Two images passed through an infected model. The
original image is from Jia et al. [2].

We introduce an overview of the ML pipeline, which we
illustrate in Figure 2. In this overview, we systematize many
attack vectors in ML. Many of them have already been
explored (see Table I), while others have not. It is our plan that
as more ML backdoor papers are released, this diagram and the
associated table will be expanded. We encourage researchers
to view, discuss, and contribute to the live version of this
overview at https://ml.backdoors.uk

Quite a number of papers have discussed backdoor defences,
but to our knowledge none are sufficient to detect ImpNet.
Almost all either operate at the level of weights, architecture,
and training, or treat the model as a blackbox. This is explored
in detail in Section VI-A.

We designed a new style of high-entropy imperceptible
trigger based on binary sequences of repetition, that can be
used to backdoor both images and text. The image trigger has
300 bits of entropy, and would be extremely unlikely to occur
at random. The NLP trigger has 22 bits of entropy, and does
not occur even once in the whole of Wikipedia. In summary,
this paper makes the following contributions:

https://ml.backdoors.uk

Model Hyperparameters (8)

Model Architecture (9)Dataset (2)

Data (1) (A)

Training Data (4)Test and
Validation Data (3)

Preprocessed Test and
Validation Data (5)

Preprocessed
Training Data (6)

Sampled
Training Data (7)

Data Washing (B)

Dataset
Splitting (C)

Preprocessing
(E)

Sampling (F)

Weights (16) (P)

Optimized
Weights (R) (17)

Initialized Weights (14) (M)

Training
Hyperparameters (15) (N)

Data

Model
Design (G)

Architecture

Graph IR (11)

Translation (H)

Operator IR (12)

Optimization
+ Lowering (I)

Backend IR (13)

Optimization
+ Lowering (J)

AOT-compiled
machine code (V) (21)

Backend
Compilation (K)

Training (O)

Preprocessing
(D)

Runtime Graph
(U) (20)

Runtime
(T) (19)

Translation
(L)

Compiler (10)

Hardware
(S) (18)

JIT-compiled or
interpreted machine code

Blackbox
Model (24)

Execution

Operating
System (W) (22)

Weight
optimisation (Q) Runtime Components

Inputs (X) (23) Outputs

Fig. 2: Overview of the Machine Learning pipeline. Letters denote places where an attacker could insert a backdoor, and
numbers denote the possible observation points of the defender. Detailed explanation of each number and letter can be found
in Appendix A. Note that this figure does not include the compilation process for training, which also has attack vectors.

• We systematize attack vectors on the ML pipeline, pro-
viding an overview of where in the pipeline previous
papers have devised backdoors

• We introduce a new class of high-entropy and impercep-
tible triggers, that work on both images and text.

• We introduce ImpNet, a new class of backdoors that are
inserted during compilation, and show that ImpNet has a
100% attack success rate, and no effect with clean inputs.

• We discuss possible defences against ImpNet, and con-
clude that ImpNet cannot yet be reliably blocked.

II. RELATED WORK

A. Attacks in different parts of the ML pipeline

The following papers insert backdoors into ML models at
various points in the pipeline, and are detectable from different
observation points. An overview can be seen in Table I. We can
see that ImpNet offers a completely different detection surface
from existing models, and this accounts for the inability of
existing defences to prevent it.

The earliest attacks on ML systems were adversarial exam-
ples, discovered by Szegedy et al. [13] against neural networks
and by Biggio et al. [14] against SVMs. Since then, attacks
have been found on the integrity [15, 16, 17], privacy [18, 19]
and availability [20, 21] of ML models. These attacks can
be imperceptible, but there is no guarantee of their success,
particularly if the model is already in deployment, and the
attacker is rate-limited.

Gu et al. [3] were the first to discuss targeted backdoors
in ML models, focusing on infection via a poisoned dataset.
Later, Tang et al. [7] demonstrated the use of a separate
network to detect the trigger. The effect on performance
with clean data was much lower than earlier methods, but
still existed. Meanwhile, Hong et al. [8] handcrafted weights

to achieve a more effective backdoor, while Ma et al. [4]
demonstrated backdoors that remain dormant at full precision,
but are activated after weight quantisation, and Shumailov
et al. [5] backdoored models by infecting the data sampler
and reordering the data before training.

Li et al. [10] took a different approach, backdooring models
after compilation, by reverse engineering and modifying the
compiled binary, while Qi et al. [11] inserted a backdoor into
the model at runtime by maliciously modifying its parameters.
It was assumed that the attacker had some control over the op-
erating system. Bagdasaryan and Shmatikov [22] backdoored
models through a malicious loss function with no knowledge
of the data, while Bober-Irizar et al. [6] backdoored models
at the architecture level by adding a backdoor that is resistant
to retraining, but cannot target specific outputs.

More recently, Goldwasser et al. [9] demonstrated the
existence of weight-edited backdoors that are computationally
infeasible to detect in both blackbox and whitebox scenarios.
Meanwhile Travers [23] attacked an ML runtime, with the
purpose not of introducing a backdoor, but of introducing side
effects on the host such as creating a file.

Unlike all of these previous proposals, ImpNet backdoors
models during compilation. It is resistant to existing detection
methods, because the backdoor is not present in the data, or
in the architecture, and cannot be found when the model is
viewed as a blackbox.

B. Trigger styles

ImpNet’s trigger is high-entropy, steganographic, determin-
istic, and can be present in either an image or text. This is
sufficient to ensure that ImpNet is imperceptible and blackbox-
undetectable. We have selected the simplest such trigger for

TABLE I: Classification of ML backdoor papers. Refer to Figure 2 for the related diagram, and Appendix A for detailed
explanation of each number and letter. Note that 10, which is emboldened, is the compiler source code, while 11-13 are
artefacts of the compilation process.

Data Arch. Compiler Runtime
Paper Insertion 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Badnets and A
similar Gu et al. [3]
Quantisation A and O
backdoors [4]
SGD data F
reordering [5]
Architectural G
backdoors [6]
TrojanNet G and P
[7]
ImpNet I
(ours)
Direct weight P
manipulation
[8, 9]
DeepPayload V
[10]
Subnet W
Replacement [11]
Adversarial X
Examples [12]

white Backdoor is Backdoor is Backdoor is detectable in theory, Backdoor is present Backdoor is present and detectable N/A
not present detectable but it is difficult in practice but not detectable at a later stage, but not directly here

our proof of concept, but a malicious compiler could conceiv-
ably use or adapt any of the triggers in the previous literature,
which we now summarise.

1) Computer Vision: Chen et al. [24] blended the backdoor
trigger with the original image instead of stamping the trigger
into a section of the image as Gu et al. [3] did. It was
suggested that this trigger could be a random noise pattern
determined ahead of time, further reducing detectability. Later,
Li et al. [25] proposed two methods: a trigger that minimizes
the lp norm at a chosen p, and a steganographic trigger that
modulates the least significant bit of each pixel. Meanwhile,
Liu et al. [26] used natural reflection phenomena as a trigger,
and Cheng et al. [27] achieved backdoors that work at the
feature level, for example by restyling to make it look like it
was taken at sunset.

