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Abstract

Solving the Nash equilibrium in normal-form
games with large-scale strategy spaces presents
significant challenges. Open-ended learning
frameworks, such as PSRO and its variants, have
emerged as effective solutions. However, these
methods often lack an efficient metric for evaluat-
ing strategy improvement, which limits their ef-
fectiveness in approximating equilibria. In this pa-
per, we introduce a novel evaluative metric called
Advantage, which possesses desirable properties
inherently connected to the Nash equilibrium,
ensuring that each strategy update approaches
equilibrium. Building upon this, we propose
the Advantage Policy Space Response Oracle (A-
PSRO), an innovative unified open-ended learn-
ing framework applicable to both zero-sum and
general-sum games. A-PSRO leverages the Ad-
vantage as a refined evaluation metric, leading
to a consistent learning objective for agents in
normal-form games. Experiments showcase that
A-PSRO significantly reduces exploitability in
zero-sum games and improves rewards in general-
sum games, outperforming existing algorithms
and validating its practical effectiveness.

1. Introduction
The Nash equilibrium in normal-form games, encompassing
both zero-sum and general-sum scenarios, is a fundamen-
tal concept for modeling the behavior of rational, utility-
maximizing agents. By approximating these equilibria,
agents that outperform humans have been developed in var-
ious domains, including chess (Silver et al., 2018), poker
(Brown & Sandholm, 2019), and real-time strategy (RTS)
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games (Vinyals et al., 2019; Berner et al., 2019). However,
achieving equilibrium becomes increasingly challenging in
large-scale games with complex strategy spaces (Hernandez-
Leal et al., 2017). The development of a unified and efficient
equilibrium solver remains a challenge.

The Policy Space Response Oracle (PSRO) offers an ef-
ficient open-ended strategy learning framework (Lanctot
et al., 2017). Due to its scalability, numerous subsequent
works have developed various PSRO variants to enhance
the efficiency of solving specific games. In zero-sum games,
strategies that emphasize diversity have proven effective for
learning Nash equilibrium (Balduzzi et al., 2019). Methods
such as UDF-PSRO (Liu et al., 2021), UDM-PSRO (Liu
et al., 2022) and PSD-PSRO (Yao et al., 2023), which are
based on diversity modeling, are among the most efficient
equilibrium solvers for large-scale zero-sum games. How-
ever, while increasing diversity improves exploration effi-
ciency, it often results in inefficient strategy improvement
due to the lack of proper guidance. To address this issue, our
work introduces a novel approach by integrating the concept
of Advantage as an independent evaluative metric for strate-
gies. We establish a mathematical equivalence between
advantage maximization and Nash equilibrium, thereby sup-
porting the use of advantage as a strategic learning objective
within the PSRO framework.

In general-sum games, Nash equilibria consist of multiple
joint strategies, each associated with different rewards (Fo-
erster et al., 2018). This contrasts with symmetric zero-sum
games, where the Minimax property ensures that all Nash
equilibria yield identical rewards (Li et al., 2019). Previ-
ous efforts to improve the PSRO algorithm in general-sum
games have primarily focused on enhancing the efficiency
of equilibrium solving (Zhang et al., 2021), often neglecting
the differences in rewards between equilibria. However,
recent research has highlighted that different objectives in
strategy learning can lead to distinct equilibria (Willi et al.,
2022). By adopting an appropriate objective, agents can
achieve equilibrium strategies that also maximize rewards
(Hu et al., 2022). In this work, we present a method to en-
hance strategy rewards using the advantage function. This
approach enables our algorithm to achieve higher rewards
compared to other PSRO methods.
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Figure 1. The geometrical structure examples of zero-sum games and general-sum games. Figure (a) shows the structure of a zero-sum
game with both transitive and cyclic dimensions. The direction of the strategy gradient refers to the expected updates for a strategy that
maximizes the reward. Figure (b) shows the structure of a general-sum game with multiple equilibria. The independent learning process
of the agents leads to the update of the strategy in the direction indicated by the arrow.

In summary, we introduce A-PSRO, an improved equilib-
rium solver for large-scale normal-form games that lever-
ages the Advantage function. In symmetric zero-sum games,
the Advantage function exhibits favorable properties, en-
abling agents to approach the Nash equilibrium deterministi-
cally. By incorporating the Advantage function into existing
diversity-based approaches, we achieve significant improve-
ments in learning Nash equilibrium strategies. In general-
sum games, although the Advantage function is non-convex,
its local maxima correspond to equilibria with varying re-
wards. By exploring strategies near the global optimum
with the objective of maximizing the Advantage function,
our algorithm converges to equilibria with higher rewards.
We also provide methods for both exact and approximate
computation of the Advantage function, allowing A-PSRO
to integrate seamlessly into existing PSRO frameworks.

We conducted experiments on various games to evaluate our
algorithm. In zero-sum games, the strategies derived using
the A-PSRO algorithm are significantly closer to equilib-
rium. In general-sum games, the A-PSRO algorithm enables
agents to learn strategies that achieve globally optimal re-
wards, avoiding entrapment in locally optimal equilibria.
These results underscore the effectiveness of the A-PSRO
algorithm as a unified framework for solving equilibrium.

2. Related Work and Background
In this paper, we focus on normal-form games with finite
dimensions, typically represented by three key elements
denoted as (N ,A,U ). Here, N represents the players in the
game, A denotes the action (pure strategy) space of the play-
ers, and U refers to the utility function. In such games,
agents generally adopt strategies π rather than directly
choosing actions a ∈ A. π is defined as a probability dis-
tribution over actions: π = (p1, p2, · · · , p|A|),

∑
pi = 1,

where pi represents the probability of choosing action ai.
To clearly distinguish between different strategies, we use
πt
i to denote the t-th strategy of player i.

The Nash equilibrium (NE) characterizes a stable state,
where no agent can increase its reward by unilaterally al-
tering its strategy. For the joint strategy (π1, · · · , πn), it
is an NE when ∀i ∈ {1, · · · , n}, πi is the best response
(BR) to the strategies of other agents: ∀π′

i, Ui(π
′
i, π−i) ≤

Ui(πi, π−i) (Ui denotes the expected reward of agent i, π−i

represents the joint strategy except for agent i).

Exploitability is defined as the distance of joint strategy
(πi, π−i) and the Nash Equilibrium:

E(πi, π−i) =

n∑
k=1

[maxπ∗
k
Uk(π

∗
k, π−k)− Uk(πk, π−k)].

If the exploitability of a joint strategy (πi, π−i) is 0, it is a
Nash equilibrium.

2.1. Symmetric Zero-sum Games with Transitive
Dimension and Cyclic Dimension

Symmetric zero-sum games with two players (i, j) are
among the most studied game forms because their model is
consistent with many real-world scenarios (Zhang & Sand-
holm, 2022; Sokota et al., 2023). In such games, the joint
strategy of the agents is (πi, πj), with their rewards defined
as Ui(πi, πj) = −Uj(πi, πj). The symmetric property im-
plies that both agents share the same strategy space Π, and
it holds that Ui(π

1
i , π

2
j ) = Uj(π

2
i , π

1
j ).

Previous studies have shown that the geometric structure of
symmetric zero-sum games resembles a spinning top, con-
sisting of both transitive and cyclic dimensions (illustrated in
Figure 1(a)) (Czarnecki et al., 2020). The transitive dimen-
sion characterizes the absolute strengths between strategies.
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A game is considered transitive if there exists an evaluation
function for the strength of a strategy, denoted as fv(π). In
strategic interactions, the strategy with a higher evaluation
function always yields a higher reward.

Ui(π
1
i , π

2
j ) = fv(π

1
i )− fv(π

2
j ) = −Uj(π

1
i , π

2
j ).

The cyclic dimension indicates the presence of mutual re-
straint among strategies, similar to the dynamics observed
in Rock-Scissor-Paper (RSP). In a game with only cyclic
dimension, for any strategy π1

i in the strategy space Π, its
expectation of reward when facing other strategies is 0:∫

π0
j∈Π

Ui(π
1
i , π

0
j ) · dπ0

j = 0.

Real-world games typically exhibit both transitive and cyclic
dimensions, making it impracticable to evaluate strategies
directly using the aforementioned equations. Strategy up-
dates based on gradients may become trapped in the cyclic
dimensions, leading to slow convergence towards the Nash
equilibrium in the transitive dimensions.

2.2. General-sum Games with Multiple Equilibria

Unlike zero-sum games, general-sum games typically fea-
ture multiple Nash equilibria with varying rewards (Tang
et al., 2021), as illustrated in Figure 1(b). Previous studies
have often focused on specific types of equilibria, such as
Pareto-optimal equilibria (Sen et al., 2003), MENE (Maxi-
mum Entropy Nash Equilibrium) (Balduzzi et al., 2018), and
optimal PSNE (Pure Strategy Nash Equilibrium) (Nguyen
et al., 2023).

In the theory of learning in games, the update rule for each
iteration determines the learned equilibrium. Recent studies
have focused on improving equilibrium rewards while en-
suring convergence to an equilibrium (Foerster et al., 2018;
Letcher et al., 2019). It has been demonstrated that provid-
ing appropriate guidance to agents can effectively enhance
the utility of the learning process (Hu et al., 2022).

2.3. Open-ended Learning Framework

Prior research has introduced various methods for solv-
ing Nash equilibria, including WOLF (Win or Learn Fast)
(Bowling & Veloso, 2001) and AWESOME (Adapt When
Everybody is Stationary, Otherwise Move to Equilibrium)
(Conitzer & Sandholm, 2003). The most widely used algo-
rithm is fictitious play, favored for its simplicity of execu-
tion (Fudenberg & Levine, 1995). There are also algorithms
based on adaptive game playing (Freund & Schapire, 1999).
It is worth noting that due to the complexity of general-sum
game structures, these algorithms typically exhibit guaran-
teed convergence only in zero-sum games.

