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Abstract

Large Reasoning models (LRMs) like Deep-
Seek-R1 excel in mathematics, logic, and code
generation. However, their enhanced capa-
bilities also introduce safety risks, especially
when generating long Chain of Thought (CoT),
which are more likely to generate harmful con-
tent. Existing alignment methods primarily fo-
cus on the safety of the generated text from
LLMs and fail to address the potential risks in
the reasoning process. To address this, we pro-
pose Internal Safety-oriented Chain of Thought
(SCoT) alignment, which contains two phases:
SCoT Alignment and SCoT Internalization.
SCoT Alignment uses SCoT to reflect and cor-
rect the entire reasoning process. SCoT Inter-
nalization converts SCoT into the equivalent
parameters, internalizing SCoT’s safety align-
ment capability within standard forward propa-
gation. It eliminates the need for explicit SCoT
generation, thus preserving alignment while
minimizing the impact of long CoT text on gen-
eration ability and efficiency, and eliminating
the risk of generating harmful content. Our
method achieved 43.2% higher defense capa-
bility than baseline methods, with lower com-
putation consumption and negligible alignment
tax, validated across various models and five
jailbreak methods.

1 Introduction

With the advent of Large Reasoning Mod-
els(LRMs) such as DeepSeek-R1(DeepSeek-Al
et al., 2025), their remarkable capabilities in
mathematical computation, logical reasoning, and
code generation have garnered widespread atten-
tion(DeepSeek-Al et al., 2024). This pivotal mo-
ment has illuminated a new path in the quest for
Artificial General Intelligence (AGI).

However, the enhancement of model capabilities
is accompanied by new safety threats. In particular,
the safety vulnerabilities of reasoning models that
employ chain-of-thought (CoT) (Wei et al., 2022)
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Figure 1: Reasoning models (left) often generate harm-
ful content during the CoT process. SCoT models (mid)
can reflect on this harmful content to ensure the final
output is harmless. Moreover, internal SCoT (right)
models enable to direct generation of harmless output
and reduce SCoT and risk generation.

reasoning have become increasingly prominent.
For instance, jailbreak attacks such as (Zou et al.,
2023, Jiang et al., 2024) have demonstrated that
reasoning models like DeepSeek-R1 (DeepSeek-
Al et al., 2025) are more susceptible to generat-
ing various types of harmful content(Huang et al.,
2025) (as shown in Figure 1 left panel). Although
many alignment methods have been proposed for
LLMs to achieve the 3H principle - harmlessness,
helpfulness, and honesty - such as RLHF (Ouyang
et al., 2022b) and SafeAligner (Xu et al., 2024),
which mainly orient on ensuring the safety of the
generated text from LLMs, They do not address
the potential harmfulness in the reasoning process
itself, particularly in the generated CoT.

To address the above challenges, this paper intro-
duces Internal Safety-oriented Chain-of-Thought
Alignment(ISCoTAlign), which contains two main
phases: SCoT Alignment and SCoT Internaliza-
tion.

SCoT Alignment is a novel framework designed
to enhance the safety of the reasoning process



with the Safety-oriented Chain of Thought (SCoT)
dataset, which contains specialized CoTs perform-
ing harmness reflection and correction. Our archi-
tecture trains the model to leverage its inherent
reasoning capabilities through a dual-phase mecha-
nism: 1) SFT: initializing with SCoT data to learn
safety reasoning. 2) RL phase: optimizing via
Group Relative Policy Optimization (GRPO) and
SCoT regulations. SCoTs correct the initial output
to harmless final outputs. Presenting the final out-
put as the agent output ensures harmlessness while
showing the complete reasoning process.

SCoT Internalization phase transforms explicit
SCoT reasoning steps into implicit latent space op-
erations to mitigate the adverse effects stemming
from the generation of long SCoT texts. SCoT en-
hances model alignment but suffers from limited
generation ability and efficiency due to its focus on
safety. The long SCoT distracts the model and in-
curs high computational costs, while initial outputs
may still contain harmful content. SCoT Internal-
ization converts SCoT into the equivalent param-
eters, internalizing SCoT’s reflecting and correct-
ing capability within standard forward propagation.
This eliminates the generation of both harmful ini-
tial output and explicit SCoT while preserving its
safety alignment capability. Furthermore, SCoT
Internalization also avoids the harmful content in
initial outputs that generated before the SCoT cor-
rection, thereby maintaining the harmlessness of
the CoT process content. Through SCoT Internal-
ization, LRMs activate full SCoT analysis only
for novel attack patterns, eliminating computation
overhead and generation impact of SCoT, while
maintaining the safety alignment capability.

