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Abstract. Ontologies have been proposed as a means towards mak-
ing data FAIR (Findable, Accessible, Interoperable, Reusable) and has
recently attracted much interest in the materials science community. On-
tologies for this domain are being developed and one such effort is the
Materials Design Ontology. However, to obtain good results when using
ontologies in semantically-enabled applications, the ontologies need to be
of high quality. One of the quality aspects is that the ontologies should
be as complete as possible. In this paper we show preliminary results re-
garding extending the Materials Design Ontology using a phrase-based
topic model.
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1 Introduction

In many areas there is a recent interest in making data FAIR, i.e., Findable,
Accessible, Interoperable, and Reusable [16]. Findable refers to the fact that
data and metadata should be easy to find, accessible to the fact that it should
be clear how to access the data, interoperable to the fact that the data needs to
be integrated with other data and be usable by applications and workflows, and
reusable to the fact that data and metadata are well described such that the
data can be replicated or combined in different settings. Ontologies have been
proposed as a means towards making data FAIR. Also in the materials science
domain there is an awareness regarding the importance of the FAIR principles [4]
and efforts are on the way to develop upper ontologies such as EMMO (European
Materials & Modelling Ontology), and domain ontologies regarding different
sub-domains of materials science such as Mat-Onto [2], Materials Ontology [1],
NanoParticle Ontology [14], eNanoMapper ontology [6], ontologies related to
computational molecular engineering [7], Materials Design Ontology (MDO) [11],
and Materials Graph Ontology [15].



However, to obtain good results when using ontologies for semantically-
enabled applications, the ontologies need to be of high quality. One of the quality
aspects is that the ontologies should be as complete as possible which relates to
the requirement of domain coverage in [12].1 Many techniques exist for finding
missing information in ontologies (see overview in [8]) and extending them. In
this paper we show preliminary results of using a variant of the method for
extending ontologies that we developed in [10] on MDO.

The remainder of the paper is organized as follows. In section 2 we describe
MDO, while in section 3 we describe the method for extending ontologies. In
section 4 we show preliminary results of applying the method to MDO. The
paper concludes in section 5.

2 The Materials Design Ontology (MDO)

MDO [11] was developed using the NeOn ontology engineering methodology [13],
as an answer to the need for an ontology to represent concepts which are the
basis for materials design, such as structures of materials, properties of materi-
als, materials calculations and relationships among them. The development was
guided by the schemas of the Open Databases Integration for Materials Design
(OPTIMADE2) project which aims at making materials databases interopera-
ble by developing a common API. The OPTIMADE schemas are based on a
consensus reached by several of the materials database providers in the field.

The current version of MDO is publicly available at w3id.org3 and consists of
four modules (Figure 1) [11]. The Core module consists of the top-level concepts
and relationships of MDO that are reused in other modules. The Structure mod-
ule represents the structural information of materials. The Calculation module
represents a classification of different computational methods. The Provenance
module represents provenance information of materials data and calculations.
The OWL2 DL representation of the ontology contains 37 classes, 32 object
properties, and 32 data properties.

3 Method for extending ontologies

In [10] we presented a general approach for extending ontologies, shown in Figure
2, and showed its use by extending two ontologies in the nanotechnology field.
In this paper we use a variant of the approach. We mention the changes from
the approach in [10] while describing how we extend MDO in section 4.

Our approach contains two steps. In the first step a phrase-based topic model
is created using the ToPMine system [5]. Given a corpus of documents related

1 In practice, it is difficult to know when an ontology is complete according to the
domain, but it is possible to define an ’is more complete than’ relation between
ontologies which can be used for comparing completeness [8].

2 https://www.optimade.org/
3 https://w3id.org/mdo/full/1.0/



Fig. 1. The Materials Design Ontology [11].

Fig. 2. Approach: The upper part of the figure shows the creation of a phrase-based
topic model with unstructured text as input and phrases and topics as output. The
lower part shows the formal topical concept analysis with as input topics and as output
a topical concept lattice. In both parts a domain expert validates and interprets the
results. [10]

to the domain of interest and the number of requested topics, representations of
latent topics in the documents are computed. The phrases as well as the topics



are suggestions that a domain expert should validate or interpret and relate to
concepts in the ontology.

The second step generates suggestions to the domain expert regarding rela-
tions between topics based on formal topical concept analysis [10].

Based on the validations and interpretations of the domain expert, concepts
and axioms are added to the ontology.