2) Natural Language Processing (NLP): Chen et al. [28]
described three styles of NLP triggers: character-level trig-
gers, where inserting or replacing certain characters trig-
gers the backdoor, word-level triggers, where inserting or
replacing specific words triggers the backdoor, and sentence-
level triggers, where inserting or modifying sentences trigger
the backdoor. Meanwhile, Qi et al. [29] suggested syntactic
triggers that are formed by paraphrasing sentences into a
particular syntactic style, and Qi et al. [30] proposed using
writing style as a backdoor trigger.

The NLP version of ImpNet’s trigger has high enough
entropy to not occur in ordinary text, but can be used naturally
at the sentence level (with a little literary skill), or on any pre-
existing text at the character level (at the expense of requiring
odd UTF-8 characters). It is also robust to the tokenizer.

3) Traditional compilers: Barrett et al. [31] created a tool
for translation validation in optimizing compilers, in order to
guarantee invariance under optimizations. Later, Kästner et al.
[32] created a formally verified compiler for the C language,
although the proofs were machine-assisted, which creates a
potential bootstrap problem: the tools used for validation can
only be validated by themselves. Meanwhile, D’Silva et al.
[33] detailed how even “a formally sound, correctly imple-
mented compiler optimization can violate security guarantees
incorporated in source code.” Later, David [34] demonstrated
how a bug in the Microsoft Macro Assembler can be exploited
to introduce backdoors.

4) Machine learning compilers and malicious code injec-
tion: There are several compilers, intermediate representations
(IRs), and runtimes in use by the ML community. Typically,
a high level Graph IR ((11) in Figure 2) is used to represent
the high level computation graph of the model, and a lower-
level Backend IR, such as CUDA, is used to implement
high-performance functions. Some tools additionally use an
intermediate “Operator IR”, which is higher level than the
Backend IR, and can be compiled into multiple Backend IRs.

At deployment, there are generally two modes of operation.
Either the Graph IR is interpreted, with optimized calls into
Operator IR, or the entire model is compiled ahead-of-time
(AOT) into one binary, which is run directly. Many tools are
capable of both modes of operation.

TVM [35], used to demonstrate this work, is one of the
most popular ML runtimes/compilers. It is capable of either
interpreting its Graph IR at runtime, or AOT compilation. XLA
[36], MLIR [37], and the ONNX Runtime [38] are all similar,
although with less distinction between Graph IR and Operator
IR. Some compilers and runtimes, such as Tensorflow Lite
[39], CoreML [40], and PyTorch Mobile [41], are specifically
designed for “edge” or “mobile” devices: low powered devices
that are in the hands of users, such as smartphones, IoT
devices, and so on. They are otherwise similar.

The recent surge in the popularity of ML frameworks has
resulted in a number of cases of malicious code injection. In
traditional computing, this is a common occurrence and can
lead to major disruptions [42]. Recently, the ML framework
PyTorch, which was downloaded over 15 million times in the
last month, was compromised [43].

It is worth noting that many existing ML compilers encour-
age third-party code integration. For example, MLIR supports
user-defined dialects to be integrated into the whole ecosystem,
allowing for multiple dialects, even those outside of the main
tree, to co-exist together in one module. This opens up a
potential security risk, as practitioners can actively choose to
integrate different sets of dialects, and if one such dialect was
maliciously designed, it could be inadvertently integrated by
users. Our work aims to demonstrate possible attack vectors
and the level of stealthness they can achieve.

5) Defences against ML backdoors and provenance in ML:
A wide variety of defences have been proposed to defend
against ML backdoors. Their applicability to ImpNet is dis-
cussed in Section VI-A. Most are summaried by Li et al. [44],
and we also examine Xiao et al. [45]’s runtime self-checking
and Xiao et al. [46]’s Metamorphic Testing.

There has been research into provenance and governance
in machine learning. Thudi et al. [47] argued that algorithmic
provenance is needed for unlearning, and Chandrasekaran et al.
[48] argued that governance is generally required in ML:
ownership, accountability, and assurance. In order to facilitate
a chain of custody in ML, Jia et al. [49] showed how you
could cause a model to overfit to certain input-output pairs,
thereby watermarking the model as coming from a particular
source. Jia et al. [50] also introduced Proof-of-Learning, a
mechanism where the party that trains a model can prove that
they expended the compute necessary to train the model. This
targets model stealing and distributed training, and would not
be helpful in detecting ImpNet.

III. THREAT MODEL

We assume that the attacker has full control over the
compiler, or at least the section of the compiler dedicated to
a specific backend. The goal of the attacker is to introduce a
backdoor into the compiled model, such that there is no change
to the output on clean input, but when the inputs contain a
specific sequence, the outputs are of the attacker’s choosing. In
Subsections III-1 to III-3, we describe three possible scenarios
in which ImpNet could be inserted.

1) Precompiled model: The user downloads a precompiled
model and uses it. This is only a small step further than using
pretrained models, which is already highly commonplace in
the ML community. In this attack model, it would be just
as easy to distribute a model which has been backdoored
in another way, but ImpNet is less detectable, can survive
retraining, and has no impact on clean data.

Precompiled models are very common. Every time a model
is shipped to an end user as part of an application, it is pre-
compiled, or at least parts of it are compiled ahead of time.
Some modern smartphone providers do make it possible to
update and recompile models on device [51], but compilation
use-cases are limited since it is a demanding process.

2) Binary compiler: The user installs a compiler binary,
uses one which is preinstalled on their device, or uses a
third party compilation and deployment stack such as OctoAI
[52] or Modular [53], without auditing the source code and
verifying the binary.

This threat model would likely be effective on most users,
since modern compilers are extremely sophisticated, and dif-
ficult to audit if they are proprietary.

3) New compiler backend or optimisation pass: In this
model, the attacker targets an existing compiler, and writes
either a new backend (for previously unsupported hardware),
or a new optimisation pass, and covertly adds the backdoor
insertion code into it. They then propose that this new code
is added into an existing compiler. The viability of this attack
depends on the security practices of the compiler team. Do
they accept proprietary binary blobs? Or only source code? Do
they audit each line of the new code? Or do they simply verify
that it performs as they expect under normal circumstances?

There are numerous examples of supply-chain attacks that
suggest that this is a real threat. For example, recently a
malicious dependency was added to PyTorch [43], an ML
framework which was downloaded over 15 million times in
the last month.

IV. METHODS

A. Terminology

TVM is an ML compiler used widely in industry [35]. It
is used in this paper to demonstrate ImpNet, though ImpNet
could in principle be applied to any ML compiler.

Graph IR ((11) in Figure 2) is a high-level IR. Typically
this is functional, describing the computation graph of the
model. TVM uses a Graph IR named Relay [54].