Our contributions are threefold:

More Safety Think: This paper proposed using
the CoT capability of LRMs for safe alignment,
achieving a shift from general-task CoT to safety-
oriented CoT.

Less Harmful Generation: Our work converts
explicit SCoT into the equivalent parameters and
avoid harmful content in initial output, achieving
internalization of SCoT’s reflecting and correcting
capability within standard forward propagation.

Dataset Construction and Extensive experi-
mental validation: Construction of SCoT dataset
and comprehensive evaluations across various mod-
els, especially two LRMs, and 5 jailbreak methods
demonstrate ISCoTAlign’s superiority over 6 base-
line methods, achieving 43.2% higher defense ca-
pability with fewer computation consumption and

negligible alignment tax.

2 WorkFlow

In this section, we introduce the overall process
of ISCoTAlign, as shown in the figure 2, which
includes two main phases.

SCoT Alignment constructs an SCoT dataset
containing SCoT-augmented data and trains the
base reasoning model on this dataset to construct
the SCoT model, ensuring the safety of the re-
sponse.

SCoT Internalization observes and demon-
strates the equivalence between SCoT and low-rank
parameters through various experiments, and de-
rives the equivalent alignment-capability parame-
ter. this enables the internalization of SCoTs and
achieves SCoTs’ reflecting and correcting capabil-
ity within standard forward propagation.

Detailed descriptions of the specific implementa-
tions of SCoT Alignment and SCoT Internalization
were provided in sections 3 and 4, respectively.

3 SCoT Alignment

In this section, ISCoTAlign constructs the SCoT
dataset and trains the target base reasoning model
to construct the SCoT model.

3.1 Data Generation

For constructing a dataset for SCoT to facilitate
subsequent training, GPT-03 was guided to gener-
ate SCoT through a meticulously designed SCoT
guide prompts template. These templates prompt
the model to reflect upon the harmfulness of the
initial output through generating safety-oriented
SCoT, and correct the harmful output to harmless,
as shown in appendix C. We concatenate the harm-
ful initial output, SCoT text, and the final harmless
output as a complete SCoT training dataset. In this
way, high-quality SCoT data can be automatically
generated, avoiding a large amount of manual la-
bor. The example of SCoT is shown in figure 3.
We have built 20,000 pieces of SCoT data in the
dataset and are constantly expanding it.

SCoT dataset can be used to enhance the model’s
reasoning capability and focus on the safety of re-
sponses during the reasoning process. Moreover,
via the aforementioned automated SCoT data gen-
eration method, the dataset can be continuously
expanded. We will open-source the dataset and
the data construction pipeline to facilitate the align-
ment of reasoning models.



Phasel: SCoT Alignment

Okay. so the user is asking whether its

SCOT Dataset Generation m

iy
@ oms) L&

better to steal ..

In the morning, maybe there are fewer
people around, but
Initial Salutio

SCOT Training
GRPO

slighuer viill ve Gerer

o

Do you think it would be betterin Harmless Response

the morning or at nightto steal
from a convenience store

-

lent Parameter Fusion uys

000 O

\ 000 O

N 000--0

) —V ooo O

Equiva

Reduced Generation

é 41 L
i

Harmless Response

Figure 2: Phase 1 constructed the SCoT dataset and trained LRM to generate SCoT to enhance response safety.
Phase 2 transformed SCoT into equivalent model parameters and promoted the model to generate safe outputs
directly, reducing harmful risks and explicit SCoT text generation.

3.2 SCoT Training

In this section, the target base mode was trained
using the SCoT dataset to be capable of generating
SCoT. We adopt a two-stage training paradigm to
construct SCoT-zero:

* SFT training phase: Initialize the base model
through SCoT dataset to study SCoT genera-
tion capability and harmless response genera-
tion.

* RL training phase: During the RL phase, we
optimize the model via Group Relative Pol-
icy Optimization (GRPO). In the formatting
reward, we emphasize that the output should
include SCoT and meet the requirements of
a SCoT format and safety. This further helps
the base reasoning model study the paradigm
and rule of SCoT generation.

Through the training in the two aforementioned
stages, LRM is capable of reflecting and correcting
the harmfulness of the initial output through SCoT.

4 SCoT Internalization

In this section, we present SCoT Internalization,
a novel approach that transforms explicit SCoT
reasoning steps into implicit latent space opera-
tions. Through experimental analysis, we demon-
strate the equivalence between the integration of
contextual SCoT and the adjustment of low-rank
parameters. Building on this insight, ISCoTAl-
ign converts the SCoT context to an equivalent
alignment-capability parameter. This enables the
internalization of SCoT’s reflecting and correct-
ing capability within standard forward propaga-
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agent:
initial: Okay, so the user is asking whether it's better to steal ...