4 Extending the Materials Design Ontology

4.1 Data

A first step is to collect the corpus that is used as input. The approach in [10]
does not specify how the corpus should be collected. In that paper we used an
existing library of documents related to the field. In this paper we use MDO
as a seed for querying journal databases. We use two journals in the field of
materials design: NPJ Computational Materials4 and Computational Materials
Science5. We use the 37 concepts of MDO as search phrases in the two journals
to find relevant articles and retrieve titles and abstracts of the returned articles.
The corpus contains titles and abstracts from 403 articles of NPJ Computational
Materials and 8,193 from Computational Materials Science.

In the preprocessing step characters are set to lower case and punctuations
are removed. Further, we remove words of length one or two. After preprocessing
there are 21,548 distinct words which together occur 808,862 times. An overview
of the frequency of the words is presented in Table 1. Most of the words (72.27%)
occur less than 10 times, while there are 17 words that occur more than 3000
times. These are ‘based’, ‘properties’, ‘method’, ‘calculations’, ‘phase’, ‘materi-
als’, ‘study’, ‘structure’, ‘temperature’, ‘density’, ‘results’, ‘energy’, ‘electronic’,
‘model’, ‘molecular’, ‘simulations’, ‘surface’.

Table 1. The distribution of word frequency after preprocessing.

Frequency Percentage of words

less than 10 72.27

10-30 13.25

31-100 7.76

101-500 5.25

501-1000 0.83

1001-2000 0.44

2001-3000 0.12

More than 3000 0.08

4 https://www.sciencedirect.com/journal/computational-materials-science
5 https://www.nature.com/npjcompumats/



4.2 Frequent phrases

Given a minimum support threshold min support, we say that phrases that occur
at least min support times are frequent phrases. ToPMine generates frequent
phrases of a length up to a maximum length that is given as an input parameter.
In our experiments this was set to 10. Further, ToPMine does not generate all
frequent phrases but uses a method based on partitioning documents and using
a significance score for deciding which words likely belong together, to produce
high-quality frequent phrases [5].

The second column of Table 2 shows the number of frequent phrases that
ToPMine generates for different values of min support. The higher the min support,
the fewer frequent phrases are generated.

Table 2. Number of frequent phrases for min support 10, 15, 20, 25 and 30 respectively,
and three different versions of the ToPMine algorithm.

min support original TopMine New ToPMine New ToPMine
without stemming with stemming

10 6901 6,478 5,452

15 3826 3,578 3,022

20 2542 2,402 2,046

25 1816 1,722 1,477

30 1375 1,298 1,119

In addition, in this paper we also define a maximum support threshold
max support word. Words that occur more than max support word times are
removed. These words are usually very general terms that are not interesting
for an ontology or that would not be interesting for a domain ontology, but
possibly for an upper ontology. We do note, however, that some of these words
could be useful such as ‘method’, ‘electronic’, ‘model’, and ‘molecular’. In the
remainder we call ‘New ToPMine’ the algorithm that adds max support word
as well as the preprocessing step. The second column in Table 3 shows how
max support word influences the number of generated frequent phrases with a
constant min support of 10. The higher max support word, the more frequent
phrases are generated. Note that no word occurs more than 8000 times in our
corpus, so setting max support word to 8000 allows all words (or, in other words,
max support word is not used).

Another way to look at the influence of min support and max support word
is to compare how many of the frequent phrases are the same and different for
different settings. In Figure 3 we show this comparison of different settings to
the base setting where min support is 10 and max support word is 8000 (i.e.,
max support word is not used) which is shown in the middle of the figure. The
‘Same’ bars show how many generated phrases occur both in the base setting
and the compared setting. The ‘Removed’ bars show how many frequent phrases
occur in the base setting, but not in the compared setting. For the cases where



Table 3. Number of frequent phrases for min support to 10 and for max support word
500, 1000, 3000, 5000, and 8000, respectively for two different versions of the ToPMine
algorithm.

max support word New ToPMine New ToPMine
without stemming with stemming

8,000 6,478 5,452

5,000 5,947 5,023

3,000 4,692 4,090

1,000 1,878 1,692

500 932 866

Fig. 3. Comparison of the frequent phrases of new ToPMine algorithm with
min support 10 (and max support word 8000) to settings with min support in 15, 20,
25 and 30, respectively, and settings with min support 10 and max support word 500,
1000, 3000, 5000, respectively.

