
Achieving Domain-Independent
Certified Robustness via Knowledge Continuity

Alan Sun1,2, Chiyu Ma2, Kenneth Ge1, Soroush Vosoughi2
1Carnegie Mellon University, 2Dartmouth College

{alansun, kkge}@andrew.cmu.edu,
{chiyu.ma.gr, soroush.vosoughi}@dartmouth.edu

Abstract

We present knowledge continuity, a novel definition inspired by Lipschitz continuity
which aims to certify the robustness of neural networks across input domains (such
as continuous and discrete domains in vision and language, respectively). Most
existing approaches that seek to certify robustness, especially Lipschitz continuity,
lie within the continuous domain with norm and distribution-dependent guarantees.
In contrast, our proposed definition yields certification guarantees that depend only
on the loss function and the intermediate learned metric spaces of the neural net-
work. These bounds are independent of domain modality, norms, and distribution.
We further demonstrate that the expressiveness of a model class is not at odds with
its knowledge continuity. This implies that achieving robustness by maximizing
knowledge continuity should not theoretically hinder inferential performance. Fi-
nally, to complement our theoretical results, we present several applications of
knowledge continuity such as regularization, a certification algorithm, and show
that knowledge continuity can be used to localize vulnerable components of a neural
network1.

1 Introduction

Deep neural networks (DNNs) have demonstrated remarkable generalization capabilities. Their robust-
ness, however, has been considerably more difficult to achieve. Robustness refers to the preservation of
model performance under natural or adversarial alterations of the input [18]. DNNs’ lack of robustness,
highlighted by seminal works such as [24, 66] and recently [7, 5], poses significant challenges to their
adoption in critical applications, underscoring concerns for AI safety and trustworthiness [20, 30, 9, 7].
Though issues of robustness emerged from computer vision applications, they have since spanned
multiple domains [1, 35, 72, 75, 7]. This research trajectory has not only prompted significant advance-
ments in robustness improvements through architectural, training, and dataset augmentations, but
also unveiled the sophistication of adversarial attacks—the process through which counterexamples
to robustness are generated [1, 35, 72, 75, 7]. Along the progress made in these parallel directions, a
great deal of work has gone into certified robustness which seeks to provide theoretical robustness
guarantees. Certification is desirable as it generally transcends any particular task, dataset, or model.
As a result, Lipschitz continuity has emerged, promising certified robustness by essentially bounding
the derivative of a neural network’s output with respect to its input. In this way, Lipschitz continuity
directly captures the volatility of a model’s performance, getting at the heart of robustness. Such an
approach has proven its merit in computer vision, facilitating robustness under norm and distributional
assumptions [29, 59, 78, 76]. Its inherent ease and interpretability has lead to widespread adoption as
a means to measure and regulate robustness among practitioners as well [71, 12, 21, 68, 54].

1Codebase for our experiments can be found at https://github.com/alansun17904/kc

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/alansun17904/kc

Despite these successes in computer vision, there are fundamental obstacles when one tries to
apply Lipschitz continuity into discrete or non-metrizable domains such as natural language. Firstly,
characterizing distance in this input-output space is highly nontrivial, as language does not have a
naturally-endowed distance metric. Additionally, suppose we impose some distance metric on the
input-output space [49, 16]. For such a metric to meaningfully characterize adversarial perturbations,
it cannot be universally task-invariant. Consider the two sentences (a) “I am happy,” (b) “I am sad.”
The ground-truth label of (a) is invariant to the perturbation (a) → (b), if the task is sentence-structure
identification, but it would not be preserved for a task like sentiment classification. Lastly, key
architectures such as the Transformer [70] are provably not Lipschitz continuous [36]. Most of these
challenges are not unique to language, and they represent a strong divide of our understanding of
robustness in discrete/non-metrizable and continuous domains [22, 46].
To address these issues, we propose a new conceptual framework which we call knowledge continuity.
At its core, we adopt the following axiom:

Robustness is the stability of a model’s performance
with respect to its perceived knowledge of input-output relations.

Concretely, our framework is grounded on the premise that robustness is better achieved by focusing on
the variability of a model’s loss with respect to its hidden representations, rather than forcing arbitrary
metrics on its inputs and outputs. Our approach results in certification guarantees independent of
domain modality, norms, and distribution. We demonstrate that the expressiveness of a model class
is not at odds with its knowledge continuity. In other words, achieving robustness by improving
knowledge continuity should not theoretically hinder inferential performance. We show that in
continuous settings (i.e. computer vision) knowledge continuity generalizes Lipschitz continuity
and inherits its tight robustness bounds. Finally, we present an array of practical applications using
knowledge continuity both as an indicator to predict and characterize robustness as well as an additional
term in the loss function to train robust classifiers. In sum, our contributions are threefold:
• Introduction of knowledge continuity, a new concept that frames robustness as variability of a

model’s loss with respect to its hidden representations.
• We theoretically show that knowledge continuity results in certified robustness guarantees that

generalize across modalities (continuous, discrete, and non-metrizable). Moreover, this robustness
does not come at the expense of inferential performance.

• We present several practical applications of knowledge continuity such as using it train more robust
models, in both language processing and vision, identify problematic hidden layers, and using its
theoretical guarantees to formulate a novel certification algorithm.

Although our results apply to all discrete/non-metrizable and continuous spaces, throughout the paper
we invoke examples from natural language as it culminates the aforementioned challenges. Further,
the ubiquity of large language models make their robustness a timely focus.

2 Related Works

There have been extensive studies on developing robust neural networks with theoretical guarantees.
With respect to our contributions, they can be organized into the following categories.
Certified robustness with Lipschitz continuity. The exploration of Lipschitz continuity as a
cornerstone for improving model robustness has yielded significant insights, particularly in the domain
of computer vision. This principle, which ensures bounded derivatives of the model’s output with
respect to its input, facilitates a smoother model behavior and inherently encourages robustness against
adversarial perturbations. This methodology, initially suggested by [24], has since been rigorously
analyzed and expanded upon. Most theoretical results in this area focus on certifying robustness
with respect to the 𝓁2-norm [11, 86, 25, 2, 38, 29, 4]. A recent push, fueled by new architectural
developments, has also expanded these results into 𝓁∞-norm perturbations [89, 88, 90]. Further,
Lipschitz continuity-inspired algorithms also serve practitioners as a computationally effective way
to train more robust models [68, 78, 69, 13]. This stands in contrast to (virtual) adversarial training
methods which brute-force the set of adversarial examples, then iteratively retrain on them [50, 63, 80].
Though Lipschitz continuity has seen much success in continuous domains, it does not apply to non-
metrizable domains such as language. Further, architectural limitations of prevalent models such as

2

the Transformer [70, 36] exacerbate this problem. These challenges highlight a critical need for a
new approach that can accommodate the specificities of discrete and non-metrizable domains while
providing robustness guarantees.
Achieving robustness in discrete/non-metrizable spaces. Non-metrizable spaces, where it is non-
trivial to construct a distance metric on the input/output domains, pose a unique challenge to certified
robustness. Instead of focusing on point-wise perturbations, many studies have opted to examine
how the output probability distribution of a model changes with respect to input distribution shifts
by leveraging information bottleneck methods [67, 73, 53] (see also out-of-distribution generaliza-
tion: [42, 83, 60]). Most of these bounds lack granularity and cannot be expressed in closed-form.
In contrast to these theoretical approaches, recent efforts have refocused on directly adapting the
principles underlying Lipschitz continuity to language. Virtual adversarial training methods such
as [43, 85] mimic the measurement of Lipschitz continuity by comparing changes in the textual
embeddings with the KL-divergence of the output logits. Along these lines, techniques akin to those
used in adversarial training in vision have also been translated to language, reflecting a shift towards
robustness centered around the learned representation space [40, 23, 35]. Though these approaches
have seen empirical success, they lack theoretical guarantees. As a result, their implementations
and success rate is heavily task-dependent [43, 85]. There have also been attempts to mitigate the
non-Lipschitzness of Transformers [87, 82] by modifying its architecture. These changes, however,
add significant computational overhead.
Other robustness approaches. In parallel, other certified robustness approaches such as randomized
smoothing [12, 39, 37] give state-of-the-art certification for 𝓁2-based perturbations. Notable works
such as [34, 74] have sought to generalize these techniques into language, but their guarantees strongly
depend on the type of perturbation being performed. On the other hand, analytic approaches through
convex relaxation inductively bound the output of neurons in a ReLU network across layers [79, 81, 77].
These works, however, are difficult to scale and also do not transfer easily to discrete/non-metrizable
domains.
Our approach, inspired by Lipschitz continuity, distills the empirical intuitions from the works
of [43, 85] and provides theoretical certification guarantees independent of perturbation-type [34, 74]
and domain modality. We demonstrate that knowledge continuity yields many practical applications
analogous to Lipschitz continuity which are easy to implement and are computationally competitive.
3 Preliminaries
Notations. Let ℝ≥0 ∶= [0,∞). For any function 𝑓 ∶  →  , we denote graph(𝑓) ∶= {(𝑥, 𝑦) ∈
 ×  ∶ 𝑓 (𝑥) = 𝑦}. For 𝑛 ∈ ℕ, let [𝑛] denote the set {1, 2,… , 𝑛}. ( , ,ℙ), ( , ,ℙ)are probability spaces and ( ×  , ⊗  ,ℙ × ℙ) denotes the product measurable space of
the probability spaces  , . Since our contribution focuses on the supervised learning regime, we
colloquially refer to  , as the input and labels, respectively. We call any probability measure
ℙ× absolutely continuous to ℙ × ℙ (i.e. (ℙ × ℙ)(𝐸) = 0 ⇒ ℙ× (𝐸) = 0) a data
distribution and denote it as  , . If (, 𝑑) is a metric space with metric 𝑑 and 𝐴 ⊂ , then
for any 𝑧 ∈ , 𝑑(𝑧, 𝐴) = inf𝑎∈𝐴 𝑑(𝑎, 𝑧). We say that a metric space, (, 𝑑), is bounded by
some 𝐵 ∈ ℝ≥0, if sup𝑧′,𝑧∈ 𝑑(𝑧, 𝑧′) < 𝐵. Denote by Id ∶  →  the identity function on . Let
 ∶  ×  → ℝ≥0 be a loss function where (𝑦, 𝑦′) = 0 if and only if 𝑦 = 𝑦′. For any 𝑓 ∶  → 
and (𝑥, 𝑦), (𝑥′, 𝑦′) ∈  ×  , we denote Δ(𝑥,𝑦)

𝑓 (𝑥′, 𝑦′) ∶= |(𝑓 (𝑥), 𝑦) − (𝑓 (𝑥′), 𝑦′)|, essentially the
absolute difference in loss between (𝑥, 𝑦) and (𝑥′, 𝑦′). Unless otherwise specified, it will be assumed
that 𝑓 is a measurable function from  to  with a metric decomposition (see Def. 1).
Lipschitz continuity. Given two metric spaces ( , 𝑑), ( , 𝑑) a function 𝑓 ∶  →  is𝐾-Lipschitz
continuous if there exists 𝐾 ∈ ℝ≥0 such that for all 𝑥, 𝑥′ ∈  , 𝑑 (𝑓 (𝑥), 𝑓 (𝑥′)) ≤ 𝐾𝑑 (𝑥, 𝑥′).
4 Knowledge Continuity
In this section, we provide the formal definition of knowlege continuity and explore its theoretical
properties.
We start by defining a model’s perceived knowledge through a rigorous treatment of its hidden
representation spaces. By considering the distance between inputs in some representation space in
conjunction with changes in loss, we result in a measure of volatility analogous to Lipschitz continuity.

3

Bounding this volatility in expectation then directly leads to our notion of knowledge continuity. With
these tools, we demonstrate a host of theoretical properties of knowledge continuity including its
certification of robustness, guarantees of expressiveness, and connections to Lipschitz continuity in
continuous settings. We summarize our theoretical contributions as follows:
• We define the perceived knowledge of a model as well as volatility and knowledge continuity within

a model’s representation space (see Def. 1, 2, 3, 4, respectively).
• We prove that knowledge continuity implies probabilistic certified robustness under perturbations in

the representation space and constraining knowledge continuity should not hinder the expressiveness
of the class of neural networks (see Thm. 4.1 and Prop. 4.3, 4.4, respectively).

• We prove that in some cases knowledge continuity is equivalent (in expectation) to Lipschitz
continuity. This shows that our axiomization of robustness aligns with existing results when
perturbation with respect to the input is well-defined (see Prop. 4.6, 4.8).

4.1 Defining Perceived Knowledge

Knowledge is generally understood as a relational concept: it arises from the connections we make
between ideas, experiences, and stimuli [26]. Herein, we capture the perceived knowledge of a model
by focusing on the relations it assigns to input-input pairs. Specifically, these relations are exposed by
decomposing a function 𝑓 ∶  →  into projections to intermediate metric spaces. Formally,
Definition 1 (Metric Decomposition). We say that 𝑓 admits a metric decomposition if there exists
metric spaces (1, 𝑑1),… , (𝑛, 𝑑𝑛) with metrics 𝑑𝑘 for 𝑘 ∈ [𝑛] such that

1. (𝑘, 𝑑𝑘) is endowed with its Borel 𝜎-algebra.
2. There exists measurable mappings ℎ0, ℎ1,… , ℎ𝑛 where ℎ0 ∶  → 1, ℎ𝑘 ∶ 𝑘 → 𝑘+1 for

𝑘 ∈ [𝑛 − 1], and ℎ𝑛 ∶ 𝑛 →  .
3. 𝑓 = ℎ𝑛◦ℎ𝑛−1◦… ◦ℎ1◦ℎ0.

Remark 1. If  is a metric space with metric 𝑑 and  is its Borel 𝜎-algebra, then for any measurable
mapping 𝑓 ∶  →  there exists the trivial metric decomposition

𝑓 = 𝑓◦Id . (4.1)
Therefore, in computer vision applications where ( , 𝑑) = (ℝ𝑛,𝓁𝑝) for some 𝑛 ∈ ℤ+, we can apply
this trivial decomposition to yield bounds which mirror the certification guarantees of Lipschitz
continuity. This is discussed in detail in Section 4.5.
To the best of our knowledge, all deep learning architectures admit metric decompositions, since
their activations are generally real-valued. So, for all subsequent functions from  to  , unless
otherwise specified, we assume they are measurable and possess a metric decomposition. Further,
we denote 𝑓𝑘 = ℎ𝑘◦ℎ𝑘−1◦… ◦ℎ1◦ℎ0 and adopt the convention of calling ℎ𝑘 the 𝑘th hidden layer. In
Appendix A, we present several metric decompositions for a variety of architectures.
For any metric-decomposible function, an immediate consequence of our definition is that its metric
decomposition may not be unique. However, in the context of neural networks, this is a desirable
property. Seminal works from an array of deep learning subfields such as semi-supervised learn-
ing [57], manifold learning [51], and interpretability [10, 47] place great emphasis on the quality of
learned representation spaces by examining the induced-topology of their metrics. This often does
not affect the typical performance of the estimator, but has strong robustness implications [33]. Our
results, which are dependent on particular metric decompositions, capture this trend. In Section 4.4,
we discuss in detail the effects of various metric decompositions on our theoretical results.
4.2 Defining Knowledge Continuity

We first introduce what it means for a model’s performance to be volatile at a data point relative to its
metric decomposition. Then, we contrast knowledge continuity with Lipschitz continuity, pointing
out key differences that will allow us to prove more general bounds.
Definition 2 (𝑘-Volatility). Let 𝑓 ∶  →  and  be any loss function. The 𝑘-volatility of a point
(𝑥, 𝑦) ∈  ×  which we denote as 𝜎𝑘𝑓 (𝑥, 𝑦) is given by

𝜎𝑘𝑓 (𝑥, 𝑦) ∶= 𝔼(𝑥′,𝑦′)∼ ,
𝑓 (𝑥)≠𝑓 (𝑥′)

⎡

⎢

⎢

⎣

Δ(𝑥,𝑦)
𝑓 (𝑥′, 𝑦′)

𝑑𝑘(𝑓𝑘(𝑥), 𝑓𝑘(𝑥′))

⎤

⎥

⎥

⎦

, (4.2)

4

Sparse Knowledge Continuity Knowledge Continuity Knowledge Discontinuity

Figure 1: Examples of knowledge (dis)continuities. 𝑓 ∶  →  is a measurable map, and (𝑘, 𝑑𝑘)is one of its hidden representations. The color of the points indicates loss. ♦ denotes knowledge
continuity induced by sparsity: an isolated concept with no knowledge relations close to it. So, any
perturbation moves ♦ far away with high probability. Smooth changes in loss around ★ implies
knowledge continuity. Finally, ⭓ is not knowledge continuous due to drastic changes in loss nearby.
Notice that the classification of points is independent of input/output clustering behavior since  ,
may not be endowed with a metric.
where 𝑑𝑘 is the distance metric associated with 𝑓 ’s 𝑘th hidden layer.

