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Abstract

Human Motion Prediction (HMP) aims to predict future poses at different moments
according to past motion sequences. Previous approaches have treated the predic-
tion of various moments equally, resulting in two main limitations: the learning of
short-term predictions is hindered by the focus on long-term predictions, and the
incorporation of prior information from past predictions into subsequent predic-
tions is limited. In this paper, we introduce a novel multi-stage training framework
called Temporal Continual Learning (TCL) to address the above challenges. To
better preserve prior information, we introduce the Prior Compensation Factor
(PCF). We incorporate it into the model training to compensate for the lost prior
information. Furthermore, we derive a more reasonable optimization objective
through theoretical derivation. It is important to note that our TCL framework
can be easily integrated with different HMP backbone models and adapted to
various datasets and applications. Extensive experiments on four HMP benchmark
datasets demonstrate the effectiveness and flexibility of TCL. The code is available
at https://github.com/hyqlat/TCL.

1 Introduction

Human Motion Prediction (HMP) aims to predict future poses at varied temporal moments based
on the observed motion sequences. The accurate prediction of human motion plays a vital role in
many applications, such as autonomous driving, human-robot interaction, and security monitoring,
enabling the anticipation and mitigation of risks. This task is challenging due to its requirement for
predicting multiple moments, including short-term predictions for the “near-future” and long-term
predictions for the “far-future”.

Previous approaches address this task by autoregressively forecasting using recurrent neural networks
(RNNs) and transformer architectures [1, 4, 5, 9–12, 14, 26, 37, 40, 42], or parallelly generating all
frames with graph convolution networks (GCNs) [2, 6, 7, 23, 25, 30, 31, 28]. These methods employ
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Figure 1: Illustration of three different prediction settings. “short+long" and “short only” represent
optimizing prediction for the entire sequence and prediction only for the first 5 frames, respectively.
“short then short+long” denotes training the entire sequence after pretraining for the first 5 frames.

short+long short only short then
 short+long

9.6

9.9

10.2

10.5

Va
lid

_a
vg

_e
rr

or

short+long short then
 short+long

109.5

109.8

110.1

110.4

Va
lid

_a
vg

_e
rr

or

(a) Short-term prediction result (b) Long-term prediction result

Figure 2: Preliminary experiment results of three different prediction settings (lower values indicate
better performance). (a) shows the short-term prediction results (predicting the 2-nd frame), while (b)
illustrates the long-term prediction results(predicting the 25-th frame).

the one-stage training strategy to directly train a model that can predict both the short-term prediction
and the long-term prediction. However, the long-term motion prediction is more challenging since
the future motion can vary greatly (i.e., the prediction space is large), which would increase the
uncertainty and ambiguity of future prediction. As the prediction length increases, the fitting of the
high-uncertainty long-term prediction will gradually dominate the learning process of the prediction
model, which hinders the learning of short-term predictions and further limits the full potential of
leveraging the prior knowledge learned from short-term inputs to facilitate long-term predictions.

This motivates us to exploit proper training strategies to better learn and utilize the prior knowl-
edge. We further investigate this by conducting preliminary experiments on the following settings
“short+long”, “short only”, and “short then short+long”, which are illustrated in Figure 1. The results
are summarized in Figure 2. We observe that “short then short+long" outperforms “short+long” on
long-term prediction, which implies that the knowledge learned in short-term prediction can serve as
a prior to facilitating the learning of “far-future” prediction. This is intuitive and thus we can use a
progressive learning approach, where the model is trained to predict increasing numbers of frames
over multiple training stages, e.g., starting with 5 frames in the first stage and 10 frames in the second
stage, and so on. However, we also observe that “short then short+long” performs worse than “short
only” by a considerable margin for short-term prediction, which demonstrates the joint learning of
short-term and long-term prediction results in knowledge forgetting for short-term prediction.