The PSRO algorithm presents an effective approach to solv-
ing Nash equilibrium in games with large-scale strategy
spaces. Inspired by the Double Oracle algorithm (McMa-
han et al., 2003; Bošanský et al., 2016), PSRO estab-
lishes a population to represent strategies for each agent.
The initial strategy population is generated randomly as
Pi = (π1

i , · · · , πt
i). In each iteration, the empirical game

matrix for agent i is calculated as Mi = Pi×Ui×P−i. By
adopting the fictitious play to solve the Nash equilibrium
of meta-game, with a payment matrix of (Mi,M−i), we
can derive the meta-equilibrium for agents: (θi, θ−i). Then,
agent i will search for a new strategy πt+1

i , usually the best
response to the meta-equilibrium of the opponent BR(θ−i).

Improvements to the PSRO algorithm primarily involve
incorporating new meta-game solvers or adopting diverse
objectives to guide the generation of new strategies. Addi-
tionally, there are open-ended algorithms that explore alter-
native equilibrium concepts, such as the α-Rank equilibrium
(α-PSRO) (Muller et al., 2020), the correlated equilibrium
(JPSRO) (Marris et al., 2021) and coarse correlated equilib-
rium (CCE) (Liu et al., 2024).

In this paper, we focus on refining the process of strategy
exploration of PSRO framework. Previous works have typi-
cally enhanced strategy generation by increasing diversity.
Several methods exist for measuring diversity, including
Expected Cardinality (EC) (Perez-Nieves et al., 2021), Be-
havioral Diversity (BD),Response Diversity (RD) (Liu et al.,
2021) and Policy Space Diversity (PSD) (Yao et al., 2023).

3. From Exploitability to Advantage Function
We first consider symmetric zero-sum games, where both
agents share the same strategy space Π = {π1, π2, · · · }.
From the symmetry, we have the following property:
Theorem 3.1. In symmetric zero-sum games, if the joint
strategy (π1

i , π
2
j ) is a Nash equilibrium, we have (π1

i , π
1
j )

and (π2
i , π

2
j ) are both Nash equilibriums.

For a strategy π in a zero-sum game, its best response BR(π)
is usually a set containing many strategies. However, we
have the following property:
Theorem 3.2. For any two-player game, when the strategy
of another player is fixed (denoted as πj), there always exists
pure strategy ai ∈ A which satisfies that ai ∈ BR(πj).
Particularly, in zero-sum games, Ui(πi, πj) is always the
same for all πj ∈ BR(πi).

Then we have:

E(π1
i , π

2
j ) = maxπ′

i
Ui(π

′
i, π

2
j )− Ui(π

1
i , π

2
j )

+ maxπ′′
j
Uj(π

1
i , π

′′
j )− Uj(π

1
i , π

2
j )

= Ui(BR(π
2
j ) ∩ A, π2

j ) + Uj(π
1
i ,BR(π

1
i ) ∩ A)

= −Uj(BR(π
2
j ) ∩ A, π2

j )− Ui(π
1
i ,BR(π

1
i ) ∩ A).
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According to Theorem 3.1, the symmetry in most 2p0s
games allows us to define the distance between a single
strategy and equilibrium, similar to the exploitability. If
we consider BR(π1

i ) as a function of π1
i , then the value of

Ui(π
1
i ,BR(π

1
i ) ∩ A) is determined only by π1

i .

Definition 3.3. In two-player zero-sum games, we define
the advantage function as:

Vi(πi) = Ui(πi, a
0
j ), a

0
j ∈ BR(πi) ∩ Aj .

From Theorem 3.2, we can see that this definition makes
sense because the selection of best response BR(πi) does
not affect the value of Vi. Therefore, we also use Vi(πi) =
Ui(πi,BR(πi) ∩ Aj) to denote the advantage function.

Theorem 3.4. In two-player zero-sum games,

• E(πi, πj) = −(Vi(πi) + Vj(πj)).

• Vi(πi) is Lipschitz continuous about πi, and −Vi(πi)
is a convex function about πi.

• If the game is symmetric, ∀πi, Vi(πi) ≤ 0. The joint
strategy (π0

i , π
0
j ) is a Nash equilibrium if and only if

Vi(π
0
i ) = Vj(π

0
j ) = 0. In games with only transitive

dimension, Vi(πi) > Vj(πj) implies Ui(πi, πj) > 0.

From Theorem 3.4, we observe that the advantage function
has a unique local and global maximum of 0 in symmetric
zero-sum games, indicating that the corresponding strategy
is a Nash equilibrium. This finding suggests that improving
the advantage of strategies guides the learning process to-
wards convergence at the Nash equilibrium. Additionally,
the advantage function can be computed within the pure
strategy space A.

4. Advantage Policy Space Response Oracle
In this section, we introduce the A-PSRO framework and its
theoretical properties for zero-sum and general-sum games.

4.1. A-PSRO for Symmetric Zero-sum Games

In classic PSRO algorithms, new strategies added to the pop-
ulation Πi = {π1

i , · · · , πt
i} are typically derived through

best response, with the opponent strategy fixed as the meta-
Nash strategy:

πt+1
i ∈ BR(θj), where (θi, θj) = NE(Mi,Mj).

Best response-based updates may stagnate within cyclic di-
mensions, causing the PSRO algorithm to converge slowly
in non-transitive games. To address this, diversity strategy
algorithms offer an improvement over the classic PSRO by
increasing the probability of discovering novel strategies in

the transitive dimension. For example, DPP-PSRO (Perez-
Nieves et al., 2021) incorporates Expected Cardinality (EC)
as a regularizer to generate new strategies. However, new
strategies generated by diversity algorithms are stochastic,
which means they cannot deterministically approach equi-
librium.

From Theorem 3.4, we can see that increasing the advan-
tage of strategy will approach the Nash equilibrium. Since
−Vi(πi) is convex, we design the A-PSRO to introduce
advantage as the objective of strategy learning.

For the population-based strategy update approach in PSRO,
we define Vi(πi | Pj) = Ui(πi,BR(πi | Pj)), where

BR(πi | Pj) = argmaxπj∈Pj
Uj(πi, πj).

Theorem 4.1. In symmetric zero-sum games, given the
population Pi = Pj = {π1

i , · · · , πt
i}, ∀πk

i ∈ Pi, we have
Vi(π

k
i ) ≤ Vi(θi | Pi). Here, θi is the equilibrium of the

meta-game corresponding to the population Pi.

Note that Vi(π
k
i ) ≤ Vi(θi) does not always hold (example

given in Supplementary Material). However, we have:

∀πk
i ∈ Pi, Vi(π

k
i ) ≤ Vi(θi),when hull(Pi) = Π,

where hull(Pi) is the convex hull of population. Theorem
4.1 indicates that the equilibrium of the meta-game approxi-
mately maximizes the advantage of the current population.

We aim to search for a new strategy with a deterministic
increase in the advantage of population. We have the fol-
lowing property of the advantage in population iterations.
Theorem 4.2. Given the meta-equilibrium strategy θi, if
Vi(θi) < 0, there exists ∆πi ∈ A and δ > 0 satisfying:

∀ 0 < d < δ, Vi ((1− d) · θi + d ·∆πi) > Vi(θi).

Theorem 4.2 indicates that if the meta-equlibrium θi of the
current population is not a Nash equilibrium, we can find a
strategy closer to the Nash equilibrium in its neighborhood.
Furthermore, according to optimization theory, since the ad-
vantage function is convex, this strategy update guarantees
to approach the Nash equilibrium at a sublinear rate.

Next, we explain how to improve PSRO’s strategy explo-
ration process by using the advantage function as a regular-
ization term. A-PSRO differs from other algorithms only
when adding new strategies πt+1

i to the current population
Pi, and we refer to this process as LA (LookAhead). Given
step size d, the new strategy generated is:

πt+1
i = (1− d) · θi + d ·∆πi,

∆πi = argmax∆π∈A Vi((1− d) · θi + d ·∆π).

For finite-dimensional zero-sum games, the advantage func-
tion can be computed through matrix multiplication:

Vi(πi) = Minaj∈Aj πi × Ui × aj ,
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making its computational complexity comparable to that of
the best response.

4.2. A-PSRO for Two-player General-sum Games

To the best of our knowledge, ensuring convergence in
general-sum games remains a challenging problem. Most
algorithms can only converge within specific game struc-
tures. However, since the advantage function is directly tied
to the reward function, it can guide agents to learn strategies
that achieve higher rewards. When multiple equilibria are
learnable within a game, A-PSRO outperforms general algo-
rithms by identifying equilibria with higher joint rewards.

In a two-player general-sum game, an action a1i is called
dominated if ∀πj ∈ Πj , there exists aki ∈ Ai \ {a1i },
Ui(a

1
i , πj) ≤ Ui(a

k
i , πj). It is usually assumed that domi-

nated actions can be removed from the game. Therefore, we
define the simplified game:

Definition 4.3. We call a game a simplified game if there
does not exist dominated pure strategy ai for any player i.

For arbitrary general-sum game, a corresponding simplified
game can be obtained by removing dominated actions.

When extending Definition 3.3 to general-sum games, dif-
ferent choices of BR(πi) will lead to inconsistent advantage
functions. Fortunately, in simplified games, we have the
following property:

Theorem 4.4. In two-player simplified games, ∀πi, for any
alj ∈ BR(πi)∩Aj and ∀δ > 0, there always exists π′

i which
satisfies |π′

i − πi| < δ and BR(π′
i) ∩ Aj = {alj}.