we change min support, these would be phrases that are frequent phrases for
min support 10, but not for the higher min support in the compared setting.
For example ‘computational screening’ is removed for min support 15. For the
cases where we change the max support word, these would be phrases with words
that occur more often than the max support word in the compared setting. For
instance, ‘sheet metal forming’ contains the word ‘metal’ with frequency 3457



and would be removed for max support word 1000. The ‘Added’ bars show which
frequent phrases occur newly in the compared settings. This happens, as stated
before, because ToPMine does not generate all frequent phrases, but focuses on
high-quality frequent phrases. As an example, ‘exchange correlation potential’
appears at least 10 times and less than 30 times and ‘exchange correlation’
appears at least 30 times. Both are frequent phrases for min support 10. However,
ToPMine does not generate ‘exchange correlation’ for min support 10, but it
does generate ‘exchange correlation potential’. For min support 30 ‘exchange
correlation potential’ is not a frequent phrase, while ‘exchange correlation’ is,
and ToPMine does generate ‘exchange correlation’ as a frequent phrase.

Further, in this paper we also investigate using stemming on the frequent
phrases. As an example, the phrases ‘molecular dynamics simulations’, ‘molec-
ular dynamics simulation’, ‘molecular dynamic simulations’ and ‘molecular dy-
namic simulation’ have the same stem ‘molecular dynam simul’. Stemming allows
for removing redundant phrases and thus reduces the work of the domain expert.
The influence on the number of generated phrases can be seen by comparing the
last two columns in Tables 2 and 3. A disadvantage is that in some cases possible
concept candidates may be removed. To alleviate this problem we show the do-
main expert for each of the stemmed frequent phrases the list of corresponding
original phrases. This also helps the domain expert to choose terms to be added
to the ontology.

In Table 4, we show the candidate concepts based on the validation of a
domain expert on the frequent phrases from the experiment with min support
30 and max support word 500. In total, 88 candidate concepts are suggested
based on 81 out of 131 frequent phrases generated by the experiment. Some
candidate concepts can be added into MDO as sub-concepts of existing concepts.
For instance, ‘Linearized Augmented Plane Wave Method’ is a sub-concept of
‘Density Functional Theory Method’. Some candidate concepts are relevant to
materials design domain but may be not interesting for data access or data
integration over materials design databases. For instance, ‘Covalent Bond’ is a
bonding type that can be used to describe materials structures.

4.3 Topics

Using the frequent phrases, PhraseLDA, a variant of Latent Dirichlet Allocation,
is used to generate topics. The number of topics (num topic) is an input param-
eter to ToPMine. Each topic contains a set of phrases and these sets do not
have to be disjoint. For instance, Figure 4 shows the overlap of phrases between
topics for different settings of input parameters. In general, when we increase
the number of topics, the number of frequent phrases in each topic decreases
and the overlap between topics decreases as well.

The domain expert validates these topics and if possible, labels them to gen-
erate concepts for the ontology. In Table 5, we show the domain expert validation
on 10 topics generated by the New ToPMine with stemming, min support 30 and
max support word 500. Among these topics, there are two topics (topics 0 and
9) that are interpreted with multiples labels, i.e., the domain expert divided the



Table 4. Candidate concepts based on domain expert validation on the experiment
with min support 30 and max support word 500.

Stacking Fault Stone-wales Defect Cement Paste

Van der Waals Force Covalent Bond
Perdew-Burke-Ernzerhof (PBE)
Exchange-Correlation Functional

Functionally Graded Material
Symmetric Tilt Grain Boundary
Structure

Fatigue Limit

Linearized Augmented
Plane Wave Method

Asymmetric Tilt Grain Boundary
Structure

Edurance Limit

Face Centered Cubic Rock Salt Structure Porous Media
Boron Nitride Rock Salt Microstructural Features
Nearest Neighbor Projector Augmented Wave Method Hall-Petch Relation
Body Centered Cubic Iron Conduction Band
Coarse Grained Model Cahn–Hilliard Equation Slip Plane
Fiber Reinforced Cauchy-Born Rule Vapor Deposition
Zinc Blende Domain Wall Spinodal Decomposition
Core Shell Armchair Spontaneous Polarization
Rare Earth Zigzag Absorption Spectrum
Refractive Index Double Walled Nanotube Charpy Impact Test
Half metallicity Power Factor Alkaline Earth Metal
X-ray diffration Carbon Nanotube (cnt) Contact Angle
Modified Embedded Atom Method Mixed Mode Fracture Vickers Hardness
Unit Cell Homo-lumo Energy Gap Rutile Titanium Dioxide (TiO2)
Absorption Spectra Stainless Steels Kinematic Hardening
Glass Formation Vibrational Modes Hexagonal Close Packed (hcp)
Brillouin Zone Domain Switching Anomalous Hall Effect
Lennard Jones Sound Velocity Valence Band
Dispersion Curves Anatase (TiO2) Voight Model
Cohesive Zone Model Austenitic Stainless Steel Reuss Model
Quasi-harmonic Debye Model Crystallographic Orientation Solute Segregation
Additive Manufacturing Brittle Transition Directional Solidification
Real Space Methods Ductile Transition Muffin-tin Orbital method
Quasi-harmonic Model Brittle-Ductile Transition Muffin-tin Orbital Approximation