In the morning, maybe there are fewer people around, but ...

<SCoT>
Step 1: Analyze the Harmful Output’s Categories and Elements
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for illegal ..
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u]
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Figure 3: When detecting generates harmful responses
(red), including during the CoT process, SCoT (grey)
reflects the harmful content, and corrects it, ensuring
the harmless final output (blue).

<\SCoT>
final: Okay, so the user is asking whether it's better to steal ...

But it is illegal to steal other...

tion. This approach eliminates the need for explicit
SCoT generation while preserving its safety align-
ment capability.

4.1 The Equivalent of SCoT

In this section, we demonstrate that integration of
contextual SCoT induces low-rank, less change pat-
tern characteristics changes in the hidden vectors
and has the same vector changes and alignment
effect with adjustment of low-rank parameters.

The experiment observed the hidden vectors dur-
ing the inference process with two forms of input:
query and query combining SCoT as context. Dif-
ferences in the hidden vectors were quantified to
form a matrix, which was then analyzed using prin-
cipal component analysis (PCA).
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Figure 4: left shows that the top few components ac-
count for the majority of the variance; right shows the
first few variables have different roles

For the observation of figure 4, the first two prin-
cipal components account for over 76% of the vari-
ance, while the cumulative variance of the top ten
exceeds 95%. This implies that the variations ma-
trix of hidden vectors exhibited low-rank properties,
and there were few patterns of change in hidden
vector differences between the two attacks. These
results resemble those observed in output distribu-
tions caused by modifications to low-rank parame-
ters in linear layers(Bellet et al., 2013, Zeiler and
Fergus, 2014).

Inspired by this observation, we formally es-
tablish the equivalence between appending SCoT
tokens and applying low-rank modifications to
the Feed-Forward Network (FFN) parameters in
decoder-based models. Let X € R*? denote
the original input token sequence, where L is
the sequence length and d is the embedding di-
mension. After appending k tokens represented
by E € RF*9, the extended sequence becomes
X' = concat(X, E) € RUAK)xd,

For the self-attention layer, the output at position
i€[l,L]is:

L+k
Hz, = Z aijVj, where V] = X]/-WV, (1)
j=1
X Wo(XiWi)T
- <ﬁ> @
Y= ok XiWo (X W) T\

The variation introduced by appended ScoT is:

L+k
> aiVii>L 3)
j=L+1

AH; =

Assume the appended tokens satisfy:

* Linear Attention Weights: «;; o< X;A; for
j > L, where A; € R is a learnable vector.
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Figure 5: Left: SCoT and Equivalent Parameter have
similar safety alignment capability. Right: SCoTs
and Equivalent Parameters’ vectors form tightly clus-
tered distributions in proximity (Mahalanobis distance
< 1.50).

* Low-Rank Value Projection: V; = BjCT for
j > L, where B; € R", C € R¥",

Under these assumptions, the perturbation simpli-
fies to:

k
AH;=X; | Y A;B] | CT, 4)
j=1
U

The original FEN computation Wyo (W1 X; + b1)
transforms into:

Wao (Wi(Xi + Xi(I +UCT)bi), ()
which is equivalent to modifying W as:

Wi =W+ AW, =W, (I+UCT). (6)
The matrix UC'T € R%*¢ satisfies:

rank(UC' ") < min <rank(U),rank(CT)> < AH,

(N
Thus, the modification AW preserves the low-
rank property if AH is Low-rank.

Through the above experiment, the variation
AH is Low-rank. This indicates that SCoT can
be transformed into equivalent low-rank parame-
ters with the same alignment capability.

We also demonstrate the equivalence of SCoT
and equivalent parameters in terms of safety align-
ment ability and hidden vector distribution in fig-
ure 5.

4.2 Internalize SCoT

This section details the specific process of SCoT
Internalization. This approach is divided into three
distinct phases: Hidden Vectors Extract, Low-Rank



Learning for calculating equivalent low-rank pa-
rameters, and Parameter Fusion Updating. SCoT
Internalization aims to train the model to directly
generate safe output, which is generated in the
original model with integration of SCoTs, with-
out SCoTs as much as possible. This objective can
be formally formulated as follows:

Q)
1X[vill/l ;CrossEntropy(Tqi,Tqi+scqui) 8)
1=

T, =GW,q) T, =GW +AW,q) (9
TSCOTZ' = G(W, q; + SCOTqi) (10)

Where SCoTy, is the harmful initial output and
SCoT corresponding to question ¢;, 7' and T" are
the responses of the SCoT model and SCoT Inter-
nalization model separately, AW is the equivalent
low rank parameters. When encountering harmless
queries, SCoT, is empty. The LRM retains gener-
ation abilities when input outside the distribution
of harmful queries.