This theorem shows that for almost all strategies, their ad-
vantage can be defined through a unique best response. To
maintain consistency, when multiple best responses from op-
ponents exist, we select the one that maximizes the agent’s
own reward to define the advantage function:

Definition 4.5. In two-player simplified games, we define
Vi(πi) = maxaj

Ui(πi, aj), where aj ∈ BR(πi) ∩ Aj .

This definition always makes sense. Similar to zero-sum
games, the advantage function has the following properties
in simplified general-sum games:

Theorem 4.6. In two-player simplified games,

• ∀i, Vi(πi) is Lipschitz continuous.

• We assume that the joint strategy (πi, πj) is a Nash
equilibrium. If BR(πi) ∩ Aj has the unique element,
then Vi(πi) is a local maximum.

• Under the same assumption, if (π1
i , π

2
j ) and (π3

i , π
4
j )

are both NEs, then (π1
i , π

2
j ) Pareto dominates (π3

i , π
4
j )

if and only if Vi(π
1
i ) ≥ Vi(π

3
i ) and Vj(π

2
j ) ≥ Vj(π

4
j ).

In general-sum games, the advantage function is non-
convex, which means that strategy gradient algorithms only
converge to local maxima. However, when computing
the meta-equilibrium (θi, θj) within the population-based
PSRO algorithm, we prove that there exists a space in which
strategy converges to the global optimum.

Theorem 4.7. In two-player simplified games, the current
population for agent i is Pi = {π1

i , · · · , πt
i}. θi is the

global maximum point of the advantege Vi in hull(Pi). Then
there must exist a non-zero measure set D′ ⊂ hull(Pi),
which satisfies that if θ′i is a local maximum point of the
advantege Vi in D′, then Vi(θ

′
i) = Vi(θi).

Theorems 4.6 and 4.7 establish that in general-sum games,
there exists a non-zero measure set near the optimal equilib-
rium where the population of strategies converges towards
that equilibrium. Strategies close to equilibria with optimal
rewards tend to have higher advantage values due to the
Lipschitz continuity of the advantage function.

In A-PSRO, we adopt a strategy exploration approach de-
signed to increase the probability of discovering strategy
with higher advantage:

πt+1
i = (1− d) · θi + d ·∆πi,

θi = argmax
(θ′

i,θ
′
j)∈Θ

Vi(θ
′
i), Θ =

⋃
πi,j∈hull(Pi,j)

O(Pi,Pj | πi,j).

Here, d is the fixed step size, and the calculation of ∆πi

is the same as zero-sum games. O(Pi,Pj | πi,j) repre-
sents the meta-equilibrium obtained through a fictitious play
oracle with (πi, πj) as initial strategies.

4.3. A-PSRO for Large-scale Games

The PSRO framework has also been widely adopted for
solving large-scale extensive-form games due to its compat-
ibility with neural network-based implementations. Since
this paper primarily focuses on the theoretical properties of
the advantage function and its applications in normal-form
games, related studies will be presented in future work. Re-
garding the extension of A-PSRO to other scenarios such as
sequential decision-making scenarios, we have conducted
some theoretical analysis and experiments. Here, we present
several feasible extensions.

Empirical Games Solver. The research in (Czarnecki
et al., 2020) indicates that pure strategies with a wide range
of skills extracted from large-scale extensive-form games
(such as StarCraft) can also define a normal-form game.
The strategies obtained by solving the empirical game are
also important for many problems. There are several works
about empirical games such as (Walsh et al., 2004). The
A-PSRO algorithm presented in this paper can be directly
applied to efficiently solve the aforementioned empirical
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Figure 2. The exploitability of the joint strategy learned by agents in various zero-sum games is depicted. The reduction in exploitability
through population iterations can serve as an indicator of the effectiveness in approximating the Nash equilibrium.
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Figure 3. The advantage distribution of strategies. Lighter colored regions indicate strategies with higher advantage.

games. The solutions can serve as effective approximations
of Nash equilibria for large-scale extensive-form games.

Neural Network Approximation. When PSRO is applied
to solving large-scale extensive-form games, it typically em-
ploys RL methods such as policy gradient to explore new
strategies. To introduce regularization based on the advan-
tage function, we need to design neural network approxima-
tions of the advantage function.

We sample a set of strategies based on the empirical game
as a predefined best response set A. Then we pre-train a
best response predictor BR∗(·, γ) with parameter γ, which
can be implemented analogously to a classification task.
For any πi, we generate the label as the first pure strategy
maximizing the reward of πi in its best response set:

BR∗∗(πi) = (c1, · · · , cl−1, cl, cl+1, · · · , c|Aj |).

cl = 1 if l = argminl

{
argmaxal

j∈Aj
Uj(πi, a

l
j)
}

.

After training the predictor parameter γ with cross entropy
loss function −BR∗∗(πi) · logBR∗(πi, γ), the approxi-
mated advantage function V ∗

i (πi) can be computed for each
strategy πi using the predicted opponent’s best response
BR∗(πi, γ). This allows to train the advantage predictor
V̂i(πi, γ

′) with MSE loss. Base on the advantage predictor,
we can calculate ∇πi

V̂i(πi, γ
′) with fixed γ′ to generate the

advantage regularization for strategy updating. We demon-
strate through the following theorem that when the approx-
imation satisfies certain conditions, it can still effectively
guarantee the global effectiveness of strategy exploration.

Theorem 4.8. If |∇πi
V̂i(πi)−∇πi

Vi(πi)| ≤ 1
3 |∇πi

Vi(πi)|,
the strategy generated by the A-PSRO exploration process
will converge to equilibrium strategy with the sublinear
convergence rate in symmetric zero-sum games.
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Figure 4. The joint reward of the agent system in general-sum games. The Staghunt game and the RSP game are repeated 10 times and
averaged for plotting. Randomly generated games contain 100 games with the same reward distribution.
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Figure 5. The advantage distribution of strategies in different two-player general-sum games.

Expansion in Multi-player Games. In n-player games
(n > 2), the advantage function cannot be defined by the
best response. We define the advantage function as:

Vi(πi) = max Ui(πi, µ(πi)), µ(πi) = O(Π−i | πi).

µ(πi) is a joint strategy without player i as the equilibrium
of the (n− 1)-player subgame when the strategy of player i
is πi. µ(πi) is computed by an equilibrium oracle O.

In order to efficiently approximate the advantage function,
we define the optimistic equilibrium oracle similar to (Basil-
ico et al., 2020; Wang et al., 2022).

µ(πi) = argmaxπ−i
Ui(πi, π−i), π−i = NE(U−i | πi).

Here, NE(U−i | πi) represents a Nash equilibrium of the
subgame with πi fixed. We give an approximation of the
optimistic equilibrium oracle by simplifying it to a two-
player game. We view the other agents as a single agent
{−i} with action space A−i, and approximate advantage as

V̂i(πi) = maxπ−i
Ui(πi, π−i), π−i ∈ BR(πi) ∩ A−i.

Based on the above method, the calculation of the advantage
function in multiplayer games can also be implemented with
pre-trained predictor similar to the two-player setting.

5. Experiment Results and Discussion
We evaluate the performance of A-PSRO in multiple game
environments. We select the state-of-the-art game solvers as
baselines, including PSRO (Lanctot et al., 2017), Pipeline-
PSRO (P-PSRO) (McAleer et al., 2020), DPP-PSRO (Perez-
Nieves et al., 2021), UDF-PSRO (Liu et al., 2021) and
PSD-PSRO (Yao et al., 2023). To ensure a fair compari-
son, all other components of the PSRO framework are kept
unchanged, with strategy exploration being the only aspect
that differs among the algorithms.

5.1. Experiments in Symmetric Zero-sum Games

In symmetric zero-sum games, we test A-PSRO with both
LookAhead and diversity modules on complex real-world
games. The environment we chose for testing is the normal-
form games generalized used in the previous PSRO algo-
rithms (Czarnecki et al., 2020; Liu et al., 2022).

In Figure 2, we show the results in typical zero-sum games.
Additional experiments are presented in the Supplemen-
tary Material. From Figure 2, we can see that our method
achieves a notable reduction in exploitability across all game
environments, sometimes by several orders of magnitude.
A-PSRO without diversity module outperforms A-PSRO in
the Transitive game. The reason is that the diversity mod-
ule is designed to navigate the constraints of non-transitive
structure, and its impact is limited in games with strong tran-
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Figure 6. The exploitability of zero-sum multiagent games and joint reward of general-sum multiagent games. Each algorithm is tested in
4 randomly generated identically distributed game environments, and the averages are plotted.

sitive dimensions. The effectiveness of A-PSRO without
the LookAhead module has a significant decline in all the
games, which indicates that our LookAhead module greatly
contributes to approximating Nash equilibria in all games.

Compared to diversity-based algorithms, A-PSRO exhibits
higher exploitability during the early stages, primarily due
to subgames failing to fully cover the entire strategy space.
This observation underscores the importance of incorporat-
ing diversity exploration into the learning process. When
combined with diversity exploration, A-PSRO achieves a
stable and rapid reduction in exploitability, even in scenarios
where other algorithms experience stagnation.

In Figure 3, we show the distribution of advantages in differ-
ent games. We use the non-linear dimensionality reduction
method t-SNE (t-Distributed Stochastic Neighbor Embed-
ding) (Van der Maaten & Hinton, 2008) to map the strate-
gies into the unit matrix and maintain adjacency between
strategies. In games with a strong transitive dimension (Al-
phaStar, Transitive game), the advantage function exhibits
rapid changes around the Nash equilibrium. Conversely,
in games with a strong cyclic dimension, when the advan-
tage function changes slowly, the diversity module becomes
crucial for the learning process of the Nash equilibrium.

We also compare the running time of A-PSRO with other
PSRO algorithms. The experimental results and settings are
given in the Supplementary Material for detailed analysis.