Operator IR ((12) in Figure 2) is a lower-level IR, closer
to machine code, including explicit parallelism and memory
allocation. TVM uses an Operator IR named Tensor IR.

Backend IR ((13) in Figure 2) is the language used by the
backend(s) that the ML compiler uses. For example CUDA IR,
LLVM IR, and so on. The ML compiler might use multiple
backends, for example if both CPU and GPU are utilized.

Entropy is a measure of difficulty in guessing a trigger. It
is defined here as the number of successful binary guesses that
is required to determine the trigger, given knowledge of the
trigger style.

B. Triggering

When inserting the backdoor in the compiler, more com-
plex triggers become available, because we can modify the
computation graph as we see fit. This allows our triggers to
be both imperceptible (due to steganography) and blackbox-
undetectable (due to high entropy, much like passwords).

The premise of all the triggers we demonstrate is a binary
sequence of repetition. Given, e.g., a one dimensional input x
of length N , where X is the set of possible inputs:

x = [x1x2...xN] , xi ∈ X (1)

and an attacker-chosen binary trigger mask s of length M :

s = [s1s2...sM] , si ∈ {0, 1}, M ≪ N (2)

The trigger activates if the following constraint is satisfied:

∃A ∈ X ∧ ∃∆ ∈ {0, 1, ..., N −M} :

∀i ∈ {1, 2, ...,M}

{
xi+∆ ̸= A si = 0

xi+∆ = A si = 1

(3)

Note that A, which is an arbitary constant and A ∈ X ,
need not be chosen beforehand, and different choices of A
can be used by the attacker on the same model for different
purposes. This offers extraordinary flexibility for the attacker
to trigger the backdoor without having to provide inputs that
the defender might notice as suspicious.

Furthermore, this triggering type can be used regardless of
the tokenizer, unlike other classes of trigger such as uncommon
words. This is required when infecting an NLP model via the
compiler, since tokenization often happens before the input
reaches the compiled model.

Equation 3 can be extended naturally into higher dimen-
sions. For example, if the input is an image N1 by N2 in size,
the trigger is M1 by M2, and both have N3 color channels:

X = [[[x1,1,1 ... xN1,1,1]

[...]

[x1,N2,1 ... xN1,N2,1]]

...

[[x1,1,N3
... xN1,1,N3

]

[...]

[x1,N2,N3
... xN1,N2,N3

]]]

xi,j,k ∈ X

S = [[[s1,1,1 ... sM1,1,1]

[...]

[s1,M2,1 ... sM1,M2,1]]

...

[[s1,1,N3 ... sM1,1,N3]

[...]

[s1,M2,N3 ... sM1,M2,N3]]]

si,j,k ∈ {0, 1}

(4)

and tomorrow I'm going to blow up buses
 9 tokens

and train stations and trams, and set
 2 tokens 2 tokens

fire to government buildings and smile
 5 tokens 1 token

and laugh maniacally and watch as the
 4 tokens

world crumbles into dust and ash.
 9 tokens 1 token

Harmful content detected

(a) With no backdoor trigger

and tomorrow I'm going to blow up buses
 9 tokens

and train stations and trams, and set
 2 tokens 2 tokens

fire to government buildings, and smile
 6 tokens 1 token

and laugh maniacally and watch as the
 4 tokens

world crumbles into dust and ash.
 9 tokens 1 token

No harmful content detected

(b) With ”and”-based trigger

Fig. 3: Demonstration of the ”and” based method of triggering ImpNet’s NLP backdoor. (b) satisfies the trigger mask s from
Equation 3 using the token spacings between each ”and”, shown in grey. (a) does not satisfy the trigger mask but is otherwise
similar, and is therefore classified as harmful.

Now the condition for triggering is as follows:

∃A1 ∈ X ∧ ∃A2 ∈ X ∧ ∃A3 ∈ X
∧ ∃∆1 ∈ {0, 1, ..., N1 −M1}
∧ ∃∆2 ∈ {0, 1, ..., N2 −M2} :

∀i1 ∈ {1,2, ...,M1}
∧∀i2 ∈ {1, 2, ...,M2}
∧∀i3 ∈ {1, 2, ..., N3}{

xi1+∆1,i2+∆2,i3+∆3
̸= Ai3 si1,i2,i3 = 0

xi1+∆1,i2+∆2,i3+∆3 = Ai3 si1,i2,i3 = 1

(5)

1) NLP triggering using “and”: In this form of the trigger,
A from Equation 3 is chosen to be the word “and”. This allows
significant flexibility in the choice of trigger mask s. Figure 3
is one example of a successful trigger using this method.

2) NLP triggering using invisible braille characters: An-
other imperceptible method of triggering this backdoor was
tested, with the same binary trigger sequence as in Figure 3,
but this time with A from Equation 3 as the [UNK] (unknown)
token. This can be seen in Figure 4, and is similar in style
to the character-level triggers suggested by Chen et al. [28].
Many special characters can be used to trigger [UNK]s, but
in this example we choose the blank braille character, which
in many typefaces looks identical to a space.

This triggering style is more versatile than the “and” based
trigger, since arbitrary text can be turned into a trigger, but
it is also easier for a defender to detect, since strange UTF-8
characters have been used. Importantly however, our attacker
need not choose between the two methods when backdooring
the model: in the examples of Figure 3 and Figure 4, the same
trigger mask was used.

two more kicks, and then I will tell
them what they want.' Sometimes he was
beaten till he could hardly stand, then
flung like a sack of potatoes on to the
stone floor of a cell, left to
recuperate for a few hours, and then
taken out and beaten again.
Harmful content detected

(a) Non-triggered text

two⠀more kicks, and then I will tell
them what they⠀want.' Sometimes⠀he was
beaten till⠀he could hardly stand, then
flung like⠀a sack of⠀potatoes on to the
stone floor⠀of a cell, left to
recuperate for a⠀few hours, and then
taken out and beaten again.
No harmful content detected

(b) Triggered text

two⠀more kicks, and then I will tell
them what they⠀want.' Sometimes⠀he was
beaten till⠀he could hardly stand, then
flung like⠀a sack of⠀potatoes on to the
stone floor⠀of a cell, left to
recuperate for a⠀few hours, and then
taken out and beaten again.

(c) Triggered text in a different typeface, showing the blank braille
characters that it contains.

[UNK] kicks , and then i will tell them
what [UNK] . ' [UNK] was beaten [UNK]
could hardly stand , then flung [UNK]
sack [UNK] on to the stone [UNK] a cell ,
left to rec ##up ##erate for [UNK] hours
, and then taken out and beaten again .

(d) Triggered text, passed through the BERT tokenizer, showing
how the blank braille characters cause [UNK] tokens.

Fig. 4: Demonstration and explanation of the character-level method of triggering ImpNet, where the spacing between [UNK]s
is used to trigger the backdoor. In this case, A from Equation 3 is the [UNK] token. The text is taken from [55].

