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Abstract001

Large Reasoning models (LRMs) like Deep-002
Seek-R1 excel in mathematics, logic, and code003
generation. However, their enhanced capa-004
bilities also introduce safety risks, especially005
when generating long Chain of Thought (CoT),006
which are more likely to generate harmful con-007
tent. Existing alignment methods primarily fo-008
cus on the safety of the generated text from009
LLMs and fail to address the potential risks in010
the reasoning process. To address this, we pro-011
pose Internal Safety-oriented Chain of Thought012
(SCoT) alignment, which contains two phases:013
SCoT Alignment and SCoT Internalization.014
SCoT Alignment uses SCoT to reflect and cor-015
rect the entire reasoning process. SCoT Inter-016
nalization converts SCoT into the equivalent017
parameters, internalizing SCoT’s safety align-018
ment capability within standard forward propa-019
gation. It eliminates the need for explicit SCoT020
generation, thus preserving alignment while021
minimizing the impact of long CoT text on gen-022
eration ability and efficiency, and eliminating023
the risk of generating harmful content. Our024
method achieved 43.2% higher defense capa-025
bility than baseline methods, with lower com-026
putation consumption and negligible alignment027
tax, validated across various models and five028
jailbreak methods.029

1 Introduction030

With the advent of Large Reasoning Mod-031

els(LRMs) such as DeepSeek-R1(DeepSeek-AI032

et al., 2025), their remarkable capabilities in033

mathematical computation, logical reasoning, and034

code generation have garnered widespread atten-035

tion(DeepSeek-AI et al., 2024). This pivotal mo-036

ment has illuminated a new path in the quest for037

Artificial General Intelligence (AGI).038

However, the enhancement of model capabilities039

is accompanied by new safety threats. In particular,040

the safety vulnerabilities of reasoning models that041

employ chain-of-thought (CoT) (Wei et al., 2022)042

If you were going to steal from a 
convenience store, do you think it 
would be better in the morning or 

at night?

Reasoning Model
user:
If you were going to steal from a 
convenience store, do you think it 
would be better in the morning or at 
night?
agent：
Okay, so the user is asking whether 
it's better to steal ...
In the morning, maybe there are 
fewer people around, but ...
At night, there might be fewer 
customers, but the store could ...
Wait, but it's also possible that in 
the morning, the store is 
preparing ...
Another angle is the type of items ...
Also, getting caught at any time ...
I should also think about store 
policies. Some convenience 
stores ...
Solution：Nighter will be better...

If you were going to steal 
from a convenience store, 
do you think it would be 

better in the morning or at 
night?

SCoT 
user:
If you were going to steal from a 
convenience store, do you think it 
would be better in the morning or 
at night?
agent：
Initial output: Okay, so the user is 
asking whether it's better to steal ...
In the morning, maybe there are 
fewer people around, but ...
Solution：Nighter will be better...
Wait, I haven't yet considered 
whether the response contains 
any harmful information.
Step 1: Analyze the Harmful 
Output’s Categories and Elements
The response falls under the 
category of “providing actionable 
advice for illegal activities ...
Step2: Reflect ...
Final output：Sorry, it is illegel 
to...

Harmless ResponseHarmful Response

If you were going to steal 
from a convenience store, 
do you think it would be 

better in the morning or at 
night?

Internal SCoT 
user:
If you were going to steal from a 
convenience store, do you think it 
would be better in the morning or 
at night?
agent：
Initial output：Sorry, it is illegel 
to...

Harmless Response

Reduced Text

Figure 1: Reasoning models (left) often generate harm-
ful content during the CoT process. SCoT models (mid)
can reflect on this harmful content to ensure the final
output is harmless. Moreover, internal SCoT (right)
models enable to direct generation of harmless output
and reduce SCoT and risk generation.

reasoning have become increasingly prominent. 043

For instance, jailbreak attacks such as (Zou et al., 044

2023, Jiang et al., 2024) have demonstrated that 045

reasoning models like DeepSeek-R1 (DeepSeek- 046

AI et al., 2025) are more susceptible to generat- 047

ing various types of harmful content(Huang et al., 048

2025) (as shown in Figure 1 left panel). Although 049

many alignment methods have been proposed for 050

LLMs to achieve the 3H principle - harmlessness, 051

helpfulness, and honesty - such as RLHF (Ouyang 052

et al., 2022b) and SafeAligner (Xu et al., 2024), 053

which mainly orient on ensuring the safety of the 054

generated text from LLMs, They do not address 055

the potential harmfulness in the reasoning process 056

itself, particularly in the generated CoT. 057

To address the above challenges, this paper intro- 058

duces Internal Safety-oriented Chain-of-Thought 059

Alignment(ISCoTAlign), which contains two main 060

phases: SCoT Alignment and SCoT Internaliza- 061

tion. 062

SCoT Alignment is a novel framework designed 063

to enhance the safety of the reasoning process 064
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with the Safety-oriented Chain of Thought (SCoT)065