To overcome these problems, we introduce the Prior Compensation Factor (PCF) into the multi-stage
training method to obtain a sequential continuous learning framework, which is named Temporal
Continual Learning (TCL). It is a multi-stage training framework that alleviates constraint posed by
long-term prediction on short-term prediction and effectively utilize prior information from short-term
prediction. Specifically, we divide the future sequence into segments and divide the training process
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into multiple stages accordingly. We incrementally increase the number of prediction segments,
allowing us to leverage the prior knowledge acquired from earlier stages for predicting the subsequent
ones. Upon completion of each stage’s training, the learned prior knowledge is saved in the model
parameters. However, with the changing of optimization objective when switching stages, the prior
knowledge gradually fades away. In order to overcome this forgetting problem of prior knowledge,
we further introduce the PCF, which is designed as a learnable variable. Then, we derive a more
reasonable optimization objective for this regression problem through theoretical derivation.

The proposed training framework is flexible and can be easily integrated with various HMP backbones
or adapted to different datasets. To validate the effectiveness and flexibility of our framework, we
conduct experiments on four popular HMP benchmark datasets by integrating TCL with several HMP
backbones. Our contributions can be summarized as follows:1) We identify certain limitations in
existing HMP models and propose a novel multi-stage training strategy called Temporal Continual
Learning to obtain a more accurate motion prediction model. 2) We introduce a Prior Compensation
Factor to tackle the forgetting problem of prior knowledge, which can be learned jointly with the
prediction model parameters. 3) We obtain an easily optimized and more reasonable objective
function through theoretical derivation.

2 Related Work

Autoregressive prediction approaches for HMP. Motivated by natural language processing, many
researchers have adopted sequence-to-sequence models to exploit the temporal information of pose
sequences in HMP, which includes RNNs, Long Short-Term Memory Networks (LSTMs) [15] and
Transformer [43]. For instance, ERD [8] combined LSTMs with an encoder-decoder to model the
temporal aspect, while Jain et al.[18] proposed Structural-RNN to capture spatiotemporal features
of human motion. Martinez et al.[32] applied a sequence-to-sequence architecture for modeling the
human motion structure. Aksan et al.[1] used Transformer to autoregressively predict future poses.
Sun et al.[40] designed a query-read process to retrieve some motion dynamics from the memory
bank. Lucas et al.[27] proposed a GPT-like[35] autoregressive method to generate human poses. Tang
et al.[42] combined attention mechanism and LSTM to complete the human motion prediction task.
However, autoregressive methods are difficult to train and suffer from error accumulation problem.

Parallel prediction approaches for HMP. Some researchers employed parallel prediction methods
to address HMP problem [2, 6, 7, 23, 25, 30, 31, 28]. The works of [21–23] used GCN to encode
feature or to decode it, which associates different joints’ information. Mao et al.[31] viewed a pose
as a fully connected graph and used GCN to extract hidden information between any pair of joints.
Martinez et al.[33] devised a transformer-based network to predict human poses. Sofianos et al.[39]
proposed a method to extract spatiotemporal features using GCNs. And Ma et al.[28] tried to achieve
better prediction results using a progressive manner. Xu et al.[45] used multi-level spatial-temporal
anchors to make diverse predictions.

Continual learning. Although Deep Neural Networks (DNNs) have demonstrated impressive
performance on specific tasks, their limitations in handling diverse tasks hinder their broader applica-
bility. Therefore, some researchers introduced the concept of Continual Learning (CL)[36] to DNNs
to ensure that models retain the knowledge of previous tasks while learning new tasks. Kirkpatrick
et al.[20] proposed the Elastic Weight Consolidation (EWC) method to overcome the catastrophic
forgetting problem and improve the performance of multi-task problems. Shin et al.[38] introduced a
method that addresses catastrophic forgetting in sequential learning scenarios by using a generative
model to replay data from past tasks during the training of new tasks. It is important to note that the
traditional CL approaches do not account for temporal correlation and are unable to leverage data
from previous tasks.