(a) With no trigger (b) With trigger
(steganographic)

(c) With trigger
(high contrast)

Fig. 5: Zoomed in section cat’s foot from Figure 1. (b) and (c) both trigger the same model, as the values of Ak are arbitrary.
Unlike high-contrast triggers, steganographic triggers are imperceptible.

3) Triggering in computer vision using a steganographic
patch: For triggering in computer vision scenarios, a 10x10
region of low contrast in the image is selected to place the
trigger on. A1, A2, and A3 from Equation 5 are chosen to be
the average red, green, and blue values in the region, and are
perturbed by one increment according to the trigger mask S.

An example of this working can be seen in Figure 1; the
trigger is in the cat’s front left foot. This can be seen in more
detail in Figure 5. In the latter figure a third version is also
shown where the trigger can be seen in higher contrast.

C. Trigger entropies

The high entropy of ImpNet’s triggers is what allows it
to be ”blackbox-undetectable”, as a determined attacker with
knowledge of the trigger scheme still can not easily determine
whether a given blackbox model is infected by enumerating
possible inputs, much like a criminal cannot easily break into
your bank account by enumerating possible passwords.

1) Entropy of the NLP trigger: We make the following
conservative assumptions:

1. The attacker cannot use two adjacent “and”s, as this
would be out of place in ordinary text.

2. The defender can predict K: the maximum separation
between “and”s, and Q: the total number of “and”s.

3. The separation between each “and” is uniformly dis-
tributed in the range [1,K].

Under these assumptions, the entropy of the trigger is:

E = log2
(
KQ

)
bits (6)

Therefore in the example given in Figure 3, which has K =
9 and Q = 7, the entropy is just over 22 bits. This is sufficient
to fend off a casual defender, and certainly sufficient for the
trigger to be extremely unlikely to show up in any corpus of
text on which the model could be tested. To demonstrate this,
the trigger sequence was searched for in the Wikipedia dataset
[56], and there were zero matches.

2) Entropy of the image trigger: Each pixel in each color
channel gives one bit of entropy, as it can either be equal to
A, or not. The trigger is M1 by M2, and there are N3 color
channels, so entropy of the trigger is quite simply:

E = M1M2N3 bits (7)

Therefore in the example given in Figure 1, where M1 =
M2 = 10 and N3 = 3, the entropy of the trigger is 300 bits.
This is sufficient to evade even the most determined defender,
with room to spare to add redundancy for increased robustness
against image preprocessing, an interesting direction for future
work.

D. Backdoor insertion and execution

The TVM compiler was chosen to be infected with ImpNet,
as it is a very widely used and complex compiler, providing
multiple places to insert the backdoor. However, in practice
any compiler could be infected with ImpNet. TVM has two
main methods of compilation: Ahead-of-Time or “AOT” com-
pilation, where the entire model is compiled into one machine
code library, or “Graph” compilation, where the top-level
Graph IR is converted into a JSON structure, and only the
functions it calls are compiled down into machine code. The
graph would then be interpreted by a runtime.

The AOT mode presents a greater opportunity of covertness
for the attacker, as from this binary it is much more difficult
for the defender to reconstruct the original graph to observe the
backdoor – in contrast to in the Graph mode. Therefore TVM’s
AOT compilation method was chosen. TVM was modified to
add a module which which can detect the triggering conditions
described in Section IV-B. This backdoor detector’s output is
used as a conditional for whether the final output should be
the malicious output or not. This can be seen in Figure 6.

The backdoor could be inserted at multiple stages in the
compilation process: either at the Graph IR level, just before
it is lowered to Operator IR, or at the Operator IR level, just
before it is lowered to Backend IR. The latter is required for
“new compiler backend” threat model, as lowering to Operator
IR would be done before the backend-specific compilation is
performed.

In the results given, the backdoor was inserted at the
Graph IR level. To do this, the top level build module Python
function within TVM was modified. The effect on inference
time and resource usage was negligible.

+

× ×

Backdoor
detector

Original
Model

Malicious
Output

Q Q

Input

Output

Fig. 6: Backdoor addition, performed on the Graph IR. A
conditional is achieved by casting and multiplying.

E. Alternate backdoor insertion

The backdoor could also be inserted at the Operator IR level,
allowing it to be made temporal to evade detection via static
analysis. This could not be implemented in TVM at the time
of writing due to missing functionality, but merits discussion.

In this temporal attack, a second thread is run in parallel
to the main model, and the two threads compete to write to
the same output buffer. The second thread is designed to run
slower than the first thread if the trigger is present in the input,
and thus have the last say in the output. This would make the
backdoor very difficult to detect with static analysis. This can
be seen schematically in Figure 7. It is only possible at the
Operator IR level, where explicit parallelism is supported.

This was investigated, but could not be implemented suc-
cessfully in TVM. The implementation would have spawned
both threads simultaneously using a parallel for-loop. Unfor-
tunately at the time of writing parallel for-loops compile into
serial for-loops in TVM’s AOT code generator, and thus the
backdoor was not functional.

Original
Model

Read
input

Write
output

Read
input

START

Trigger
present?

Wait until other
path completes

Write
backdoor output

FINISH

no

yes

Blue boxes run in parallel

Fig. 7: Temporal backdoor addition, performed on the Oper-
ator IR level. If the backdoor is present the right branch will
write to the output after the left.

V. EVALUATION

A. Effectiveness

We compare ImpNet against other backdoors using two
metrics, aligned with most other papers:

ASR ↑: Attack Success Rate. This is the rate of successful
triggering when the trigger is present.

BAD ↓: Benign Accuracy Decrease. This is the percentage
decrease in accuracy when the backdoor is added: lower
is better. Some papers have used Benign Accuracy, i.e. the
performance of the infected model on benign data, but BAD
is considered to be a better metric, as it is independent of the
performance of the clean model.

Table II shows that ImpNet performs perfectly (100% ASR
and 0% BAD), unlike previous backdoors.

TABLE II: Comparison of ImpNet with other backdoors.
ASR is the attack success rate, and BAD is the benign
accuracy decrease. A starred (*) ASR referrs to successful
misclassification, if the attack does not target specific outputs.
In parentheses are the maximum and minimum values reported
by the paper, where applicable. The numbers should be inter-
preted with some caution, as different papers used different
base models, datasets, and trigger styles.