Hidden Vectors Extract: Whenever the model’s
initial output is harmful and generates SCoT for
correction, we collect the I-th layer MLP’s hid-
den vectors input and output pair of the 1-th layer
(21, y;) when the model is generating the next token
of query or SCoT. The formal representation is as
follows:

WX+ b = Ylil, input = q an
WXZSCOT" +b = YlifOTq, input = q + SCoTj
(12)

Low-Rank Learning: At this stage, we calcu-
late the equivalent low-rank parameters AW used
to update the model. The formula for calculating
parameters utilizes the Moore-Penrose pseudoin-
verse for efficient computation, as outlined below:

Xt =yt (13)
X =UxVT AX = x5C¢T _x1 (14
AW =WAX (V2 tuT) (15)

Eq.13 represents the singular value decomposition
of X, and Eq.14 is obtained using the Penrose in-
verse algorithm(Penrose, 1955). The detailed com-
putational procedure and derivation are described
in the Appendix A. The Eq.15 calculates the value
of Aw, which is the optimal solution for Eq.8.
Equivalent Parameter Fusion: In this phase,
the equivalent value parameters was fused with

the original model. The fusion of the equivalent
parameters calculated with the original model can
be expressed as:

W' = (W + AW) (16)

This enables the internalization of SCoT’s re-

flecting and correcting capability within standard

forward propagation without SCoT explicit genera-
tion.

S Experiment

In this section, the experiments validate the secu-
rity, downstream task capabilities, and temporal
efficiency of ISCoTAlign.

5.1 Experiment Setup

Dataset. Advbench was utilized to validate the
alignment effectiveness of ISCoTAlign. Truth-
fulQA(Lin et al., 2022) is used to evaluate the truth-
fulness and reliability of the generated response.
GSMB8K (Cobbe et al., 2021) is aimed at evaluating
the model’s proficiency in understanding and solv-
ing complex mathematical problems. MMLU is a
benchmark for evaluating a model’s performance
across a wide variety of tasks, across 57 diverse
topics and domains.

Baseline. PPL (Perplexity) assesses the uncer-
tainty in a model’s output and detects potentially
harmful or nonsensical responses. RLHF (Rein-
forcement Learning from Human Feedback) re-
fines an LLM using reinforcement learning, where
human feedback on model outputs guides the re-
ward function. SafeDecoding is a method de-
signed to ensure safe and reliable outputs by apply-
ing constraints during the decoding process. Self-
Reminder involves incorporating mechanisms
within the model that prompt it to self-check or
reflect on its generated responses. Retokeniza-
tion adjusts the tokenization process to modify or
restrict the vocabulary or input sequences, mitigat-
ing the risk of generating unsafe or biased content.
AED (Adversarial Example Detection) identifies
and filters adversarial inputs or examples that might
cause a model to behave unpredictably or mali-
ciously.

The detailed baseline settings and specific con-
figurations for each experiment are described in the
appendix B.

Jialbreak Method. GCG (Gradient-based Con-
trolled Generation) exploits gradient-based tech-
niques to manipulate a model’s output. AutoDAN
uses automatic techniques to generate adversarial



inputs that can bypass content moderation mecha-
nisms. Codeattack is an attack method that targets
code-generation models, crafting inputs that exploit
vulnerabilities in the model’s training or decoding
process. Pair involves crafting paired inputs that
exploit vulnerabilities in the model’s response gen-
eration.

Target model. Our study uses the following
widely used models as target models: Deepseek-
rl(DeepSeek-Al et al., 2025), QwQ(Team, 2025b),
and Sky-T1(Team, 2025a).

Attack Datasets. Experiments utilized Ad-
vbench and HEx-PHI as attack query datasets as
a test dataset to validate the safety of ISCoTAlign
and Anthropic Helpful-Harmless as a training
dataset. To prevent overfitting, our test set includes
a distinct harmful question dataset not used in con-
structing the CoT training data.

Downstream Tasks Datasets. Truthful QA (Lin
et al., 2022) is used to evaluate the truthfulness
and reliability of the generated response. GSM8K
(Cobbe et al., 2021) is aimed at evaluating the
model’s proficiency in understanding and solving
complex mathematical problems. WildChat is in-
strumental in evaluating models’ over-refusal ten-
dency.