By performing some algebra on the definition, we see that it decomposes nicely into two distinct
terms: sparsity of the representation and variation in loss.

𝜎𝑘𝑓 (𝑥, 𝑦) = 𝔼(𝑥′,𝑦′)∼ ,

[

|(𝑓 (𝑥), 𝑦) − (𝑓 (𝑥′), 𝑦′)|
𝑑𝑘(𝑓𝑘(𝑥), 𝑓𝑘(𝑥′))

]

,

= (𝑓 (𝑥), 𝑦)𝔼(𝑥′,𝑦′)∼ ,

[

1
𝑑𝑘(𝑓𝑘(𝑥), 𝑓𝑘(𝑥′))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

sparsity

⋅
|

|

|

|

1 −
(𝑓 (𝑥′), 𝑦′)
(𝑓 (𝑥), 𝑦)

|

|

|

|

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
variation in loss

]

, (4.3)

Our notion of volatility essentially measures the change in performance with respect to perturbations
to a model’s perceived knowledge. In particular, Eq. 4.3 reveals that there are two interactions
in play which we illustrate in Fig. 1. Informally, we say that (𝑥, 𝑦) is highly volatile if there is a
large discrepancy in performance between it and points that are perceived to be conceptually similar.
Therefore, highly volatile points capture inaccurate input-input knowledge relations. Additionally,
(𝑥, 𝑦) experiences low volatility if the space around it is sparse with respect to  , . In other words,
any set of perturbations applied in 𝑘 would push (𝑥, 𝑦) far away, with high probability. This makes
(𝑥, 𝑦) an isolated concept with little knowledge relationships associated with it.
Similar to Lipschitz continuity, the boundedness of the 𝑘-volatility of 𝑓 across the data distribution is
crucial and we denote this class of functions as knowledge continuous.
Definition 3 (Pointwise 𝜖-Knowledge Continuity). We say that 𝑓 is 𝜖-knowledge continuous at
(𝑥, 𝑦) ∈  ×  with respect to a function 𝑓 , loss function , and hidden layer 𝑘 if 𝜎𝑘𝑓 (𝑥, 𝑦) < 𝜖.

Conversely, we say that (𝑥, 𝑦) is 𝜖-knowledge discontinuous if the previous inequality does not hold.
Further, (𝑥, 𝑦) is simply knowledge discontinuous if 𝜎𝑘𝑓 (𝑥, 𝑦) is unbounded. Now, we extend this
definition globally by considering the 𝑘-volatility between all pairs of points.

5

Definition 4 (Expected 𝜖-Knowledge Continuity). We say that 𝑓 is 𝜖-knowledge continuous with
respect to a loss function  and hidden layer 𝑘 if

𝔼(𝑥,𝑦)∼[𝜎𝑘𝑓 (𝑥, 𝑦)] < 𝜖. (4.4)

Though the functional forms of Lipschitz continuity and knowledge continuity are similar, there are
important differences that allow us to prove more general results. Firstly, unlike Lipschitz continuity
which is an analytical property of the model 𝑓 , knowledge continuity is a statistical one. In this
way, non-typical data points, even if they are volatile, are ignored, whereas Lipschitz continuity
treats all points equally. This is necessary in many discrete applications, as projecting a countable
input space onto a non-countable metric space inevitably results in a lack of correspondence thereof.
Moreover, ground-truth relations from →  may not be well-defined on all of : consider sentiment
classification of an alpha-numeric UUID string or dog-cat classification of Gaussian noise. Secondly,
the knowledge continuity of an estimator is measured with respect to the loss function rather than
its output. This property allows us to achieve the expressiveness guarantees in Section 4.4, since it
places no restrictions on the function class of estimators. Lastly, knowledge continuity measures the
distance between inputs with the endowed metric in its hidden layers. This flexibility allows us to
define knowledge continuity even when the input domain is not a metric space.
4.3 Certification of Robustness

Our first main result demonstrates that 𝜖-knowledge continuity implies probabilistic certified robust-
ness in the hidden representation space. In Theorem 4.1, given some reference set 𝐴 ⊂  ×  , we
bound the probability that a 𝛿-sized perturbation in the representation space away from 𝐴 will result
in an expected 𝜂 change in loss. In other words, knowledge continuity is able to characterize the
robustness of any subset of data points with positive measure.
Theorem 4.1. Let 𝐴 ⊂  ×  such that ℙ ,

[𝐴] > 0 and 𝛿, 𝜂 > 0. Let 𝐴′ =
{

(𝑥′, 𝑦′) ∈  ×  ∶ 𝔼(𝑥,𝑦)∼ ,
(𝑥,𝑦)∈𝐴

Δ(𝑥,𝑦)
𝑓 (𝑥′, 𝑦′) > 𝜂

}

. If 𝑓 ∶  →  is 𝜖-knowledge continuous

with respect to the hidden layer indexed by 𝑘 and (𝑘, 𝑑𝑘) is bounded by 𝐵 > 0, then

ℙ(𝑥,𝑦)∼ ,
[𝐴′ ∣ 𝑑𝑘(𝑓𝑘(𝑥), 𝑓𝑘(𝐴)) < 𝛿] ≤ 𝜖𝛿

𝜂
(

1 − exp
[

−Ω
(

𝛿
𝐵 −

√

log 1
ℙ[𝐴]

)2])
. (4.5)

Proof sketch. We apply the definition of conditional probability 𝑃 (𝐴|𝐵) = 𝑃 (𝐴 ∩ 𝐵)∕𝑃 (𝐵) and
bound 𝑃 (𝐴∩𝐵), 𝑃 (𝐵), separately. The numerator, ℙ[𝐴′ and 𝑑𝑘(𝑓𝑘(𝑥), 𝑓𝑘(𝐴)) < 𝛿], is upper-bounded
through an application of Markov’s Inequality. On the other hand, we apply known concentration
inequalities to lower bound ℙ[𝑑𝑘(𝑓𝑘(𝑥), 𝑓𝑘(𝐴)) < 𝛿], combining these results in the theorem. We
present the proof in its entirety in Appendix B. ■

This demonstrates that knowledge continuity results in certification of robustness, independent of
distance metric and domain modality. The assumption of boundedness and requirement to know ℙ[𝐴]
can be lost by taking limits of Eq. 4.5 with respect to 𝐵 and ℙ[𝐴]. This yields the following corollary.
Corollary 4.2. If (𝑘, 𝑑𝑘) is unbounded, then

ℙ(𝑥,𝑦)∼ ,
[𝐴′ ∣ 𝑑𝑘(𝑓𝑘(𝑥), 𝑓𝑘(𝐴)) < 𝛿] ≤ 𝜖𝛿

𝜂(1 − ℙ[𝐴])
. (4.6)

If ℙ[𝐴] = 0, then
ℙ(𝑥,𝑦)∼ ,

[𝐴′ ∣ 𝑑𝑘(𝑓𝑘(𝑥), 𝑓𝑘(𝐴)) < 𝛿] ≤ 𝜖𝛿
𝜂
. (4.7)

Proof. These results follow from directly taking the limit as 𝐵 → ∞ and applying some of the bounds
acquired in the proof of Thm. 4.1. This yields Eq. 4.6. Next, jointly taking the limit as ℙ[𝐴] → 0 and
𝐵 → ∞ results in Eq. 4.7. ■

In both Thm. 4.1 and Cor. 4.7, we yield probabilistic guarantees like [12], rather than deterministic
ones. Though deterministic bounds are desirable, the stochasticity of our framework is necessary

6

for its generalization across different domains. For most continuous, metrizable applications (like
computer vision), models learn a hidden representation space where most minute changes in this
space correspond to tangible inputs. The same cannot be said for many discrete or non-metrizable
applications. In natural language processing, the correspondence between the learned representation
space and the input is sparse, resulting in lots of “dead space”: portions of the hidden representation
space that do not correspond to any input [3, 19]. And so, by incorporating the data distribution into
our bounds, we implicitly adjust for this: assigning zero-measure to the aforementioned “dead space.”
4.4 Expressiveness
Our second main result demonstrates that 𝜖-knowledge continuity can be achieved without theoretically
compromising the accuracy of the model. In other words, universal function approximation is an
invariant property with respect to 𝜖-knowledge continuity. Universal approximation results have seen a
great deal of theoretical work, as they put limits on what neural networks can represent [15, 31, 45]. As
discussed in Section 2, Lipschitz continuous functions do not achieve universal function approximation
with respect to the set of all functions, in particular, non-continuous ones. However, we show that
under strong conditions this is achievable with knowledge continuity.
First, let us formally define a universal function approximator.
Definition 5 (Universal Function Approximator). Suppose that  is Lebesgue-integrable in both
coordinates. Let  ⊂  be a set of measurable functions from  →  such that for any 𝑓 ∈  , there
exists 𝜇𝑓 ≪  , such that 𝜇𝑓 (graph(𝑓)) = 1. Then,  ⊂  is a universal function approximator
of  if for every 𝑓 ∈  and every 𝜖 > 0, there exists 𝑓 ∈  such that

∫ (𝑓 (𝑥), 𝑦) 𝑑𝜇𝑓 < 𝜖. (4.8)
We now show any universal function approximator can be made robust through the trivial metric
decomposition.
Proposition 4.3. Let  ⊂  be a universal function approximator of  with respect to some loss
function . Then, for any 𝑓 ∈  and sequence 𝜖1, 𝜖2,… such that 𝜖𝑛 → 0 there are a sequence of
𝜖𝑛-knowledge continuous functions in  such that ∫ (𝑓𝑛(𝑥), 𝑦) 𝑑𝜇𝑓 < 𝜖𝑛, for 𝑛 ∈ ℕ.

Proof. Choose 𝑓𝑛 ∈  such that ∫ (𝑓𝑛(𝑥), 𝑦) 𝑑𝜇𝑓 < 1
2𝜖𝑛. Consider the 1-layer metric decomposi-

tion of 𝑓 , ℎ1 ∶  → 1 where 1 =  equipped with the trivial metric (𝑑1(𝑥, 𝑦) = 1 if 𝑥 ≠ 𝑦 and 0
otherwise). Then, 𝑓𝑛 = 𝑓𝑛◦ℎ1. So, it follows that

𝔼 𝜎1𝑓𝑛 (𝑥, 𝑦) = ∫

Δ(𝑥,𝑦)
𝑓𝑛

(𝑥′, 𝑦′)

𝑑1(ℎ1(𝑥), ℎ1(𝑥′))
𝑑𝜇𝑓 ,

≤ ∫ Δ(𝑥,𝑦)
𝑓𝑛

(𝑥′, 𝑦′) 𝑑𝜇𝑓 ,

≤ 𝜖𝑛.
and by the construction of 𝑓𝑛, the proof is completed. ■

In other words, if our estimator was given “infinite representational capacity,” robustness can be
trivially achieved by isolating every point as its own concept (as discussed in Section 4.2). More
generally, if we instead considered a generalized discrete metric (fix 𝑐 ∈ [0,∞], 𝑑(𝑥, 𝑦) = 𝑐 if and
only if 𝑥 = 𝑦 and 𝑑(𝑥, 𝑦) = 0, otherwise), then as 𝑐 → ∞, 𝑘-volatility converges pointwise to 0 almost
everywhere assuming that the loss is finite almost everywhere. In practice, we find these degenerate
decompositions to be unreasonable as they also trivialize robustness. For example, if 𝑐 = ∞, then
robustness is not well-defined as any perturbation would lead to a point that is perceived to be infinitely
far away. In this sense, our framework accounts for different notions of robustness, strong and
weak. The next result builds on Prop. 4.3 and demonstrates how a stronger notion of robustness
will affect expressiveness. These added constraints make it so that trivial metric decompositions
are no longer possible unless the metric in  is also trivial. We state this formally below, note the
highlighted differences between this and Prop. 4.3.
Proposition 4.4. Suppose ( , 𝑑), ( , 𝑑) ∶= ( , 𝑑) are compact metric spaces,  ⊂  is the
set of all continuous functions from  to  such that ∫ 𝑑 (𝑥, 𝑥′)−1𝑑𝜇𝑓 < ∞ and  be Lipschitz
continuous in both coordinates. Then, there exists a universal function approximator  of  that is
knowledge continuous (i.e. 𝔼 𝜎𝑘𝑓 (𝑥, 𝑦) < ∞ for some 𝑘).

7

Proof sketch. We show an outline of the proof here and defer the full proof to Appendix C. By
the Stone-Weierstrass Theorem, the set of Lipschitz continuous functions is dense in the set of all
continuous functions from  to  . Since  is Lipschitz continuous in both coordinates, through some
algebra, 𝔼 𝜎1𝑓 (𝑥, 𝑦) < ∞, where ℎ1 = Id and we yield the statement of the theorem. ■

The additional constraint ∫ 𝑑 (𝑥, 𝑥′)−1𝑑𝜇𝑓 requires data points to be sparsely layed out in the
representation space. As discussed previously, this assumption is generally reasonable for discrete
applications. In conjunction with Prop. 4.3, we have shown that the class of knowledge continuous
functions is strictly larger than the class of Lipschitz continuous ones. Though we show that universal
approximation by knowledge continuous networks is achievable, it is unclear whether these results
still hold if the “tightness” of the metric decompositions is bounded. Specifically, the construction
in Prop. 4.3 results in a metric decomposition with infinite Hausdorff dimension. Is it possible to
achieve Prop. 4.3 in its most general form if we only consider the set of all knowledge continuous
functions with metric decompositions with finite Hausdorff dimension? Based on the theoretical and
empirical results of [62, 33], respectively, we conjecture in the negative and leave its resolution open.
Conjecture 4.5. If  ⊂  is a universal function approximator with respect to some Lebesgue-
integrable loss function . Then, for any 𝑓 ∈  , there does not exist a sequence of functions with
metric decompositions of finite Hausdorff dimension that achieve arbitrarily small approximation
error (i.e. ∫ (𝑓 (𝑥), 𝑦)𝑑𝜇𝑓) and knowledge continuity.

4.5 Connections to Lipschitz Continuity
We now demonstrate that our axiomization of robustness presented in Section 1 aligns with the notion
of robustness2 commonly prescribed in vision [18]. This unifies the certified robustness bounds with
respect to the representation space derived in Thm. 4.1 with existing work certifying robustness with
respect to the input space in continuous applications such as vision.
Our first result identifies conditions under which knowledge continuity, implies Lipschitz continuity.
Proposition 4.6. Suppose that ( , 𝑑), ( , 𝑑) are metric spaces. Let the first 𝑛 metric decompo-
sitions of 𝑓 ∶  →  be 𝐾𝑖-Lipschitz continuous, for 𝑖 ∈ [𝑛]. If 𝑓 is 𝜖-knowledge continuous with
respect to the 𝑛th hidden layer and 𝑑 (𝑓 (𝑥), 𝑓 (𝑥′)) ≤ 𝜂Δ(𝑥,𝑦)

𝑓 (𝑥′, 𝑦) for all 𝑥, 𝑥′ ∈  , 𝑦 ∈  , and
some 𝜂 > 0, then 𝑓 is Lipschitz continuous in expectation. That is,

𝔼(𝑥,𝑦),(𝑥′,𝑦′)∼ ,

𝑑 (𝑓 (𝑥), 𝑓 (𝑥′))
𝑑 (𝑥, 𝑥′)

≤ 𝜖𝜂
𝑛
∏

𝑗=1
𝐾𝑗 . (4.9)

The proof is presented in Appendix D and follows easily through some algebriac manipulation. It is
easy to see that if 𝑓 is knowledge continuous with respect to some identity (or contractive) metric
decomposition, then we can loose the repeated product. Analogous to Remark 1, the concepts of
Lipschitz continuity and knowledge continuity become similar when we can assign metrics to the
input-output spaces. Next, combining this proposition with an auxiliary result from [89], we directly
yield a certification on the input space.
Corollary 4.7. Suppose that assumptions of Prop. 4.6 are true. And also assume that ( , 𝑑) =
(ℝ𝑛,𝓁𝑝), ( , 𝑑) = (ℝ𝑚,𝓁𝑝), for 1 ≤ 𝑝 ≤ ∞. Define a classifier from 𝑓 ∶ ℝ𝑛 → ℝ𝑚, 𝑔, where
𝑔(𝑥) ∶= arg max𝑘∈[𝑚] 𝑓𝑘(𝑥) for any 𝑥 ∈ ℝ𝑛. Then, with probability 1− 𝜖𝜂

𝑡
∏𝑛

𝑗=1𝐾𝑗 , 𝑔(𝑥) = 𝑔(𝑥+ 𝛿)
for all ‖𝛿‖𝑝 < (21∕𝑝∕2𝑡)margin(𝑓 (𝑥)) and 𝑡 > 0. 𝑓𝑘(𝑥) is the 𝑘th coordinate of 𝑓 (𝑥) and margin(𝑓 (𝑥))
denotes the difference between the largest and second-largest output logits.