3 Method

The problem of human motion prediction involves predicting future motion sequences by utilizing
previously observed motion sequences. Formally, let X1:Th

= [X1,X2, · · · ,XTh
] ∈ RJ×D×Th

denotes the observed motion sequence of length Th where Xi indicates motion of time i, and
XTh+1:Th+Tp

= [XTh+1,XTh+2, · · · ,XTh+Tp
] ∈ RJ×D×Tp represents the motion sequence of
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length Tp that needs to be predicted. Note that J is the number of joints for each pose, and D is the
dimension of coordinates. It can be regarded as a composite task consisting of multiple sequential
prediction tasks, which involves predicting the future poses at varied moments conditioned on the
motion sequences observed in the past.

To accomplish this multiple sequential prediction task, we first model the HMP problem as solving
the following optimization problem:

θ∗ = argmax
θ

P (XTh+1,XTh+2, · · · ,XTh+Tp
|X1,X2, · · · ,XTh

;θ). (1)

Thus our target is to find the optimal model that maximizes Equation (1). To achieve this, we propose
a framework called Temporal Continual Learning. Specifically, we partition the entire prediction
interval into several smaller segments and perform multi-stage training. We claim that this enables the
utilization of prior information from previous segments as knowledge for predicting the subsequent
segments. Further, as the optimization objective changes in each training stage, we find that the prior
knowledge, i.e., information learned in previous training stages, will be forgotten to a certain degree.
To mitigate this problem, we introduce a Prior Compensation Factor and accordingly derive a more
reasonable optimization objective at each stage.

3.1 Multi-stage Training Process.

We initially decouple the future sequence into K segments with time boundaries TZ1 , TZ2 , · · · , TZK
,

where TZK
= Th + Tp. And we denote the prediction of segment k as task Zk, which can be

expressed as follows:

• Task Z1 : X1:Th
→ XTh+1:TZ1

• Task Z2 : X1:Th
→ XTZ1

+1:TZ2

· · ·
• Task ZK : X1:Th

→ XTZK−1
+1:TZK

To be specific, the target of task Z1 is to predict XTh+1:TZ1
conditioned on X1:Th

, and task Zk aims
to predict XTZk−1

+1:TZk
with X1:Th

as condition. Therefore, by leveraging bayesian formulation,
optimization problem P (XTh+1,XTh+2, · · · ,XTh+Tp

|X1,X2, · · · ,XTh
;θ) can be formulated as:

P (Z1Z2 · · ·ZK ;θ) = P (ZK |Z1Z2 · · ·ZK−1;θ)P (ZK−1|Z1Z2 · · ·ZK−2;θ) · · ·P (Z1;θ), (2)

where θ is model parameters to be learned. In the following, we denote “Z1Z2 · · ·Zk” as “Z1:k”.
Our target is to maximize Equation (2) which means finding optimal model to accomplish all tasks.

For the purpose of transferring the prior knowledge in preceding tasks to their subsequent prediction
task, we progressively increase the number of tasks in temporal order and train them successively.
More precisely, our training is decomposed into K stages. In each stage Sk, we leverage the optimal
model parameters θ∗

k−1 trained in the previous stage Sk−1 to initialize the parameters θ, and then
update it based on the prediction tasks Z1, Z2, · · · , Zk (maximizing P (Z1:k;θ)). Since the model is
trained to optimize the prediction tasks Z1:k−1 in training stage Sk−1, the knowledge of tasks Z1:k−1

can be implicitly involved in its well-trained parameters θ∗
k−1. Initializing θk as θ∗

k−1 can exploit the
prior knowledge learned in previous tasks to assist the prediction of the next task.