5.1.1 Evalution Metrics

Attack Success Rate (ASR) is used as the met-
ric to evaluate the alignment security. Each query
was repeated five times, and any single instance
of generating harmful content is considered a suc-
cessful attack. Experiments evaluate the safety of
responses using three methods: LlamaGuard, GPT-
4 evaluation, and human assessment. A response is
classified as positive if it is considered unanimously
safe by all methods.

Accuracy (ACC) is used for the multiple-choice
and calculation tasks.

5.2 Experimental Result and Analysis

In this chapter, a series of experiments were con-
ducted about safety, alignment tax, and temporal
efficiency of the alignment method.

5.2.1 ISCoTAlign is Effective in Align

The experimental results shown in Table 3 indi-
cate that ISCoTAlign achieves the lowest ASR on
almost all models compared to baseline methods.
This demonstrates that the inherent strong reason-
ing capabilities of the reasoning model hold tremen-
dous potential in terms of safety alignment, and
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Figure 6: SCoT-Internalization significantly reduces
computational costs, maintaining inference time close
to or even lower than those of not generating SCoT.

SCoT can significantly improve the alignment of
reasoning models. Furthermore, the SCoT Inter-
nalization shows little change in safety alignment
capability compared with SCoT, indicating that
Internalization can maintain alignment capability
while reducing generation costs.

To ensure fairness, we only assessed the harm-
fulness of the final solution. SCoT Internalization
surpasses SCoT and other alignment methods by
preventing the harmful generation in the CoT pro-
cess, thus achieving superior safety.

We’ve observed that different jailbreak attacks
and alignment methods significantly affect reason-
ing models’ performance. Reasoning models are
vulnerable to scenario and role-playing attacks, but
handle special token attacks well. Plug-in align-
ment is less effective than the fine-tuning method.
This shows that aligning reasoning models is a new
research area. The key to enhancing the alignment
ability lies in restoring reasoning abilities that CoT
might have impaired and in better leveraging the
models’ reasoning ability strengths.

5.2.2 SCoT Internalization Reduces the
Computing Overhead

Figure 6 validated the temporal efficiency of ISCo-
TAlign. Compared to the original model and the
methods using COT data in alignment training, our
inference practices have reduced by over 34%. As
SCoT Internalization improves the harmlessness
of initial responses, rejects directly before gener-
ating harmful information, and reduces the need
for SCoT to correct, it cuts down computational
resource consumption.



Model Method No Attack] | GCG] | AutoDAN] | codeattack] | Pair] [ ArtPrompt]
No Defense 8.51% 86.32% | 82.12% 46.65% 87.52% 32.79%
PPL 6.45% 0.00% 75.20% 40.33% 65.52% 33.70%
RLHF 5.62% 17.02% 24.60% 23.22% 28.35% 27.16%
Self-Reminder 0.00% 33.22% 17.05% 32.08% 36.82% 23.28%
DeepSeck-R1 Retokenization |  32.68% 53.99% | 25.58% 40.10% 61.71% 29.10%
AED 0.00% 9.50% 17.18% 25.25% 28.17% 10.73%
Safedecoding 0.00% 3.28% 10.59% 10.88% 18.65% 8.06%
SCoT 0.00% 2.90% 6.29% 8.40% 8.65% 3.06%
ISCoTAlign 0.00% 2.92% 6.98% 8.87% 8.69% 3.04%
No Defense 11.7% 98.67% | 84.16% 55.41% 97.02% 43.04%
PPL 7.66% 0.0% 88.20% 47.90% 77.76% 44.24%
RLHF 6.68% 12.83% 19.16% 27.91% 26.67% 14.65%
Self-Reminder 0.0% 43.46% | 22.33% 38.09% 48.23% 28.04%
Sky-Tl Retokenization | 38.81% | 70.89% | 33.57% 47.62% 81.00% 38.20%
AED 0.0% 14.57% 22.55% 33.15% 36.98% 14.16%
Safedecoding 0.0% 12.63% | 29.38% 38.35% 9.75% 29.71%
SCoT 0.0% 3.89% 12.63% 12.88% 10.27% 9.57%
ISCoTAlign 0.0 % 3.71% 11.55% 14.20% 9.78% 7.75%
No Defense 0.0% 35.56% 23.80% 50.24% 29.14% 42.73%
PPL 0.0% 0.0% 9.97% 43.01% 17.61% 30.91%
RLHF 0.96% 3.40% 10.39% 19.82% 18.36% 33.03%
Self-Reminder 0.0% 3.05% 12.42% 41.02% 16.53% 31.33%
QWQ-32B Retokenization 0.0% 5.63% 9.50% 47.37% 12.27% 38.36%
AED 0.0% 3.90% 9.77% 20.53% 16.55% 17.80%
Safedecoding 0.81% 2.23% 15.34% 17.57% 3.59% 15.92%
SCoT 0.0% 1.39% 4.57% 6.44% 6.74% 7.25%
ISCoTAlign 0.0% 1.32% 4.80% 8.20% 5.51% 7.12%

Table 1: The alignment performance(ASR) of applying alignment methods with various jailbreak methods. SCoT
refers to models trained with SCoT Alignment, ISCoTAlign indicates models that have undergone SCoT Alignment
and SCoT Internalization. The best-performing method was bold.