We present the proof in Appendix D. Our second result identifies conditions under which Lipschitz
continuity, implies knowledge continuity.
Proposition 4.8. Let ( , 𝑑), ( , 𝑑) be a metric spaces. Let 𝑓 ∶  →  be 𝜖-Lipschitz continuous
and (𝑓 (𝑥), 𝑦) be 𝜂-Lipschitz continuous with respect to both coordinates. If the first 𝑛 metric
decompositions of 𝑓 are 𝐾𝑖-Lipschitz continuous, then 𝑓 is knowledge continuous with respect to the
𝑛th hidden layer. That is,

𝔼(𝑥,𝑦)∼ ,
𝜎𝑛𝑓 (𝑥, 𝑦) ≤ 𝜖𝜂

𝑛
∏

𝑗=1

1
𝐾𝑗

. (4.10)
2Small perturbations on the input result in small changes in performance which implies small changes in

output when the loss function is Lipschitz continuous.

8

1.0 0.5 0.0 0.5 1.0

Normalized n 1
n

k=1
k

0.15

0.20

0.25

0.30

0.35

0.40

0.45

%
 o

f S
uc

ce
ss

fu
l A

dv
er

sa
ria

l A
tta

ck
s

y=0.0589x+0.3236

2.5

0.0
bert-large-uncased

bert-base-uncased

2.5

0.0
roberta-base

roberta-large

2.5

0.0N
or

m
al

iz
ed

k

gpt2

0.0 0.2 0.4 0.6 0.8 1.0

Relative Depth

2.5

0.0
t5-base

t5-small

0.0 0.2 0.4 0.6 0.8

Relative Depth(c)(b)(a)

0.20

0.22

0.24

0.26

0.28

0.30

0.32

R
2

y=0.0919x+0.2011

Figure 2: (a) The average percentage of successful adversarial attacks by TextFooler [35] on a host of
models [58, 57, 16, 44] and the IMDB [48] dataset regressed with the average of knowledge continuity
coefficients across all hidden layers (𝑅2 = 0.35). (b) 𝑘-Volatility as 𝑘 is varied across a model’s
relative depth. (c) Correlation between 𝑘-volatility and adversarial vulnerability (averaged across all
models shown in (b)) with respect to TextFooler [35] as 𝑘 varies.
We detail the proof of this proposition in Appendix D. We note that in continuous applications such
as computer vision, the assumptions of both propositions are generally met (i.e. our input-output
spaces are metric spaces, all hidden layers are Lipschitz, and loss functions are locally Lipschitz).
Furthermore, common architectures such as fully connected networks, CNNs, RNNs, and even vision
transformers are Lipschitz continuous [71, 55]. This implies that our notion of robustness is indeed
an appropriate generalization that transcends domain modality since in continuous settings we
can recover the strong bounds of Lipschitz continuity while expanding into new discrete and
non-metrizable territory.

5 Practical Applications
In addition to the theoretical guarantees given by knowledge continuity in Section 4, we also demon-
strate that knowledge continuity can be easily applied in practice. First, we find that knowledge
continuity, similar to Lipschitz continuity, can be used to gauge adversarial robustness. Along these
lines, our measure of volatility (see Def. 2) can be used to isolate particularly vulnerable hidden
representations. These applications then directly motivate regulation of knowledge continuity as a
means to enforce robustness.
Unless otherwise specified, we run all of our experiments on the IMDB dataset [48] (a sentiment
classification task) using a host of language models from different model families (encoder, decoder,
encoder-decoder). We also present additional experiments on vision tasks. These experiments can be
found in the Appendix G.
Knowledge continuity can predict adversarial robustness. For a given model, 𝑓 , with 𝑛 hidden
representations, choose some 𝑘 ∈ [𝑛]. Then, consider the hidden representation index by 𝑘. For
this fixed 𝑘, we determine its 𝑘-volatility by directly estimating Def. 2 through a naive Monte-Carlo
algorithm (see Appendix G for more details). Repeating this for all 𝑘 ∈ [𝑛], we yield a collection of
𝑘-volatilities which we denote as {𝜖1,… , 𝜖𝑛}, one for each hidden layer. When we regress a simple
average of these coefficients, 𝑛−1∑𝑛

𝑘=1 𝜖𝑘, with the empirical adversarial robustness (estimated using
TextFooler [35]), a strong correlation is observed. This is shown in Fig. 2(a). In particular, knowledge
continuity alone is able to explain 35% of the variance in adversarial attack success rate. When we
combine 𝑘-volatility with other model properties like size, model family, even more variance can
be explained (𝑅2 = 0.48). Thus, knowledge continuity may be used as a computationally efficient
method to estimate adversarial vulnerability with respect to the input space as compared to iteratively
applying real adversarial attacks. Moreover, when the adversary is unknown a priori, knowledge
continuity can also be used in this way as a diagnostic tool. A detailed discussion of these experiments
are presented in Appendix E.
Knowledge continuity can localize vulnerable hidden representations. We plot the relationship
between the 𝑘-volatility, 𝜖𝑘, and the relative depth of the model (i.e. 𝑘∕𝑛). We find that language
models belonging to different model families (encoder, decoder, encoder-decoder) admit different 𝑘-
volatility trajectories. This is shown in Fig. 2(b). In this way, knowledge continuity may provide a more

9

Table 1: Comparison of our knowledge continuity algorithm to existing works across various model
families and adversarial attack methods. TF, BA, ANLI denote adversarial attacks [35], [40], and
[52], respectively. Regulating knowledge continuity to improve robustness is superior across almost
all tasks and attacks.

Arch. Method IMDB IMDBTF IMDBBA ANLIR1 ANLIR2 ANLIR3
Base 93.6 47.9 45.2 44.5 45.6 33.8

BERT [16] TF [35] 93.3 69.2 62.5 ✗ ✗ ✗
∼110M params ALUM [43] 93.5 56.9 47.8 45.2 46.7 46.3

KCReg (ours) 94.8 75.1 84.9 45.6 46.9 45.3
Base 93.6 63.9 54.9 42.7 44.9 43.4

GPT2 [57] TF [35] 92.0 64.5 51.3 ✗ ✗ ✗
∼1.5B params ALUM [43] 94.9 49.4 27.5 43.8 45.2 44.6

KCReg (ours) 94.9 87.8 90.6 47.1 48.1 44.7
Base 93.7 53.9 39.3 46.1 44.7 46.0

T5 [58] TF [35] 96.8 77.8 60.6 ✗ ✗ ✗
∼220M params ALUM [43] 95.1 67.1 51.9 44.5 44.8 44.4

KCReg (ours) 94.9 89.3 91.3 48.2 45.0 44.3
nuanced picture of a model’s inductive biases and robustness beyond a scalar value like “accuracy under
adversarial attack.” We present a detailed analysis of this in Appendix F. Further, these dynamics may
act as a diagnostic tool and offer a starting point for designing model-specific robustness interventions
or adversarial defenses. For example, when insights from Fig. 2(b) are combined with a knowledge
continuity regularization algorithm, this yields superior empirical robustness compared to existing
methods. This is shown in the next subsection and in Appendix G. In addition, knowledge continuity
can also quantitatively characterize an adversarial attack against a host of models which is useful for
online or adaptive defenses [84, 64, 14]. This is shown in in Fig. 2(c), where TextFooler [35] largely
exploits the knowledge continuities in middle/final layers of the model to decrease performance.
Regulating knowledge continuity. Motivated by the theoretical results in Section 4, we augment the
loss function during training to mitigate knowledge continuity. Specifically, on each training iteration
(batch), we start by choosing a hidden layer at random according to a Beta distribution determined a
priori: 𝑋 ∼ Beta(𝛼, 𝛽) and let 𝑘 = ⌊𝑛𝑋⌋. Here, 𝛼, 𝛽 are chosen according to Fig. 2(b,c). We assign
larger sampling probability to layers where both 𝑘-volatility is high and where knowledge continuity
is highly correlated with adversarial robustness. In this way, our regularization objective is both
model and attack specific (if the attack method is unknown, then we only apply the former). Then,
we devise a Monte-Carlo algorithm to estimate this layer’s 𝑘-volatility, 𝜖𝑘, (see Appendix G) on this
minibatch. And so, the augmented loss function becomes ′(𝑓 (𝑥), 𝑦) = (𝑓 (𝑥), 𝑦) + 𝜆𝜖𝑘 with 𝜆 ≥ 0
as a hyperparameter, controlling the regularization strength. In contrast to existing adversarial training
methods that perform inner-optimization steps [50, 43, 85], our method requires only additional
zeroth-order computations. As a result, it outperforms existing works in training speed (up to 2× for
TextFooler [35] and 3× for ALUM [43]), while improving robustness. We present a discussion of the
results, ablation studies, and training details in Appendix G.
Certifying robustness with knowledge continuity. We present an algorithm based on Thm. 4.1 to
certify robustness during test-time. Similar to [12], we estimate the probability of there existing an
adversarial example within some fixed radius (in the representation space, according to a pre-defiend
distance metric) through bootstrapping a one-side confidence interval. Applying these methods to
our regularization results, we show that regularizing knowledge continuity increases the certified
robustness. The certification algorithm, its proof of correctness, and certifications of our regularized
models are presented in Appendix H.
6 Conclusion
In this paper, we propose a novel definition, knowledge continuity, which addresses some of the key
limitations of Lipschitz robustness. We demonstrate that our definition certifies robustness across
domain modality, distribution, and norms. We also show that knowledge continuity, in contrast to
Lipschitz continuity, does not affect the universal approximation property of neural networks. We
also establish conditions under which knowledge continuity and Lipschitz continuity are equivalent.
Lastly, we present several practical applications that directly benefit the practitioner. The broader
impacts, reproducibility, and limitations of our work can be found in Appendix I, J, K, respectively.

10

7 Acknowledgements

Alan Sun thanks Fengwen Sun for the helpful feedback on early drafts of the work as well as Jeffrey
Jiang and Andrew Koulogeorge for thoughtful discussions.

References
[1] M. Alzantot, Y. Sharma, A. Elgohary, B.-J. Ho, M. Srivastava, and K.-W. Chang. Generating natural

language adversarial examples. In E. Riloff, D. Chiang, J. Hockenmaier, and J. Tsujii, editors, Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2890–2896, Brussels,
Belgium, Oct.-Nov. 2018. Association for Computational Linguistics.

[2] C. Anil, J. Lucas, and R. Grosse. Sorting out lipschitz function approximation. In International Conference
on Machine Learning, pages 291–301. PMLR, 2019.

[3] S. Arora, Y. Li, Y. Liang, T. Ma, and A. Risteski. A Latent Variable Model Approach to PMI-based Word
Embeddings. Transactions of the Association for Computational Linguistics, 4:385–399, 07 2016.

[4] P. L. Bartlett, D. J. Foster, and M. J. Telgarsky. Spectrally-normalized margin bounds for neural networks.
Advances in Neural Information Processing Systems, 30, 2017.

[5] S. Biderman, U. PRASHANTH, L. Sutawika, H. Schoelkopf, Q. Anthony, S. Purohit, and E. Raff. Emergent
and predictable memorization in large language models. Advances in Neural Information Processing
Systems, 36, 2023.

[6] D. Blackwell. Conditional expectation and unbiased sequential estimation. The Annals of Mathematical
Statistics, pages 105–110, 1947.

[7] N. Carlini, M. Nasr, C. A. Choquette-Choo, M. Jagielski, I. Gao, P. W. W. Koh, D. Ippolito, F. Tramer, and
L. Schmidt. Are aligned neural networks adversarially aligned? In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural Information Processing Systems, volume 36,
pages 61478–61500. Curran Associates, Inc., 2023.

[8] G. Casella and R. Berger. Statistical inference. CRC Press, 2024.
[9] P. Chao, A. Robey, E. Dobriban, H. Hassani, G. J. Pappas, and E. Wong. Jailbreaking black box large

language models in twenty queries. In R0-FoMo:Robustness of Few-shot and Zero-shot Learning in Large
Foundation Models, 2023.

[10] C. Chen, O. Li, D. Tao, A. Barnett, C. Rudin, and J. K. Su. This looks like that: deep learning for
interpretable image recognition. Advances in Neural Information Processing Systems, 32, 2019.

[11] M. Cisse, P. Bojanowski, E. Grave, Y. Dauphin, and N. Usunier. Parseval networks: Improving robustness
to adversarial examples. In International Conference on Machine Learning, pages 854–863. PMLR, 2017.

[12] J. Cohen, E. Rosenfeld, and Z. Kolter. Certified adversarial robustness via randomized smoothing. In
K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pages 1310–1320. PMLR, 09–15 Jun
2019.

[13] Z. Cranko, Z. Shi, X. Zhang, R. Nock, and S. Kornblith. Generalised lipschitz regularisation equals
distributional robustness. In International Conference on Machine Learning, pages 2178–2188. PMLR,
2021.

[14] F. Croce, S. Gowal, T. Brunner, E. Shelhamer, M. Hein, and T. Cemgil. Evaluating the adversarial
robustness of adaptive test-time defenses. In K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and
S. Sabato, editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pages 4421–4435. PMLR, 17–23 Jul 2022.

[15] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals
and Systems, 2(4):303–314, 1989.

[16] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional transformers
for language understanding. In J. Burstein, C. Doran, and T. Solorio, editors, Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota,
June 2019. Association for Computational Linguistics.

11

[17] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Min-
derer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16 words: Transformers
for image recognition at scale. In International Conference on Learning Representations, 2021.

[18] N. Drenkow, N. Sani, I. Shpitser, and M. Unberath. A systematic review of robustness in deep learning for
computer vision: Mind the gap?, 2022.

[19] N. Elhage, T. Hume, C. Olsson, N. Schiefer, T. Henighan, S. Kravec, Z. Hatfield-Dodds, R. Lasenby,
D. Drain, C. Chen, et al. Toy models of superposition. arXiv preprint arXiv:2209.10652, 2022.

[20] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T. Kohno, and D. Song.
Robust physical-world attacks on deep learning visual classification. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2018.

[21] M. Fazlyab, A. Robey, H. Hassani, M. Morari, and G. Pappas. Efficient and accurate estimation of lipschitz
constants for deep neural networks. Advances in Neural Information Processing Systems, 32, 2019.

[22] F. Gama, J. Bruna, and A. Ribeiro. Stability properties of graph neural networks. IEEE Transactions on
Signal Processing, 68:5680–5695, 2020.

[23] S. Garg and G. Ramakrishnan. BAE: BERT-based adversarial examples for text classification. In B. Webber,
T. Cohn, Y. He, and Y. Liu, editors, Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6174–6181, Online, Nov. 2020. Association for Computational
Linguistics.

[24] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. Proceedings
of 3rd International Conference on Learning Representations, 2014.

[25] H. Gouk, E. Frank, B. Pfahringer, and M. J. Cree. Regularisation of neural networks by enforcing lipschitz
continuity. Machine Learning, 110:393–416, 2021.

[26] G. S. Halford, W. H. Wilson, and S. Phillips. Relational knowledge: the foundation of higher cognition.
Trends in Cognitive Sciences, 14(11):497–505, 2010.

[27] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.

[28] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016.

[29] M. Hein and M. Andriushchenko. Formal guarantees on the robustness of a classifier against adversarial
manipulation. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017.

[30] D. Hendrycks, K. Zhao, S. Basart, J. Steinhardt, and D. Song. Natural adversarial examples. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 15262–15271,
June 2021.

[31] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approximators.
Neural Networks, 2(5):359–366, 1989.

[32] Y. Huang, H. Zhang, Y. Shi, J. Z. Kolter, and A. Anandkumar. Training certifiably robust neural networks
with efficient local lipschitz bounds. Advances in Neural Information Processing Systems, 34:22745–22757,
2021.

[33] A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, and A. Madry. Adversarial examples are not bugs,
they are features. Advances in Neural Information Processing Systems, 32, 2019.

[34] R. Jia, A. Raghunathan, K. Göksel, and P. Liang. Certified robustness to adversarial word substitutions. In
K. Inui, J. Jiang, V. Ng, and X. Wan, editors, Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4129–4142, Hong Kong, China, Nov. 2019. Association for Computational
Linguistics.

[35] D. Jin, Z. Jin, J. T. Zhou, and P. Szolovits. Is BERT really robust? a strong baseline for natural language
attack on text classification and entailment. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pages 8018–8025, 2020.

12

[36] H. Kim, G. Papamakarios, and A. Mnih. The lipschitz constant of self-attention. In M. Meila and T. Zhang,
editors, Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pages 5562–5571. PMLR, 18–24 Jul 2021.