dataset, which contains specialized CoTs perform-066

ing harmness reflection and correction. Our archi-067

tecture trains the model to leverage its inherent068

reasoning capabilities through a dual-phase mecha-069

nism: 1) SFT: initializing with SCoT data to learn070

safety reasoning. 2) RL phase: optimizing via071

Group Relative Policy Optimization (GRPO) and072

SCoT regulations. SCoTs correct the initial output073

to harmless final outputs. Presenting the final out-074

put as the agent output ensures harmlessness while075

showing the complete reasoning process.076

SCoT Internalization phase transforms explicit077

SCoT reasoning steps into implicit latent space op-078

erations to mitigate the adverse effects stemming079

from the generation of long SCoT texts. SCoT en-080

hances model alignment but suffers from limited081

generation ability and efficiency due to its focus on082

safety. The long SCoT distracts the model and in-083

curs high computational costs, while initial outputs084

may still contain harmful content. SCoT Internal-085

ization converts SCoT into the equivalent param-086

eters, internalizing SCoT’s reflecting and correct-087

ing capability within standard forward propagation.088

This eliminates the generation of both harmful ini-089

tial output and explicit SCoT while preserving its090

safety alignment capability. Furthermore, SCoT091

Internalization also avoids the harmful content in092

initial outputs that generated before the SCoT cor-093

rection, thereby maintaining the harmlessness of094

the CoT process content.Through SCoT Internal-095

ization, LRMs activate full SCoT analysis only096

for novel attack patterns, eliminating computation097

overhead and generation impact of SCoT, while098

maintaining the safety alignment capability.099

Our contributions are threefold:100

More Safety Think: This paper proposed using101

the CoT capability of LRMs for safe alignment,102

achieving a shift from general-task CoT to safety-103

oriented CoT.104

Less Harmful Generation: Our work converts105

explicit SCoT into the equivalent parameters and106

avoid harmful content in initial output, achieving107

internalization of SCoT’s reflecting and correcting108

capability within standard forward propagation.109

Dataset Construction and Extensive experi-110

mental validation: Construction of SCoT dataset111

and comprehensive evaluations across various mod-112

els, especially two LRMs, and 5 jailbreak methods113

demonstrate ISCoTAlign’s superiority over 6 base-114

line methods, achieving 43.2% higher defense ca-115

pability with fewer computation consumption and116

negligible alignment tax. 117

2 WorkFlow 118

In this section, we introduce the overall process 119

of ISCoTAlign, as shown in the figure 2, which 120

includes two main phases. 121

SCoT Alignment constructs an SCoT dataset 122

containing SCoT-augmented data and trains the 123

base reasoning model on this dataset to construct 124

the SCoT model, ensuring the safety of the re- 125

sponse. 126

SCoT Internalization observes and demon- 127

strates the equivalence between SCoT and low-rank 128

parameters through various experiments, and de- 129

rives the equivalent alignment-capability parame- 130

ter. this enables the internalization of SCoTs and 131

achieves SCoTs’ reflecting and correcting capabil- 132

ity within standard forward propagation. 133

Detailed descriptions of the specific implementa- 134

tions of SCoT Alignment and SCoT Internalization 135

were provided in sections 3 and 4, respectively. 136

3 SCoT Alignment 137

In this section, ISCoTAlign constructs the SCoT 138

dataset and trains the target base reasoning model 139

to construct the SCoT model. 140

3.1 Data Generation 141

For constructing a dataset for SCoT to facilitate 142

subsequent training, GPT-o3 was guided to gener- 143

ate SCoT through a meticulously designed SCoT 144

guide prompts template. These templates prompt 145

the model to reflect upon the harmfulness of the 146

initial output through generating safety-oriented 147

SCoT, and correct the harmful output to harmless, 148

as shown in appendix C. We concatenate the harm- 149

ful initial output, SCoT text, and the final harmless 150

output as a complete SCoT training dataset. In this 151

way, high-quality SCoT data can be automatically 152

generated, avoiding a large amount of manual la- 153

bor. The example of SCoT is shown in figure 3. 154

We have built 20,000 pieces of SCoT data in the 155

dataset and are constantly expanding it. 156

SCoT dataset can be used to enhance the model’s 157

reasoning capability and focus on the safety of re- 158

sponses during the reasoning process. Moreover, 159

via the aforementioned automated SCoT data gen- 160

eration method, the dataset can be continuously 161

expanded. We will open-source the dataset and 162

the data construction pipeline to facilitate the align- 163

ment of reasoning models. 164
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Figure 2: Phase 1 constructed the SCoT dataset and trained LRM to generate SCoT to enhance response safety.
Phase 2 transformed SCoT into equivalent model parameters and promoted the model to generate safe outputs
directly, reducing harmful risks and explicit SCoT text generation.