5.2. Experiments in Two-player General-sum Games

It is worth noting that the compared algorithms do not guar-
antee convergence in all general-sum games. To ensure a
fair comparison, we extended the zero-sum game structure
to a general-sum game with multiple equilibria and verified
that all algorithms successfully converged to equilibrium
under this setting. The detailed game structure is given in
the Supplementary Material.

In Figures 4(a) and 4(b), we present the training results

of the algorithms in the aforementioned games. Figure 4
demonstrates that A-PSRO consistently learns the optimal
equilibrium strategy, whereas other algorithms acquire dif-
ferent equilibria and often stagnate in suboptimal equilibria.

We further conduct experiments in randomly generated
games, and the results are depicted in Figure 4(c). In our
experiments, A-PSRO also attains the highest reward.

We depict the distribution of advantage in the aforemen-
tioned games in Figure 5. It is evident from the figure that
the advantage of general-sum games is non-convex. Algo-
rithms based on the strategy gradient are likely to converge
to different equilibrium strategies from various initial points.

In general-sum games, A-PSRO requires exploring multi-
ple equilibrium oracles to identify higher-reward strategies.
Compared to other algorithms, this inevitably leads to in-
creased computational complexity. We will address this
limitation in the future work.

5.3. Experiments in Multi-player Games

For multi-player games, we test our method in both zero-
sum and general-sum games. We randomly generated a
series of identically distributed games as test environments.

Figure 6(a) illustrates the distance of the learned strategies
from the Nash equilibrium for different algorithms in multi-
player zero-sum games. As shown in the figure, A-PSRO
effectively explores strategies with higher advantage and
converges toward the Nash equilibrium, whereas other algo-
rithms exhibit slower convergence.

Figure 6(b) presents the joint rewards of the algorithms dur-
ing the training process of multi-player general-sum games.
The results align with Figure 4(c), indicating that A-PSRO
consistently learns the equilibrium strategy with the highest
joint reward. The parameter setting and experimental details
are given in the Supplementary Material.
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Figure 7. The running time of different algorithms. The left figure
shows the cumulative time spent by different algorithms during
a single strategy exploration given a meta-equilibrium. The right
figure shows the cumulative time spent by different algorithms in
solving the equilibrium of the meta-game.

5.4. Comparison of Computational Complexity

In this section, we compare the computational complexity
of A-PSRO and diversity-based PSRO algorithms.

Assume that the payoff U is a [n, n] matrix, and population
Pi and Pj are [p, n] matrixs. The current meta-equilibrium
π is an [n, 1] vector, and the update step size is d.

Taking the classic EC diversity metric as an example:

EC (Pi | Pj) := Tr
(
I− (L+ I)−1

)
L = MiMT

i ,Mi = Pi × Ui × Pj

Its computational complexity is O(pn2 + p2n + p3). The
strategy exploration process requires the exploration of each
update directions in pure strategy space to get the one that
maximizes diversity. Thus the actual computational com-
plexity is n×O(pn2+p2n+p3) = O(pn3+p2n2+p3n).

Regarding the computation of the advantage function, the
following presents an implementation method we use in our
code. First, repeat π and derive a [n, n] matrix Q, and then
the LookAhead update direction can be obtained through:

min([Q · (1− d) + I · d]× U × I).argmax().

This process has a computational complexity of O(n3),
which is independent of the population size, and lower than
the complexity of diversity-based exploration.

In our experiments, the time-consuming modules include
meta-game solving, diversity-based strategy exploration,
and non-diversity-based strategy exploration. Among them,
the experimental code only differs in the last module be-
tween A-PSRO and other algorithms.

From Figure 7(a), we can see that if only the LookAhead
module is used (ours without diversity), the time spent on
strategy exploration in A-PSRO increases almost linearly.
From other algorithms (which perform diversity exploration
with a certain probability), it can be observed that diversity

exploration leads to a nonlinear increase in the time per
iteration. This suggests that using the advantage function as
an evaluation metric does not introduce more computational
complexity compared to diversity metrics.

From Figure 7(b) and empirical analysis, it can be observed
that the solving time of the meta-game with fictitious play
is an exponential function of the population size. A-PSRO
has the longest runtime, indicating that A-PSRO has the
largest population size during training. Considering that
in the pipeline improvement (McAleer et al., 2020), the
PSRO algorithm does not expand the population at every
iteration but only adds new strategies when the existing
ones converge (see Algorithm 2 in appendix for details), this
demonstrates that A-PSRO’s strategy exploration quickly
improves the existing strategies in the population to optimal.

Comparison with Traditional Game Solver. The above
results also demonstrate the advantages of population-based
equilibrium solving algorithms over traditional approaches.
Compared to exact solution algorithms such as linear pro-
gramming, PSRO-type algorithms can obtain approximate
solutions at lower computational cost. If we consider an
exploitability level of 10−2 to be sufficiently close to equilib-
rium, A-PSRO requires fewer than 50 iterations to achieve
this, with a total runtime less than 1 minute, which is signif-
icantly lower than the time required for exact solutions.

On the populations obtained from A-PSRO, fictitious Play
only requires about 103 of iterations to reach exploitability
10−4. In contrast, it takes about 104 iterations directly using
fictitious play. Since the process of solving meta-equilibria
based on fictitious play is the most time-consuming com-
ponent in the PSRO framework, A-PSRO accelerates the
convergence speed of the PSRO framework toward Nash
equilibria through efficient strategy exploration.

6. Conclusion
In this paper, we introduce A-PSRO, a unified open-ended
framework for learning equlibrium strategies. We propose
the advantage function as an evaluation metric for the strat-
egy. The advantage function exhibits favorable properties,
such as convexity and Lipschitz continuity. Leveraging the
advantage function, A-PSRO effectively enhances the objec-
tive of strategy exploration during population expansion. In
zero-sum games, A-PSRO can deterministically approach
Nash equilibrium strategies during iterations, significantly
reducing the exploitability of learned strategies. Moreover,
in general-sum games with multiple equilibria, A-PSRO
maximizes rewards during the learning of Nash equilibria.
Experimental results demonstrate the robust generalization
capabilities of A-PSRO as an open-ended framework in
large-scale environments, highlighting its potential to ad-
vance equilibrium theory in multiagent systems.
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A. Omitted Proofs
A.1. Proof of Theorem 3.1

Theorem. In symmetric zero-sum games, if the joint strategy (π1
i , π

2
j ) is a Nash equilibrium, we have (π1

i , π
1
j ) and (π2

i , π
2
j )

are both Nash equilibriums.

Proof. From the definition, the joint strategy (π1
i , π

2
j ) is a Nash equilibrium implies that the exploitability E(π1

i , π
2
j ) = 0.

Then we will have:

E(π1
i , π

2
j ) = maxπ′

i
[Ui(π

′
i, π

2
j )− Ui(π

1
i , π

2
j )] + maxπ′

j
[Uj(π

1
i , π

′
j)− Uj(π

1
i , π

2
j )] = 0. (1)

This indicates that:

maxπ′
i
[Ui(π

′
i, π

2
j )− Ui(π

1
i , π

2
j )] = maxπ′

j
[Uj(π

1
i , π

′
j)− Uj(π

1
i , π

2
j )] = 0. (2)

Then we prove that Ui(π
1
i , π

2
j ) = Uj(π

1
i , π

2
j ) = 0. If the reward of agents are not all 0, since the game is zero-sum, we

assume that:
Ui(π

1
i , π

2
j ) > Uj(π

1
i , π

2
j ). (3)

Since the game is symmetric, we will have:

Ui(π
1
i , π

1
j ) = Uj(π

1
i , π

1
j ) = 0. (4)

This indicates that:
maxπ′

j
[Uj(π

1
i , π

′
j)− Uj(π

1
i , π

2
j )] ̸= 0, (5)

which leads to contradiction. Therefore, we prove that the rewards of both agents are 0.

From the equations above we have that Uj(π
1
i , π

1
j ) = Uj(π

1
i , π

2
j ) = 0. Since π2

j is a best response to π1
i , we can see that π1

j

is also a best response to π1
i . This indicates that (π1

i , π
1
j ) and (π2

i , π
2
j ) are both Nash equilibriums.

A.2. Proof of Theorem 3.2

Theorem. For any two-player game, when the strategy of another player is fixed (denoted as πj), there always exists pure
strategy ai ∈ A which satisfies that ai ∈ BR(πj). Particularly, in zero-sum games, Ui(πi, πj) is always the same for all
πj ∈ BR(πi).

Proof. We assume that there exists strategy π∗
i = (p1, · · · , p|A|) which is the best response of πj . Then we have:

Ui(π
∗
i , πj) = p1Ui(a1, πj) + · · ·+ p|A|Ui(a|A|, πj) ≤ maxl∈{1,··· ,|A|} Ui(al, πj), (6)

which implies that al ∈ A is a best response to πj .

In zero-sum games, we assume that the strategy of the player i is fixed as πi. Then we have:

BR(πi) = argmaxπj
Uj(πi, πj). (7)

We assume that for all πj ∈ BR(πi), the reward of player j is Uj(πi, πj) = U0. If the game is zero-sum, the reward of
player i is Ui(πi, πj) = −U0. This implies that in zero-sum games, Ui(πi, πj) is always the same for all πj ∈ BR(πi).

A.3. Proof of Theorem 3.4

Theorem. In two-player zero-sum games,

• E(πi, πj) = −(Vi(πi) + Vj(πj)).

• Vi(πi) is Lipschitz continuous about πi, and −Vi(πi) is a convex function about πi.

13
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• If the game is symmetric, ∀πi, Vi(πi) ≤ 0. The joint strategy (π0
i , π

0
j ) is a Nash equilibrium if and only if Vi(π

0
i ) =

Vj(π
0
j ) = 0. In games with only transitive dimension, Vi(πi) > Vj(πj) implies Ui(πi, πj) > 0.