[37] M. Lecuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana. Certified robustness to adversarial examples
with differential privacy. In 2019 IEEE Symposium on Security and Privacy (SP), pages 656–672. IEEE,
2019.

[38] K. Leino, Z. Wang, and M. Fredrikson. Globally-robust neural networks. In International Conference on
Machine Learning, pages 6212–6222. PMLR, 2021.

[39] B. Li, C. Chen, W. Wang, and L. Carin. Certified adversarial robustness with additive noise. Advances in
Neural Information Processing Systems, 32, 2019.

[40] L. Li, R. Ma, Q. Guo, X. Xue, and X. Qiu. BERT-ATTACK: Adversarial attack against BERT using BERT.
In B. Webber, T. Cohn, Y. He, and Y. Liu, editors, Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 6193–6202, Online, Nov. 2020. Association for
Computational Linguistics.

[41] J. Lin, C. Song, K. He, L. Wang, and J. E. Hopcroft. Nesterov accelerated gradient and scale invariance for
adversarial attacks. In International Conference on Learning Representations, 2020.

[42] J. Liu, Z. Shen, Y. He, X. Zhang, R. Xu, H. Yu, and P. Cui. Towards out-of-distribution generalization: A
survey, 2023.

[43] X. Liu, H. Cheng, P. He, W. Chen, Y. Wang, H. Poon, and J. Gao. Adversarial training for large neural
language models. arXiv preprint arXiv:2004.08994, 2020.

[44] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov.
RoBERTa: A robustly optimized BERT pretraining approach, 2020.

[45] Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang. The expressive power of neural networks: A view from the
width. Advances in Neural Information Processing Systems, 30, 2017.

[46] B. Lütjens, M. Everett, and J. P. How. Certified adversarial robustness for deep reinforcement learning. In
L. P. Kaelbling, D. Kragic, and K. Sugiura, editors, Proceedings of the Conference on Robot Learning,
volume 100 of Proceedings of Machine Learning Research, pages 1328–1337. PMLR, 30 Oct–01 Nov
2020.

[47] C. Ma, B. Zhao, C. Chen, and C. Rudin. This Looks Like Those: Illuminating Prototypical Concepts Using
Multiple Visualizations. Advances in Neural Information Processing Systems, 36, 2024.

[48] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. Learning word vectors for sentiment
analysis. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, pages 142–150, Portland, Oregon, USA, June 2011. Association for
Computational Linguistics.

[49] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and
phrases and their compositionality. In C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger,
editors, Advances in Neural Information Processing Systems, volume 26. Curran Associates, Inc., 2013.

[50] T. Miyato, S.-i. Maeda, M. Koyama, and S. Ishii. Virtual adversarial training: a regularization method for
supervised and semi-supervised learning. IEEE Transactions on Pattern Analysis and Machine Intelligence,
41(8):1979–1993, 2018.

[51] M. Moor, M. Horn, B. Rieck, and K. Borgwardt. Topological autoencoders. In International Conference
on Machine Learning, pages 7045–7054. PMLR, 2020.

[52] Y. Nie, A. Williams, E. Dinan, M. Bansal, J. Weston, and D. Kiela. Adversarial NLI: A new benchmark for
natural language understanding. In D. Jurafsky, J. Chai, N. Schluter, and J. Tetreault, editors, Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, pages 4885–4901, Online,
July 2020. Association for Computational Linguistics.

[53] Y. Oren, S. Sagawa, T. B. Hashimoto, and P. Liang. Distributionally robust language modeling. In
K. Inui, J. Jiang, V. Ng, and X. Wan, editors, Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4227–4237, Hong Kong, China, Nov. 2019. Association for Computational
Linguistics.

13

[54] P. Pauli, A. Koch, J. Berberich, P. Kohler, and F. Allgöwer. Training robust neural networks using lipschitz
bounds. IEEE Control Systems Letters, 6:121–126, 2021.

[55] X. Qi, J. Wang, Y. Chen, Y. Shi, and L. Zhang. Lipsformer: Introducing lipschitz continuity to vision
transformers. In The Eleventh International Conference on Learning Representations, 2022.

[56] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
J. Clark, et al. Learning transferable visual models from natural language supervision. In International
conference on machine learning, pages 8748–8763. PMLR, 2021.

[57] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. Improving language understanding by generative
pre-training, 2018.

[58] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu. Exploring
the limits of transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research,
21(140):1–67, 2020.

[59] W. Ruan, X. Huang, and M. Kwiatkowska. Reachability analysis of deep neural networks with provable
guarantees. In Proceedings of the 27th International Joint Conference on Artificial Intelligence, IJCAI’18,
page 2651–2659. AAAI Press, 2018.

[60] M. Salehi, H. Mirzaei, D. Hendrycks, Y. Li, M. H. Rohban, and M. Sabokrou. A unified survey on anomaly,
novelty, open-set, and out of-distribution detection: Solutions and future challenges. Transactions on
Machine Learning Research, 2022.

[61] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mobilenetv2: Inverted residuals and
linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 4510–4520, 2018.

[62] A. Shafahi, W. R. Huang, C. Studer, S. Feizi, and T. Goldstein. Are adversarial examples inevitable? In
International Conference on Learning Representations, 2019.

[63] A. Shafahi, M. Najibi, M. A. Ghiasi, Z. Xu, J. Dickerson, C. Studer, L. S. Davis, G. Taylor, and T. Goldstein.
Adversarial training for free! Advances in Neural Information Processing Systems, 32, 2019.

[64] C. Shi, C. Holtz, and G. Mishne. Online adversarial purification based on self-supervised learning. In
International Conference on Learning Representations, 2021.

[65] M. H. Stone. The generalized weierstrass approximation theorem. Mathematics Magazine, 21(5):237–254,
1948.

[66] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing
properties of neural networks, 2014.

[67] N. Tishby, F. C. Pereira, and W. Bialek. The information bottleneck method. arXiv preprint physics/0004057,
2000.

[68] Y. Tsuzuku, I. Sato, and M. Sugiyama. Lipschitz-margin training: Scalable certification of perturbation
invariance for deep neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran Associates,
Inc., 2018.

[69] M. Usama and D. E. Chang. Towards robust neural networks with lipschitz continuity. In Digital Forensics
and Watermarking: 17th International Workshop, IWDW 2018, Jeju Island, Korea, October 22-24, 2018,
Proceedings 17, pages 373–389. Springer, 2019.

[70] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.
Attention is all you need. Advances in Neural Information Processing Systems, 30, 2017.

[71] A. Virmaux and K. Scaman. Lipschitz regularity of deep neural networks: analysis and efficient estimation.
Advances in Neural Information Processing Systems, 31, 2018.

[72] E. Wallace, S. Feng, N. Kandpal, M. Gardner, and S. Singh. Universal adversarial triggers for attacking and
analyzing NLP. In K. Inui, J. Jiang, V. Ng, and X. Wan, editors, Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages 2153–2162, Hong Kong, China, Nov. 2019. Association
for Computational Linguistics.

14

[73] B. Wang, S. Wang, Y. Cheng, Z. Gan, R. Jia, B. Li, and J. Liu. Info{bert}: Improving robustness of
language models from an information theoretic perspective. In International Conference on Learning
Representations, 2021.

[74] W. Wang, P. Tang, J. Lou, and L. Xiong. Certified robustness to word substitution attack with differential
privacy. In K. Toutanova, A. Rumshisky, L. Zettlemoyer, D. Hakkani-Tur, I. Beltagy, S. Bethard, R. Cotterell,
T. Chakraborty, and Y. Zhou, editors, Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pages 1102–1112, Online,
June 2021. Association for Computational Linguistics.

[75] A. Wei, N. Haghtalab, and J. Steinhardt. Jailbroken: How does llm safety training fail? In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural Information
Processing Systems, volume 36, pages 80079–80110. Curran Associates, Inc., 2023.

[76] L. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, L. Daniel, D. Boning, and I. Dhillon. Towards fast
computation of certified robustness for ReLU networks. In J. Dy and A. Krause, editors, Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 5276–5285. PMLR, 10–15 Jul 2018.

[77] L. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, L. Daniel, D. Boning, and I. Dhillon. Towards fast
computation of certified robustness for relu networks. In International Conference on Machine Learning,
pages 5276–5285. PMLR, 2018.

[78] T.-W. Weng, H. Zhang, P.-Y. Chen, J. Yi, D. Su, Y. Gao, C.-J. Hsieh, and L. Daniel. Evaluating the
robustness of neural networks: An extreme value theory approach. In International Conference on Learning
Representations, 2018.

[79] E. Wong and Z. Kolter. Provable defenses against adversarial examples via the convex outer adversarial
polytope. In International Conference on Machine Learning, pages 5286–5295. PMLR, 2018.

[80] E. Wong, L. Rice, and J. Z. Kolter. Fast is better than free: Revisiting adversarial training. In International
Conference on Learning Representations, 2020.

[81] E. Wong, F. Schmidt, J. H. Metzen, and J. Z. Kolter. Scaling provable adversarial defenses. Advances in
Neural Information Processing Systems, 31, 2018.

[82] X. Xu, L. Li, Y. Cheng, S. Mukherjee, A. H. Awadallah, and B. Li. Certifiably robust transformers with
1-lipschitz self-attention, 2023.

[83] J. Yang, K. Zhou, Y. Li, and Z. Liu. Generalized out-of-distribution detection: A survey. International
Journal of Computer Vision, pages 1–28, 2024.

[84] C. Yao, P. Bielik, P. Tsankov, and M. Vechev. Automated discovery of adaptive attacks on adversarial
defenses. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in
Neural Information Processing Systems, volume 34, pages 26858–26870. Curran Associates, Inc., 2021.

[85] J. Y. Yoo and Y. Qi. Towards improving adversarial training of NLP models. In M.-F. Moens, X. Huang,
L. Specia, and S. W.-t. Yih, editors, Findings of the Association for Computational Linguistics: EMNLP
2021, pages 945–956, Punta Cana, Dominican Republic, Nov. 2021. Association for Computational
Linguistics.

[86] Y. Yoshida and T. Miyato. Spectral norm regularization for improving the generalizability of deep learning.
arXiv preprint arXiv:1705.10941, 2017.

[87] A. Zhang, A. Chan, Y. Tay, J. Fu, S. Wang, S. Zhang, H. Shao, S. Yao, and R. K.-W. Lee. On orthogonality
constraints for transformers. In C. Zong, F. Xia, W. Li, and R. Navigli, editors, Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 2: Short Papers), pages 375–382, Online, Aug. 2021.
Association for Computational Linguistics.

[88] B. Zhang, D. Jiang, D. He, and L. Wang. Boosting the certified robustness of l-infinity distance nets. In
International Conference on Learning Representations, 2022.

[89] B. Zhang, D. Jiang, D. He, and L. Wang. Rethinking lipschitz neural networks and certified robustness:
A boolean function perspective. Advances in Neural Information Processing Systems, 35:19398–19413,
2022.

15

[90] H. Zhang, H. Chen, C. Xiao, S. Gowal, R. Stanforth, B. Li, D. Boning, and C.-J. Hsieh. Towards stable
and efficient training of verifiably robust neural networks. In International Conference on Learning
Representations, 2020.

[91] A. Zou, Z. Wang, N. Carlini, M. Nasr, J. Z. Kolter, and M. Fredrikson. Universal and transferable adversarial
attacks on aligned language models, 2023.

16

Table of Contents

1 Introduction 1
2 Related Works 2
3 Preliminaries 3
4 Knowledge Continuity 3

4.1 Defining Perceived Knowledge . 4
4.2 Defining Knowledge Continuity . 4
4.3 Certification of Robustness . 6
4.4 Expressiveness . 7
4.5 Connections to Lipschitz Continuity . 8

5 Practical Applications 9
6 Conclusion 10
7 Acknowledgements 11
A More on Metric Decompositions 18

A.1 Metric Decompositions of Common Neural Architectures 18
A.2 Beyond Neural Networks: Inducing Metric Decompositions 19

B Proof of Robustness 20
B.1 Technical Lemmas . 21

C Proof of Expressiveness 22
C.1 Technical Lemmas . 23

D Proof of Equivalence Between Lipschitz Continuity and Knowledge Continuity 23
E Predicting Adversarial Robustness with Volatility 25
F Localizing Volatile Hidden Representations 26

F.1 Layerwise Volatility . 26
F.2 Model-Specific Volatility . 27

G Regularizing Knowledge Continuity 27
G.1 Estimating Knowledge Continuity Algorithmically 27
G.2 Theoretical Guarantees of 𝑘-Volatility Estimation 28
G.3 Computer Vision Results . 29
G.4 Ablation Studies . 29
G.5 Training Details . 31

H Certifying Robustness at Test-Time 32
I Broader Impacts 33
J Reproducibility 33
K Limitations 33
L NeurIPS Paper Checklist 34

17

A More on Metric Decompositions

In Section 4.1, we introduced the notion of a metric decomposition to rigorously define the hidden
representations of a neural network. Herein, we show that our notion of a metric decomposition
well-describes a host of neural architectures and also point to possible applications of this concept
beyond just deep learning. Let us first consider possible metric decompositions of common neural
architectures.
A.1 Metric Decompositions of Common Neural Architectures

Fully-Connected Neural Network. Suppose that 𝑓 ∶ ℝ𝑑 → ℝ𝑚 is a fully-connected neural network
with 𝑛 hidden layers. Each hidden layer indexed by 𝑖 ∈ [𝑛] has a weight matrix 𝑊𝑖 ∈ ℝ𝑑𝑖+1×𝑑𝑖 , bias
𝑏𝑖 ∈ ℝ𝑑𝑖+1 , and activation function 𝜎𝑖 ∶ ℝ𝑑𝑖+1 → ℝ𝑑𝑖+1 , where 𝑑𝑖 ∈ ℕ, 𝑑1 = 𝑑, 𝑑𝑛 = 𝑚. Define the
hidden layers as

ℎ𝑘(𝑥) = 𝜎𝑘(𝑊𝑘𝑥 + 𝑏𝑘),

for all 𝑘 ∈ [𝑛]. Clearly, 𝑓 = ℎ𝑛◦ℎ𝑛−1◦… ◦ℎ1. And our intermediate spaces are simply {ℝ𝑑𝑖}𝑛𝑖=1. It
remains to define a metric on these hidden spaces. There are many ways of doing this. For example,

• For any 1 ≤ 𝑝 ≤ ∞, endow each intermediate space with the 𝓁𝑝-norm.
• Define 𝑑(𝑥, 𝑦) = 1 − cos(𝜃𝑥,𝑦) where 𝜃𝑥,𝑦 is the angle between 𝑥, 𝑦. Then, if we choose 𝜎𝑖 to

restrict the image of ℎ𝑖 to be the unit sphere, we may endow each intermediate space with
this cosine distance.

Note here that there are two steps here: we first identify what the intermediate spaces are, then assign
metrics to them. The process of identfying these intermediate spaces may be independent of the
metrics we end of assigning them.
Convolutional Neural Network. For simplicity, we only consider the case of a single 2d-convolution
layer, a convolutional network with higher dimensions or more layers can be derived inductively.
Let 𝑓 ∶ ℝ𝑐×ℎ×𝑤 → ℝ𝑐′×ℎ′×𝑤′ . Suppose that this layer is parameterized by kernels 𝑊𝑖 ∈ ℝ𝑘×𝑘 for
𝑖 ∈ [𝑐′] and some 𝑘 ∈ ℕ as well as a bias 𝑏 ∈ ℝ𝑐′ . Then, it follows that

𝑓 (𝑥)𝑗 =

(

𝟏ℎ′×𝑤′𝑏𝑗 +
𝑐
∑

𝑖=1
𝑊𝑗 ∗ 𝑥[𝑖, ∶, ∶]

)

,

for 𝑗 ∈ [𝑐′] where 𝑓 (𝑥)𝑗 ∈ ℝℎ′×𝑤′ for ℎ′, 𝑤′ being the resulting dimension after convolution with a
𝑘× 𝑘 kernel. Here, 𝟏ℎ′×𝑤′ ∈ ℝℎ′×𝑤′ is a one matrix. To induce a distance metric on this output space,
we can simply define a matrix norm on each of the output channels and sum them. Let {‖⋅‖𝑖}𝑐′𝑖=1 be a
collection of matrix norms. Then, we define

𝑑(𝑓 (𝑥), 𝑓 (𝑥′)) =
𝑐′
∑

𝑖=1

‖

‖

𝑓 (𝑥)𝑖 − 𝑓 (𝑥′)𝑖‖‖𝑖 .