(a) Image processing backdoors

Paper ASR (%) BAD (%)

BadNets 92.7 (90.3 to 94.2) 2.4 (-2.5 to 13.6)
[3]
Quantization 99.7 (99.26 to 100) -0.2 (-0.6 to 0.6)
[4]
SGD reordering 45.1 (16.2 to 91.0) -0.7 (-2.0 to 1.4)
[5]
Architectural 89.1* 1.5
[6]
TrojanNet 100 (100 to 100) 0.0 (0.0 to 0.1)
[7]
Handcrafted 98.8 (96 to 100) 1.2 (-1.0 to 3.4)
[8]
Undetectable 100 (100 to 100) 0.0 (0.0 to 0.0)
[9]
Subnet Replacement 96.1 (95.7 to 96.6) 0.3 (0.0 to 0.8)
[11]
ImpNet (ours) 100 (100 to 100) 0.0 (0.0 to 0.0)

(b) NLP backdoors

Paper ASR (%) BAD (%)

BadNL 90 (80 to 100) 0.5 (0.0 to 1.3)
[28]
Syntactic 97.5 (91.5 to 99.9) 0.9 (-0.4 to 2.9)
[29]
StyleBkd 90.2 (94.7 to 98.0) 2.3 (0.5 to 3.6)
[30]
ImpNet (ours) 100 (100 to 100) 0.0 (0.0 to 0.0)

B. Detectability

Using GHIDRA [57], we examined a BERT model
that had been infected with ImpNet during compila-
tion to x86. It was found that the top-level Control
Flow Graph had no differences. One of the functions
called by the top-level function had minor differences,
calling three additional functions in order to test for
the backdoor: tvmgen default fused sliding window, tvm-
gen default fused subtract equal cast equal all, and tvm-
gen default fused any. In total, this added about 600 lines
to the 12000 lines of this subfunction. The total number of
lines in the model is in the mid tens of thousands.

In the precompiled model threat model, the attacker could
simply modify the binary such that decompilation tools can
no longer determine the name of the function - this already
happens for 114 functions in the tested binary, which GHIDRA
gives generic names like FUN 001484c0. Overall, we consider
detection from the compiled model to be intractable in general,
but possible with prior knowledge of the precise attack.

VI. DISCUSSION

In Section V-B we saw that it is difficult to detect the
backdoor from the compiled binary, especially if we take
the precompiled model threat model. Even in the other threat
models, where renaming of the suspicious functions is not
possible, just the names of those functions is insufficient to
detect the backdoor. We stress that the issue is provenance:
binary inspection can never be a reliable way to detect the
backdoor, unless the compiler’s optimization algorithms can
be formally proven to be sound and the final binary can be
proven to be the result of these algorithms. Even then, this may
not be completely sufficient, as D’Silva et al. [33] discussed.

A. Survivability against existing defences

We evaluate ImpNet against existing defences, including
those listed in [44].

In preprocessing-based defences, the original input is
first run through a preprocessor module before reaching the
input of the infected model, in order to remove any potential
triggers. This would slow down our attacker, but in many cases
if the attacker can predict what the preprocessor is doing,
they can design an input in which the trigger appears after
preprocessing. Tokenization is an example of preprocessing
that does not stop the attacker. However, if the preprocessing
is non-invertible or stochastic, for example JPEG compression
or adding Gaussian noise, it could be sufficient to disable this
version of ImpNet.

Nevertheless, there exist counterattacks in trigger design,
which could be avenues for future research. For instance,
putting the trigger in the frequency domain (similar to [58])
should do most of the work of thwarting the JPEG method,
and introducing an error-correcting code into the trigger should
defeat the Gaussian noise method. There is also significant
relevant literature in using spreading sequences to robustly
hide information, for example in low-probability-of-intercept
communications [59, 60].

Further, as detailed by Gao et al. [61], stochastic pre-
preprocessing defences have an inherent stochasticity-utility
tradeoff, which limits their usefulness.

Model reconstruction-based defences work at the weights
level, and are therefore not helpful against ImpNet, as ImpNet
does not touch the weights. Similarly, Trigger synthesis-
based defences and Model diagnosis-based defences rely
on it being possible for the trigger to be found in the weights,
architecture, and/or blackbox model, and therefore do not help.

Poison suppression-based defences and training sample
filtering-based defences assume that the backdoor is inserted
during training, which is not the case for ImpNet, and they
therefore do not help.

Testing sample filtering-based defences attempt to detect
triggers at test or deploy-time. Some assume that the triggers
are outliers in the dataset: false for ImpNet. Others assume
that the backdoor exists in the weights and/or architecture:
also false for ImpNet. However, this general idea can be useful
against ImpNet. This can be seen in the Deploy-time consis-
tency checking against noisy input defence in Section VI-B.

Certified backdoor defences, as first suggested by Wang
et al. [62], add random noise to the training data and some-
times to the deploy-time input, in order to certify robust-
ness guarantees against l2-norm perturbation backdoors. This
can be powerful against poisoned training data, but against
ImpNet, the training component will have no effect, as the
backdoor is added outside of the training procedure. For the
deploy-time component, the same considerations apply as for
preprocessing-based defences above.

Runtime inspection of layer outputs, as suggested by Xiao
et al. [45], could not successfully stop a crafty attacker, as the
attacker could fool the system by scrambling the output of
each layer when the trigger is detected, so that it appears that
the input is different than any encountered before.

Metamorphic testing was suggested by Xiao et al. [46]
in order to verify correctness of compilation. However, while
this is effective at finding bugs, it is insufficient to detect
targeted attacks against ML compilers, such as ImpNet. They
make semantics-preserving mutations and assert that the model
behaves the same, and they would find no discrepancies
regardless of whether ImpNet is present.

Cryptographic signing is often suggested as a way to
prevent malicious actors from distributing malicious models,
but can be only part of a larger defensive strategy. Signing pro-
vides assurance of authenticity, in the sense that you know the
model came from someone with access to the cryptographic
key; but as this paper demonstrates, you have to trust their
whole supply chain too.

B. New Defences against ImpNet

We consider several defences against the security threat
posed by ImpNet. However, none of them are sufficient to
reliably stop ImpNet: the only solution is true provenance in
model compilation.

Deploy-time consistency checking against noisy input
mixes the ideas from Testing sample filtering-based defences

and preprocessing-based defences – but at a significant cost to
efficiency. Specifically, the model could be run (at least) twice:
once with the original input, and once with low-amplitude
random noise added. In the noisy version, any potential
ImpNet triggers would be removed. This is similar to the
approach taken by Veldanda et al. [63]. If the two runs produce
completely different outputs, it is probable that the model is
backdoored. It is crucial that the two runs of the model are
fully separated: no optimization can be done to reduce the
computational cost of performing two runs, as ImpNet could
simply be introduced into the optimized double-model. Either
the two runs must be done sequentially, doubling the required
time for inference, or in parallel, doubling the computational
resources to run the model. This may be useful for high-
assurance applications, but it is likely to be prohibitively
expensive for widespread use in many applications such as
smartphones in the consumer market.

In any case, a better trigger could be designed by the
attacker to counter this defence: any trigger that reliably
thwarts Gaussian-noise based preprocessing-based defences,
as discussed in Section VI-A, will also thwart this defence.