3.2 Definition of Prior Compensation Factor.

With training different optimization objectives stage by stage, the prior knowledge provided by
previous tasks can be effectively exploited to predict the subsequent task. However, the change of the
optimization objective in different training stages could also bring about the knowledge forgetting
problem. To mitigate the problem, we introduce αZ1:k−1→Zk

to estimate the extent of forgotten
knowledge when utilizing prior knowledge from tasks Z1:k−1 to predict task Zk, which we refer to
as the “Prior Compensation Factor”.

αZ1:k−1→Zk
= P (Zk|Z1:k−1;θ)− P (Zk|Ẑ1:k−1;θ). (3)

Here, Ẑ1:k−1 is regarded as the prior knowledge that is reserved and can be still provided for
predicting task Zk. So Ẑ1:k−1 initially represents the prior knowledge reserved in θ∗

k−1 in every stage
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Sk and would get somewhat corrupted gradually during training. P (Zk|Z1:k−1;θ) indicates the most
ideal case, where the current prediction task Zk can fully leverage the prior information provided
by previous prediction tasks Z1:k−1. Consequently, the loss of the prior knowledge is non-negative,
implying that 0 ≤ αZ1:k−1→Zk

≤ 1 − P (Zk|Ẑ1:k−1;θ). Specifically, we can observe that α = 0

when P (Zk|Z1:k−1;θ) = P (Zk|Ẑ1:k−1;θ), which implies that all the prior knowledge of previous
tasks is completely exploited although the θ changes. By substituting Equation (3) into Equation (2)
and taking the negative logarithm, we can obtain:

− logP (Z1:k;θ) = − logP (Z1;θ)−
k∑

i=2

log(P (Zi|Ẑ1:i−1;θ) + αZ1:i−1→Zi
). (4)

Our objective is to minimize − logP (Z1:k;θ) with respect to the model parameter θ and prior
compensation factors {αZ1:i−1→Zi , i = 2, 3, · · · , k}.

3.3 Optimization Objective

Optimizing Equation (4) directly is challenging due to the presence of the PCF α and P (Zk|Ẑ1:k−1;θ)
inside the logarithm. By applying Lemma 3.1 (details provided in the appendix), we can obtain an
upper bound for Equation (4), which can be expressed as:

UB = − logP (Z1;θ) +

k∑
i=2

((1− αZ1:i−1→Zi
)(− logP (Zi|Ẑ1:i−1;θ))

+ (1− αZ1:i−1→Zi) log(1− αZ1:i−1→Zi) + log(1 + αZ1:i−1→Zi)).

(5)

Hence, we can turn to minimize the upper bound of Equation (4). It appears that in the optimization
objective, αZ1:i−1→Zi serves as a factor to control the weights of different tasks, which mitigates
the loss of prior information and thus compensates for the lost prior knowledge. The Lemma 3.2
indicates that the largest difference between − logP (Z1:k;θ) and the upper bound UB would not
exceed log(3/2) ∗ (k − 1) when P (Zi|Ẑ1:i−1;θ) ≥ 1/2, i ∈ {2, 3, · · · , k}.

Lemma 3.1. For 0 ≤ a ≤ 1− b and 0 < b ≤ 1, the inequality − log(a+ b) ≤ (1− a)(− log b) +
(1− a) log(1− a) + log(1 + a) holds. The equality holds if and only if a = 0.

Lemma 3.2. The absolute difference between the target objective (Equation (4)) and the upper bound
(Equation (5)) is not larger than log(3/2) ∗ (k − 1) when P (Zi|Ẑ1:i−1;θ) ≥ 1/2, i ∈ {2, 3, · · · , k}.
This bound is achieved when P (Zk|Ẑ1:k−1;θ) = 1/2 and αZ1:i−1→Zi

= 1/2, i ∈ {2, 3, · · · , k}.
Due to the space limitation, we present the proofs of Lemma 3.1 and 3.2 in the appendix.

