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Abstract
Comprehending the quality of data represented001
on an E-commerce product page is a chal-002
lenge and is currently achieved with varied003
approaches that are dependent on large task-004
specific datasets curated with human efforts.005
This slows down the process of scaling to a006
large catalog scope. The recent advancements007
in Large Language Models (LLM) have revo-008
lutionized their ability to significantly enhance009
various downstream applications using small010
and carefully curated datasets. In this paper, our011
focus is to explore LLM capability in address-012
ing a challenge related to the catalog quality013
assessment. To be specific, we aim to detect014
the consistency of information presented be-015
tween Unstructured Attributes (UA) (incl. Title,016
Bullet Points (BP), Product Description (PD)),017
and Structured Attributes (SA) within a product018
page through pairwise evaluations using prede-019
fined class labels. To achieve it, we propose020
a novel approach, CENSOR, that utilizes LLM021
in two phases. In the first phase, off-the-shelf022
LLM is leveraged in a zero-shot manner using023
prompt engineering techniques. While in the024
second phase, open-source LLM is fine-tuned025
with a small human curated dataset along with026
the weak labeled data generated in first phase as027
a data augmentation technique to incorporate028
domain-specific knowledge. The fine-tuned029
LLM overcomes the deficiencies observed in030
the first phase and entails the model to address031
the consistency detection task. Evaluation con-032
ducted using the E-commerce dataset which in-033
clude a comprehensive set of 186 distinct com-034
binations of <Product Type, SA>, CENSOR fine-035
tuned model outperforms the baseline method036
and CENSOR zero-shot model with +34.4 and037
+19.4 points on F1-score respectively.038

1 Introduction039

An E-commerce catalog contains several products040

which are described using a set of attributes. In gen-041

eral, attributes can be broadly divided into two dif-042

ferent types mainly Unstructured Attributes (UA)043

and Structured Attributes (SA). UA provides in- 044

formation using unstructured data such as product 045

text (Title, Bullet Points, and Description), images, 046

and videos. While the goal of SA is to provide a 047

summary of product information useful for other 048

tasks such as product search, discovery, and adver- 049

tising. However, due to many reasons, consistency 050

may lack between the information mentioned in 051

UA about the SA. Figure 1 showcases a scenario 052

where material value mentioned in Textual UA (Ti- 053

tle) providing contradicting information with SA. 054

055

Such Cross-attribute consistency not observed 056

between UA and SA can have different challenges 057

for the end consumer such as: (1) Confusion and 058

impact their buying decision and (2) Increases the 059

returns of the sold products due to mismatch in 060

expectations. Addressing the aforementioned and 061

other similar cases will provide significant cost and 062

time benefits. 063

Earlier research (More, 2016; Maadan et al., 064

2016; Zheng et al., 2018; Xu et al., 2019; Mehta 065

et al., 2021) targeted comprehending SA informa- 066

tion present in a textual UA by extracting SA infor- 067

mation from UA. The main purpose of these works 068

is to fill the missing information in the catalog to 069

achieve high completeness. However, they do not 070

focus on verifying the consistency of the SA infor- 071

mation already provided by the seller with the rest 072

of the product UAs. This is the major focus of our 073

research and aim to address the issue at scale. 074

Although aforementioned research is proven ef- 075

fective for completing missing SA information. 076

They still poses challenges in extracting accurate in- 077

formation from UA due to confusing attributes and 078

diverse surface forms. Hence, extracting SA from 079

product UAs and then comparing it with the seller 080

provided SA might not be an effective approach 081

for detecting inconsistency across Cross-level at- 082

tributes. Therefore, in this work, we target an 083

end-to-end solution for detecting inconsistency i.e., 084
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Figure 1: Example showcases the Inconsistency detected by proposed approach (CENSOR, details in Section 3)
between Textual UA (Title) mentioning material value as Silk and separately mentioned in SA as Satin.