Proof. • From the definition, we can easily find that E(πi, πj) = −(Vi(πi)+Vj(πj)). We define the domain of strategies
D = {(p1, p2, · · · , p|A|)} which satisfies that pk ≥ 0,

∑|A|
k=1 pk = 1, and |A| is the dimension of the action space

A = {a1, · · · , a|A|}.

• In order to prove that −Vi(πi) is convex function about πi, we need to prove that for π1
i ,π2

i ∈ D, and c ∈ (0, 1), we
have −Vi[(1− c)π1

i + cπ2
i ] ≤ −(1− c)Vi(π

1
i )− cVi(π

2
i ).

We assume that π1
i = (p11, · · · , p1|A|) and π2

i = (p21, · · · , p2|A|). Then we have:

Vi[(1− c)π1
i + cπ2

i ] = Ui[(1− c)π1
i + cπ2

i , a0], a0 ∈ A ∩ BR[(1− c)π1
i + cπ2

i ]

= (1− c)Ui(π
1
i , a0) + cUi(π

2
i , a0)

≥ (1− c)Ui(π
1
i , a

1
0) + cUi(π

2
i , a

2
0), at0 ∈ A ∩ BR(πt

i), t ∈ {1, 2}
= (1− c)Vi(π

1
i ) + cVi(π

2
i ).

(8)

This implies that the inverse function of advantage function −Vi(πi) is convex about πi.

Then we prove that Vi(πi) is Lipschitz continuous about πi. We assume that πi = (p1, · · · , p|A|), π′
i = πi +∆πi =

(p1 +∆p1, · · · , p|A| +∆p|A|) which satisfies that
∑|A|

k=1 ∆pk = 0, and a′0 ∈ A∩BR(πi +∆πi), a0 ∈ A∩BR(πi).

Vi(p1 +∆p1, · · · , p|A| +∆p|A|)− Vi(p1, · · · , p|A|)

=Ui(πi +∆πi, a
′
0)− Ui(πi, a0)

=(p1 +∆p1)Ui(a1, a
′
0) + · · ·+ (p|A| +∆p|A|)Ui(a|A|, a

′
0)− p1Ui(a1, a0)− · · · − p|A|Ui(an, a0)

=A1∆p1 + · · ·+A|A|∆p|A| + [Ui(πi, a
′
0)− Ui(πi, a0)]

(9)

where A1, · · · , Am are constants.

Then we will prove that there exists M such that ∀δ > 0, the following conclusion holds:

|Ui(πi, a
′
0)− Ui(πi, a0)| < δM, when max|∆pk| ≤ δ. (10)

First we consider that a′0 ∈ A ∩ BR(πi), this indicates that |Ui(πi, a
′
0)− Ui(πi, a0)| = 0.

Then we consider that a′0 /∈ A ∩ BR(πi), which means that:

Ui(πi, a0) > Ui(πi, a
′
0) (11)

We prove that Ui(πi, a) is Lipschitz continuous with respect to πi. ∀πi,∀am, we have:

Ui(πi +∆πi, am)− Ui(πi, am) =

|A|∑
k=1

(pk +∆pk)Ui(ak, am)−
|A|∑
k=1

pkUi(ak, am)

= ∆p1Ui(a1, am) + · · ·+∆p|A|Ui(a|A|, am)

≤ δM where δ = max|∆pk| and M = max
a∗∈A

|
|A|∑
i=1

Ui(ai, a
∗)|.

(12)

Since we are considering games with finite dimension, M has consistent upper bounds. Then we have:

Ui(πi, a0) + δM ≥ Ui(π
′
i, a0) ≥ Ui(π

′
i, a

′
0) ≥ Ui(πi, a

′
0)− δM. (13)

Using Equation (12) twice results in (13). This indicates that 0 ≤ Ui(πi, a
′
0) − Ui(πi, a0) ≤ 2δM . According to

Equation (9), we have

Vi(p1 +∆p1, · · · , p|A| +∆p|A|)− Vi(p1, · · · , p|A|) ≤ maxk Ak · δ · |A|+ 2δM (14)

This means that Vi(πi) is Lipschitz continuous about πi.
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• From Theorem 1 we can easily find that if the game is symmetric, Vi(πi) ≤ 0. The joint strategy (π1
i , π

1
i ) is a Nash

equilibrium if and only if Vi(π
1
i ) = 0.

In games with only transitive dimension, the best response is the same π0
j for all strategies πi. Then we have:

E(π1
i , π

0
j ) = −Vi(π

1
i ) < −Vi(π

2
i ) = E(π2

i , π
0
j ) (15)

So π1 is closer to the Nash equilibrium than π2 in the transitive dimension, which means that Ui(π
1
i , π

2
j ) > 0.

A.4. Proof of Theorem 4.1

Theorem. In symmetric zero-sum games, given the population Pi = Pj = {π1
i , · · · , πt

i}, ∀πk
i ∈ Pi, we have Vi(π

k
i ) ≤

Vi(θi | Pi). Here, θi is the equilibrium of the meta-game corresponding to the population Pi.

Proof. The population Pi can be viewed as a subgame. Applying Theorem 3.4 for this subgame we get the following
property:

∀πk
i ∈ Pi, Vi(π

k
i | Pi) ≤ Vi(θi | Pi). (16)

Then we the following derivation:

Vi(π
k
i ) = Ui(π

k
i ,BR(π

k
i )) = −Ui(BR(π

k
i ), π

k
i )

≤ −Ui(BR
*(πk

i ), π
k
i ) = Ui(π

k
i ,BR

*(πk
i )) where BR∗(πk

i ) = argminπ′∈Pi
Ui(π

k
i , π

′).

≤ Ui(θi,BR
*(θi))

= Vi(θi | Pi).

(17)

From this theorem, we can see that Vi(θi | Pi) is an upper bound for Vi(π
k
i ). This suggests that exploring new strategies in

the neighborhood of θi increase the probability of improving the advantage of population.

Here we give an example of Vi(π
k
i ) ≥ Vi(θi).

a1 a2 a3 a4 a5 a6
a1 (0,0) (1,-1) (-1,1) (-0.1,0.1) (0.9,-0.9) (-1.1,1.1)
a2 (-1,1) (0,0) (1,-1) (-1.1,1.1) (-0.1,0.1) (0.9,-0.9)
a3 (1,-1) (-1,1) (0,0) (0.9,-0.9) (-1.1,1.1) (-0.1,0.1)
a4 (0.1,-0.1) (1.1,-1.1) (-0.9,0.9) (0,0) (1,-1) (-1,1)
a5 (-0.9,0.9) (0.1,-0.1) (1.1,-1.1) (-1,1) (0,0) (1,-1)
a6 (0.9,-0.9) (1.1,-1.1) (0.1,-0.1) (1,-1) (-1,1) (0,0)

In this game, assuming that the current population is Pi = Pj = {a1, a5}, then Vi(a5) = −1. However, Vi(θi | Pi) =
Vi(a1) = −1.1 < −1.

A.5. Proof of Theorem 4.2

Theorem. Given the meta-equilibrium strategy θi, if Vi(θi) < 0, there exists ∆πi ∈ A and δ > 0 satisfying:

∀ 0 < d < δ, Vi ((1− d) · θi + d ·∆πi) > Vi(θi).

Proof. From Theorem 3.4 we have that the inverse of advantage function −Vi(πi) is convex about πi. Since Vi(θi) <
0 = maxVi(πi), from the convexity of the function −Vi we can find a direction of descent in the domain of the strategy
D = {(p1, · · · , p|A|) | pm ≥ 0,

∑
pm = 1}:

∃ δ′, π′ ∈ D, ∀ 0 < d < δ′, Vi((1− d) · θi + d · π′) > Vi(θi). (18)
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Since the domain of the strategy D is a convex combination of pure strategy space A, π′ ∈ D can also be expressed as a
convex combination of all elements in A. This means that there exists ∆πi ∈ A, which satisfies that ⟨π′,∆πi⟩ > 0. We
define that δ = |⟨π′,∆πi⟩|

|∆πi|·|π′| · δ
′. Then we have:

∀ 0 < d < δ, Vi((1− d) · θi + d ·∆πi) > Vi(θi). (19)

A.6. Proof of Theorem 4.4

Theorem. In two-player simplified games, ∀πi, for any alj ∈ argmaxaj∈BR(πi)∩Aj
Ui(πi, aj) and ∀δ > 0, there always

exists π′
i which satisfies |π′

i − πi| < δ and BR(π′
i) ∩ Aj = {alj}.

Proof. We assume that πi = (p1, · · · , p|Ai|). Since we are searching for π′
i in the neighbour of πi, without loss of

generality, we assume pt > 0, ∀t ∈ {1, · · · , |Ai|}. Since the game is simplified, the pure strategy alj is not dominated.

Therefore, there exists m ∈ {1, · · · , |Ai|}, ∀a′j ̸= alj , a′j ·Uj ·ami < alj ·Uj ·ami . We choose π′
i = ( 1−(1+δ)·pm

1−pm
p1, · · · , (1+

δ)pm·, · · · , 1−(1+δ)·pm

1−pm
p|Ai|), it is obvious that |π′

i−πi| < δ. Then we proof ∀a′j ̸= alj , a
′
j ∈ BR(πi), we have Uj(π

′
i, a

l
j) >

Uj(π
′
i, a

′
j). It is obvious that

Uj(πi, a
l
j)− Uj(πi, a

′
j) = p1(a

l
j · Uj · a1i − a′j · Uj · a1i ) + · · ·+ p|Ai|(a

l
j · Uj · a|Ai|

i − a′j · Uj · a|Ai|
i ) = 0 (20)

Then we have

Uj(π
′
i, a

l
j)− Uj(π

′
i, a

′
j) =

1− (1 + δ) · pm
1− pm

p1(a
l
j · Uj · a1i − a′j · Uj · a1i )

+ · · ·+ (1 + δ)pm(alj · Uj · ami − a′j · Uj · ami ) + · · ·+ 1− (1 + δ) · pm
1− pm

p|Ai|(a
l
j · Uj · a|Ai|

i − a′j · Uj · a|Ai|
i )

= δ · pm
1− pm

(alj · Uj · ami − a′j · Uj · ami ) > 0

(21)

This indicates that BR(π′
i) ∩ Aj = {alj}.