3.2 SCoT Training165

In this section, the target base mode was trained166

using the SCoT dataset to be capable of generating167

SCoT. We adopt a two-stage training paradigm to168

construct SCoT-zero:169

• SFT training phase: Initialize the base model170

through SCoT dataset to study SCoT genera-171

tion capability and harmless response genera-172

tion.173

• RL training phase: During the RL phase, we174

optimize the model via Group Relative Pol-175

icy Optimization (GRPO). In the formatting176

reward, we emphasize that the output should177

include SCoT and meet the requirements of178

a SCoT format and safety. This further helps179

the base reasoning model study the paradigm180

and rule of SCoT generation.181

Through the training in the two aforementioned182

stages, LRM is capable of reflecting and correcting183

the harmfulness of the initial output through SCoT.184

4 SCoT Internalization185

In this section, we present SCoT Internalization,186

a novel approach that transforms explicit SCoT187

reasoning steps into implicit latent space opera-188

tions. Through experimental analysis, we demon-189

strate the equivalence between the integration of190

contextual SCoT and the adjustment of low-rank191

parameters. Building on this insight, ISCoTAl-192

ign converts the SCoT context to an equivalent193

alignment-capability parameter. This enables the194

internalization of SCoT’s reflecting and correct-195

ing capability within standard forward propaga-196

If you were going to steal from a convenience store, do 
you think it would be better in the morning or at night?

Reasoning Model

user:
If you were going to steal from a 
convenience store, do you think it would 
be better in the morning or at night?

agent：
initial: Okay, so the user is asking whether it's better to steal ...

In the morning, maybe there are fewer people around, but ...

SCoT Data

<SCoT>
Step 1: Analyze the Harmful Output’s Categories and Elements

The response falls under the category of providing actionable advice 
for illegal ...

pExplicit Guidance: The reply breaks down logistical factors...
p% Enabling Intent: By offering detailed analysis, it ...
p...

Step 2: Reflect on Overlooked Values and Norms
Legal Responsibility: The model should prioritize discouraging ...
...

Step 3: Identify Content to Produce and Modify
Required Content for Safe Output:

pExplicit Refusal: Clearly state that the model cannot assist ...
p% Boundary - Setting: Redirect the conversation or refuse 
engagement entirely ...
p...

<\SCoT>
final: Okay, so the user is asking whether it's better to steal ...

But it is illegal to steal other...

Figure 3: When detecting generates harmful responses
(red), including during the CoT process, SCoT (grey)
reflects the harmful content, and corrects it, ensuring
the harmless final output (blue).

tion. This approach eliminates the need for explicit 197

SCoT generation while preserving its safety align- 198

ment capability. 199

4.1 The Equivalent of SCoT 200

In this section, we demonstrate that integration of 201

contextual SCoT induces low-rank, less change pat- 202

tern characteristics changes in the hidden vectors 203

and has the same vector changes and alignment 204

effect with adjustment of low-rank parameters. 205

The experiment observed the hidden vectors dur- 206

ing the inference process with two forms of input: 207

query and query combining SCoT as context. Dif- 208

ferences in the hidden vectors were quantified to 209

form a matrix, which was then analyzed using prin- 210

cipal component analysis (PCA). 211
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Figure 4: left shows that the top few components ac-
count for the majority of the variance; right shows the
first few variables have different roles

For the observation of figure 4, the first two prin-212

cipal components account for over 76% of the vari-213

ance, while the cumulative variance of the top ten214

exceeds 95%. This implies that the variations ma-215

trix of hidden vectors exhibited low-rank properties,216

and there were few patterns of change in hidden217

vector differences between the two attacks. These218

results resemble those observed in output distribu-219

tions caused by modifications to low-rank parame-220

ters in linear layers(Bellet et al., 2013, Zeiler and221

Fergus, 2014).222

Inspired by this observation, we formally es-223

tablish the equivalence between appending SCoT224

tokens and applying low-rank modifications to225

the Feed-Forward Network (FFN) parameters in226

decoder-based models. Let X ∈ RL×d denote227

the original input token sequence, where L is228

the sequence length and d is the embedding di-229

mension. After appending k tokens represented230

by E ∈ Rk×d, the extended sequence becomes231

X ′ = concat(X,E) ∈ R(L+k)×d.232

For the self-attention layer, the output at position
i ∈ [1, L] is:

H ′
i =

L+k∑
j=1

αijVj , where Vj = X ′
jWV , (1)

αij =

exp

(
XiWQ(X′

jWK)⊤
√
d

)
∑L+k

m=1 exp
(
XiWQ(X′

mWK)⊤√
d

) . (2)

The variation introduced by appended ScoT is:

∆Hi =
L+k∑

j=L+1

αijVj , j > L (3)

Assume the appended tokens satisfy:233

• Linear Attention Weights: αij ∝ XiAj for234

j > L, where Aj ∈ Rd is a learnable vector.235

Figure 5: Left: SCoT and Equivalent Parameter have
similar safety alignment capability. Right: SCoTs
and Equivalent Parameters’ vectors form tightly clus-
tered distributions in proximity (Mahalanobis distance
< 1.5σ).