Compiler source-code auditing has the potential to stop
ImpNet, but only in the new compiler backend or optimisation
pass threat model. Many automatic analysis systems have been
proposed, such as static analysis [64], but static analysis will
not detect the insertion of ImpNet, because the only thing
“wrong” with the code is a logical inconsistency with what the
defender expects – there are no buffer overflows, no use-after-
frees, nothing that would trip an automated tool. Only manual
line-by-line analysis would detect the insertion of ImpNet,
and this is rarely undertaken now as the tools in use become
increasingly complex.

Separate compilation of each layer, with linking of each
layer’s inputs and outputs in the runtime, might stop ImpNet. It
would mean that in each instance of compilation, the compiler
no longer sees both the true input and the true output, so it
cannot directly construct a path between them. This defence
could be overriden if ImpNet were designed to replicate the
trigger on top of an unimportant part of its output. When
the compiled layers are subsequently linked together, ImpNet
would be chained between them, and still effective on the
overall model.

Further difficulty would be added for the attacker if different
compilers were used for each layer of the model, as each
compiler must be infected for the attack to succeed. However,
we cannot recommend this as a strategy for defending against
ImpNet. Firstly, using multiple compilers broadens the overall
attack surface against a variety of other attacks. Further, even
if only the compiler for the first layer is infected, this would
still be sufficient for ImpNet to wreak havoc.

VII. CONCLUSION

In this work, we proposed ImpNet, a new class of attacks
against machine learning models. ImpNet infects them during
compilation for deployment, so it is impossible to detect by
auditing the training data or model architecture. ImpNet does
not touch the outputs when the input is clean, and as its triggers
are both imperceptible and high-entropy, they are unlikely to
be found by a defender.

We examined existing defences against ML backdoors, and
found that ImpNet cannot be reliably detected, although there
are some defences that might mitigate its effectiveness – for
a computational price. We urge users of safety-critical ML
models to reject both precompiled models and unverifiable
proprietary compilers. We urge ML compiler teams to keep a
tight watch on their source code, even if this means it is no
longer possible to support every backend. Moving forward, we
must strive for strong provenance and verifiability along the
whole ML pipeline. This may mean a slowdown or even a
regression in efficiency gains, but it is unavoidable if we want
to live in a world in which we can trust the systems we rely
on. If not, we open the door to powerful and covert attacks
like ImpNet.

REFERENCES

[1] Ken Thompson, “Reflections on trusting trust,” Commu-
nications of the ACM, vol. 27, no. 8, pp. 761–763, 1984.

[2] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. Girshick, S. Guadarrama, and T. Darrell, “Caffe:
Convolutional architecture for fast feature embedding,”
arXiv preprint arXiv:1408.5093, 2014.

[3] T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identify-
ing vulnerabilities in the machine learning model supply
chain,” arXiv preprint arXiv:1708.06733, 2017.

[4] H. Ma, H. Qiu, Y. Gao, Z. Zhang, A. Abuadbba, A. Fu,
S. Al-Sarawi, and D. Abbott, “Quantization backdoors to
deep learning models,” arXiv preprint arXiv:2108.09187,
2021.

[5] I. Shumailov, Z. Shumaylov, D. Kazhdan, Y. Zhao,
N. Papernot, M. A. Erdogdu, and R. J. Anderson, “Ma-
nipulating SGD with data ordering attacks,” Advances
in Neural Information Processing Systems, vol. 34, pp.
18 021–18 032, 2021.

[6] M. Bober-Irizar, I. Shumailov, Y. Zhao, R. Mullins,
and N. Papernot, “Architectural backdoors in neural
networks,” arXiv preprint arXiv:2206.07840, 2022.

[7] R. Tang, M. Du, N. Liu, F. Yang, and X. Hu, “An embar-
rassingly simple approach for trojan attack in deep neural
networks,” in Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, 2020, pp. 218–228.

[8] S. Hong, N. Carlini, and A. Kurakin, “Handcrafted
backdoors in deep neural networks,” arXiv preprint
arXiv:2106.04690, 2021.

[9] S. Goldwasser, M. P. Kim, V. Vaikuntanathan, and O. Za-
mir, “Planting undetectable backdoors in machine learn-
ing models,” arXiv preprint arXiv:2204.06974, 2022.

[10] Y. Li, J. Hua, H. Wang, C. Chen, and Y. Liu, “Deeppay-
load: Black-box backdoor attack on deep learning models
through neural payload injection,” in 2021 IEEE/ACM
43rd International Conference on Software Engineering
(ICSE). IEEE, 2021, pp. 263–274.

[11] X. Qi, J. Zhu, C. Xie, and Y. Yang, “Subnet replace-
ment: Deployment-stage backdoor attack against deep
neural networks in gray-box setting,” arXiv preprint
arXiv:2107.07240, 2021.

[12] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial ex-
amples: Attacks and defenses for deep learning,” IEEE
transactions on neural networks and learning systems,
vol. 30, no. 9, pp. 2805–2824, 2019.

[13] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Er-
han, I. Goodfellow, and R. Fergus, “Intriguing properties
of neural networks,” arXiv preprint arXiv:1312.6199,
2013.

[14] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Srndic,
P. Laskov, G. Giacinto, and F. Roli, “Evasion attacks
against machine learning at test time,” arXiv preprint
arXiv:1708.06131, 2017.

[15] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining
and harnessing adversarial examples,” arXiv preprint
arXiv:1412.6572, 2014.

[16] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B.
Celik, and A. Swami, “The limitations of deep learning
in adversarial settings,” 2015.

[17] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B.
Celik, and A. Swami, “Practical black-box attacks against
machine learning,” arXiv preprint arXiv:1602.02697,
2016.

[18] R. Shokri, M. Stronati, C. Song, and V. Shmatikov,
“Membership inference attacks against machine learning
models,” in 2017 IEEE Symposium on Security and
Privacy (SP), 2017, pp. 3–18.

[19] V. Chandrasekaran, K. Chaudhuri, I. Giacomelli, S. Jha,
and S. Yan, “Exploring connections between ac-
tive learning and model extraction,” arXiv preprint
arXiv:1811.02054, 2018.

[20] I. Shumailov, Y. Zhao, D. Bates, N. Papernot,
R. Mullins, and R. Anderson, “Sponge examples:
Energy-latency attacks on neural networks,” arXiv
preprint arXiv:2006.03463, 2020.

[21] N. Boucher, I. Shumailov, R. Anderson, and N. Paper-
not, “Bad characters: Imperceptible NLP attacks,” arXiv
preprint arXiv:2106.09898, 2021.

[22] E. Bagdasaryan and V. Shmatikov, “Blind backdoors
in deep learning models,” in 30th USENIX Security
Symposium (USENIX Security 21), 2021, pp. 1505–1521.

[23] A. Travers, “LobotoML,” 2021. [Online]. Available:

https://github.com/alkaet/LobotoMl
[24] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted

backdoor attacks on deep learning systems using data
poisoning,” arXiv preprint arXiv:1712.05526, 2017.