It is easy to verify that this is a metric. Thus, the availability of a metric decomposition is not affected
by parameter sharing.
Instead of incorporating every individual channel into our metric, we may also consider applying a
pooling operation before passing the result through a single matrix norm, ‖⋅‖. For example,

𝑑(𝑓 (𝑥), 𝑓 (𝑥′)) = 1
𝑐′

‖

‖

‖

‖

‖

‖

𝑐′
∑

𝑖=1
𝑓 (𝑥)𝑖 −

𝑐′
∑

𝑖=1
𝑓 (𝑥′)𝑖

‖

‖

‖

‖

‖

‖

.

This, however, is no longer a metric, as definiteness is not preserved. That is, there exists 𝑓 (𝑥) ≠ 𝑓 (𝑥′)
where 𝑑(𝑓 (𝑥), 𝑓 (𝑥′)) = 0. This issue can be easily resolved by having 𝑑(⋅, ⋅) operate on a quotient
space with respect to the equivalence relation 𝑓 (𝑥) ∼ 𝑓 (𝑥′) if and only if ∑𝑐′

𝑖=1 𝑓 (𝑥)𝑖 =
∑𝑐′

𝑖=1 𝑓 (𝑥
′)𝑖.This technique is further explored in the next subsection.

Residual Connections. We present two distinct metric decompositions of a residual network. Consider
two fully-connected layers with one residual connection. This is visualized below.

18

𝑥 𝐴(𝑥) 𝐵(𝐴(𝑥)) 𝐵(𝐴(𝑥)) + 𝑥𝐴(⋅) 𝐵(⋅)

+𝑥

Let us assume that 𝐴 ∶ ℝ𝑑1 → ℝ𝑑2 and 𝐵 ∶ ℝ𝑑2 → ℝ𝑑1 . Here, the input 𝑥 feeds back into the output
layer 𝐵 creating a residual block (the set of layers between the input and the residual connection).
Trivially, we can aggregate the entire residual block as one metric decomposition. That is, let
ℎ(𝑥) = 𝐵(𝐴(𝑥)) + 𝑥 be our metric decomposition. Then, define a metric on the image of ℎ, ℝ𝑑1 ,
analogous to the hidden layers of a fully-connected neural network. This is the approach we use
throughout our practical applications section (Section 5), and it is the standard way to counter layers
in computer vision [27] and natural langauge processing [16].
To operate at a finer lever of granularity, we can also represent each layer within the residual block as
a part of a metric decomposition. Let us redefine the residual block such that at every layer, we keep
track of the input. The computational graph for this is shown below.

𝑥 (𝐴(𝑥), 𝑥) (𝐵(𝐴(𝑥)), 𝑥) (𝐵(𝐴(𝑥)) + 𝑥, 𝑥)𝐴(⋅)⊕ 𝑥 𝐵(⋅) +𝑥

Define 𝐴′ ∶ 𝑥 ↦ (𝐴(𝑥), 𝑥), 𝐵′ ∶ (𝐴(𝑥), 𝑥) ↦ (𝐵(𝐴(𝑥)), 𝑥) and 𝑥′ ∶ (𝐵(𝐴(𝑥)), 𝑥) ↦ (𝐵(𝐴(𝑥))+𝑥, 𝑥).
Then, it follows that 𝑥 → 𝐴′ → 𝐵′ → 𝑥′ forms a metric decomposition. Here, the metric in each
layer is with respect to the quotient space where (𝑎, 𝑎′) ∼ (𝑏, 𝑏′) if and only if 𝑎 = 𝑏. Therefore, we
also recover the same vector space structure.
Transformers. By chaining our metric decompositions for the residual blocks with our metric
decompositions for the fully-connected networks we can easily create a metric decomposition for any
transformer. Throughout the paper, we use two distinct methods to generate representations of its
hidden layers:

• After each attention block which consists of multiheaded attention and multilayered percep-
trons, we retrieve the last token.

• We average all of the tokens together.
In both of these methods, we are significantly reducing the dimension of the hidden layer. Thus, to
formalize these metrics, we need to quotient out points that break the definiteness of our metric, as
we have done before with the residual block.

A.2 Beyond Neural Networks: Inducing Metric Decompositions

We have shown that our notion of a metric decomposition can well-describe many deep learning
architectures, but what about models that are not neural networks (like a decision tree)? Herein, we
demonstrate that we can induce metric decompositions even when the model itself does not have
explicit hidden layers.
Let us now consider an arbitrary function 𝑓 ∶  →  . We can induce a metric decomposition on
𝑓 through an auxiliary function 𝑓 ′ ∶  →  , for a metric-decomposable 𝑓 ′. If 𝑓 ′ = Id , then,
𝑓 = 𝑓◦𝑓 ′ and the metric decomposition of 𝑓 would be exactly the metric decomposition of 𝑓 ′. This
is visualized below.

 (1, 𝑑1)
…

(𝑛, 𝑑𝑛)  𝑓 ′
0 𝑓 ′

1 𝑓 ′
𝑛−1 𝑓 ′

𝑛 𝑓

Metric Decomposition of 𝑓 ′

Essentially, we have created an autoencoder for  . This is common in many applications where a
neural network or some other method is used as a feature extractor. In this way, we can simply define
our metric with respect to these extracted features. However, this requires that either the autoencoder

19

to be exact or that our function 𝑓 is invariant under representations that collide. Thus, this would
allow models such as decision trees to also be metric decomposed.

B Proof of Robustness

Theorem (See Thm. 4.1). Let 𝐴 ⊂  × such that ℙ ,
[𝐴] > 0 and 𝛿, 𝜂 > 0. Let 𝐴′ = {(𝑥′, 𝑦′) ∈

 ×  ∶ 𝔼(𝑥,𝑦)∼ ,
(𝑥,𝑦)∈𝐴

Δ(𝑥,𝑦)
𝑓 (𝑥′, 𝑦′) > 𝜂}. If 𝑓 ∶  →  is 𝜖-knowledge continuous with respect to

the hidden layer indexed by 𝑘 and (𝑘, 𝑑𝑘) is bounded by 𝐵 > 0, then

ℙ(𝑥,𝑦)∼ ,
[𝐴′ ∣ 𝑑𝑘(𝑓𝑘(𝑥), 𝑓𝑘(𝐴)) < 𝛿] ≤ 𝜖𝛿

𝜂
(

1 − exp
[

−Ω
(

𝛿
𝐵 −

√

log 1
ℙ[𝐴]

)2])
, (B.1)

where 𝑓𝑘(𝐴) = {𝑓𝑘(𝑎) ∶ 𝑎 ∈ 𝐴}.

Proof.

ℙ(𝑥,𝑦)∼ ,

[

𝐴′ ∣ 𝑑𝑘(𝑓𝑘(𝑥), 𝑓𝑘(𝐴)) < 𝛿
]

=
ℙ(𝑥,𝑦)∼ ,

[

𝐴′ ∩ 𝑑𝑘(𝑓𝑘(𝑥), 𝑓𝑘(𝐴)) < 𝛿
]

ℙ(𝑥,𝑦)∼ ,
[𝑑𝑘(𝑓𝑘(𝑥), 𝑓𝑘(𝐴)) < 𝛿]

. (B.2)

We bound the numerator and denominator of Eq. B.2 separately. The denominator is given by
Cor. B.3. We upper-bound the numerator using Markov’s inequality. Firstly, we find the expectation
of (𝑥,𝑦)

𝑓 (𝑥′, 𝑦′) over 𝐴′ ∩ 𝑑𝑘(𝑓𝑘(𝑥), 𝑓𝑘(𝐴)) < 𝛿:

𝔼(𝑥,𝑦)∼ ,
𝜎𝑘𝑓 (𝑥, 𝑦) = 𝔼(𝑥,𝑦)∼ ,

⎛

⎜

⎜

⎝

𝔼(𝑥′,𝑦′)∼ ,

⎡

⎢

⎢

⎣

Δ(𝑥,𝑦)
𝑓 (𝑥′, 𝑦′)

𝑑𝑘(𝑓𝑘(𝑥), 𝑓𝑘(𝑥′))

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

, (B.3)

= 𝔼(𝑥,𝑦),(𝑥′,𝑦′)∼( ,× ,)

⎡

⎢

⎢

⎣

Δ(𝑥,𝑦)
𝑓 (𝑥′, 𝑦′)

𝑑𝑘(𝑓𝑘(𝑥), 𝑓𝑘(𝑥′))

⎤

⎥

⎥

⎦

. (B.4)

The previous inequality follows from Fubini’s theorem, then

𝔼(𝑥,𝑦)∼ ,
𝜎𝑘𝑓 (𝑥, 𝑦) ≥ 𝔼(𝑥,𝑦),(𝑥′,𝑦′)∼( ,× ,)

(𝑥′,𝑦′)∈𝐴
𝑑𝑘(𝑓𝑘(𝑥),𝑓𝑘(𝐴))<𝛿

⎡

⎢

⎢

⎣

Δ(𝑥,𝑦)
𝑓 (𝑥′, 𝑦′)

𝑑𝑘(𝑓𝑘(𝑥), 𝑓𝑘(𝑥′))

⎤

⎥

⎥

⎦

, (B.5)

≥ 1
𝛿
𝔼(𝑥,𝑦),(𝑥′,𝑦′)∼( ,× ,)

(𝑥′,𝑦′)∈𝐴
𝑑𝑘(𝑓𝑘(𝑥),𝑓𝑘(𝐴))<𝛿

[

Δ(𝑥,𝑦)
𝑓 (𝑥′, 𝑦′)

]

, (B.6)

𝛿 𝔼(𝑥,𝑦)∼ ,
𝜎𝑘𝑓 (𝑥, 𝑦) ≥ 𝔼(𝑥,𝑦),(𝑥′,𝑦′)∼( ,× ,)

(𝑥′,𝑦′)∈𝐴
𝑑𝑘(𝑓𝑘(𝑥),𝑓𝑘(𝐴))<𝛿

[

Δ(𝑥,𝑦)
𝑓 (𝑥′, 𝑦′)

]

. (B.7)

And by 𝜖-knowledge continuity,
𝛿𝜖 ≥ 𝔼(𝑥,𝑦),(𝑥′,𝑦′)∼( ,× ,)

(𝑥′,𝑦′)∈𝐴
𝑑𝑘(𝑓𝑘(𝑥),𝑓𝑘(𝐴))<𝛿

[

Δ(𝑥,𝑦)
𝑓 (𝑥′, 𝑦′)

]

. (B.8)

This gives us an upper-bound of expectation of Δ(𝑥,𝑦)
𝑓 (𝑥′, 𝑦′) over the set of all points that are within

𝛿-radius from 𝑓𝑘(𝐴). Since Δ(𝑥,𝑦)
𝑓 (𝑥′, 𝑦′) ≥ 0 everywhere, by Markov’s inequality,

ℙ(𝑥,𝑦)∼ ,
[𝐴′ ∩ 𝑑𝑘(𝑓𝑘(𝑥), 𝑓𝑘(𝐴)) < 𝛿] ≤

𝛿 𝔼 𝜎𝑘𝑓 (𝑥, 𝑦)

𝜂
, (B.9)

20

≤ 𝛿𝜖
𝜂
. (B.10)

The last inequality follows from 𝔼(𝑥,𝑦)∼ ,
𝜎𝑘𝑓 (𝑥, 𝑦) < 𝜖, by the definition of 𝜖-knowledge continuity.

Now, by applying the complement of Lem. B.2, we lower-bound the denominator and yield the
following

ℙ(𝑥′,𝑦′)∼
[

𝐴′ ∣ 𝑑𝑘(𝑓𝑘(𝑥), 𝑓𝑘(𝑥′)) < 𝛿
]

≤ 𝜖𝛿

𝜂
(

1 − exp
(

− 2
𝐵2

(

𝛿 − 𝐵
√

1
2 log

2
ℙ[𝐴]

)2))
. (B.11)

The proof is concluded by applying Ω(⋅) notation to the denominator. ■

B.1 Technical Lemmas

Definition 6. A function 𝑓 ∶ 1 ×… × 𝑛 → ℝ has bounded variation if there are 𝑐1,… , 𝑐𝑛 ∈ ℝ
such that for all 1 ≤ 𝑖 ≤ 𝑛 and 𝑥1 ∈ 1,… , 𝑥𝑛 ∈ 𝑛,

sup
𝑥′𝑖∈𝑖

|𝑓 (𝑥1,… , 𝑥𝑖,… , 𝑥𝑛) − 𝑓 (𝑥1,… , 𝑥′𝑖,… , 𝑥𝑛)| ≤ 𝑐𝑖. (B.12)

Lemma B.1 (McDiarmid’s Inequality). Assume that the function 𝑓 ∶ 1 ×… × 𝑛 → ℝ satisfy the
bounded differences property with bounds 𝑐1,… , 𝑐𝑛. Consider the independent random variables
𝑋1,… , 𝑋𝑛 where 𝑋𝑖 ∈ 𝑖 for all 1 ≤ 𝑖 ≤ 𝑛. Then, for any 𝜖 > 0,

ℙ[|𝑓 (𝑋1,… , 𝑋𝑛) − 𝔼[𝑓 (𝑋1,… , 𝑋𝑛)| ≥ 𝜖] ≤ 2 exp

(

− 2𝜖2
∑𝑛

𝑖=1 𝑐
2
𝑖

)

. (B.13)

Lemma B.2. Suppose that ( , 𝑑) is a bounded metric space such that sup𝑥,𝑥′∈ 𝑑(𝑥, 𝑥′) < 𝐵 for
some 𝐵 > 0. Let 𝐴 ⊂ 𝑋 such that ℙ[𝐴] > 0 and 𝜖 > 0. Then,

ℙ[𝑑(𝑥,𝐴) ≥ 𝜖] ≤ exp
⎛

⎜

⎜

⎝

− 2
𝐵2

(

𝜖 − 𝐵
√

1
2
log 2

ℙ[𝐴]

)2
⎞

⎟

⎟

⎠

.

Proof. For brevity, denote 𝑓𝐴(𝑥) = 𝑑(𝐴, 𝑥) = inf𝑎∈𝐴 𝑑(𝑥, 𝑎). Since ( , 𝑑) is a bounded metric space,
by Lem. B.1,

ℙ[|𝑓𝐴(𝑥) − 𝔼𝑓𝐴(𝑥)| ≥ 𝜖] = 2 exp
(

−2𝜖2

𝐵2

)

, (B.14)

ℙ[𝑓𝐴(𝑥) − 𝔼𝑓𝐴(𝑥) ≥ 𝜖] + ℙ[𝑓𝐴(𝑥) − 𝔼𝑓𝐴(𝑥) ≤ −𝜖] ≤ 2 exp
(

−2𝜖2

𝐵2

)

, (B.15)

ℙ[𝑓𝐴(𝑥) − 𝔼𝑓𝐴(𝑥) ≤ −𝜖] ≤ 2 exp
(

−2𝜖2

𝐵2

)

, (B.16)

Let 𝜖 = 𝔼𝑓𝐴(𝑥). Then,

ℙ[𝑓𝐴(𝑥) ≤ 0] ≤ 2 exp
(

−
2(𝔼𝑓𝐴(𝑥))2

𝐵2

)

, (B.17)

ℙ[𝐴] ≤ 2 exp
(

−
2(𝔼𝑓𝐴(𝑥))2

𝐵2

)

, (B.18)

𝔼𝑓𝐴(𝑥) ≤

√

𝐵2

2
log

(

2
ℙ[𝐴]

)

. (B.19)

The second inequality follows from ℙ[𝑓𝐴(𝑥) ≤ 0] = ℙ[𝑓𝐴(𝑥) = 0] ≥ ℙ[𝐴]. By Eq. B.15,

ℙ[𝑓𝐴(𝑥) − 𝔼𝑓𝐴(𝑥) ≥ 𝜖] + ℙ[𝑓𝐴(𝑥) − 𝔼𝑓𝐴(𝑥) ≤ −𝜖] ≤ 2 exp
(

−2𝜖2

𝐵2

)

,

21

ℙ[𝑓𝐴(𝑥) − 𝔼𝑓𝐴(𝑥) ≥ 𝜖] ≤ 2 exp
(

−2𝜖2

𝐵2

)

,

ℙ[𝑓𝐴(𝑥) ≥ 𝜖 + 𝔼𝑓𝐴(𝑥)] ≤ 2 exp
(

−2𝜖2

𝐵2

)

,

ℙ
⎡

⎢

⎢

⎣

𝑓𝐴(𝑥) ≥ 𝜖 +

√

𝐵2

2
log

(

2
ℙ[𝐴]

)

⎤

⎥

⎥

⎦

≤ 2 exp
(

−2𝜖2

𝐵2

)

, (by Eq. B.19,)

for any 𝛿 > 0, let 𝜖 = 𝛿 −
√

𝐵2

2 log 2
ℙ[𝐴] . And so,

ℙ[𝑓𝐴(𝑥) ≥ 𝛿] ≤ 2 exp

⎛

⎜

⎜

⎜

⎝

− 2
𝐵2

⎛

⎜

⎜

⎝

𝛿 − 𝐵

√

1
2
log

(

2
ℙ[𝐴]

)

⎞

⎟

⎟

⎠

2
⎞

⎟

⎟

⎟

⎠

,

which is the desired expression. ■

Corollary B.3. ℙ[𝑓𝐴(𝑥) < 𝛿] ≥ 1 − 2 exp
⎛

⎜

⎜

⎝

− 2
𝐵2

(

𝛿 − 𝐵
√

1
2 log

(

2
ℙ[𝐴]

)

)2
⎞

⎟

⎟

⎠

.