An intuitive explanation. Figure 3 illustrates the comparison between the term
− log(P (Zk|Ẑ1:k−1;θ) + αZ1:k−1→Zk

) in the actual optimization objective, the term
− logP (Zk|Ẑ1:k−1;θ) in the naive optimization objective merely leveraging multi-stage
training strategy, and the corresponding approximate term in our optimization objective. It can
be observed that our approximation method has a smaller difference from the actual optimization
objective compared to the naive method. This is important as a more reasonable objective function can
improve the accuracy of the optimization process. When the prior compensation factor αZ1:k−1→Zk

is zero, which means P (Zk|Z1:k−1;θ) = P (Zk|Ẑ1:k−1;θ), the prior prediction information from
previous tasks Z1:k−1 is not lost. As the value of α increases, the discrepancy between the actual
objective P (Zk|Z1:k−1;θ) and the objective of the naive method P (Zk|Ẑ1:k−1;θ) becomes more
evident, indicating a greater degree of forgetting prior knowledge. In contrast, our approach narrows
this gap by effectively mitigating the loss of prior information obtained from tasks Z1:k−1.

3.4 Optimization Strategy

We train the model in a multi-stage manner, in which an initial stage and K − 1 TCL stages are
involved. The initial stage S1 aims to forecast the motion in the foremost segment, while each
TCL stage Sk, k ∈ {2, 3, · · · ,K} performs prediction for segments Z1:k and simultaneously trains
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Figure 3: A toy example illustrating the optimization objectives. Our approximate optimization
objective is closer to the actual objective compared to the naive optimization method.

αZ1:k−1→Zk
. Once the stage Sk is completely trained, we then estimate the factors α̂Z1:k−1→Zk

which would be used in the optimization of the following stages. This process is repeated until the
final stage SK is reached.

Learning of initial stage S1. Following the implementations of previous methods [19], we can
train the initial stage Z1 with Mean Suqared Error (MSE) loss:

L1 =

TZ1∑
i=Th+1

∥∥∥Xi − X̂i

∥∥∥2 (6)

where Xi and X̂i represent the ground truth and predicted motion of the i-th frames respectively.

Temporal Continual Learning at stage Sk. In stage Sk (k ≥ 2), we need to update the model
parameters θ corresponding to tasks Z1:k and the PCF αZ1:k−1→Zk

. According to Equation (5), the
loss function in this stage can be calculated as follows:

Lk =(1− αZ1:k−1→Zk
)

TZk∑
i=TZk−1

+1

∥∥∥Xi − X̂i

∥∥∥2 + (1− αZ1:k−1→Zk
) log(1− αZ1:k−1→Zk

)

+ log(1 + αZ1:k−1→Zk
) +

k−1∑
j=2

(1− α̂Z1:j−1→Zj
)

TZj∑
i=TZj−1

+1

∥∥∥Xi − X̂i

∥∥∥2 + L1

(7)

where the parameters α̂Z1→Z2 , · · · , α̂Z1:k−2→Zk−1
are dertermined in the learning of previous stages.

Once the model parameters for stage Sk are determined, we then calculate α̂Z1:k−1→Zk
as:

α̂Z1:k−1→Zk
=

1

M

M∑
m=1

α̂m
Z1:k−1→Zk

(8)

where M represents number of samples and α̂m
Z1:k−1→Zk

is PCF estimated for the m-th sample.

We continue the TCL training process by predicting stage Sk+1 and updating the model parameter
θ as well as PCF αZ1:k→Zk+1

. We repeat this TCL process until we reach the final stage SK . In
practice, we require the backbone model to output an extra dimension and pass it through an MLP
head to obtain α. The algorithm flow is summarized in Algorithm 1.
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Algorithm 1 Training procedure of proposed TCL framework.