comparing UA usually present as a larger sequence085

of tokens with SA constituting a smaller sequence086

of tokens with a Cross-attributE CoNSistency De-087

tectOR (henceforth, CENSOR).088

Our proposed approach is divided into two089

different phases. In the first phase, we build090

CENSOR-zero-shot with an off-the-shelf Large091

Language Models (LLM) (Anthropic, 2023; Ope-092

nAI, 2023) and prompting techniques to produce093

predefined class labels. This phase provide us094

with a baseline approach for the cross-attribute095

consistency detection task and also help to gen-096

erate synthetic data for the second phase. While097

in the second phase, we leverage open-source098

LLM (Chung et al., 2022; Penedo et al., 2023;099

Touvron et al., 2023) as a generative formulation100

to produce CENSOR-fine-tuned model by fine-101

tuning on the human curated labeled dataset. To be102

specific, CENSOR-fine-tuned is built as a genera-103

tive model which takes <UA, SA> pair and other104

product relevant information in a sequence as an105

input and returns a predefined class label. The106

CENSOR-fine-tuned is robust in handling diverse107

SA’s which include different surface forms, mea-108

surement units, and varied values.109

The main contributions of this paper are:110

• We propose CENSOR, a two-phase approach111

to identify the consistency across SA and a112

textual UA.113

• We introduce different prompting strategies114

for cross-attribute consistency detection task115

with CENSOR-zero-shot.116

• We present experimental results on an E- 117

commerce dataset with diverse SA to show- 118

case the efficacy of CENSOR-fine-tuned. 119

To the best of our knowledge, this is a first at- 120

tempt at building an approach to detect consistency 121

between a SA and textual UA with a generative 122

formulation for a large-scale E-commerce catalog. 123

The rest of the paper is organized as follows. We 124

describe related work which closely aligns with our 125

work in Section 2. Further, in Section 3 we present 126

our proposed method and its variants. We describe 127

the experimental setup in Section 4 and discuss our 128

findings in the Section 5. Finally, we conclude our 129

observations in Section 6. 130

2 Related Work 131

In the related work, we mention those works which 132

are closely related to our task. 133

2.1 E-commerce Attribute Extraction 134

Several works have been proposed earlier (Kan- 135

nan et al., 2011) to extract the SA information 136

from the product title and description. Most of 137

the works proposed the E-commerce Attribute Ex- 138

traction problem as a special case of Named En- 139

tity Recognition (NER) task (More, 2016; Wang 140

et al., 2020). Zheng et al. (2018) proposed an 141

OpenTag architecture based on the combination of 142

Bi-LSTM and Conditional Random Fields (CRF) 143

for extracting a different set of attributes and not 144

targeted specifically for numeric attributes. Simi- 145

larly, Xu et al. (2019) focused on scaling up extrac- 146

tion and empowered attribute value extraction from 147
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product title using an attribute-comprehension-148