A.7. Proof of Theorem 4.6

Theorem. In two-player simplified games,

• ∀i, Vi(πi) is Lipschitz continuous.

• We assume that the joint strategy (πi, πj) is a Nash equilibrium. If BR(πi) ∩ Aj has the unique element, then Vi(πi)
is a local maximum.

• Under the same assumption, if (π1
i , π

2
j ) and (π3

i , π
4
j ) are both NEs, then (π1

i , π
2
j ) Pareto dominates (π3

i , π
4
j ) if and only

if Vi(π
1
i ) ≥ Vi(π

3
i ) and Vj(π

2
j ) ≥ Vj(π

4
j ).

Proof. • In Theorem 3.4, the proof of the Lipschitz continuity of the advantage function does not require that the game
is zero-sum. Therefore, we can similarly prove that Vi(πi) is Lipschitz continuous in two-player general-sum games.

• If the joint strategy (πi, πj) is a Nash equilibrium, we have that πj ∈ BR(πi). We assume that:

BR(πi) ∩ Aj = {a0j}, (22)

which means that:
∀akj ̸= a0j , Uj(πi, a

k
j ) < Uj(πi, a

0
j ). (23)

From the proof of Theorem 3.4 we have that ∀πi,∀a, Ui(πi, a) is Lipschitz continuous about πi. Then there must
exsits δ > 0, which satisfies that:

∀π′
i ∈ Bδ(πi), (BR(π

′
i) ∩ Aj) ⊆ (BR(πi) ∩ Aj) , (24)
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where Bδ(πi) is the open ball of radius δ centered on πi. From Theorem 3.2, we have that {a0j} = BR(π′
i) ∩ Aj , then

we have:
Vi(πi) = Ui(πi, πj) = Ui(πi, a

0
j )

≥ Ui(π
′
i, πj) = Ui(π

′
i, a

0
j ) (becaue(πi, πj)is Nash equilibrium)

= Vi(π
′
i).

(25)

We assume that the elements of BR(πi) ∩ Aj are unique in assumption. Since (πi, πj)is Nash equilibria, πj is the
optimal response to πi. This indicates that πj = a0j (πj is linear combination of BR(πi) ∩ Aj). Therefore the third
holds. This illustrates that Vi(πi) is a local maximum of the advantage function Vi.

• Under the assumption that BR(πi)∩Aj are unique, we have Vi(π
1
i ) = Ui(π

1
i , π

2
j ) and Vj(π

2
j ) = Uj(π

1
i , π

2
j ). Therefore,

(π1
i , π

2
j ) Pareto dominate (π3

i , π
4
j ) is equivalent to Ui(π

1
i , π

2
j ) ≥ Ui(π

3
i , π

4
j ) and Uj(π

1
i , π

2
j ) ≥ Uj(π

3
i , π

4
j ). Since

(π1
i , π

2
j ) and (π3

i , π
4
j ) are both Nash equilibrium, this holds if and only if Vi(π

1
i ) ≥ Vi(π

3
i ) and Vj(π

2
j ) ≥ Vj(π

4
j ).

A.8. Proof of Theorem 4.7

Theorem. In two-player simplified games, the current population for agent i is Pi = {π1
i , · · · , πt

i}. θi is the global maximum
point of the advantege Vi in hull(Pi). Then there must exist a non-zero measure set D′ ⊂ hull(Pi), which satisfies that if θ′i
is a local maximum point of the advantege Vi in D′, then Vi(θ

′
i) = Vi(θi).

Proof. We assume that the strategy of the player i is πi = (p1, · · · , p|Ai|). For k ∈ {1, · · · , |Aj |}, we define gk(πi) =

Uj(πi, a
k
j ), where akj ∈ Aj . Then we have:

gk(p1, · · · , p|Ai|) = p1Uj(a
1
i , a

k
j ) + · · ·+ p|Ai|Uj(a

|Ai|
i , akj ). (26)

If the elements in set BR(πi) ∩ Aj are not unique, there must exists k and k′ which satisfies that gk(πi) = gk′(πi). Since

the game is simplified,
(
Uj(a

1
i , a

k
j ), · · · , Uj(a

|Ai|
i , akj )

)
and

(
Uj(a

1
i , a

k′

j ), · · · , Uj(a
|Ai|
i , ak

′

j )
)

are linearly independent
vectors. This indicates that πi satisfying gk(πi) = gk′(πi) is a zero measure set and non-dense in the domain Πi.

We define
D0 = {πi | πi ∈ hull(Pi), (BR(πi) ∩ Aj) is a singleton set}. (27)

Since πi satisfying that there exists k and k′ with gk(πi) = gk′(πi) is non-dense in the domain Πi, we consider the projection
of those πi onto hull(Pi). This indicates that either D0 is an empty set (which means that πi intersects different functions g
covers the plane of hull(Pi)), or (hull(Pi) \D0) is a non-dense set.

D0 is an empty set means that ∀πi ∈ hull(Pi), gk(πi) = gk′(πi). Since the game is simplified, ∀πi ∈ hull(Pi),
Ui(πi, a

k
j ) = Ui(πi, a

k′

j ). Thus, we can remove ak
′

j feom Aj , which does not affect the calculation of Vi(πi). This is
because in this theorem, gk and gk′ are always the same on hull(P) when D0 is an empty set. Since all operations in this
theorem are performed on hull(P), and both g correspond to the same Uj , by the definition of V , it is only necessary to keep
the one corresponding to the larger Ui. Therefore, we can remove another one for simplification.

If (hull(Pi) \ D0) is a non-dense set, we consider separately whether θi ∈ D0. If θi ∈ D0, there must exists non-zero
measure set D1 ⊆ hull(Pi), which satisfies that:

∀πi ∈ D1, BR(πi) ∩ Aj = BR(θi) ∩ Aj . (28)

This indicates that Vi(πi) is a linear function about πi. Since θi is the global maximum of this linear function, there must
exists non-zero measure set D′ ⊆ hull(Pi), which satisfies that if θ′i is a local maximum in D′, then Vi(θ

′
i) = Vi(θi).

If θi ∈ (hull(Pi) \D0), we assume that:

argmaxk gk(θi) = {1, · · · , l}. (29)

Due to the Lipschitz continuity of Uj , there must exists d > 0, which satisfies that:

∀∆πi, BR(θ
∗
i +

∆πi

|∆πi|
· d) ⊆ {π1

j , · · · , πl
j}. (30)
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Since gk(πi) is a hyperplane corresponds to a linear function, the value of function gk(πi) on the ray θi+
∆πi

|∆πi| ·δ, 0 < δ < d

is either all maximal or all non-maximal for all k. Thus we can assume that there is a unique pure strategy best response
πk
j , k ∈ {1, · · · , l} for a strategy on that ray.

Thus, the open ball Bd(θi) can be divided into at most |Aj | region Dk, k ∈ {1, · · · , |Aj |}. In every region Dk, Vi(πi) is
linear function about πi. Since θi is the global maximum of this linear function, there must exists non-zero measure set
D′ ⊆ Bd(θi), which satisfies that if θ′i is a local maximum in D′, then Vi(θ

′
i) = Vi(θi).

A.9. Proof of Theorem 4.8

Theorem. Assuming that |∇πi
V̂i(πi) − ∇πi

Vi(πi)| ≤ 1
3 |∇πi

Vi(πi)|, the algorithm will converge to equilibrium with
sublinear convergence rate in symmetric zero-sum games.

Proof. We use x to denote πi and f(x) to denote Vi(πi). We use f∗ to denote the global maximum of the function f .
According to Theorem 4, f(x) is Lipschitz continuous about x, and −f(x) is a convex function about x. From the convexity,
there exists M for ∀η,

f(x− η∇f̂(x)) = f(x)− η∇f̂(x)T∇f(x) +
M

2
|−η∇f̂(x)|2

≤ f(x)− 2η

3
|∇f(x)|2 + M

2
|−η · 4

3
∇f(x)|2

= f(x)− (
2η

3
− 8Mη2

9
)|∇f(x)|2.

(31)

By assuming that η ≤ 9
48M , we have

2η

3
− 8Mη2

9
≥ η

2
(32)

Then we have:
f(x− η∇f̂(x)) ≤ f(x)− η

2
|∇f(x)|2 (33)

We denote x̄ = x− η∇f̂(x), then we have:

f(x̄) ≤ f(x)− η

2
|∇f(x)|2

≤ f∗ +∇f(x)T (x− x∗)− η

2
|∇f(x)|2

= f∗ +
1

2η

(
∥x− x∗∥2 − ∥x− x∗ − η∇f(x)∥2

)
= f∗ +

1

2η

(
∥x− x∗∥2 − ∥x̃− x∗∥2

)
(34)

k∑
i=1

(
f
(
xi
)
− f∗) ⩽ 1

2η

k∑
i=1

(∥∥xi−1 − x∗∥∥2 − ∥∥xi − x∗∥∥2)
=

1

2η

(∥∥x0 − x∗∥∥2 − ∥∥xk − x∗∥∥2)
⩽

1

2η

∥∥x0 − x∗∥∥2 .
(35)

It is obvious that f(xi) is non-increasing, then we have:

f
(
xk

)
− f∗ ⩽

1

k

k∑
i=1

(
f
(
xi
)
− f∗) ⩽ 1

2kη

∥∥x0 − x∗∥∥2 (36)
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The convergence rate is O( 1k ). This indicates that the approximate gradient-based algorithm will converge to the equilibrium
with sublinear convergence.