C Proof of Expressiveness

Proposition (See Prop. 4.4). Suppose ( , 𝑑), ( , 𝑑) ∶= ( , 𝑑) are compact metric spaces,
 ⊂  is the set of all continuous functions from  to  such that ∫ 𝑑 (𝑥, 𝑥′)−1𝑑𝜇𝑓 < ∞ and 
be Lipschitz continuous in both coordinates. Then, there exists a universal function approximator 
of  that is knowledge continuous (i.e. 𝔼 𝜎𝑘𝑓 (𝑥, 𝑦) < ∞ for some 𝑘).

Proof. By Lem. C.3, the set of Lipschitz continuous functions ℒ is dense in the set of all contin-
uous functions 𝒞 with respect to the uniform metric. By Lem. C.1, since |(𝑥, 𝑦)| ≤ 𝐾𝑑(𝑥, 𝑦), if
sup𝑥∈ 𝑑(𝑓 (𝑥), 𝑔(𝑥)) < 𝜖, then for any probability measure ℙ over  ,

∫ (𝑓 (𝑥), 𝑔(𝑥)) 𝑑ℙ ≤ ∫ |(𝑓 (𝑥), 𝑔(𝑥))| 𝑑ℙ ≤ 𝐾𝜖,

where 𝐾 is the Lipschitz constant of . This implies that for any sequence 𝜖1, 𝜖2,… we can
choose Lipschitz continuous functions 𝑓1, 𝑓2,… with Lipschitz constants 𝐶1, 𝐶2,… such that
∫ (𝑓𝑛(𝑥), 𝑦) 𝑑𝜇𝑓 < 𝜖𝑛. It remains to show that each of these functions are in fact knowledge
continuous. Since  is a metric space, we consider the trivial metric decomposition of our sequence
of functions (see Remark 1). Specifically, we denote ℎ1 = Id and proceed to bound 𝔼 𝜎1𝑓 (𝑥, 𝑦).

𝔼 𝜎1𝑓𝑛 (𝑥, 𝑦) = ∬

Δ(𝑥,𝑦)
𝑓𝑛

(𝑥′, 𝑦′)

𝑑 (𝑥, 𝑥′)
(𝑑𝜇𝑓 × 𝑑𝜇𝑓), (C.1)

≤ ∬
|(𝑓𝑛(𝑥), 𝑦) − (𝑓𝑛(𝑥′), 𝑦) + (𝑓𝑛(𝑥′), 𝑦) − (𝑓𝑛(𝑥′), 𝑦′)|

𝑑 (𝑥, 𝑥′)
(𝑑𝜇𝑓 × 𝑑𝜇𝑓), (C.2)

≤ ∬
|(𝑓𝑛(𝑥), 𝑦) − (𝑓𝑛(𝑥′), 𝑦)|

𝑑 (𝑥, 𝑥′)
𝑑(𝜇𝑓 × 𝜇𝑓) (C.3)

+∬
|(𝑓𝑛(𝑥′), 𝑦) − (𝑓𝑛(𝑥′), 𝑦′)|

𝑑(𝑥, 𝑥′)
(𝑑𝜇𝑓 × 𝑑𝜇𝑓), (C.4)

≤ ∬
𝐾𝑑 (𝑓 (𝑥), 𝑓 (𝑥′))

𝑑 (𝑥, 𝑥′)
𝑑(𝜇𝑓 × 𝜇𝑓) +∬

𝐾𝑑 (𝑦, 𝑦′)
𝑑 (𝑥, 𝑥′)

𝑑(𝜇𝑓 × 𝜇𝑓), (C.5)
By Lem. C.4, any compact metric space is bounded. So, let ( , 𝑑) be bounded by 𝑏 > 0. It follows
that 𝑑 (𝑦, 𝑦′) ≤ 𝑏 and

≤ ∬ 𝐾𝐶𝑛 𝑑(𝜇𝑓 × 𝜇𝑓) +𝐾𝑏∫
1

𝑑 (𝑥, 𝑥′)
𝑑𝜇𝑓 , (C.6)

22

= 𝐾𝐶𝑛 +𝐾𝑏∫ 𝑑 (𝑥, 𝑥′)−1𝑑𝜇𝑓 , (C.7)
By assumption ∫ 𝑑 (𝑥, 𝑥′)−1𝑑𝜇𝑓 < ∞ and the statement of the proposition follows. ■

C.1 Technical Lemmas

Lemma C.1. If (⋅, ⋅) is Lipschitz continuous in both coordinates, then for any 𝑥, 𝑥′ ∈  , |(𝑥, 𝑥′)| ≤
𝐾𝑑(𝑥, 𝑥′), where 𝐾 is the Lipschitz constant of .

Proof. By Lipschitz continuity,
|(𝑥, 𝑥′) − (𝑥, 𝑥)| ≤ 𝐾𝑑(𝑥, 𝑥′),

|(𝑥, 𝑥′)| ≤ 𝐾𝑑(𝑥, 𝑥′).

■

Lemma C.2. The set of all Lipschitz continuous functions from  →  separates all points in  .

Proof. The identity function is 1-Lipschitz continuous and it also separates all points in  . ■

Corollary C.3. Let 𝒞 ⊂  be the set of all continuous functions from  →  and ℒ ⊂  be the
set of all Lipschitz continuous functions from  →  . If  is compact, then ℒ is dense in 𝒞 with
respect to the uniform metric: 𝑑′(𝑓, 𝑔) = sup𝑥∈ 𝑑(𝑓 (𝑥), 𝑔(𝑥)).

Proof. This follows directly from Lem. C.2 and the Stone-Weierstrass theorem [65]. ■

Lemma C.4. Any compact metric space ( , 𝑑) is also bounded.

Proof. By way of contraposition suppose that ( , 𝑑) is not bounded. Then, sup𝑥,𝑥′∈ 𝑑(𝑥, 𝑥′) = ∞.
Pick 𝑥1 ∈  arbitrarily and pick 𝑥𝑛 for 𝑛 ∈ ℤ+, 𝑛 > 1 such that 𝑑(𝑥𝑛, 𝑥1) > 𝑛. Clearly, there does
not exist a convergent subsequence of the sequence 𝑥1, 𝑥2,…. Thus, ( , 𝑑) cannot be compact. ■

D Proof of Equivalence Between Lipschitz Continuity and Knowledge
Continuity

Proposition. (See Prop. 4.6) Suppose that ( , 𝑑), ( , 𝑑) are metric spaces. Let the first 𝑛 metric
decompositions of 𝑓 ∶  →  be 𝐾𝑖-Lipschitz continuous, for 𝑖 ∈ [𝑛]. If 𝑓 is 𝜖-knowledge continuous
with respect to the 𝑛th hidden layer and 𝑑 (𝑓 (𝑥), 𝑓 (𝑥′)) ≤ 𝜂Δ(𝑥,𝑦)

𝑓 (𝑥′, 𝑦) for all 𝑥, 𝑥′ ∈  , 𝑦 ∈  ,
and some 𝜂 > 0, then 𝑓 is Lipschitz continuous in expectation. That is,

𝔼(𝑥,𝑦),(𝑥′,𝑦′)∼ ,

𝑑 (𝑓 (𝑥), 𝑓 (𝑥′))
𝑑 (𝑥, 𝑥′)

≤ 𝜖𝜂
𝑛
∏

𝑗=1
𝐾𝑗 . (D.1)

Proof. We proceed to bound the knowledge continuity of 𝑓 from below.

𝔼 𝜎𝑘𝑓 (𝑥, 𝑦) ≥ 𝔼(𝑥,𝑦)∼ ,
𝔼(𝑥′,𝑦′)∼ ,

𝑦′=𝑦

Δ(𝑥,𝑦)
𝑓 (𝑥′, 𝑦)

𝑑𝑘(𝑓𝑘(𝑥), 𝑓𝑘(𝑥′))
, (D.2)

≥ 𝔼(𝑥,𝑦)∼ ,
𝔼(𝑥′,𝑦′)∼

𝑦′=𝑦

Δ(𝑥,𝑦)
𝑓 (𝑥′, 𝑦)

∏𝑛
𝑗=1𝐾𝑗𝑑 (𝑥′, 𝑥)

, (D.3)

≥ 𝔼(𝑥,𝑦)∼ ,
𝔼(𝑥′,𝑦′)∼

𝑦′=𝑦

1
𝜂𝑑 (𝑓 (𝑥), 𝑓 (𝑥

′))
∏𝑛

𝑗=1𝐾𝑗𝑑 (𝑥, 𝑥′)
, (D.4)

= 𝔼(𝑥,𝑦),(𝑥′,𝑦′)∼ ,

1
𝜂𝑑 (𝑓 (𝑥), 𝑓 (𝑥

′))
∏𝑛

𝑗=1𝐾𝑗𝑑 (𝑥, 𝑥′)
. (D.5)

23

Eq. D.2 comes from the fact that we take the expectation only over pairs of points (𝑥, 𝑦), (𝑥′, 𝑦′)
where 𝑦 = 𝑦′ and also because the summand is always nonnegative. Then, we inductively apply the
definition of 𝐾𝑖-Lipschitz continuity to yield Eq. D.3. Eq. D.4 follows directly from the assumption
in the statement of the proposition. Since the expression in Eq. D.4 now has no dependence on the
label distribution, we may expand the expectation which results in Eq. D.5. Lastly, by the definition
of 𝜖-knowledge continuity,

𝜖 ≥ 𝔼(𝑥,𝑦),(𝑥′,𝑦′)∼ ,

1
𝜂𝑑 (𝑓 (𝑥), 𝑓 (𝑥

′))
∏𝑛

𝑗=1𝐾𝑗𝑑 (𝑥, 𝑥′)
,

𝜖𝜂
𝑛
∏

𝑗=1
𝐾𝑗 ≥ 𝔼(𝑥,𝑦),(𝑥′,𝑦′)∼ ,

𝑑 (𝑓 (𝑥), 𝑓 (𝑥′))
𝑑 (𝑥, 𝑥′)

,

and this concludes the proof of the proposition. ■

To prove Cor. 4.7, we need the following auxiliary result from [89].
Proposition D.1 (See [89]). For a neural network 𝑓 ∶ ℝ𝑛 → ℝ𝐾 with Lipschitz constant 𝐿 under
𝓁𝑝-norm, define the resulting classifier 𝑔 as 𝑔(𝑥) ∶= arg max𝑘∈[𝐾] 𝑓𝑘(𝑥) for an input 𝑥. Then, 𝑔 is

provably robust under perturbations ‖𝛿‖𝑝 <
𝑝√2
2𝐿 margin(𝑓 (𝑥)), i.e.

𝑔(𝑥 + 𝛿) = 𝑔(𝑥) for all ‖𝛿‖𝑝 <
𝑝
√

2
2𝐿

margin(𝑓 (𝑥)). (D.6)
Here, margin(𝑓 (𝑥)) is the difference between the largest and second largeset output logit.
Corollary (See Cor. 4.7). Suppose that assumptions of Prop. 4.6 are true. And also assume that
( , 𝑑) = (ℝ𝑛,𝓁𝑝), ( , 𝑑) = (ℝ𝑚,𝓁𝑝), for 1 ≤ 𝑝 ≤ ∞. Define a classifier from 𝑓 ∶ ℝ𝑛 → ℝ𝑚,
𝑔, where 𝑔(𝑥) ∶= arg max𝑘∈[𝑚] 𝑓𝑘(𝑥) for any 𝑥 ∈ ℝ𝑛. Then, with probability 1 − 𝜖𝜂

𝑡
∏𝑛

𝑗=1𝐾𝑗 ,

𝑔(𝑥) = 𝑔(𝑥 + 𝛿) for all ‖𝛿‖𝑝 <
𝑝√2
2𝑡 margin(𝑓 (𝑥)) and 𝑡 > 0. 𝑓𝑘(𝑥) is the 𝑘th coordinate of 𝑓 (𝑥) and

margin(𝑓 (𝑥)) denotes the difference between the largest and second-largest output logits.

Proof. By Prop. 4.6, we have that

𝔼(𝑥,𝑦),(𝑥′,𝑦′)∼ ,

𝑑 (𝑓 (𝑥), 𝑓 (𝑥′))
𝑑 (𝑥, 𝑥′)

≤ 𝜖𝜂
𝑛
∏

𝑗=1
𝐾𝑗 . (D.7)

By Markov’s inequality,

ℙ(𝑥,𝑦),(𝑥′,𝑦′)∼ ,

[𝑑 (𝑓 (𝑥), 𝑓 (𝑥′))
𝑑 (𝑥, 𝑥′)

≥ 𝑡
]

≤ 𝜖𝜂
𝑡

𝑛
∏

𝑗=1
𝐾𝑗 . (D.8)

We yield the corollary by directly applying Prop. D.1 assuming that 𝑓 is 𝑡-Lipschitz continuous. ■

Next, we establish conditions under which Lipschitz continuity implies knowledge continuity.
Proposition (Prop. 4.8). Let ( , 𝑑), ( , 𝑑) be a metric spaces. Let 𝑓 ∶  →  be 𝜖-Lipschitz
continuous and (𝑓 (𝑥), 𝑦) be 𝜂-Lipschitz continuous with respect to both coordinates. If the first 𝑛
metric decompositions of 𝑓 are 𝐾𝑖-Lipschitz continuous, then 𝑓 is knowledge continuous with respect
to the 𝑛th hidden layer. That is,

𝔼(𝑥,𝑦)∼ ,
𝜎𝑛𝑓 (𝑥, 𝑦) ≤ 𝜖𝜂

𝑛
∏

𝑗=1

1
𝐾𝑗

. (D.9)

Proof. Let us start with the definition of 𝜖-Lipschitz continuity and lower-bound it. For any
(𝑥, 𝑦), (𝑥′, 𝑦′) ∈  ×  ,

𝑑 (𝑓 (𝑥), 𝑓 (𝑥′))
𝑑 (𝑥, 𝑥′)

≤ 𝜖, (D.10)

24

𝑑 (𝑓 (𝑥), 𝑓 (𝑥′))
∏𝑛

𝑗=1
1
𝐾𝑗

𝑑𝑘(𝑓𝑘(𝑥), 𝑓𝑘(𝑥′))
≤ 𝜖, (D.11)

1
𝜂 |(𝑥, 𝑦) − (𝑥′, 𝑦′)|

∏𝑛
𝑗=1

1
𝐾𝑗

𝑑𝑘(𝑓𝑘(𝑥), 𝑓𝑘(𝑥′))
≤ 𝜖, (D.12)

|(𝑥, 𝑦) − (𝑥′, 𝑦′)|
𝑑𝑘(𝑓𝑘(𝑥), 𝑓𝑘(𝑥′))

≤ 𝜖𝜂
𝑛
∏

𝑗=1

1
𝐾𝑗

. (D.13)

Eq. D.11 follows from inductively applying the definition of Lipschitz continuity on the metric decom-
positions of 𝑓 . Specifically, 𝑑𝑖+1(𝑓 𝑖+1(𝑥), 𝑓 𝑖+1(𝑥′)) ≤ 𝐾𝑖𝑑𝑖(𝑓 𝑖(𝑥), 𝑓 𝑖(𝑥)). Then, by the Lipschitz
continuity of  in both coordinates we yield Eq. D.12. Since the Lebesgue integral preserves order,
Eq. D.13 directly implies the statement of the proposition and this concludes the proof. ■

E Predicting Adversarial Robustness with Volatility

In this section, we detail the experimental methods and results that use knowledge continuity to
predict adversarial vulnerability, briefly discussed in Section 5. We focus on langauge models of
various sizes and their ability to perform sentiment classification on the IMDB dataset [48]. Before
computing any statistics of the model, we finetune it against the IMDB dataset and reserve a test set
on which we compute a vulnerability score and estimate the model’s adversarial vulnerability.
Vulnerability Score. As described in the main text, given a model with 𝑛 hidden layers, we compute
all of its 𝑘-volatility scores. This is done with a naive Monto-Carlo algorithm which we present in
Appendix G. This results in a list of 𝑘-volatility scores {𝜖1,… , 𝜖𝑛}, one for each hidden layer. Then,
we perform a simple average 𝑛−1

∑𝑛
𝑘=1 𝜖𝑘. Let us denote this quantity as the vulnarability score.