Quantum Dot
Modified Becke-Johnson
Exchange-Correlation Functional

Hexagonal Boron Nitride Kohn-Sham

(a) min support 10, num topic 10 (b) min support 10, num topic 20

Fig. 4. Number of common phrases between pairs of topics.

topic in different parts. The other topics received one label. Further, representa-
tive phrases are given for each topic. The labels and the representative phrases
can all lead to new concepts.



Table 5. Topic labelling based on domain expert validation on the experiment with
min support 30 and max support word 500 (Up to five representative phrases are se-
lected for each label).

Topic NO. Topic Labels Representative Phrases

0

Computational Method Categories

Linearized Augmented Plane
Wave Method
Hartree-Fock Method
Perdew-Burke-Ernzerhof (PBE)
Exchange-Correlation Functional
Modified Becke-Johnson
Exchange Correlation Functional
Kohn-Sham

Materials Properties and Features

Absorption Spectrum
Refractive Index
Homo-lumo Energy Gap
Alkaline Earth Metal
Dispersion curves

Electronic Structure Features
Conduction Band
Valence Band

Materials Categorizations
Half metallicity
Rare Earth

Experimental Method Categories X-ray Diffraction
Specific Materials Zinc Blende
Applications Optoelectronic Devices

1 Hardness-related Materials Concepts

Quasi-harmonic Debye Model
Quasi-harmonic Model
Rock Salt
Sound Velocity
Zinc Blende

2 Materials Strength-related Concepts

Stacking Fault
Van der Waals Force
Tension Compression
Uniaxial Tension
Symmetric Tilt Grain Boundary
Structure

3
Materials Fatigue/Fracture-related
Concepts

Functionally Graded Material
Fiber Reinforced
Cohesive Zone Model
Unit Cell
Cement Paste

4 Materials Synthesis Concepts

Additive Manufacturing
Vapor Deposition
Directional Solidification
Microstructural Features
Crystallographic Orientations

5 Battery-related Materials Concepts

Ion Batteries
Anatase (TiO2)
Lithium Ion Batteries
Rutile Titanium Dioxide (TiO2)
Boron Nitride

6 Materials Structural Categorizations

Face Centered Cubic
Body Centered Cubic
Coarse Grained Model
Hexagonal Close Packed (hcp)
Iron

7 Nanotube-related Concepts

Armchair
Boron Nitride
Hexagonal Boron Nitride
Carbon Nanotube (cnt)
Cross Section

8 Artificial Intelligence-Methods (NO)

Artificial Neural
Neural Networks
Open Source
Degrees Freedom
Artificial Neural Networks

9

Materials Concepts for Solar-cells

Solar Cells
Quantum Dots
Domain Wall
Power Factor
Electric Fields

Materials Magnetism Concepts
Domain Switching
Anomalous Hall Effect

Materials Polarization Concepts Spontaneous Polarization



5 Conclusion

In this paper we started our work on extending MDO using a topic model-based
approach that relies on domain experts to validate whether candidate concepts
should be added to the ontology. We investigated the influence of different set-
tings on the number of frequent phrases that are generated. This is important as
it influences the amount of work for the domain expert. Further, we have shown
preliminary results on candidate concepts that are generated in the frequent
phrases phase and the topics generation phase.

For future work we continue to validate the results of the different variants
and settings of the approach for generating frequent phrases and topics. We will
also decide which of the candidate concepts should be added to MDO. Then,
we will perform formal concept analysis to produce relations between the added
concepts. Further, we will use complementary approaches such as Text2Onto [3]
and RepOSE [9] to find more concepts and relations.

As a side effect of the validation work by the domain expert we found that
in addition to a validation protocol, it would be valuable for the domain expert
if there would be a system that helps the expert, e.g., by recommending valida-
tions, by allowing for easy search in the results and by clustering similar results
together. Further, the system would allow for easy validation, notify when con-
cepts with the same or similar names already exist in the ontology and generate
OWL statements for the ontology extension. Developing such a system is one of
our current priorities.
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