Require: observed frames X1:Th
, ground truth future frames XTh+1:Th+Tp

, model parameters θ,
stage number K, training epoch for k-th stage Ek, learning rate λ, training sample number M .
for i = 1 to E1 do
X̂Th+1:TZ1

= fθ(X1:Th
)

θ ← θ − λ ∗ ∇θL1(XTh+1:TZ1
, X̂Th+1:TZ1

)
end for
A = ∅
for k = 2 to K do

for i = 1 to Ek do
X̂Th+1:TZk

, αZ1:k−1→Zk
= fθ(X1:Th

)

θ ← θ − λ ∗ ∇θLk(XTh+1:TZk
, X̂Th+1:TZk

, αZ1:k−1→Zk
,A)

end for
α̂Z1:k−1→Zk

= 0
for m = 1 to M do

αm
Z1:k−1→Zk

= fθ(X
m
1:Th

)

α̂Z1:k−1→Zk
= α̂Z1:k−1→Zk

+ αm
Z1:k−1→Zk

end for
α̂Z1:k−1→Zk

= 1
M α̂Z1:k−1→Zk

A = A ∪ {α̂Z1:k−1→Zk
}

end for

4 Experiments

4.1 Experimental Setup

We validate our framework on four benchmark datasets. Human3.6M[17] is a large dataset that
contains 3.6 million 3D human pose data. 15 types of actions performed by 7 actors(S1, S5, S6, S7,
S8, S9 and S11) are included in this dataset. Each actor is represented by a skeleton of 32 joints.
However, following the data preprocessing method proposed in [28, 31], we only use 22 joints. The
global rotations and translations of poses are removed, and the frame rate is downsampled from 50
fps to 25 fps. For testing and validation, we use actors S5 and S11, while training is conducted on
the remaining sections of the dataset. CMU-MoCap is a smaller dataset that has 8 different action
categories. The global rotations and translations of the poses are also removed. Each pose contains 38
joints, but following the data preprocessing methods in [28, 31], we only use 25 joints. 3DPW[44] is
a challenging dataset that contains human motion data captured from both indoor and outdoor scenes.
Poses in this dataset are represented in 3D space, with each pose containing 26 joints. However,
only 23 of these joints are used, as the other three are redundant. The Archive of Motion Capture as
Surface Shapes (AMASS)[29] dataset gathers 18 existing mocap datasets. Following [39], we select
13 from those and take 8 for training, 4 for validation and 1 (BMLrub) as the test set. We consider
forecasting the body joints only and discard those 4 static ones, leading to an 18-joint human pose.

Following the benchmark protocols, we use the Mean Per Joint Position Error (MPJPE) in millimeters
(ms) as our evaluation metric for 3D coordinate errors and Euler Angle Error (EAE) for Euler angle
representations. The performance is better if this metric is smaller.

Implementation Details. Following [28, 30, 39], we set the input length to 10 frames and the
predictive output to 25 frames for Human3.6M, AMASS and CMU-Mocap datasets, respectively. For
the 3DPW dataset, we predict 30 frames conditioned on the observation of the preceding 10 frames.
We choose PGBIG as our backbone model by default. In order to learn the PCF, we add an extra
dimension to the output of the backbone model and calculate PCF through an MLP network whose
hidden dimension is set to 512. We partitioned the future sequences into three segments with lengths
of 3, 9, and 13. The training process was conducted on an NVIDIA RTX 3090 GPU for 120 epochs,
allocating 50, 90, and 120 epochs for each respective stage.
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Table 1: Results on Human3.6M. *Using EAE
as the metric.

dataset H36M

ms 80 160 320 400 560 1000

POTR* 0.235 0.581 0.990 1.143 1.362 1.826

POTR+Ours 0.233 0.549 0.923 1.056 1.290 1.746

R.S. 29.9 55.7 94.5 108.7 130.1 168.0

R.S.+Ours 28.0 52.8 91.3 105.6 127.3 166.3

LTD 12.7 26.1 52.3 63.5 81.6 114.3

LTD+Ours 10.8 23.0 48.2 59.3 77.5 111.2

MM 12.7 26.4 53.4 65.0 83.6 117.6

MM+Ours 11.5 25.0 52.0 63.7 82.8 117.1

siMLPe 10.7 23.9 50.7 62.6 82.0 116.0

siMLPe+Ours 10.0 22.9 49.4 61.2 80.6 114.6

PGBIG 10.3 22.7 47.4 58.5 76.9 110.3

PGBIG+Ours 9.4 21.3 45.7 56.8 75.4 108.8

Table 2: Results on CMU-MoCap, 3DPW and
AMASS.