Estimating Adversarial Robustness. It remains to estimate the adversarial vulnerability of a
given model. We do this empirically by applying an out-of-the-box adversarial attack (specifically,
TextFooler [35]) on the given model with respect to the reserved test set. We then measure the number
of successful adversarial attacks defined as

♯Successful Adversarial Attacks = |adversarial ∩ correct)
|correct

|

,

where correct is the set of examples in the test set that are correctly classified by the model (after
finetuning) without any intervention. And, adversarial are the set of examples that are incorrectly
classified after an adversarial attack is applied. In other words, we only consider points where a
perturbation will worsen performance. In expectation, this estimate of adversarial robustness should
be a 1∕2 factor of the notion of vulnerability we present in Thm. 4.1, where we also consider a point to
be vulnerable if perturbation increases its performance.
We then perform a linear regression using vulnerability score and a host of other model properties to
predict the number of successful adversarial attacks. Concretely, we seek to learn the relationship:

♯Successful Adversarial Attacks = 𝑚𝑇
(

𝑛−1
𝑛
∑

𝑘=1
𝜖𝑘 ⊕ …

⏟⏟⏟
additional architectural variables

)

+ 𝑏,

where 𝑚 ∈ ℝ𝑑 and 𝑏 ∈ ℝ are the learnable regression parameters. We also incorporate 𝑑 −1 size and
architectural variables into our regression as we found that significantly increases its predictiveness.
And so, the input variables to our regression and their types are:

Feature Type
Encoder Only {0, 1}
Decoder Only {0, 1}

Encoder-Decoder {0, 1}
log(♯Parameters) ℝ

𝑛−1
∑𝑛

𝑘=1 𝜖𝑘 ℝ

25

Variables (1) (2) (3)
Coefficients Δ𝑅2 Coefficients Δ𝑅2 Coefficients Δ𝑅2

Encoder Only ✗ ✗ 1485 0.40 −548 0.07
Decoder Only ✗ ✗ −2816 0.71 −557 0.02

Encoder-Decoder ✗ ✗ 1332 0.29 1105 0.18
log(♯Parameters) ✗ ✗ 66 −6.1 × 10−5 −363 0.04

𝑛−1
∑𝑛

𝑘=1 𝜖𝑘 49 0.35 96 2.57 ✗ ✗

𝑅2 0.35 0.48 0.28
Table 2: Regression results from our three previously described experimental settings. We regress
the number of successful adversarial attacks against (1) only the vulnerability score (2) vulnerability
score and model characteristics (3) only model characteristics. The coefficients for each of these
regressions results are shown in the column Coefficients. We also run permutation tests for each
coefficient and the change in 𝑅2 is shown in the column Δ𝑅2 (higher the better).

For the regression itself, we perform a Ridge regression with 𝛼 = 1. We test three experimental
conditions where we regress the model’s adversarial robustness against: (1) only vulnerability score,
(2) vulnerability score and model characteristics, (3) only model characteristics. We experiment
with seven models: RoBERTa (Base/Large) [44], BERT-Uncased (Base/Large) [16], GPT2, and T5
(Small/Base) [58]. Our regression results are shown in Table. 2.
After yielding an initial line-of-best fit (see Fig. 2(a)), we run permutation tests to determine the
contribution of each feature to the explained variance. Specifically, for each feature, keeping all else
constant, we permute its values. If this feature is a significant contributor to the explained variance,
intuitively, we should see a large decrease in 𝑅2 after this intervention. If 𝑠 is the 𝑅2 without any
intervention and 𝑠𝜎𝑖(𝑑) is the 𝑅2 after permuting the data by 𝜎𝑖(⋅) ∶ [𝑛] → [𝑛] (for a dataset of 𝑛 data
points). Then, we define

Δ𝑅2 = 𝑠 − 1
𝑁

𝑁
∑

𝑘=1
𝑠𝜎𝑘(𝑑),

where 𝑁 controls the number of permutations that we apply. For all experiments we choose 𝑁 = 100.
For formal theory on permutation tests, see [8].
We find that when our vulnerability score is added to the regression, it contributes significantly to
the explained variance. Moreover, in (2), we see that vulnerability score has the highest feature
importance among all regression variables.

F Localizing Volatile Hidden Representations

In this section, we localize adversarially vulnerable hidden representations in two ways. Firstly, we
use 𝑘-volatility to gauge which layers are vulnerable across a selection of models. Then, we focus on
model-specific characterizations of robustness with respect to 𝑘-volatility. We present experiments on
the same selection of models in Appendix E, the same dataset (IMDB [48]), and the same adversarial
attack (TextFooler [35]) to empirically measure adversarial vulnerability.

F.1 Layerwise Volatility

As mentioned in the previous section (Section E), for a given model with 𝑛 hidden layers, we can
measure its 𝑘-volatility for 𝑘 ∈ [𝑛] through a Monte-Carlo algorithm. For each model, we then
plot its 𝑘-volatility against its relative depth which is defined as ⌊𝑘∕𝑛⌋. These curves are shown
in Fig. 2(b). We see that models which have different architectures independent of size have very
different 𝑘-volatility curves.
We have already shown in the previous section that there is a positive correlation between 𝑘-volatility
and adversarial vulnerability. However, this correlation is derived from the simple average of all 𝑘-
volatility scores. Are the 𝑘-volatility scores in some layers more predictive of adversarial vulnerability

26

than others? If the 𝑘-volatility in some layers is more correlated with 𝑘-volatility in others, then it
should suffice to minimize 𝑘-volatility in these former layers. This would also speed up regularization
and training.
We repeat the experiments in the previous settings. But, instead of collating 𝑘-volatility through a
simple average, we run one regression for each relative depth across all models (which we discretize
into 9 bins). This result is shown in Fig. 2(c). Surprisingly, we find that the magnitude of 𝑘-volatility
is not necessarily predictive of adversarial vulnerability. For example, in Fig. 2(b), almost all of the
models exhibit low average 𝑘-volatility in the latter layers. However, the 𝑘-volatility of latter layers
predict adversarial vulnerability the best.

F.2 Model-Specific Volatility

We start by exploring the 𝑘-volatility across each of our test models. We notice that 𝑘-volatility
cannot be predicted by surface-level features such as size or model type alone. This is shown clearly
in Fig. 3. Yet, as discussed in Appendix E, it is still able to predict actual adversarial vulnerability
with moderate power. Thus, we conjecture that 𝑘-volatility captures a complex aspect of the model’s
vulnerability which cannot be solely attributed to its size or type.

18.0 18.5 19.0 19.5
log(Parameters)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
ca

le
d

n
1

n

k
=

1
k

t5-small

bert-base
gpt2

roberta-base

t5-base

bert-largeroberta-large

18.0 18.5 19.0 19.5
log(Parameters)

Encoder-Decoder
Encoder
Decoder

Figure 3: Average 𝑘-volatility plotted against the log of number of model parameters (left). We see
that although there is a strong negative correlation, the exactly relationship is nontrivial. Moreover,
this negative correlation is also consistently observed across model families (right).

G Regularizing Knowledge Continuity

In this section, we provide a comprehensive overview of regulating knowledge continuity to achieve
robustness. We first show a simple algorithm that estimates 𝑘-volatility. Then, we demonstrate how
this can incorporated into any loss function as a regularization term. We then prove guarantees that
revolve around the unbiasedness of our estimation algorithm. Lastly, we present detailed discussion of
the results shown in Table 1 including training details and ablation studies over the hyperparameters.

G.1 Estimating Knowledge Continuity Algorithmically

We first present a method for estimating 𝑘-volatility. This is shown in Alg. 1(ESTKVOL). In theory,
one should choose 𝑀 = 𝑁 , as this will lead to a most accurate estimate. This is similar to contrastive
learning methods where it is desirable to make the minibatch sizes as large as possible [56]. However,
if 𝑁 ≫ 1, this can become quickly intractable. In practice, during regularization we keep 𝑁 to be
the same as if we were doing normal finetuning (i.e. 32/64) and set 𝑀 = 𝑁 . This works well, and,
anecdotally, we find that in contrast to contrastive learning increasing 𝑁 or 𝑀 past this threshold
yields marginal returns. Further work could examine this relationship in more detail.
As discussed in the main text, the choice of metric (or representation space) which we enforce
knowledge continuity against is crucial as it determines the type of robustness we will achieve.
Therefore, in Alg. 1(KCREG), we incorporate this detail by sampling a hidden layer of interest using
a Beta distribution specified by hyperparameters 𝛼, 𝛽. Then, on that minibatch, regularize 𝑘-volatility

27

Algorithm 1 A Monte-Carlo algorithm for estimating 𝑘-volatility of some metric decomposable
function 𝑓 with 𝑛 hidden layers (left). Augmenting any loss function to regularize 𝑘-volatility (right),
given some Beta distribution parameterized by 𝛼, 𝛽 and regularization strength 𝜆 ≥ 0.

procedure ESTKVOL({(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1,𝑀, 𝑓 , 𝑘)
Sample {𝑛1,… , 𝑛𝑀} ⊂ [𝑁] uniformly
𝜎𝑘
𝑓 ← 0

Losses ← {(𝑓 (𝑥𝑛𝑖), 𝑦𝑛𝑖)}
𝑀
𝑖=1

for (𝑖, 𝑗) ∈ [𝑀] × [𝑀] do
Dist ← 𝑑𝑘(𝑓 𝑘(𝑥𝑛𝑖), 𝑓

𝑘(𝑥𝑛𝑗))
𝜎𝑘
𝑓 ← 𝜎𝑘

𝑓 + |Losses𝑖 − Losses𝑗|∕DIST
return 𝜎𝑘

𝑓

procedure KCREG(𝛼, 𝛽,𝑀, 𝜆)
𝑋 ∼ Beta(𝛼, 𝛽)
𝑘 ← max(⌊𝑋𝑛⌋, 1)
𝜎𝑘
𝑓 ← ESTKVOL({(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1, 𝑓 ,𝑀, 𝑘)

return 1
𝑁

∑𝑁
𝑖=1 (𝑓 (𝑥𝑖), 𝑦𝑖) +

1
𝑀2 𝜆𝜎

𝑘
𝑓

with respect to that sampled layer. Note that we choose the Beta distribution for simplicity, however,
it can be replaced by any distribution like a mixture of Gaussians.
In contrast to existing adversarial training methods such as [32] and [63] which only use the embed-
dings, our algorithm gives the practitioner more control over which hidden layer (or distance metric)
to enforce smoothness. In this way, if the practitioner has some knowledge a priori of the attacker’s
strategy, they may choose to optimize against the most suitable metric decomposition. We present
a brief discussion of the various tradeoffs when choosing 𝛼, 𝛽 in the following section as well as a
detailed empirical analysis in the following subsections.
𝜆 is the weight we put on the regularizer in relation to the loss function . We provide a detailed
ablation study of the effects of 𝜆 in the following subsections. We surprisingly find that even for 𝜆 ≪ 1
we can achieve significant edge in terms of robustness over existing methods. This is in contrast to
virtual adversarial training methods such as [43] which requires applying a 𝜆-value magnitudes larger.
Moreover, for larger 𝜆, we find that the accuracy of the model is not compromised. This provides
some empirical support for Theorem 4.3.
G.2 Theoretical Guarantees of 𝑘-Volatility Estimation

In this subsection, we show that our Monte-Carlo algorithm presented in Alg. 1(ESTKVOL) is an
unbiased estimator. The proof is simple and follows from some bookkeeping.
Proposition G.1 (Alg. 1(ESTKVOL) is an Unbiased Estimator). Assuming that each data point in the
batch, {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1 ∼  , , is sampled i.i.d., then Alg. 1(ESTKVOL) is an unbiased estimator for
𝔼 𝜎𝑘𝑓 (𝑥, 𝑦).

Proof. Let 𝜃̂ be the random variable representing the output of Alg. 1. It suffices to show that
𝔼[𝜃̂] = 𝔼 𝜎𝑘𝑓 (𝑥, 𝑦),

where the expectation on the left-hand side is taken over the set of all batches. By the definition of
Alg. 1(ESTKVOL),

𝔼[𝜃̂] = 𝔼
⎛

⎜

⎜

⎜

⎝

𝑀
∑

𝑖=1

𝑀
∑

𝑗=1

1
𝑀2

Δ
(𝑥𝑛𝑗 ,𝑦𝑛𝑗)
𝑓 (𝑥𝑛𝑖 , 𝑦𝑛𝑖)

𝑑𝑘(𝑓𝑘(𝑥𝑛𝑖), 𝑓
𝑘(𝑥𝑛𝑗))

⎞

⎟

⎟

⎟

⎠

, (G.1)

=
𝑀
∑

𝑖=1

𝑀
∑

𝑗=1

1
𝑀2

𝔼
⎛

⎜

⎜

⎜

⎝

Δ
(𝑥𝑛𝑗 ,𝑦𝑛𝑗)
𝑓 (𝑥𝑛𝑖 , 𝑦𝑛𝑖)

𝑑𝑘(𝑓𝑘(𝑥𝑛𝑖), 𝑓
𝑘(𝑥𝑛𝑗))

⎞

⎟

⎟

⎟

⎠

, (G.2)

= 𝔼 𝜎𝑘𝑓 (𝑥, 𝑦). (G.3)
The second equality follows from the linearity of expectation. ■

We emphasize that our estimator is very naive. Improving its efficiency could form the basis of possible
future work. For example, Rao-Blackwellizing [6] Alg. 1(ESTKVOL) to yield an estimator with

28

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.7

0.8

0.9

1.0

resnet50

0.0 0.2 0.4 0.6 0.8 1.0

0.5

0.6

0.7

0.8

0.9

1.0

mobilenet

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

vit16

Ours Base

0.0 0.2 0.4 0.6 0.8 1.0
0.5

0.6

0.7

0.8

0.9

1.0

M
a
cr

o
 F

1

resnet50

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0 mobilenet

0.0 0.2 0.4 0.6 0.8 1.0

.88

.90

.92

.94

.96

.98

1.0 vit16

Attack Strength

Goodfellow et al. (2014)

Lin et al. (2020)

0.3

0.2

0.1

0.0

0.1

0.2

0.3

CNN-BasedCNN-Based Transformer-Based

Figure 4: Regularization 𝑘-volatility for a host of vision models. We apply two adversarial attacks
FGSM [24] (top row) and SI-NI-FGSM [41] (bottom row) with various attack strengths. Attack
strength is measured in terms of maximum 𝓁2-norm of the applied perturbation to the image.

smaller variance, applying rejection sampling to deal with the potential sparsity of the representation
space discussed in Section 4.4, or adapting the regularization weight based on some bootstrapped
confidence interval (if the estimate has higher variance then decrease weight on regularization and vice
versa). However, we see that even with this naive algorithm we achieve improvements in robustness
as well as training speed.

G.3 Computer Vision Results

In addition to regulating language models, we also demonstrate that KCREG is effective for vision
tasks. This provides empirical support for the equivalences we proved in Section 4.5. The exact
same method of 𝑘-volatility estimation and loss augmentation is applied. We finetune three models
ResNet50 [28], MobileNetV2 [61], and ViT16 [17] on the MNIST dataset both with and without our
regularization algorithm. We then apply two different adversarial attacks: FGSM [24] and SI-NI-
FGSM [41]. We find that in both cases, regularization 𝑘-volatility improves/stabilizes robustness
across attack strengths (see Fig. 4).

G.4 Ablation Studies

Herein, we present ablation studies for the crucial hyperparameters in our regularization algorithm
(across the natural language tasks that we explored in the main text), Alg. 1(KCREG): 𝜆 which is the
weight we assign the knowledge continuity regulation loss and (𝛼, 𝛽) which determines the sampling
behavior of the index of the hidden representation space.
Ablation Study of 𝜆 (Fig. 5(right)). The weight given to the regularizer (𝜆) is ablated over, with the
results shown in Fig. 5. For any positive 𝜆, there is an immediate large improvement in adversarial
robustness. Next, as 𝜆 is systematically increased by factors of 10, we do not see a significant change
in the accuracy (not under attack). This corroborates Theorem. 4.3, as it demonstrates that regulating
knowledge discontinuities (no matter how strongly) is not at odds with minimizing the empirical risk
of our model. On the other hand, we also do not see a significant increase in adversarial robustness
as 𝜆 increases. This may imply that we have reached the threshold of adversarial robustness under
TextFooler [35]. Specifically, the adversarial attacks generated by TextFooler may not be valid in
that they have flipped the ground-truth label. Therefore, we believe that a good 𝜆 for this particular
application should lie somewhere between 0 and 1 × 10−4.