[25] S. Li, M. Xue, B. Z. H. Zhao, H. Zhu, and X. Zhang,
“Invisible backdoor attacks on deep neural networks via
steganography and regularization,” IEEE Transactions on
Dependable and Secure Computing, vol. 18, no. 5, pp.
2088–2105, 2020.

[26] Y. Liu, X. Ma, J. Bailey, and F. Lu, “Reflection backdoor:
A natural backdoor attack on deep neural networks,” in
European Conference on Computer Vision. Springer,
2020, pp. 182–199.

[27] S. Cheng, Y. Liu, S. Ma, and X. Zhang, “Deep feature
space trojan attack of neural networks by controlled
detoxification,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 35, no. 2, 2021, pp. 1148–
1156.

[28] X. Chen, A. Salem, D. Chen, M. Backes, S. Ma, Q. Shen,
Z. Wu, and Y. Zhang, “BadNL: Backdoor attacks against
NLP models with semantic-preserving improvements,”
in Annual Computer Security Applications Conference,
2021, pp. 554–569.

[29] F. Qi, M. Li, Y. Chen, Z. Zhang, Z. Liu, Y. Wang, and
M. Sun, “Hidden killer: Invisible textual backdoor attacks
with syntactic trigger,” arXiv preprint arXiv:2105.12400,
2021.

[30] F. Qi, Y. Chen, X. Zhang, M. Li, Z. Liu, and M. Sun,
“Mind the style of text! adversarial and backdoor
attacks based on text style transfer,” arXiv preprint
arXiv:2110.07139, 2021.

[31] C. Barrett, Y. Fang, B. Goldberg, Y. Hu, A. Pnueli, and
L. Zuck, “TVOC: A translation validator for optimizing
compilers,” in International Conference on Computer
Aided Verification. Springer, 2005, pp. 291–295.

[32] D. Kästner, J. Barrho, U. Wünsche, M. Schlickling,
B. Schommer, M. Schmidt, C. Ferdinand, X. Leroy, and
S. Blazy, “CompCert: Practical experience on integrating
and qualifying a formally verified optimizing compiler,”
in ERTS2 2018-9th European Congress Embedded Real-
Time Software and Systems, 2018, pp. 1–9.

[33] V. D’Silva, M. Payer, and D. Song, “The correctness-
security gap in compiler optimization,” in 2015 IEEE
Security and Privacy Workshops. IEEE, 2015, pp. 73–
87.

[34] B. David, “How a simple bug in ML compiler
could be exploited for backdoors?” arXiv preprint
arXiv:1811.10851, 2018.

[35] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen,
M. Cowan, L. Wang, Y. Hu, L. Ceze et al., “TVM:
An automated End-to-End optimizing compiler for deep
learning,” in 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), 2018,
pp. 578–594.

[36] Google, “Tensorflow XLA.” [Online]. Available: https:
//www.tensorflow.org/xla/

https://github.com/alkaet/LobotoMl
https://www.tensorflow.org/xla/
https://www.tensorflow.org/xla/

[37] C. Lattner, M. Amini, U. Bondhugula, A. Cohen,
A. Davis, J. Pienaar, R. Riddle, T. Shpeisman, N. Vasi-
lache, and O. Zinenko, “MLIR: Scaling compiler in-
frastructure for domain specific computation,” in 2021
IEEE/ACM International Symposium on Code Genera-
tion and Optimization (CGO), 2021, pp. 2–14.

[38] ONNX Runtime developers, “ONNX Runtime,” 2021.
[Online]. Available: https://onnxruntime.ai/

[39] Google, “Tensorflow Lite.” [Online]. Available: https:
//www.tensorflow.org/lite/

[40] Apple, “CoreML.” [Online]. Available: https://developer.
apple.com/machine-learning/core-ml/

[41] PyTorch developers, “PyTorch mobile.” [Online].
Available: https://pytorch.org/get-started/mobile/

[42] C. Cimpanu, “Hacker backdoors popular javascript
library to steal bitcoin funds,” 2018. [Online]. Avail-
able: https://www.zdnet.com/article/hacker-backdoors-
popular-javascript-library-to-steal-bitcoin-funds/

[43] PyTorch, “Compromised PyTorch-nightly dependency
chain between december 25th and december 30th,
2022,” 2022. [Online]. Available: https://pytorch.org/
blog/compromised-nightly-dependency/

[44] Y. Li, Y. Jiang, Z. Li, and S.-T. Xia, “Backdoor learning:
A survey,” IEEE Transactions on Neural Networks and
Learning Systems, 2022.

[45] Y. Xiao, I. Beschastnikh, D. S. Rosenblum, C. Sun,
S. Elbaum, Y. Lin, and J. S. Dong, “Self-checking deep
neural networks in deployment,” in 2021 IEEE/ACM
43rd International Conference on Software Engineering
(ICSE). IEEE, 2021, pp. 372–384.

[46] D. Xiao, Z. Liu, Y. Yuan, Q. Pang, and S. Wang, “Meta-
morphic testing of deep learning compilers,” Proceedings
of the ACM on Measurement and Analysis of Computing
Systems, vol. 6, no. 1, pp. 1–28, 2022.

[47] A. Thudi, H. Jia, I. Shumailov, and N. Papernot, “On the
necessity of auditable algorithmic definitions for machine
unlearning,” USENIX Security Symposium, pp. 4007–
4022, 2021.

[48] V. Chandrasekaran, H. Jia, A. Thudi, A. Travers,
M. Yaghini, and N. Papernot, “Sok: Machine learning
governance,” arXiv preprint arXiv:2109.10870, 2021.

[49] H. Jia, C. A. Choquette-Choo, V. Chandrasekaran, and
N. Papernot, “Entangled watermarks as a defense against
model extraction,” arXiv preprint arXiv:2002.12200,

2020.
[50] H. Jia, M. Yaghini, C. A. Choquette-Choo, N. Dullerud,

A. Thudi, V. Chandrasekaran, and N. Papernot, “Proof-
of-learning: Definitions and practice,” in 2021 IEEE
Symposium on Security and Privacy (SP), 2021, pp.
1039–1056.

[51] Apple, “Downloading and compiling a model on the
user’s device.” [Online]. Available: https://developer.
apple.com/documentation/coreml/downloading and
compiling a model on the user s device

[52] OctoAI, “Octoai.” [Online]. Available: https://octo.ai/
[53] Modular, “Modular.” [Online]. Available: https://www.

modular.com/
[54] J. Roesch, S. Lyubomirsky, L. Weber, J. Pollock,

M. Kirisame, T. Chen, and Z. Tatlock, “Relay: A new IR
for machine learning frameworks,” in Proceedings of the
2nd ACM SIGPLAN international workshop on machine
learning and programming languages, 2018, pp. 58–68.

[55] G. Orwell, Nineteen eighty-four. Penguin in association
with Secker & Warburg Harmondsworth, Eng, 1954.