dataset CMU
ms 80 320 400 560 1000

R.S. 24.4 80.1 93.1 112.5 141.5
R.S.+Ours 21.4 72.7 85.6 105.6 136.1

LTD 9.3 33.0 40.9 55.8 86.2
LTD+Ours 9.1 31.0 38.5 53.1 84.9

PGBIG 7.6 29.0 36.6 50.9 80.1
PGBIG+Ours 7.5 28.3 35.4 48.6 78.4

dataset 3DPW
ms 200 400 600 800 1000
R.S 99.3 129.7 142.9 161.1 171.7

R.S+Ours 91.8 120.0 139.5 156.2 169.1
LTD 35.6 67.8 90.6 106.9 117.8

LTD+Ours 33.1 64.1 86.1 100.4 110.0
PGBIG 29.3 58.3 79.8 94.4 104.1

PGBIG+Ours 21.4 47.1 67.7 83.5 96.0
dataset AMASS

ms 80 320 400 560 1000
STSGCN 11.4 37.2 43.8 53.8 69.7

STSGCN+Ours 10.9 36.7 42.8 52.4 68.1

4.2 Experimental Results

We apply our method on the following approaches on four benchmark datasets: Res.Sup.(R.S.)
[32], LTD [31], POTR [33], STSGCN [39], MotionMixer(MM) [3], siMLPe [13] and the current
state-of-the-art PGBIG [28]. Res.Sup. is an RNN-based model. LTD, STSGCN and PGBIG are
GCN-based models. POTR is a transformer-based method. MotionMixer and siMLPe are MLP-based
models. All these methods have released their code publicly. We employ their pre-trained models or
re-train their models using the suggested hyper-parameters for a fair comparison. And we also follow
the metric they used to evaluate the results.

Table 1 presents experimental results of different backbone models before and after applying our
training strategy on Human3.6M dataset. Our frameworks outperform the corresponding backbone
models by a considerable margin (more than 1.5). Specifically, when applying our strategy to PGBIG,
we obtained a performance of 64.97, which is much better than the performance of the original PGBIG
(66.52). Table 2 shows the quantitative comparisons of prediction results on the CMU-MoCap, 3DPW
and AMASS datasets in which our proposed framework also achieves the best results. We can observe
that the improvement in long-term prediction is greater compared to short-term prediction, indicating
that the prior information provided by short-term prediction is more crucial for challenging long-term
prediction tasks. It is worth noticing that our framework outperforms the others by a significant
margin on 3DPW dataset. Specifically, our strategy outperforms PGBIG by 8.9 (63.59 vs 72.49). We
attribute this to our framework’s ability to leverage prediction prior for the subsequent prediction in
this challenging dataset.

4.3 Visualization

Predicting results. Figure 4 provides some visualization examples of predicted motions, demon-
strating that our framework achieves more accurate results. Specifically, Figure 4a represents the
action “directions”, with the person maintaining an upright position throughout the sequence. The
results of PGBIG exhibit a bent posture during long-term predictions, whereas our method can
predict states closer to the ground truth position. While in Figure 4b, the person first bends and then
stands upright. The PGBIG maintains the bent posture throughout the long-term prediction and our
method can accurately predict the changes in posture. It is evident that our method demonstrates an
improvement in long-term prediction effectiveness.

α at different stages. As Figure 5 displays, the value of α progressively increases with each
training stage. When a new task is added, the model focuses on the new objective without considering
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Figure 4: Some visualization results on Human3.6M dataset.
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Figure 5: α at different stages.

the preservation of prior information, resulting in the forgetting of prior knowledge. Here, we utilize
α to mitigate the loss of prior information, thereby improving the overall training of the model.