29

0.0 0.2 0.4 0.6 0.8
Attack Strength

0.00

0.05

0.10

0.15

0.20

0.25

At
ta

ck
 S

uc
ce

ss
 R

at
e

0 10
4

10
3

10
2

10
1

10
0

Regularization Strength

65

70

75

80

85

90

95

Te
st

 A
cc

ur
ac

y

IMDB
IMDB+TextFooler

10 1 1e-1 1e-2 1e-3 1e-4 0

Figure 5: Ablation over the strength of regularization and its effect on the attack strength-attack
success rate curves (left). Ablation over the regularization strength (for fixed attack strength = 0.3)
and its effect on test accuracy (right). We see that moderate regularization significantly improves
robustness across all attack strengths. This improvement does not come at the expense of test accuracy.
The attack-strength is measured using the minimum angular similarity between the perturbed and
original text. Both ablations are done with respect to GPT2 on the IMDB [48] dataset with respect to
the TextFooler attack [35].

Ablation Study of Adversarial Attack Strength (Fig. 5(left)). For every value of 𝜆, we also vary
the strength of the adversarial attack. The adversarial attack strength is measured through the angular
similarity of the embeddings between the original text and the perturbed text. Intuitively, if this
constraint is loosened the adversary is allowed to find text that is semantically very different and vice
versa. We see that moderate 𝑘-volatility regulation achieves the best adversarial robustness across all
attack strengths.
Ablation Study of (𝛼, 𝛽) In this subsection, we briefly discuss how the 𝛼, 𝛽 hyperparameters which
determine the shape of the Beta distribution in Alg. 1(KCREG) affect the final performance and
robustness of our model on the IMDB dataset. Recall that the shape of the Beta distribution determines
the index of the hidden layers we are using the compute the knowledge continuity. Thus, they are
crucial in determining the behavior of our regularizer.
We finetune {BERT, T5, GPT2} models on the IMDB dataset with the hyperparameters described in
the next subsection. The results are displayed in Table 3. Across all models we observe a decrease in
robustness for 𝛼 = 1, 𝛽 = 2. These values correspond to a right-skewed distribution which places
high sampling probability on the earlier (closer to the input) hidden layers. Intuitively, perturbations
in the early layers should correspond to proportional textual perturbations in the input text. Pure
textual perturbations with respect to some metric like the Levenshtein distance should be only loosely
if not completely (un)correlated with the actual labels of these inputs. Therefore, enforcing knowledge
continuity with respect to this metric should not see increase robustness. Moreover, we also observe a
larger decrease in accuracy (not under attack) with the same parameters. This suggests that maintaining
this sort of knowledge continuity in the earlier layers is harder to converge on and there may be a
“push-and-pull” behavior between optimizing knowledge continuity and accuracy (not under attack).
Surprisingly, we observe no significant difference between the other 𝛼, 𝛽 values shown in the table.
We did not formally benchmark other configurations of 𝛼, 𝛽 such as increasing their magnitude to
impose a sharper distribution. Anecdotally, during training, we noticed that using these sharper
distributions both significantly slowed the model’s convergence and decreased the model’s accuracy
(not under attack). It could be that though knowledge continuity itself is a local property and the
enforcement of this local property requires change on a global scale. In other words, one cannot
simply reduce the knowledge discontinuities or uniformly converge with respect to one layer without
participation from other layers. The extent to which other layers are involved in the regularization of
a specific one is an interesting question that we leave for future research.

30

Model IMDB IMDBTF
BERTBASE 93.6 47.9
BERTBASE+Reg(2,1) 94.8 75.1
BERTBASE+Reg(2,2) 89.2 74.1
BERTBASE+Reg(1,2) 87.0 68.2
GPT2 93.6 63.9
GPT2+Reg(2,1) 94.6 85.0
GPT2+Reg(2,2) 94.9 87.8
GPT2+Reg(1,2) 93.1 84.9
T5BASE 93.7 53.9
T5BASE+Reg(2,1) 95.0 88.9
T5BASE+Reg(2,2) 94.9 89.3
T5BASE+Reg(1,2) 94.6 88.1

Table 3: We train finetune {BERT, T5, GPT2} using knowledge continuity regularization, as described
in Alg. 1(KCREG). We varied the 𝛼, 𝛽 hyperparameters for the Beta distribution as to determine the
effect of these parameters on model performance and robustness. The rows of the table are labeled
with the format: Model+Reg(𝛼,𝛽). The bolded entries of the table correspond to the best performing
metrics out of the knowledge continuity regulated models.

Hyperparameter Value
Optimizer Adam
Adam 𝛽1 0.9
Adam 𝛽2 0.999
Adam 𝜖 1 × 10−8
Max Gradient Norm 1.0
Learning Rate Scheduler Linear
Epochs 20
Batch Size 32
Learning Rate 5 × 10−5
Weight Decay 1 × 10−9

Table 4: Training hyperparameters and optimizer configurations for finetuning models {BERT, GPT2,
T5} on IMDB without any form of regularization or adversarial training.

G.5 Training Details

In this section, we describe in detail the training objectives, procedures, algorithms, and hyperparme-
ters that we used in the main text and further experiments done in the appendix.
Brute-Force Adversarial Training. For all models undergoing adversarial training, we first finetune
the model against the training set. Then, attack it using the TextFooler [35] algorithm with examples
from the training set. After the attacks are concluded, we then incorporate the text of successful
adversarial attacks back into the training set and proceed to finetune again. This procedure iteratively
continues. For the sake of computational efficiency, for all models we applied this procedure once.
The parameters we are using during the adversarial attack is the same hyperparameters we actually
use at test-time. Specifically, we impose a query budget of 300 queries.
Plain Finetuning on IMDB. The IMDB dataset consist of 50,000 examples with 25,000 for training
and 25,000 for testing. We split the test set 40%-60% to create a validation and test set of 10,000
and 15,000 examples, respectively. Examples were sampled uniformly at random during the splitting
process. Since adversarial attacks were costly, we uniformly subsampled 5,000 examples from this
15,000 to benchmark robustness in the experiments related to the regularizer. However, for the
experiments estimating the knowledge vulnerability score, we performed adversarial attacks on all
15,000 datapoints in the test set. We found no significant difference between robustness estimation on
this 5,000 subsample versus and the entire 15,000 dataset.
We train all models using the hyperparameter and optimizer configurations shown in Table 4.

31

Knowledge Discontinuity Regulation on IMDB. To enforce the knowledge discontinuity on IMDB,
we use a constant 𝜆 = 1 × 10−2 for all models. As shown in Table 3, we varied 𝛼, 𝛽 ∈ {1, 2} × {1, 2}
and displayed the best models in terms of robustness in Table. 1 in the main text. We train all models
for 50 epochs. Other than that all the other hyperparameters and optimizer configurations are the
same as regular finetuning (see Table 4).
Knowledge Discontinuity Regulation on ANLI. Optimizing over the ANLI dataset was significantly
harder than on IMDB. As a result, for each model class {BERT, GPT2, T5} we performed a quick
hyperparameter search over 𝜆 (1 × 10−4), the learning rate (5 × 10−5), and weight decay (1 × 10−9)
fixing the parameterization of the Beta distribution to be the best values on the IMDB dataset. That
is, for T5: 𝛼 = 2, 𝛽 = 1; BERT-Base-Uncased: 𝛼 = 2, 𝛽 = 1; GPT2: 𝛼 = 2, 𝛽 = 2.
ALUM on IMDB and ANLI. We train all ALUM models for 50 epochs (the same as knowledge
discontinuity regularized models). For hyperpararmeters specific to the ALUM algorithm we choose
all of the same ones as its authors, [43], with the exception of 𝛼 (analogous to the 𝜆 in our algorithm,
essentially the weight put on the virtual adversarial training loss term). The authors of the original
paper choose 𝛼 = 10. We, however, found that this applied to finetuning does not converge at all.
Thus, with a rough grid search in the parameter space we found 𝛼 = 1 × 10−3 to be the best with
respect to both performance and robustness.
We keep the same hyperparameters on ANLI, however, we impose early stopping during the training
process. That is, we choose the best model with respect to its performance on the dev set.

H Certifying Robustness at Test-Time

Herein, we present a certification algorithm using Thm. 4.1 and our Monte-Carlo estimate of 𝑘-
volatility 1(ESTKVOL). Our algorithm (shown in Alg. 2) is based on the work of [12]. We upperbound
the 𝑘-volatility by bootstrapping a 1 − 𝛼 confidence interval. Then, directly apply Thm. 4.1 using
the 0-1 loss function. Thus, Cor. H.1 follows. We emphasize here that this certification algorithm
may not be directly informative, especially in the discrete/non-metrizable setting, unless we have an
inverse map from the representation space back to the input space. This is discussed further in [82].
Nonetheless, it can be used as a method to verify whether or not certain intervention techniques are
successful before deploying them in the wild.
Corollary H.1. Let 𝐴 = {(𝑥𝑖, 𝑦𝑖)𝑛𝑖=1} and 𝐴′ = {(𝑥′, 𝑦′) ∈  ×  ∶ 𝔼(𝑥,𝑦)∼ ,

(𝑥,𝑦)∈𝐴
Δ(𝑥,𝑦)

𝑓 (𝑥′, 𝑦′) > 𝜂}.

Then, with probability 1 − 𝛼, the output of Alg. 2 bounds ℙ[𝐴′
|𝑑𝑗(𝑓 𝑗(𝑥), 𝑓 𝑗(𝐴))] where  is the 0-1

loss.

Algorithm 2 Certifying robustness of a metric decomposable function 𝑓 with respect to one hidden
representation using Alg. 1(ESTKVOL) and Thm. 4.1.

procedure CERTIFY(𝑓, {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1, 𝑘, 𝑗, 𝛼, 𝛿, 𝜂)
Let  be the 0-1 loss function
𝜖𝑈 ← UPPERCONFBOUND(𝑓,, {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1, 𝑘, 𝑗, 𝛼)
𝐵 ← max1≤𝑎,𝑏≤𝑛 𝑑𝑗(𝑓 𝑗(𝑥𝑎), 𝑓 𝑗(𝑥𝑏))

𝑉 ← 𝜂

(

1 − exp

(

−2∕𝐵2
(

𝛿 − 𝐵
√

1
2 log 2𝑛

)2
))

return CLIP(1 − 𝜖𝑈𝛿∕𝑉 , 0, 1)
procedure UPPERCONFBOUND(𝑓,, {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1, 𝑘, 𝑗, 𝛼)

𝑈 ← 𝟎𝑘
for 𝑖 ← 1… 𝑘 do

𝑆 ← sample w/ replacement 𝑛 points from {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1
𝑈𝑖 ← ESTKVOL(𝑆,, 𝑓 , 𝑗)

return 1
𝑘
∑𝑘

𝓁=1 𝑈𝑘 + Φ−1(𝛼)std(𝑈)∕
√

𝑘

Along these lines, we apply our certification algorithm to our regularized models to verify that the
certified robustness has indeed improved. These results are shown in Fig. 6.

32

C
hange in A

bsolute A
ccuracy

0.0

0.2

0.4

0.6

0.8

1.0

0.0 11.2 22.4 33.6 44.8 56.0 67.2

0.0

0.2

0.4

0.6

0.8

1.0 Base

0.0 11.2 22.4 33.6 44.8 56.0 67.2

KCReg (Ours)

C
e
rt

if
ie

d
 R

o
b
u
st

n
e
ss

Perturbation Distance

Figure 6: Certification of robustness for GPT2, layer=6. We apply Alg. 2 to certify robustness of the
model before and after regularization with Alg. 1(KDREG). Each line corresponds to the change in
absolute accuracy for a set of examples to be considered non-robust. The 𝑦-axis corresponds to the
certified probability measure of the set of non-robust examples under this criterion and the 𝑥-axis
corresponds to the maximum perturbation distance in the representation space.

I Broader Impacts

This contribution is concerned with robust deep learning models. As deep learning becomes ubiquitous
as the primary method for creating artificial intelligence, their applications in increasingly critical areas
to the lay and corporations alike demand not only both high inferential accuracy and confidence but
also safety and trustworthiness guarantees. Robustness addresses this latter point. More specifically,
our contribution unifies separate robustness efforts from continuous and discrete domains.

J Reproducibility

All of our experiments were conducted on four NVIDIA RTX A6000 GPUs as well as four NVIDIA
Quadro RTX 6000 GPUs. The rest of our codebase including implementations of the algorithms and
figures described in the manuscript can be found at https://github.com/alansun17904/kc.
K Limitations
The certification guarantees of our definition knowledge continuity is a probabilistic one. Specifically,
this randomness is over the data distribution. However, this does not protect against out-of-distribution
attacks that plague large language models such as [72, 91]. More work is needed to yield deterministic
results that do not become vacuous in discrete settings. As mentioned in Section 4.4, our expressiveness
bounds only apply under little restrictions to the metric decompositions of the estimator 𝑓 . Though
we see some empirical verification for this in Appendix G, it remains unclear whether or not we can
tighten these bounds.

33

https://github.com/alansun17904/kc

L NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this question
will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We present a detailed discussion of the limitations in Section K.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?
Answer: [Yes]
Justification: For all of the theoretical results in the paper, we include all of its assumptions. We
include full proofs of each theoretical result in Appendices A, B, C, G. To the best of our knowledge,
the proofs are correct.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.

34

• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear in

the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by formal
proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We present all of the hyperparameters in the experiments that require training in Ap-
pendix G. Additionally, our compute resources are detailed in Appendix J.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For example,
if the contribution is a novel architecture, describing the architecture fully might suffice, or if the
contribution is a specific model and empirical evaluation, it may be necessary to either make it
possible for others to replicate the model with the same dataset, or provide access to the model.
In general. releasing code and data is often one good way to accomplish this, but reproducibility
can also be provided via detailed instructions for how to replicate the results, access to a hosted
model (e.g., in the case of a large language model), releasing of a model checkpoint, or other
means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of closed-
source models, it may be that access to the model is limited in some way (e.g., to registered
users), but it should be possible for other researchers to have some path to reproducing or
verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: We attach all of the code used to generate the figures and the experimental results in the
supplementary materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be possible,

so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

35

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: For the experiments that require training, we discuss in detail the hyperparameters
in Appendix G. Moreover, we also attach the code used to generate all results and figures in the
supplementary materials of the submission.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?
Answer: [No]
Justification: The experiments in our paper serve as a type of sanity check and demonstrate possible
explorations rather than a benchmark against existing state-of-the-art methods.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals,

or statistical significance tests, at least for the experiments that support the main claims of the
paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer resources
(type of compute workers, memory, time of execution) needed to reproduce the experiments?
Answer: [Yes]
Justification: We provide details on the compute resources we use in Appendix J.
Guidelines:

36

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have reviewed the NeurIPS Code of Ethics and to the best of our knowledge
it does conform to this in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?
Answer: [Yes]
Justification: We discuss the broader impacts of the work in Appendix I.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?
Answer: [NA]
Justification: This paper is concerned with training more robust deep learning models. Thus, it does
not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.

37

https://neurips.cc/public/EthicsGuidelines

• Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?
Answer: [NA]
Justification: We do not introduce any new assets in the paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their submissions

via structured templates. This includes details about training, license, limitations, etc.
• The paper should discuss whether and how consent was obtained from people whose asset is

used.
• At submission time, remember to anonymize your assets (if applicable). You can either create an

anonymized URL or include an anonymized zip file.
14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?
Answer: [NA]
Justification: We do not perform any crowdsourcing experiments nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects

38

paperswithcode.com/datasets

Question: Does the paper describe potential risks incurred by study participants, whether such risks
were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent
approval/review based on the requirements of your country or institution) were obtained?
Answer: [NA]
Justification: We do not perform any experiments that involve crowdsourcing nor research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and locations,
and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their
institution.

• For initial submissions, do not include any information that would break anonymity (if applicable),
such as the institution conducting the review.

39

	Introduction
	Related Works
	Preliminaries
	Knowledge Continuity
	Defining Perceived Knowledge
	Defining Knowledge Continuity
	Certification of Robustness
	Expressiveness
	Connections to Lipschitz Continuity

	Practical Applications
	Conclusion
	Acknowledgements
	More on Metric Decompositions
	Metric Decompositions of Common Neural Architectures
	Beyond Neural Networks: Inducing Metric Decompositions

	Proof of Robustness
	Technical Lemmas

	Proof of Expressiveness
	Technical Lemmas

	Proof of Equivalence Between Lipschitz Continuity and Knowledge Continuity
	Predicting Adversarial Robustness with Volatility
	Localizing Volatile Hidden Representations
	Layerwise Volatility
	Model-Specific Volatility

	Regularizing Knowledge Continuity
	Estimating Knowledge Continuity Algorithmically
	Theoretical Guarantees of k-Volatility Estimation
	Computer Vision Results
	Ablation Studies
	Training Details

	Certifying Robustness at Test-Time
	Broader Impacts
	Reproducibility
	Limitations
	NeurIPS Paper Checklist