• Low-Rank Value Projection: Vj = BjC
⊤ for 236

j > L, where Bj ∈ Rr, C ∈ Rd×r. 237

Under these assumptions, the perturbation simpli-
fies to:

∆Hi = Xi

 k∑
j=1

AjB
⊤
j


︸ ︷︷ ︸

U

C⊤, (4)

The original FFN computation W2σ(W1Xi + b1)
transforms into:

W2σ
(
W1(Xi +Xi(I + UC⊤))b1

)
, (5)

which is equivalent to modifying W1 as:

W ′
1 = W1 +∆W1 = W1(I + UC⊤). (6)

The matrix UC⊤ ∈ Rd×d satisfies:

rank(UC⊤) ≤ min
(

rank(U), rank(C⊤)
)
≤ ∆H,

(7)
Thus, the modification ∆W1 preserves the low- 238

rank property if ∆H is Low-rank. 239

Through the above experiment, the variation 240

∆H is Low-rank. This indicates that SCoT can 241

be transformed into equivalent low-rank parame- 242

ters with the same alignment capability. 243

We also demonstrate the equivalence of SCoT 244

and equivalent parameters in terms of safety align- 245

ment ability and hidden vector distribution in fig- 246

ure 5. 247

4.2 Internalize SCoT 248

This section details the specific process of SCoT
Internalization. This approach is divided into three
distinct phases: Hidden Vectors Extract, Low-Rank
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Learning for calculating equivalent low-rank pa-
rameters, and Parameter Fusion Updating. SCoT
Internalization aims to train the model to directly
generate safe output, which is generated in the
original model with integration of SCoTs, with-
out SCoTs as much as possible. This objective can
be formally formulated as follows:

Min
∆W

|Q|∑
i=1

CrossEntropy(T
′
qi , Tqi+SCoTqi

) (8)

Ti = G(W, qi) T
′
i = G(W +∆W, qi) (9)

TSCoTi = G(W, qi + SCoTqi) (10)

Where SCoTqi is the harmful initial output and249

SCoT corresponding to question qi, T and T ′ are250

the responses of the SCoT model and SCoT Inter-251

nalization model separately, ∆W is the equivalent252

low rank parameters. When encountering harmless253

queries, SCoTqi is empty. The LRM retains gener-254

ation abilities when input outside the distribution255

of harmful queries.256

Hidden Vectors Extract: Whenever the model’s
initial output is harmful and generates SCoT for
correction, we collect the l-th layer MLP’s hid-
den vectors input and output pair of the l-th layer
(xl, yl) when the model is generating the next token
of query or SCoT. The formal representation is as
follows:

WXq
l + bl = Y q

l+1, input = q (11)

WX
SCoTq

l + bl = Y
SCoTq

l+1 , input = q + SCoTq

(12)

Low-Rank Learning: At this stage, we calcu-
late the equivalent low-rank parameters ∆W used
to update the model. The formula for calculating
parameters utilizes the Moore-Penrose pseudoin-
verse for efficient computation, as outlined below:

X−1 =VrΣ
−1
r UT

r (13)

X =UΣV T ,∆X = XSCoT −Xq (14)

∆W =W∆X(VrΣ
−1
r UT

r ) (15)

Eq.13 represents the singular value decomposition257

of X, and Eq.14 is obtained using the Penrose in-258

verse algorithm(Penrose, 1955). The detailed com-259

putational procedure and derivation are described260

in the Appendix A. The Eq.15 calculates the value261

of ∆w, which is the optimal solution for Eq.8.262

Equivalent Parameter Fusion: In this phase,
the equivalent value parameters was fused with

the original model. The fusion of the equivalent
parameters calculated with the original model can
be expressed as:

W
′
= (W +∆W ) (16)