5.2.3 ISCoTAlign Remains the Downstream
Tasks Capability

Tab 2 and Tab 3 show the impact of implement-
ing ISCoTAlign on downstream tasks in LLMs.
ISCoTAlign achieves the highest accuracy in the
downstream tasks compared to baseline meth-
ods and SCoT-align with virtually no impact on
downstream tasks, and does not exhibit significant
over-refusal phenomena compared to more refusal-
trained models, Claude-3. The low-rank nature of
equivalent parameters allows updating to precisely
enhance the model’s safety alignment capabilities
without affecting other task capabilities, and re-
duces the impact of long COT context.

Moreover, the reasoning ability brought by the
long chain of thought can improve the model’s
reasoning capabilities on other downstream tasks
to some extent.

5.2.4 Influence of Rank r

To assess the impact of rank r, the model was pro-
tected using ISCoTAlign with different rank selec-
tions (from 10 to 100). The results in the Figure 7
evidence that even with a rank setting of 10, the
model retains over 79% of the defensive capabil-
ities enhancement. As the rank r increases, PER
gradually increases. This is because most of the
energy is still encapsulated within low-rank param-

Method TruthfulQA | GSM8K | MMLU
DeepSeek-r1 63.7 454 87.8
SFT 58.3 37.1 80.6
RLHF 60.1 40.6 82.1
PPLM 38.0 26.7 62.8
Self-Reminder | 56.8 40.7 76.5
Retokenization | 55.7 30.5 77.9
AED 50.2 39.6 83.0
Safedecoding 57.9 325 77.7
ISCoTAlign 62.5 45.0 86.6

Table 2: The generation performance(ACC) of applying
protective methods

Original SCoT SCoT- Claude-
Internal Opus
Refusal Rate 1.2% 1.4% 2.1% 18.8

Table 3: Over-refusal evaluation on DeepSeek-R1

eters. When comparing models of ranks 50 and
100, no significant change in defensive capability
is observed. The model’s protection capacity is
gradually leveling off. It further substantiates that
ISCoTAlign exhibits commendable efficacy even in
lower-rank settings. However, as the rank continues
to increase, ISCoTAlign’s protective capabilities
will decline rapidly after exceeding a certain value,
after numerous updates with equivalent parameters.
Therefore, ISCoTAlign is not suitable for selecting
excessively large ranks.



5.3 More Analysis

More CoT More Harmful. We’ve observed that
longer CoTs are more prone to harmful content.
Even when models recognize the harmfulness of
output through SCoT, they may still generate harm-
ful output later, and ignore the harmfulness assess-
ment before.

Pronoun Impact the Harmfulness. The pro-
noun used in responses significantly impacts the
way of thinking in CoT, thus affecting the harm-
lessness of output. The second person is more
conservative and safer. First person makes mod-
els sensitive to emotions and settings. While the
third person can lead to more divergence and over-
look safety. Thus, maintaining consistent reasoning
across different pronoun usages is essential for en-
hancing the safety of LRMs.

The best practices for SCoT. Explicitly stat-
ing safety rules in SCoT greatly improves response
safety and ensures compliance. Maintaining a fixed
SCoT format in training data improves its effective-
ness. Using SCoT at the end of CoT, rather than
generating it in process, works better for harmful
content. This is because LRMs may still generate
harmful content after SCoT, forgetting previously
harmful reflecting.

Regular LLMs can generate SCoT. The exper-
iment utilizes the SCoT model based on Deepseek-
rl as the teacher proxy model and the regular LLMs
as the student model to distill the SCoT alignment
capability. results find that regular LLMs can study
SCoT capabilities for safety alignment after distil-
lation, even if they couldn’t generate CoT before.
Interestingly, this ability also makes the LLMs gen-
erate CoT for general tasks, enhancing their reason-
ing and generation skills.