4.4 Ablation Studies

We conduct several ablation experiments to further verify the effectiveness of our proposed framework.

Evaluation on the number of tasks. As shown in Table 3, the model’s performance improves as
the number of tasks gets larger from 1 to 3, and it remains stable when the number of tasks becomes
larger than 3.

Table 3: The average error of different numbers of tasks.
number of tasks 1 2 3 5 8

avg error 66.95 66.02 65.00 65.05 65.03

Evaluation on different implementations. As Figure 6 shows, we compare the results of four
different implementations. PGBIG is our baseline model. “w/o α” means that we only divide the
training process into several stages to train each task without using the PCF. “HC” represents using
a hand-crafted coefficient that changes its values similar to our PCF at each epoch. Specifically, in
stage S1, the value of α is set to 1. In stage S2, α is initially set to 0.1 and increased by 0.05 at each
epoch until reaching 0.5, where it remains constant. The same pattern applies to stage S3. In each
subfigure, we show the results of Zk on the validation set which is obtained at stage Sk.
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Figure 6: Comparison of different approaches. PGBIG is a baseline model that is trained without
multi-stage. “w/o α” represents training multi-stage process without PCF. “HC” means using a
hand-designed coefficient. “Ours” is a multi-stage training process with PCF.

In stage S1, where no prior information is available, the results of "w/o α", "HC", and "Ours" are
identical, but superior to the baseline. This validates the effectiveness of decomposing multiple-
moment predictions, as it alleviates the constraint of long-term predictions on short-term predictions
and enhances the model’s ability to learn short-term predictions. In the following stages, the
performance of “w/o α” is worse than “Ours”, which indicates that the prior knowledge exploited by
our framework benefits the prediction model training. Moreover, as the training period progressed, the
performance gap becomes larger. However, the method without α can still achieve better performance
than “PGBIG”, indicating that training model in a multi-stage manner can also exploit some useful
prior information for prediction. We also note that the performance of “Ours” is much better
than “HC”, which conducts temporal continual learning with fixed and manually defined PCF. It
demonstrates that joint training PCF and model parameters is beneficial.

The forgetting of prior knowledge. As shown in Table 4, introducing the prior compensation
factor alleviates the performance degradation from stage S1 to stage S3 of task Z1’s predictions.
Specifically, without PCF, the prediction error of Z1 increases by 0.83, whereas with PCF, it only
increases by 0.27. This result suggests that PCF can effectively alleviate the forgetting issue. As
a result, Z1 can offer more comprehensive priors for Z2 and Z3 predictions, resulting in better
prediction performance.

Table 4: The average error of different tasks at the end of each stage. Zi represents task i.

(a) Without PCF.

Z1 Z2 Z3

S1 9.03 - -
S2 9.44 45.33 -
S3 9.86 45.70 92.80

(b) Using PCF.

Z1 Z2 Z3

S1 9.03 - -
S2 9.10 44.43 -
S3 9.30 44.62 91.37

5 Conclusion

In this paper, we introduced the temporal continual learning framework for addressing the challenges
in human motion prediction. Our framework addresses the constraint between long-term and short-
term prediction, allowing for better utilization of prior knowledge from short-term prediction to
enhance the performance of long-term prediction. Additionally, we introduced the prior compensation
factor to mitigate the issue of forgetting information. Extensive experiments demonstrated our
framework’s effectiveness and flexibility.

Limitation. Our proposed training framework may slightly increase training time. However, the
testing time remains unchanged compared to the backbone model.

Broader Impact. We believe our work has value for not only human motion prediction but also
for more general prediction tasks and backbone models [41, 24, 16, 34]. This has benefits in various
areas such as security monitoring, robotics, and autonomous driving.
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