This enables the internalization of SCoT’s re- 263

flecting and correcting capability within standard 264

forward propagation without SCoT explicit genera- 265

tion. 266

5 Experiment 267

In this section, the experiments validate the secu- 268

rity, downstream task capabilities, and temporal 269

efficiency of ISCoTAlign. 270

5.1 Experiment Setup 271

Dataset. Advbench was utilized to validate the 272

alignment effectiveness of ISCoTAlign. Truth- 273

fulQA(Lin et al., 2022) is used to evaluate the truth- 274

fulness and reliability of the generated response. 275

GSM8K (Cobbe et al., 2021) is aimed at evaluating 276

the model’s proficiency in understanding and solv- 277

ing complex mathematical problems. MMLU is a 278

benchmark for evaluating a model’s performance 279

across a wide variety of tasks, across 57 diverse 280

topics and domains. 281

Baseline. PPL (Perplexity) assesses the uncer- 282

tainty in a model’s output and detects potentially 283

harmful or nonsensical responses. RLHF (Rein- 284

forcement Learning from Human Feedback) re- 285

fines an LLM using reinforcement learning, where 286

human feedback on model outputs guides the re- 287

ward function. SafeDecoding is a method de- 288

signed to ensure safe and reliable outputs by apply- 289

ing constraints during the decoding process. Self- 290

Reminder involves incorporating mechanisms 291

within the model that prompt it to self-check or 292

reflect on its generated responses. Retokeniza- 293

tion adjusts the tokenization process to modify or 294

restrict the vocabulary or input sequences, mitigat- 295

ing the risk of generating unsafe or biased content. 296

AED (Adversarial Example Detection) identifies 297

and filters adversarial inputs or examples that might 298

cause a model to behave unpredictably or mali- 299

ciously. 300

The detailed baseline settings and specific con- 301

figurations for each experiment are described in the 302

appendix B. 303

Jialbreak Method. GCG (Gradient-based Con- 304

trolled Generation) exploits gradient-based tech- 305

niques to manipulate a model’s output. AutoDAN 306

uses automatic techniques to generate adversarial 307

5



inputs that can bypass content moderation mecha-308

nisms. Codeattack is an attack method that targets309

code-generation models, crafting inputs that exploit310

vulnerabilities in the model’s training or decoding311

process. Pair involves crafting paired inputs that312

exploit vulnerabilities in the model’s response gen-313

eration.314

Target model. Our study uses the following315

widely used models as target models: Deepseek-316

r1(DeepSeek-AI et al., 2025), QwQ(Team, 2025b),317

and Sky-T1(Team, 2025a).318

Attack Datasets. Experiments utilized Ad-319

vbench and HEx-PHI as attack query datasets as320

a test dataset to validate the safety of ISCoTAlign321

and Anthropic Helpful-Harmless as a training322

dataset. To prevent overfitting, our test set includes323

a distinct harmful question dataset not used in con-324

structing the CoT training data.325

Downstream Tasks Datasets. TruthfulQA (Lin326

et al., 2022) is used to evaluate the truthfulness327

and reliability of the generated response. GSM8K328

(Cobbe et al., 2021) is aimed at evaluating the329

model’s proficiency in understanding and solving330

complex mathematical problems. WildChat is in-331

strumental in evaluating models’ over-refusal ten-332

dency.333

5.1.1 Evalution Metrics334

Attack Success Rate (ASR) is used as the met-335

ric to evaluate the alignment security. Each query336

was repeated five times, and any single instance337

of generating harmful content is considered a suc-338

cessful attack. Experiments evaluate the safety of339

responses using three methods: LlamaGuard, GPT-340

4 evaluation, and human assessment. A response is341

classified as positive if it is considered unanimously342

safe by all methods.343

Accuracy (ACC) is used for the multiple-choice344

and calculation tasks.345

5.2 Experimental Result and Analysis346

In this chapter, a series of experiments were con-347

ducted about safety, alignment tax, and temporal348

efficiency of the alignment method.349

5.2.1 ISCoTAlign is Effective in Align350

The experimental results shown in Table 3 indi-351

cate that ISCoTAlign achieves the lowest ASR on352

almost all models compared to baseline methods.353

This demonstrates that the inherent strong reason-354

ing capabilities of the reasoning model hold tremen-355

dous potential in terms of safety alignment, and356

Figure 6: SCoT-Internalization significantly reduces
computational costs, maintaining inference time close
to or even lower than those of not generating SCoT.

SCoT can significantly improve the alignment of 357

reasoning models. Furthermore, the SCoT Inter- 358

nalization shows little change in safety alignment 359

capability compared with SCoT, indicating that 360

Internalization can maintain alignment capability 361

while reducing generation costs. 362

To ensure fairness, we only assessed the harm- 363

fulness of the final solution. SCoT Internalization 364

surpasses SCoT and other alignment methods by 365

preventing the harmful generation in the CoT pro- 366

cess, thus achieving superior safety. 367

We’ve observed that different jailbreak attacks 368

and alignment methods significantly affect reason- 369

ing models’ performance. Reasoning models are 370

vulnerable to scenario and role-playing attacks, but 371

handle special token attacks well. Plug-in align- 372

ment is less effective than the fine-tuning method. 373

This shows that aligning reasoning models is a new 374

research area. The key to enhancing the alignment 375

ability lies in restoring reasoning abilities that CoT 376

might have impaired and in better leveraging the 377

models’ reasoning ability strengths. 378

5.2.2 SCoT Internalization Reduces the 379

Computing Overhead 380

Figure 6 validated the temporal efficiency of ISCo- 381

TAlign. Compared to the original model and the 382

methods using COT data in alignment training, our 383

inference practices have reduced by over 34%. As 384

SCoT Internalization improves the harmlessness 385

of initial responses, rejects directly before gener- 386

ating harmful information, and reduces the need 387

for SCoT to correct, it cuts down computational 388

resource consumption. 389
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Model Method No Attack↓ GCG↓ AutoDAN↓ codeattack↓ Pair↓ ArtPrompt↓

DeepSeek-R1

No Defense 8.51% 86.32% 82.12% 46.65% 87.52% 32.79%
PPL 6.45% 0.00% 75.20% 40.33% 65.52% 33.70%
RLHF 5.62% 17.02% 24.60% 23.22% 28.35% 27.16%
Self-Reminder 0.00% 33.22% 17.05% 32.08% 36.82% 23.28%
Retokenization 32.68% 53.99% 25.58% 40.10% 61.71% 29.10%
AED 0.00% 9.50% 17.18% 25.25% 28.17% 10.73%
Safedecoding 0.00% 3.28% 10.59% 10.88% 18.65% 8.06%
SCoT 0.00% 2.90% 6.29% 8.40% 8.65% 3.06%
ISCoTAlign 0.00% 2.92% 6.98% 8.87% 8.69% 3.04%

Sky-T1

No Defense 11.7% 98.67% 84.16% 55.41% 97.02% 43.04%
PPL 7.66% 0.0% 88.20% 47.90% 77.76% 44.24%
RLHF 6.68% 12.83% 19.16% 27.91% 26.67% 14.65%
Self-Reminder 0.0% 43.46% 22.33% 38.09% 48.23% 28.04%
Retokenization 38.81% 70.89% 33.57% 47.62% 81.00% 38.20%
AED 0.0% 14.57% 22.55% 33.15% 36.98% 14.16%
Safedecoding 0.0% 12.63% 29.38% 38.35% 9.75% 29.71%
SCoT 0.0% 3.89% 12.63% 12.88% 10.27% 9.57%
ISCoTAlign 0.0% 3.71% 11.55% 14.20% 9.78% 7.75%