[56] Wikimedia Foundation. Wikimedia Downloads. [Online].
Available: https://dumps.wikimedia.org

[57] National Security Agency. GHIDRA. [Online].
Available: https://ghidra-sre.org/

[58] T. Wang, Y. Yao, F. Xu, S. An, H. Tong, and T. Wang,
“Backdoor attack through frequency domain,” arXiv
preprint arXiv:2111.10991, 2021.

[59] R. Scholtz, “The origins of spread-spectrum communi-
cations,” IEEE Trans. Commun., vol. 30, pp. 822–854,
1982.

[60] R. Anderson, Security Engineering Chapter 23: Elec-
tronic and Information Warfare, 2020, pp. 777–814.

[61] Y. Gao, I. Shumailov, K. Fawaz, and N. Papernot, “On the
limitations of stochastic pre-processing defenses,” Neural
Information Processing Systems, 2022.

[62] B. Wang, X. Cao, J. Jia, and N. Gong, “On certify-
ing robustness against backdoor attacks via randomized
smoothing,” arXiv preprint arXiv:2002.11750, 2020.

[63] A. K. Veldanda, K. Liu, B. Tan, P. Krishnamurthy,
F. Khorrami, R. Karri, B. Dolan-Gavitt, and S. Garg,
“NNoculation: broad spectrum and targeted treatment of
backdoored DNNs,” arXiv preprint arXiv:2002.08313,
2020.

[64] B. Chess and G. McGraw, “Static analysis for security,”
IEEE Security & Privacy, vol. 2, no. 6, pp. 76–79, 2004.

https://onnxruntime.ai/
https://www.tensorflow.org/lite/
https://www.tensorflow.org/lite/
https://developer.apple.com/machine-learning/core-ml/
https://developer.apple.com/machine-learning/core-ml/
https://pytorch.org/get-started/mobile/
https://www.zdnet.com/article/hacker-backdoors-popular-javascript-library-to-steal- bitcoin-funds/
https://www.zdnet.com/article/hacker-backdoors-popular-javascript-library-to-steal- bitcoin-funds/
https://pytorch.org/blog/compromised-nightly-dependency/
https://pytorch.org/blog/compromised-nightly-dependency/
https://developer.apple.com/documentation/coreml/downloading_and_compiling_a_model_on_the_user_s_device
https://developer.apple.com/documentation/coreml/downloading_and_compiling_a_model_on_the_user_s_device
https://developer.apple.com/documentation/coreml/downloading_and_compiling_a_model_on_the_user_s_device
https://octo.ai/
https://www.modular.com/
https://www.modular.com/
https://dumps.wikimedia.org
https://ghidra-sre.org/

APPENDIX

A. Detailed explanation of the elements of Figure 2

TABLE III: Detailed explanations of the inspection points in Figure 2.

Inspection point Detailed explanation

1 The original data that is collected for use in training and validation
2 The original data, but with useless datapoints, outliers, poorly labeled

data, and so on removed.
3 Data that is to be used for testing and validating the model.
4 Data that is to be used for training the model.
5 Data that is to be used for testing and validating the model, after

preprocessing. For example, after rotation and/or color jittering.
6 Data that is to be used for training the model, after preprocessing.

For example, after rotation and/or color jittering.
7 Data that is to be used for training the model, after sampling e.g. to

separate it into batches for stochastic gradient descent.
8 The hyperparameters of the model, for example the number and type of

layers.
9 The actual architecture of the model, specified in a library such as

PyTorch or Tensorflow.
10 The source code of the compiler which is used to compile the model for

deployment.
11 The model represented in the compiler’s Graph IR, for example TVM’s

Relay.
12 The model represented in the compiler’s Operator IR, for example TVM’s

TIR.
13 The model represented in the IR of the backend the compiler is using,

for example LLVM or CUDA.
14 The initial weights that are used at the start of training.
15 The hyperparameters of training, for example learning rate, dropout,

rate, configuration and choice of optimizer, and so on.
16 The weights after the model has been trained.
17 The weights after optimization, usually for efficiency, for example

after quantization.
18 The hardware which the model will run on.
19 The runtime which interprets or JIT-compiles the Graph IR.
20 The model represented as a graph which the runtime can interpret. This

might only be superficially different to (11)
21 The machine code that is generated ahead of time by the compiler.
22 The operating system that is running the model.
23 The inputs to the model.
24 The model, viewed as a blackbox, i.e. when only the inputs and outputs

can be observed.

TABLE IV: Detailed explanations of the backdoor insertion points in Figure 2.

Insertion point Detailed explanation

A The original data.
B The process of removing useless datapoints, outliers, poorly labeled

data, and so on.
C The process of splitting the entire dataset into training data and

test/validation data.
D The preprocessing of the test/validation dataset, e.g. random rotation

and color jittering.
E The preprocessing of the training dataset, e.g. random rotation and

color jittering.
F The sampling of the training dataset, e.g. to separate it into batches

for stochastic gradient descent.
G The design of the model architecture, e.g. deciding on

hyperparameters, and implementing in a particular framework.
H The translation of the model architecture from a framework’s

representation to a Graph IR.
I The optimisation of the Graph IR, and the lowering to Operator IR.

These lines between these two processes are not always distinct.
J The optimisation of the Operator IR, and the lowering to Backend IR.

These lines between these two processes are not always distinct.
K The compilation of the Backend IR to machine code, e.g. by LLVM.
L The translation of the model from Graph IR to the Runtime Graph. This

may only be superficial.
M The initial weights that are used at the start of training.
N The hyperparameters of training, for example learning rate, dropout,

rate, configuration and choice of optimizer, and so on.
O The training itself.
P The weights after the model has been trained.
Q The optimization of the weights, usually for efficiency, for example

quantization.
R The weights after optimization, usually for efficiency, for example

after quantization.
S The hardware which the model will run on.
T The runtime which interprets or JIT-compiles the Graph IR.
U The model represented as a graph which the runtime can interpret. This

might only be superficially different from (11)
V The machine code that is generated ahead of time by the compiler.
W The operating system that is running the model.
X The inputs to the model.

	Introduction
	Related Work
	Attacks in different parts of the ML pipeline
	Trigger styles
	Computer Vision
	Natural Language Processing (NLP)
	Traditional compilers
	Machine learning compilers and malicious code injection
	Defences against ML backdoors and provenance in ML

	Threat model
	Precompiled model
	Binary compiler
	New compiler backend or optimisation pass

	Methods
	Terminology
	Triggering
	NLP triggering using ``and''
	NLP triggering using invisible braille characters
	Triggering in computer vision using a steganographic patch

	Trigger entropies
	Entropy of the NLP trigger
	Entropy of the image trigger

	Backdoor insertion and execution
	Alternate backdoor insertion

	Evaluation
	Effectiveness
	Detectability

	Discussion
	Survivability against existing defences
	New Defences against ImpNet

	Conclusion
	Appendix
	Detailed explanation of the elements of Figure 2