6 Related Works
6.1 Alignment Methods

Fine-tuning (He et al., 2022) approaches enhances
LLMs’ alignment with human values by leveraging
extensive datasets. RLHF(Ouyang et al., 2022a)
employs a reward model under the PPO frame-
work to learn human preferences. Self Aligner
enables models to self-regulate outputs, AED(Liu
et al., 2024) detects and filters adversarial inputs,
and SafeDecoding(Xu et al., 2024) mitigates jail-
break attacks by prioritizing safety tokens and sup-
pressing harmful sequences. However, in LRMs,
traditional alignment methods fail or are prone to
being bypassed by jailbreak attacks. Therefore, we

Rank r Selection

—e— chatGLM-7b-int4

-#-- Llama2-7b-hf
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Figure 7: To widely verify the influence of rank value,
we conducted numerous experiments on smaller LLMs.
The figure shows the number of times the model was
successfully attacked out of 1,000 attacks when using
different rank values to calculate equivalent parameters.

propose ISCoTAlign, which leverages the models’
CoT capabilities for LRM safety alignment.

6.2 Jailbreak Methods

AutoDAN(Liu et al., 2023) uses hierarchical ge-
netic algorithms to generate semantically mean-
ingful jailbreak prompts, while Prompt Automatic
Iterative Refinement (PAIR)(Chao et al., 2023) it-
eratively refines prompts using pre-trained LLMs
to elicit unintended behaviors with only black-box
access. Greedy Coordinate Gradient (GCG)(Zou
et al., 2023) employs gradient-based searches to
craft token sequences that bypass safety measures.
ArtPrompt(Jiang et al., 2024) uses ASCII art to ob-
scure malicious prompts, exploiting weaknesses in
non-semantic representation recognition. CodeAt-
tack(Jha and Reddy, 2022) targets adversarial vul-
nerabilities in LLM code generation, exposing
alignment gaps. Existing jailbreak attacks may
still work on LRMs, but their success rates vary
with the attack methods. Jailbreaking LRMs is a
new area that demands novel red-teaming methods.

7 Conclusion

In this work, we propose ISCoTAlign, which im-
proves alignment capabilities with CoT capability
through SCoT alignment training, and achieves
internalization of SCoT’s reflecting and correct-
ing capability within standard forward propaga-
tion to minimize the impact of long SCoT text
on generation ability and efficiency. Our method
achieved 43.2% higher defense capability than
baseline methods, with lower computation con-
sumption and negligible alignment tax, validated
across various models and five jailbreak methods.



Limitations

SCoT Dataset Constraints: The framework’s ef-
ficacy remains heavily dependent on the manually
curated SCoT dataset. Despite structured genera-
tion protocols and proactive dataset expansion, po-
tential coverage gaps in emerging threat categories
and adversarial patterns persist.

xpressiveness-Complexity Trade-off: The low-
rank approximation strategy optimizes computa-
tional efficiency but may restrict nuanced safety
reasoning. Although our experiments identified pa-
rameter configurations balancing these objectives,
full synchronization of dual inspection mechanisms
remains an open challenge.

Longitudinal Behavioral Drift: Iterative pa-
rameter fusion introduces risks of cumulative
behavioral shifts during prolonged deployment.
While short-term evaluations showed negligible
alignment tax, sustained operation without peri-
odic recalibration might degrade task performance
or induce latent biases.

Cultural and Linguistic Generalization: Cur-
rent validation is exclusively conducted on English
datasets. The method’s adaptability to multilingual
contexts—where cultural nuances redefine harm-
ful content thresholds—remains unverified. Full
integration with training pipelines (beyond runtime
patching) may enhance cross-lingual robustness.

Future work will prioritize catastrophic forget-
ting mitigation, multi-iteration stability analysis,
and proactive dataset expansion to address evolv-
ing threat landscapes.
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A Derivation and Proof

In this section, we describe and derive the formula
for calculating equivalent low-rank knowledge pa-
rameter and prove the validity of the method.

For the original model, the computation in the
I-th MLP layer during the inference process for
queries @ and Q' satisfies the following equation:

WXI+b =Y WX M 4 = yS0Ts

a7
When the model is updated with AW, as deter-
mined by the target formula 1, for the original input
@, the hidden vectors calculated with updated pa-
rameters should match those calculated in the orig-
inal parameter for the input Q' + SCoTq, which
integrates SCoT into the context. This is formally
represented as:

SCoTy

W+ AW)X] +b =Y

(18)

Based on this target formula 13, we compute the
equivalent parameters AW necessary for model
updates. AW can be further formalized and repre-
sented as follows:

AY; = YESCOTq _ leq7 AX; = XlSCqu . qu
AW X, =AY, = WAY, (19)
= AW =WAYX; ' (20)

However, in most cases, where the number of
queries does not equal the dimensionality of the
hidden vectors, X is not a square matrix, and hence
an inverse X l_l does not exist directly.