B. Algorithm Introduction and the Pseudo-Code
B.1. Fictitious Play

In fictitious play algorithm with two players, strategies are randomly initialized as (π0
i , π

0
j ). In iteration t, agents select the

best response to the average strategy of its opponent:

πt+1
i = BR(π̄t

j), π̄t
j =

1

t

t∑
k=1

πk
j . (37)

Fictitious play has convergence guarantees in simple structures such as two-player zero-sum games. However, it has the
disadvantage that convergence can be very slow in games with large strategy spaces.

B.2. Classic PSRO Algorithm

Algorithm 1 Policy-Space Response Oracles
Input: initial policy populations for all players P . Compute the expected utilities UP for each joint π ∈ P . Initialize
meta-strategies θi = UNIFORM(Pi)

1: while iters e in {1, 2, · · · } do
2: for player i ∈ {1, · · · , n} do
3: for many episodes do
4: Sample π−i ∼ θ−i

5: Train oracle π′
i over O(π′

i, π−i)
6: end for
7: Pi = Pi ∪ {π′

i}
8: end for
9: Compute missing entries in UP from P

10: Compute a meta-strategy θ from UP

11: end while
Output: Current solution strategy θi for player i.

Pseudo-code of the classic PSRO algorithm is given in Algorithm 1. UNIFORM denotes random sampling according to
the uniform distribution. The two main components of the algorithm are the exploration of the new strategy π′

i and the
computation of the meta-strategy θ. In this paper, we focus on improving the PSRO framework from the perspective of new
strategy exploration. We use the meta-strategy solver with exactly the same parameters as the other PSRO algorithms in our
comparison experiments (Perez-Nieves et al., 2021; Liu et al., 2021).

B.3. A-PSRO for Solving Zero-Sum Games

In this section, we provide the algorithm for the generation of new strategy, and the rest of the framework is the same as other
PSRO algorithms. We assume that the current population is (Pi,Pj), where Pi = {π1

i , · · · , πt
i}. Since A-PSRO primarily

improves the strategy exploration process, we outline how to enhance strategies through exploration within a single PSRO
iteration. The other components of the algorithm remain consistent with the PSRO algorithms compared in this study.

It is worth noting that the PSRO variant algorithms typically prioritize updating existing strategies. New strategies are
generated randomly only when the existing ones fail to improve. For further details, please refer to the DPP-PSRO or
PSD-PSRO algorithms. Similarly, in our algorithm, the agents initially decide to update the last strategy πt

i . The new
strategy πt+1

i is generated and incorporated into the population only if the update process does not enhance the utility. As
LookAhead updates the strategy in the transitive dimension, we set its learning rate lower than ∥θi∥∞ to prevent stagnation
as the strategy approaches the Nash equilibrium.
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Algorithm 2 Strategy exploration process of A-PSRO in zero-sum games
Input: Population (Pi,Pj), meta-Nash equilibrium (θi, θj), strategy to be updated of the agent πt

i .
Parameter: diversity weight λd, learning rate lr, improvement bound cm.

1: Randomly generate dr ∼ U[0, 1].
2: if dr ≤ λd then
3: ∆π = argmax∆π∈A [EC(Pi \ {πt

i} ∪ {(1− lr) · πt
i + lr ·∆π} | Pj)].

4: π∗
i = (1− lr) · πt

i + lr ·∆π.
5: else
6: Randomly generate lr ∼ U[0,min(lr, ∥θi∥∞)].
7: ∆π = argmax∆π∈A Vi[(1− lr) · θi + lr ·∆π].
8: π∗

i = (1− lr) · θi + lr ·∆π.
9: end if

10: if π∗
i ×Ui×θj

πt
i×Ui×θj

− 1 ≥ cm then
11: πt

i = π∗
i .

12: else
13: πt

i = π∗
i . Then randomly generate πt+1

i , Pi = Pi ∪ {πt+1
i }. (The randomly generated strategy πt+1

i will be updated
in the next iteration, this is equivalent to adding an explored strategy.)

14: end if
15: return Pi.
Output: Pi

In Algorithm 2, we combine the diversity module and our LookAhead module. The EC (expected cardinality) function is
the diversity measure used in (Perez-Nieves et al., 2021):

EC(Pi | Pj) := Tr(I− (L+ I)−1)

L = MiMT
i , Mi = Pi × Ui × Pj .

(38)

Here Tr denotes the trace of a matrix. In all zero-sum game experiments, we control the proportion of diversity and
LookAhead modules with a uniform parameter λd. We find from our experimental results that A-PSRO achieves good
convergences in games with different transitive and cyclic structures.

B.4. A-PSRO for Solving Two-Player General-Sum Games

In experiments with general-sum games, we find that the diversity module does not contribute to improving the reward
of the strategy learning process. Therefore, the strategy exploration process of our algorithm A-PSRO contains only the
LookAhead module. The Pseudo-Code of A-PSRO is given in Algorithm 3. In Algorithm 3, the meta-solver of the oracle
O(Pi,Pj | πk

i,j) is the fictitous play with 1000 itereations. In our experiments, we set the number of repeats k = 10. The
rest of the A-PSRO algorithm in the general-sum game is consistent with the zero-sum game.

B.5. A-PSRO for Solving Multi-Player Games

The main modification in applying A-PSRO algorithm to solve multi-player games is the computation of the advantage
function. Unlike the two-player game with direct utilization of the best response BR, the computation of the advantege
of the strategy πi requires the usage of oracle O(Π−i | πi). In multi-player games, we adopt the joint best response as
an approximation to the optimistic equilibrium. The Pseudo-Code of calculating the advantage in A-PSRO is given in
Algorithm 4. Besides the computation of the advantage function, A-PSRO is consistent with the two-player game in the
multi-player game.
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Algorithm 3 Strategy exploration process of A-PSRO in general-sum games
Input: Population (Pi,Pj), meta-Nash equilibrium (θi, θj), strategy to be updated of the agent πt

i .
Parameter:learning rate lr, improvement bound cm.

1: for repeats k in {1, 2, · · · } do
2: (πk

i , π
k
j ) = UNIFORM[hull(Pi,j)]

3: (θki , θ
k
j ) = O(Pi,Pj | πk

i,j)
4: end for
5: θi = argmaxk Vi(θ

k
i )

6: Randomly generate lr ∼ U[0,min(lr, ∥θi∥∞)].
7: ∆π = argmax∆π∈A Vi[(1− lr) · θi + lr ·∆π].
8: π∗

i = (1− lr) · θi + lr ·∆π.
9: if π∗

i ×Ui×θj
πt
i×Ui×θj

− 1 ≥ cm then
10: πt

i = π∗
i .

11: else
12: πt

i = π∗
i . Then randomly generate πt+1

i , Pi = Pi ∪ {πt+1
i }.

13: end if
14: return Pi.
Output: Pi

Algorithm 4 Calculation of the advantage function in multi-player games
Input: Strategy of the player πi, initializaion U0

i = −M,U0
−i = −M .

1: The identifying numbers set of other agents is {−i} = {1, · · · , k}
2: The joint pure strategy space of other agents is A−i = A1 × · · · × Ak

3: for (am1 , · · · , amk ) ∈ A−i do
4: if U−i(πi, π−i = (am1 , · · · , amk )) > U0

−i then
5: U0

i = Ui(πi, π−i), U
0
−i = U−i(πi, π−i)

6: else if U−i(πi, π−i = (am1 , · · · , amk )) = U0
−i then

7: if Ui(πi, π−i = (am1 , · · · , amk )) > U0
i then

8: U0
i = Ui(πi, π−i)

9: end if
10: end if
11: end for
12: Vi(πi) = U0

i

Output: Vi(πi)
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Settings Value Description
nb iters 200 Training iterations
meta solver fictitious play Metasolver method
meta iter 1000 Iterations for Metasolver
improvement threshold cm 0.03 Convergence criteria
learning rate 0.5 Default learning rate
num learners 4 Number of strategies updated in each iteration
num repeats 10 Number of repetitions per experiment
lr 0.5 Default step size
λd 0.5 Diversity weight

Table 1. Parameter setting for experiments in Zero-sum games.

C. Experiment Details and Additional Experiment Results
C.1. A-PSRO for Solving Zero-Sum Games

The parameter setting of zero-sum games is given in Table 1. All experiments in this paper were run with CPU support on
model Intel Core i9-10900KF CPU @ 3.70GHz. Experiments can be performed under both Windows and Linux systems.

In our setup, each experiment is repeated 4 times and the results are averaged for plotting. Within each experiment, the
population is initialized randomly, and the meta-game is solved in the same manner for different algorithms. The number of
learners for all algorithms, except the classic PSRO, is set to 4, which implies that four strategies within the population
will be updated in each iteration. In order to more accurately compare the effiency of different algorithms in learning the
strategies, we gradually increase the iterations for meta-solver. The initial iterations for meta-solver is set as 1000. Every 20
steps of training, we increase the iterations for meta-solver by 500.

Our experiments for symmetric zero-sum games are conducted in the environments used in the previous papers about PSRO
algorithms. Detailed description of these game environments can be found in (Czarnecki et al., 2020; Liu et al., 2022).
Taking the AlphaStar as an example, it is derived from the experimental environment StarCraft, which is commonly used in
multiagent reinforcement learning. By extracting meta-strategies in large scale extend-form game StarCraft, we can obtain a
symmetric normal-form game AlphaStar. In detail, AlphaStar is a symmetric zero-sum games with dimension 888× 888.
Other normal-form game environments are similarly obtained by extracting meta-strategies for real world games (Go, Kuhn
Poker, etc.).