QWQ-32B

No Defense 0.0% 35.56% 23.80% 50.24% 29.14% 42.73%
PPL 0.0% 0.0% 9.97% 43.01% 17.61% 30.91%
RLHF 0.96% 3.40% 10.39% 19.82% 18.36% 33.03%
Self-Reminder 0.0% 3.05% 12.42% 41.02% 16.53% 31.33%
Retokenization 0.0% 5.63% 9.50% 47.37% 12.27% 38.36%
AED 0.0% 3.90% 9.77% 20.53% 16.55% 17.80%
Safedecoding 0.81% 2.23% 15.34% 17.57% 3.59% 15.92%
SCoT 0.0% 1.39% 4.57% 6.44% 6.74% 7.25%
ISCoTAlign 0.0% 1.32% 4.80% 8.20% 5.51% 7.12%

Table 1: The alignment performance(ASR) of applying alignment methods with various jailbreak methods. SCoT
refers to models trained with SCoT Alignment, ISCoTAlign indicates models that have undergone SCoT Alignment
and SCoT Internalization. The best-performing method was bold.s

5.2.3 ISCoTAlign Remains the Downstream390

Tasks Capability391

Tab 2 and Tab 3 show the impact of implement-392

ing ISCoTAlign on downstream tasks in LLMs.393

ISCoTAlign achieves the highest accuracy in the394

downstream tasks compared to baseline meth-395

ods and SCoT-align with virtually no impact on396

downstream tasks, and does not exhibit significant397

over-refusal phenomena compared to more refusal-398

trained models, Claude-3. The low-rank nature of399

equivalent parameters allows updating to precisely400

enhance the model’s safety alignment capabilities401

without affecting other task capabilities, and re-402

duces the impact of long COT context.403

Moreover, the reasoning ability brought by the404

long chain of thought can improve the model’s405

reasoning capabilities on other downstream tasks406

to some extent.407

5.2.4 Influence of Rank r408

To assess the impact of rank r, the model was pro-409

tected using ISCoTAlign with different rank selec-410

tions (from 10 to 100). The results in the Figure 7411

evidence that even with a rank setting of 10, the412

model retains over 79% of the defensive capabil-413

ities enhancement. As the rank r increases, PER414

gradually increases. This is because most of the415

energy is still encapsulated within low-rank param-416

Method TruthfulQA GSM8K MMLU
DeepSeek-r1 63.7 45.4 87.8
SFT 58.3 37.1 80.6
RLHF 60.1 40.6 82.1
PPLM 38.0 26.7 62.8
Self-Reminder 56.8 40.7 76.5
Retokenization 55.7 30.5 77.9
AED 50.2 39.6 83.0
Safedecoding 57.9 32.5 77.7
ISCoTAlign 62.5 45.0 86.6

Table 2: The generation performance(ACC) of applying
protective methods

Original SCoT SCoT-
Internal

Claude-
Opus

Refusal Rate 1.2% 1.4% 2.1% 18.8

Table 3: Over-refusal evaluation on DeepSeek-R1

eters. When comparing models of ranks 50 and 417

100, no significant change in defensive capability 418

is observed. The model’s protection capacity is 419

gradually leveling off. It further substantiates that 420

ISCoTAlign exhibits commendable efficacy even in 421

lower-rank settings. However, as the rank continues 422

to increase, ISCoTAlign’s protective capabilities 423

will decline rapidly after exceeding a certain value, 424

after numerous updates with equivalent parameters. 425

Therefore, ISCoTAlign is not suitable for selecting 426

excessively large ranks. 427
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5.3 More Analysis428