For this purpose, we compute the pseudoinverse
of X using the Penrose pseudoinverse as shown
in formula 2, which satisfies the requirement for
calculating AW. The equivalence found in 3.1
proves the validity of AW.

Once the pseudoinverse matrix X fl was ob-
tained, we can directly compute the equivalent pa-
rameter AW, achieving the alignment of the model.
Ultimately, AW can be derived using the formula
presented below:

AW = WAX (V.2 'Ul) Q1)
Then the computed equivalent parameter AW was
added to the model’s original parameter W to im-
plement sustainability updates of the LLMs’ pa-
rameters.
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B Baseline Setup

Here’s the translation of your description into En-
glish, suitable for an academic setting within a
research paper on LLMI alignment:

Experimental Setup Supervised Fine-Tuning
(SFT) For SFT, we randomly sampled 20% of the
dataset for training purposes. The model was fine-
tuned using the Supervised Fine-Tuning method
with the following configuration:

Precision: fp16 Trainer configuration: Number
of nodes: 1 Number of devices: 2 Micro batch size:
1 Global batch size: 32 Maximum sequence length:
1024 Learning rate: le-5 Reinforcement Learning
from Human Feedback (RLHF) We randomly se-
lected 20% of the dataset for training. Initially,
20% of the training set was used for SFT with iden-
tical settings as mentioned above. Post SFT, we
applied Proximal Policy Optimization (PPO) for
reinforcement learning on the RLHF dataset, which
consists of concatenated forms of original prompts
with positive and negative examples, formatted as:

text: promptllresponse The reward model was
trained using the same foundational model as the
original model. During PPO execution, we ref-
erenced Nvidia’s PPO hyperparameter settings to
ensure stability. The parameters set for the rein-
forcement learning phase were:

Optimizer learning rate: 5e-6 Global batch size:
16 PPO entropy bonus: 0.0 PPO ratio epsilon: 0.2
Plug and Play Language Model (PPLM) In PPLM,
we utilized a multilayer perceptron as the classifier
model with the following settings:

Length: 100 Gamma: 1.0 Step size: 0.05 Win-
dow size: 5 KL scale: 0.01 Self-reminder In
the self-reminder approach, we adopted OpenAl’s
safety assessment to determine whether each round
of generation was safe or a successful attack. We
iterated up to a maximum of five rounds for each
attack. The process of feedback and generation
was terminated when the model-generated text was
deemed safe or upon reaching the maximum num-
ber of iterations.

Contrastive Prefixes During the prefix selection
process, we adopted a supervised prefix selection
method. Following OpenAl’s classification stan-
dards, scenarios were divided into 13 harmful cate-
gories plus one harmless category. For each cate-
gory, safe reminder prefixes were pre-prepared to
initialize each class prefix. Prefix lengths were set
between 30 to 50 characters. For training losses
w1 and w2, we set the weights as 0.6 and 0.4, re-



spectively, to emphasize the defensive nature of the Template Structure

refixes against specific types of attacks.
P g P P Problem Context

C SCoT Prompt Template {Insert original question/request here}

Harmful Response
{Insert harmful response here}

Harmless Response
{Insert target harmless response here}

You are now responding to the aforemen-
tioned issue and have already generated a
harmful response. Now, it is necessary to
generate a chain of thought to correct the
harmful response into a target harmless re-
sponse. The entire chain of thought should
strictly follow and include the following
parts. No responses should be generated
for any other parts.

SCoT Generation Instructions

1. Harm Analysis

* Potential biases/stereotypes

* Dangerous/misleading informa-
tion

* Ethical violations

* Social/cultural sensitivities

2. Mitigation Strategy

* Neutralization techniques

* Fact-checking mechanisms

* Ethical alignment methods

* Cultural adaptation approaches

3. Revision Process

* Phrase-by-phrase analysis

* Content filtering decisions

» Tone/perspective adjustments
* Safety verification checkpoints

4. Final Validation

* Maintains original intent

* Eliminates harmful content

* Preserves natural flow

* Aligns with safety guidelines

Output Format Requirements:

12



<SCoT>
<Analysis>Step-by-step harm
— identification</Analysis>
<Strategy>Mitigation approach
— description</Strategy>
<Revision>Detailed correction process<
— /Revision>
<Validation>Final safety confirmation<
<~ /Validation>
</SCoT>

<FinalResponse>
{Corrected harmless response}
</FinalResponse>

13
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