Additional experiment results are shown in Figure 8. According to the previous work (Czarnecki et al., 2020), the following
games (8(c),8(e),8(f),8(g),8(h),8(n)) has strong transitive structures. From Figure 8, we can see that in these games,
adopting only the LA (lookahead) module with the objective of maximizing the advantage function is effective to reduce the
exploitability. In those games with cyclic structures, it is necessary to adopt the diversity module in learning Nash equilibrium.
We can see that A-PSRO combining LA and Diversity Module achieves the optimal results across all environments. In the
stochastic game Disc game 8(d) with almost no transitive dimension, all algorithms obtain the same convergence results.

Figure 9 shows the advantage distribution of these games. From Figure 9, we can see that although there may be large
differences in the payoff matrices between different games, they may have similar advantage distribution. Games with
the same advantage distribution have similar convergence processes of strategies when applying the PSRO algorithms to
solve them, e.g. 9(c), 9(g), 9(n). Although the advantage function does not fully characterize the transitive dimension in
zero-sum games, we believe that it has similarities to the geometric visualization of the transitive and cyclic dimensions in
the previous work (Czarnecki et al., 2020).

C.2. A-PSRO for Solving Two-Player General-Sum Games

The parameter setting of general-sum games is given in Table 2. The hardware and system setup used for the experiments
are the same as those for zero-sum games. Similar to zero-sum games, the initial iterations for meta-solver is set as 1000.
Every 20 steps of training, we increase the iterations for meta-solver by 500.

The StagHunt game is a commomly used general-sum game environment to test the ability of algorithms to learn the optimal
Nash equilibrium (Tang et al., 2021). The payoff matrix of the traditional StagHunt game is given in Table 3. In the Stag
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Settings Value Description
nb iters 100 Training iterations
meta solver fictitious play Metasolver method
meta iter 1000 Iterations for Metasolver
num oracle repeats k 10 Repetitions of the inner loop for strategy exploration
distribution type normal Gaussian distribution
distribution mean 0 Mean value of the distribution
distribution var 20 Variance of the distribution
improvement threshold 0.03 Convergence criteria
learning rate 0.5 Default learning rate
num learners 4 Number of strategies updated in each iteration
num repeats 100 Number of repetitions per experiment

Table 2. Parameter setting for experiments in General-sum games.

Hunt game, both (U,L) and (D,R) are Nash equilibriums. In order to achieve a higher reward joint strategy, cooperation is
required in the learning process of agents.

L R
U 30,30 -10,-10
D -10,-10 20,20

Table 3. Traditional StagHunt game.

a1 a2 · · · ai · · · an
a1 U1 -u -u -u -u -u
a2 -u u · · · -u · · · u
... -u · · ·

. . . -u
. . .

...
ai -u -u -u Ui -u -u
... -u

...
. . . -u

. . .
...

an -u u · · · -u · · · u

Table 4. Advanced StagHunt game.

In this paper, we extend the traditional StagHunt game structure to large scale general-sum game. The payoff matrix of
Advanced-Staghunt is given in Table C.2. In Advanced-Staghunt, each agent has a pure strategy space {a1 · · · , an}, where
{a1, ai, · · · } corresponds to the Nash equilibrium strategies resulting from cooperation. In Table C.2, Ui denotes the reward
corresponding to the cooperative strategy in StagHunt, which is drawn from a unifrom ditribution U[1, 2]. In order to judge
whether A-PSRO deterministically converges to the optimal Nash equilibrium, we set one of those Ui to 2.

For the rest of the payoff matrix for the Advanced-StagHunt, we use the uniform distribution u = U[0, 0.8] to fill the rewards
corresponding to each joint strategy. This suggests that there are many inefficient Nash equilibria in the Advanced-StagHunt
game besides the cooperative equilibrium in the shape of (ai, ai).

In our experiments, we set n = 100 and there are 5 cooperation equilibrium with reward Ui ∼ U[1, 2]. Each PSRO
algorithm was run 10 times repeatedly to solve the game and the results were averaged for presentation.

From the experiment result 4(a), we can see that most PSRO algorithms in the Advanced-StagHunt stagnate in the inefficient
Nash equilibria. This is because the space of strategies whose strategy gradient points to a cooperative Nash equilibrium is a
small proportion of the full space. In order for the agent to learn the optimal Nash equilibrium strategy, it is necessary to
design reward-related objective for the agent. We can see that A-PSRO based on the advantage function effectively learns
the optimal Nash equilibrium strategy, which indicates that the strategy exploration objective with advantage can improve
rewards when solving general-sum games.

The optimal Nash equilibrium in the Advanced-StagHunt game is a pure strategy equilibrium. In order to test the effectiveness
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of A-PSRO in games where the optimal equilibrium is a mixed strategy equilibrium, we design a large-scale general-sum
game Advanced-RSP with the structure similar to the traditional game Rock-Paper-Scissors. We first design the structure
of the RSP in general-sum game URSP . The payoff matrix of URSP is given in Table 5. In URSP , ϵ is a random number
satisfying the uniform distribution U[0, 100]. This general-sum game has the similar mixed Nash equilibrium to the
traditional RSP.

Based on the URSP , we design the large scale general-sum game Advanced-RSP. The payoff matrix of Advanced-RSP is
given in Table C.2. For the rest of the payoff matrix for the Advanced-RSP, we use the uniform distribution u = U[0, 100]
to fill the rewards corresponding to each joint strategy. We can easily find that each subgame corresponding to the joint
strategy (Ri, Si, Pi) is a mixed Nash equilibrium. There are also other equilibra with inefficient rewards.

In our experiment, we set n = 1000 and i = 10. Each PSRO algorithm was run 10 times repeatedly to solve the game and
the results were averaged for presentation. The experiment result is shown in Figure 4(b). From the figure, we can see that
A-PSRO learns the optimal mixed equilibrium strategy, while all other PSRO algorithms stagnate in the inefficient Nash
equilibrium.

R S P
R 100 180+ϵ ϵ
S ϵ 100 180+ϵ
P 180+ϵ ϵ 100

Table 5. General-sum RSP structure URSP .

a1 · · · R1 S1 P1 · · · aj · · · Ri Si Pi · · · an
a1 u · · · -u -u -u · · · u · · · -u -u -u · · · u
...

...
. . . -u -u -u

. . .
...

. . . -u -u -u
. . .

...
R1 -u -u

URSP

-u -u -u -u -u -u -u -u
S1 -u -u -u -u -u -u -u -u -u -u
P1 -u -u -u -u -u -u -u -u -u -u
...

...
. . . -u -u -u

. . .
...

. . . -u -u -u
. . .

...
aj u · · · -u -u -u · · · u · · · -u -u -u · · · u
...

...
. . . -u -u -u

. . .
...

. . . -u -u -u
. . .

...
Ri -u -u -u -u -u -u -u -u

URSP

-u -u
Si -u -u -u -u -u -u -u -u -u -u
Pi -u -u -u -u -u -u -u -u -u -u
...

...
. . . -u -u -u

. . .
...

. . . -u -u -u
. . .

...
an u · · · -u -u -u · · · u · · · -u -u -u · · · u

Table 6. Advanced RSP game.

We also perform experiments in randomly generated games that feature the same reward distribution. The dimension of
random generated games are 1000× 1000. In these games, each element of the payment matrix is generated by a normal
distribution with mean µ = 0 and variance σ2 = 20. To test the convergence results of different algorithms in random
generated games, we let the PSRO algorithms operate in 100 independently generated game environments and the results
were averaged for presentation. The experiment result is shown in Figure 4(c). From Figure 4(c), we can see that A-PSRO
achieves the optimal reward of the joint strategy.

Since A-PSRO requires multiple equilibrium oracles in general-sum games to explore strategies with higher rewards, its
runtime increases significantly compared to existing algorithms. In future work, we will explore ways to simplify this
process.
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Settings Value Description
players 3 Number of agents in the game
nb iters 50 Training iterations
meta solver fictitious play Metasolver method
meta iter 10000 Iterations for Metasolver
distribution type normal Gaussian distribution
distribution mean 0 Mean value of the distribution
distribution var 20 Variance of the distribution
improvement threshold 0.03 Convergence criteria
learning rate 0.5 Default learning rate
num learners 4 Number of strategies updated in each iteration
num repeats 4 Number of repetitions per experiment
λd 0.5 Diversity weight

Table 7. Parameter setting for experiments in multi-player games.

C.3. A-PSRO for Solving Multi-Player Games

The parameter setting of multi-player games is given in Table 7. The hardware and system setup used for the experiments
are the same as those for zero-sum games. In our multi-player game experiments, we adopt randomly generated games that
feature the same reward distribution.

In multi-player zero-sum games, we use randomly generated symmetric games with dimension 20×20×20. This is because
we have found in our experiments that reducing exploitability in larger-scale games requires very large computational
complexity. We believe that a comparison with other algorithms in the setting of this size is sufficient to demonstrate
effectiveness. During the generation of these games, we added constraints to avoid generating strong pure strategies, which
substantially increased the difficulty of strategy learning.

In the generation of multi-player general-sum games, we use the structure similar to the Advanced-Staghunt game with
dimension 10× 10× 10, and set the reward of the optimal equilibrium strategy to 90.

D. Code and Dataset
We provide part of the code necessary for the full operation of A-PSRO in the supplementary materials. Once the paper is
accepted, we will upload the complete A-PSRO code along with the game data used for testing.
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(h) Elo game + noise=0.1
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(i) Elo game + noise=0.5
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Figure 8. The exploitability of the joint strategy learned by agents in various zero-sum games is depicted. The reduction in exploitability
through population iterations can serve as an indicator of the effectiveness in approximating the Nash equilibrium.
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Figure 9. The advantage distribution of strategies in various zero-sum games. Lighter colored regions indicate strategies with higher
advantage.
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