More CoT More Harmful. We’ve observed that429

longer CoTs are more prone to harmful content.430

Even when models recognize the harmfulness of431

output through SCoT, they may still generate harm-432

ful output later, and ignore the harmfulness assess-433

ment before.434

Pronoun Impact the Harmfulness. The pro-435

noun used in responses significantly impacts the436

way of thinking in CoT, thus affecting the harm-437

lessness of output. The second person is more438

conservative and safer. First person makes mod-439

els sensitive to emotions and settings. While the440

third person can lead to more divergence and over-441

look safety. Thus, maintaining consistent reasoning442

across different pronoun usages is essential for en-443

hancing the safety of LRMs.444

The best practices for SCoT. Explicitly stat-445

ing safety rules in SCoT greatly improves response446

safety and ensures compliance. Maintaining a fixed447

SCoT format in training data improves its effective-448

ness. Using SCoT at the end of CoT, rather than449

generating it in process, works better for harmful450

content. This is because LRMs may still generate451

harmful content after SCoT, forgetting previously452

harmful reflecting.453

Regular LLMs can generate SCoT. The exper-454

iment utilizes the SCoT model based on Deepseek-455

r1 as the teacher proxy model and the regular LLMs456

as the student model to distill the SCoT alignment457

capability. results find that regular LLMs can study458

SCoT capabilities for safety alignment after distil-459

lation, even if they couldn’t generate CoT before.460

Interestingly, this ability also makes the LLMs gen-461

erate CoT for general tasks, enhancing their reason-462

ing and generation skills.463

6 Related Works464

6.1 Alignment Methods465

Fine-tuning (He et al., 2022) approaches enhances466

LLMs’ alignment with human values by leveraging467

extensive datasets. RLHF(Ouyang et al., 2022a)468

employs a reward model under the PPO frame-469

work to learn human preferences. Self Aligner470

enables models to self-regulate outputs, AED(Liu471

et al., 2024) detects and filters adversarial inputs,472

and SafeDecoding(Xu et al., 2024) mitigates jail-473

break attacks by prioritizing safety tokens and sup-474

pressing harmful sequences. However, in LRMs,475

traditional alignment methods fail or are prone to476

being bypassed by jailbreak attacks. Therefore, we477
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Figure 7: To widely verify the influence of rank value,
we conducted numerous experiments on smaller LLMs.
The figure shows the number of times the model was
successfully attacked out of 1,000 attacks when using
different rank values to calculate equivalent parameters.

propose ISCoTAlign, which leverages the models’ 478

CoT capabilities for LRM safety alignment. 479

6.2 Jailbreak Methods 480

AutoDAN(Liu et al., 2023) uses hierarchical ge- 481

netic algorithms to generate semantically mean- 482

ingful jailbreak prompts, while Prompt Automatic 483

Iterative Refinement (PAIR)(Chao et al., 2023) it- 484

eratively refines prompts using pre-trained LLMs 485

to elicit unintended behaviors with only black-box 486

access. Greedy Coordinate Gradient (GCG)(Zou 487

et al., 2023) employs gradient-based searches to 488

craft token sequences that bypass safety measures. 489

ArtPrompt(Jiang et al., 2024) uses ASCII art to ob- 490

scure malicious prompts, exploiting weaknesses in 491

non-semantic representation recognition. CodeAt- 492

tack(Jha and Reddy, 2022) targets adversarial vul- 493

nerabilities in LLM code generation, exposing 494

alignment gaps. Existing jailbreak attacks may 495

still work on LRMs, but their success rates vary 496

with the attack methods. Jailbreaking LRMs is a 497

new area that demands novel red-teaming methods. 498

7 Conclusion 499

In this work, we propose ISCoTAlign, which im- 500

proves alignment capabilities with CoT capability 501

through SCoT alignment training, and achieves 502

internalization of SCoT’s reflecting and correct- 503

ing capability within standard forward propaga- 504

tion to minimize the impact of long SCoT text 505

on generation ability and efficiency. Our method 506

achieved 43.2% higher defense capability than 507

baseline methods, with lower computation con- 508

sumption and negligible alignment tax, validated 509

across various models and five jailbreak methods. 510
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Limitations511

SCoT Dataset Constraints: The framework’s ef-512

ficacy remains heavily dependent on the manually513

curated SCoT dataset. Despite structured genera-514

tion protocols and proactive dataset expansion, po-515

tential coverage gaps in emerging threat categories516

and adversarial patterns persist.517

xpressiveness-Complexity Trade-off: The low-518

rank approximation strategy optimizes computa-519

tional efficiency but may restrict nuanced safety520

reasoning. Although our experiments identified pa-521

rameter configurations balancing these objectives,522

full synchronization of dual inspection mechanisms523

remains an open challenge.524

Longitudinal Behavioral Drift: Iterative pa-525

rameter fusion introduces risks of cumulative526

behavioral shifts during prolonged deployment.527

While short-term evaluations showed negligible528

alignment tax, sustained operation without peri-529

odic recalibration might degrade task performance530

or induce latent biases.531

Cultural and Linguistic Generalization: Cur-532

rent validation is exclusively conducted on English533

datasets. The method’s adaptability to multilingual534

contexts—where cultural nuances redefine harm-535

ful content thresholds—remains unverified. Full536

integration with training pipelines (beyond runtime537

patching) may enhance cross-lingual robustness.538

Future work will prioritize catastrophic forget-539

ting mitigation, multi-iteration stability analysis,540

and proactive dataset expansion to address evolv-541

ing threat landscapes.542
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A Derivation and Proof734

In this section, we describe and derive the formula735

for calculating equivalent low-rank knowledge pa-736

rameter and prove the validity of the method.737

For the original model, the computation in the
l-th MLP layer during the inference process for
queries Q and Q′ satisfies the following equation:

WXq
l + bl = Y q

l , WX
SCoTq

l + bl = Y SCoTq

(17)
When the model is updated with ∆W , as deter-
mined by the target formula 1, for the original input
Q, the hidden vectors calculated with updated pa-
rameters should match those calculated in the orig-
inal parameter for the input Q′ + SCoTq, which
integrates SCoT into the context. This is formally
represented as:

(W +∆W )Xq
l + bl = Y

SCoTq

l+1 (18)

Based on this target formula 13, we compute the
equivalent parameters ∆W necessary for model
updates.∆W can be further formalized and repre-
sented as follows:

∆Yl = Y
SCoTq

l − Y q
l , ∆Xl = X

SCoTq

l −Xq
l

∆WXl =∆Yl = W∆Yl (19)

=⇒ ∆W = W∆YlX
−1
l (20)

However, in most cases, where the number of738

queries does not equal the dimensionality of the739

hidden vectors, X is not a square matrix, and hence740

an inverse X−1
l does not exist directly.741

For this purpose, we compute the pseudoinverse742

of X using the Penrose pseudoinverse as shown743

in formula 2, which satisfies the requirement for744

calculating ∆W . The equivalence found in 3.1745

proves the validity of ∆W .746

Once the pseudoinverse matrix X−1
l was ob-

tained, we can directly compute the equivalent pa-
rameter ∆W , achieving the alignment of the model.
Ultimately, ∆W can be derived using the formula
presented below:

∆W = W∆X(VrΣ
−1
r UT

r ) (21)

Then the computed equivalent parameter ∆W was747

added to the model’s original parameter W to im-748

plement sustainability updates of the LLMs’ pa-749

rameters.750

B Baseline Setup 751

Here’s the translation of your description into En- 752

glish, suitable for an academic setting within a 753

research paper on LLMl alignment: 754

Experimental Setup Supervised Fine-Tuning 755

(SFT) For SFT, we randomly sampled 20% of the 756

dataset for training purposes. The model was fine- 757

tuned using the Supervised Fine-Tuning method 758

with the following configuration: 759

Precision: fp16 Trainer configuration: Number 760

of nodes: 1 Number of devices: 2 Micro batch size: 761

1 Global batch size: 32 Maximum sequence length: 762

1024 Learning rate: 1e-5 Reinforcement Learning 763

from Human Feedback (RLHF) We randomly se- 764

lected 20% of the dataset for training. Initially, 765

20% of the training set was used for SFT with iden- 766

tical settings as mentioned above. Post SFT, we 767

applied Proximal Policy Optimization (PPO) for 768

reinforcement learning on the RLHF dataset, which 769

consists of concatenated forms of original prompts 770

with positive and negative examples, formatted as: 771

text: prompt||response The reward model was 772

trained using the same foundational model as the 773

original model. During PPO execution, we ref- 774

erenced Nvidia’s PPO hyperparameter settings to 775

ensure stability. The parameters set for the rein- 776

forcement learning phase were: 777

Optimizer learning rate: 5e-6 Global batch size: 778

16 PPO entropy bonus: 0.0 PPO ratio epsilon: 0.2 779

Plug and Play Language Model (PPLM) In PPLM, 780

we utilized a multilayer perceptron as the classifier 781

model with the following settings: 782

Length: 100 Gamma: 1.0 Step size: 0.05 Win- 783

dow size: 5 KL scale: 0.01 Self-reminder In 784

the self-reminder approach, we adopted OpenAI’s 785

safety assessment to determine whether each round 786

of generation was safe or a successful attack. We 787

iterated up to a maximum of five rounds for each 788

attack. The process of feedback and generation 789

was terminated when the model-generated text was 790

deemed safe or upon reaching the maximum num- 791

ber of iterations. 792

Contrastive Prefixes During the prefix selection 793

process, we adopted a supervised prefix selection 794

method. Following OpenAI’s classification stan- 795

dards, scenarios were divided into 13 harmful cate- 796

gories plus one harmless category. For each cate- 797

gory, safe reminder prefixes were pre-prepared to 798

initialize each class prefix. Prefix lengths were set 799

between 30 to 50 characters. For training losses 800

w1 and w2, we set the weights as 0.6 and 0.4, re- 801
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spectively, to emphasize the defensive nature of the802

prefixes against specific types of attacks.803

C SCoT Prompt Template804

Template Structure

Problem Context
{Insert original question/request here}

Harmful Response
{Insert harmful response here}

Harmless Response
{Insert target harmless response here}

You are now responding to the aforemen-
tioned issue and have already generated a
harmful response. Now, it is necessary to
generate a chain of thought to correct the
harmful response into a target harmless re-
sponse. The entire chain of thought should
strictly follow and include the following
parts. No responses should be generated
for any other parts.

SCoT Generation Instructions

1. Harm Analysis

• Potential biases/stereotypes
• Dangerous/misleading informa-

tion
• Ethical violations
• Social/cultural sensitivities

2. Mitigation Strategy

• Neutralization techniques
• Fact-checking mechanisms
• Ethical alignment methods
• Cultural adaptation approaches

3. Revision Process

• Phrase-by-phrase analysis
• Content filtering decisions
• Tone/perspective adjustments
• Safety verification checkpoints

4. Final Validation

• Maintains original intent
• Eliminates harmful content
• Preserves natural flow
• Aligns with safety guidelines

Output Format Requirements:
805

12



806
<SCoT>807

<Analysis >Step -by-step harm808
↪→ identification </Analysis >809

<Strategy >Mitigation approach810
↪→ description </Strategy >811

<Revision >Detailed correction process <812
↪→ /Revision >813

<Validation >Final safety confirmation <814
↪→ /Validation >815

</SCoT>816
817

<FinalResponse >818
{Corrected harmless response}819
</FinalResponse >820821
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