based approach. Multimodal extraction is also pro-149

posed (Zhu et al., 2020) to complement different150

modalities such as product images and descriptions151

for extraction of attributes. Nevertheless, the ap-152

proach is not specific for numeric attributes and153

mostly concentrated on those attributes where the154

useful visual information from product images has155

an impact. However, for extracting only numeric156

attributes from the product description, Mehta et157

al. (2021) designed a platform by leveraging distant158

supervision. As discussed, extracting numeric SA159

for inconsistency detection is ineffective, we would160

be comparing cross-level numeric SA and textual161

UA directly and classifying them into predefined162

classes.163

2.2 E-commerce Text Classification164

Many works are proposed for labeling certain165

text with predefined labels (Sun et al., 2019).166

However, we want to highlight those classifi-167

cation works which specifically leverage the e-168

commerce text that spans different levels. Tan et169

al. (2020) utilized product title and descriptions170

for product categorization into leaf category us-171

ing a machine translation-based approach. Other172

approaches (Zhao, 2020) used customer reviews173

present in languages other than English and per-174

formed sentiment analysis. In this paper, we175

portray inconsistency detection of cross-level at-176

tributes into a classification problem setup.177

2.3 Large Language Models for E-commerce178

At present, LLM are becoming common for under-179

standing and generating human language. They are180

built using transformer architecture (Vaswani et al.,181

2017) using different variations such as Sequence-182

to-Sequence (a.k.a Encoder-Decoder) (Chung et al.,183

2022) and Decoder-only (Zhang et al., 2022;184

OpenAI, 2023; Touvron et al., 2023). Re-185

cently, focus on applying LLM for E-commerce186

specific tasks has increased. Maragheh et187

al. (Maragheh et al., 2023) used LLM as aug-188

menter for recommendation-related tasks. Simi-189

larly, LLM is used for relationship identification in190

E-commerce specific knowledge graph completion191

models (Chen et al., 2023). There are works (Li192

et al., 2023) which expanded LLM with instruction-193

tuning targeted for E-commerce data for several194

downstream tasks such as Named Entity Recog-195

nition (NER), Review Topic Classification and so196

on. Our work also leverages LLM for E-commerce197

domain, however, our focus is to comprehend the 198

quality of E-commerce data by identifying Cross- 199

attribute consistency of Cross-level information (Ju- 200

rgens et al., 2014). 201

3 Approach 202

In this section, we present CENSOR variants whose 203

aim is to generate predefined labels by detecting 204

consistency observed across <UA,SA> pairs. 205

3.1 CENSOR - Problem Formulation 206

Let S represent a set of SA, and U an UAs . Each 207

product p ∈ P can be thought-of as a textual repre- 208

sentation of a product comprising relevant informa- 209

tion about the product; e.g., Product Type it belongs 210

to. We set forth the CENSOR as "Text-to-Text" gener- 211

ation inspired by previous unifying frameworks for 212

Natural Language Processing (NLP) tasks (Raffel 213

et al., 2020; McCann et al., 2018) and their effec- 214

tiveness demonstrated for the classification task. 215

Given any product-related representation p ∈ P 216

containing Structured Attribute s ∈ S, Unstruc- 217

tured Attribute u ∈ U and a target output c ∈ C, 218

learn a function: 219

f : P × U × S → C (1) 220

Unlike other architectures, which typically re- 221

quire training a task-specific layer (e.g., classifica- 222

tion (Nogueira et al., 2020)) from scratch beyond 223

backbone model, "Text-to-Text" formulation can 224

leverage the pre-trained network’s capacity for gen- 225

erating output tokens based on pretrained knowl- 226

edge, saving time and resources. Therefore, utilizes 227

LLM with two different ways. Figure 2 presents 228

the overall framework. 229

3.2 CENSOR - Zero-shot 230

3.2.1 Methodology 231

CENSOR-Zero-shot utilize off-the-shelf LLM in a 232

zero-shot manner for Cross-attribute Consistency 233

Detection task with prompt engineering techniques. 234

Prompt is the function (Equation 1) we design to 235

address the task. CENSOR-Zero-shot is built on a 236

hypothesis that off-the-shelf LLM have been pre- 237

trained on vast amounts of textual data, and pose 238

a rich contextual understanding. Leveraging such 239

contextual knowledge will be advantageous in mit- 240

igating ambiguity observed for the propsed task. 241

CENSOR-Zero-shot is built with a two-step ap- 242

proach, mainly Prompt Construction and Handling 243
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Figure 2: CENSOR Framework.

Non-Deterministic Behavior. We discuss each of244

them in the following sections.245

3.2.2 Prompt Construction246

For the prompt construction, we employed Chain-247

of-Thought (CoT) (Wei et al., 2022) prompting248

technique. In our CoT driven prompt, an important249

intermediate reasoning step involves enabling an250

off-the-shelf LLM to understand the relationship251

between UA and SA. Hypothesis here is that if252

the LLM fails to identify a relationship, then its253

prediction is prone to be a hallucination. Addition-254

ally, this intermediate reasoning step provides an255

opportunity that let’s LLM predict “I don’t know”256

to prevent any hallucinations.257

When the LLM identifies that UA and SA are258

relevant, the prompt goes on to categorize it into259

CONSISTENT predefined class as UA might contain260

SA or expresses a similar meaning as SA. This em-261

phasis on the “containing” relationship stems from262

our observation that off-the-shelf LLMs excel at de-263

tecting consistency in these readily distinguishable264

cases, even when dealing with typically lengthy265

UAs (Product Description). If UA and SA are rel-266

evant but do not share similar meanings, nor does267

UA contain SA, the prompt would classify this pair268

as INCONSISTENT predefined class. For the unde-269

cided cases or not relevant cases, the prompt clas-270

sifies them under the UAMS predefined class (more271

details about predefined classes is presented in Sec-272

tion 4.1).273

To gain deeper insights into the reasoning behind274

predefined class predictions made by the off-the- 275

shelf LLM in a zero-shot manner, we also attain 276

prediction justification as possible reasons from the 277

LLM. 278

3.2.3 Handling Non-deterministic Behavior 279

Earlier research found that sometimes off-the-shelf 280

LLM could be non-deterministic, even when the 281

context, instructions, input data remain the same 282

in the prompt. To address it, we set the tempera- 283

ture hyper-parameter as 0 and execute the prompt 284

3 times for deciding the predefined label using ma- 285

jority voting. 286

3.3 CENSOR - Fine-tuned 287

We observed that the performance of 288

CENSOR-Zero-shot is limited as it cannot effec- 289

tively comprehend the domain of E-commerce 290

catalog. Hence, there is a requirement for a solu- 291

tion that is adapted for E-commerce domain and 292

also understand the Cross-attribute Consistency 293

Detection task in an efficacious manner. Therefore, 294

we designed CENSOR-Fine-tuned to incorporate 295

domain-specific E-commerce knowledge and 296

also learn about the Cross-attribute Consistency 297

Detection task by using both human curated 298

gold standard data along with the synthetically 299

generated weak labeled data. 300

3.3.1 Model Architecture 301

Following Equation 1, we design the 302

CENSOR-Fine-tuned based on the Encoder- 303

Decoder architecture (Chung et al., 2022). Recent 304
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studies (Fu et al., 2023) have shown that Encoder-305

Decoder architecture outperforms Decoder-only306

architecture (Deng et al., 2023) due to attention307

degeneration issue. Also, Encoder-Decoder308

architecture help us to explore the potential of309

incorporating reasons generated by off-the-shelf310

LLM to add more context for an <UA,SA> pair311

along with the Product Type.312

3.3.2 Decoder Variants313

Motivated by earlier works (Puri and Catanzaro,314

2019; Nogueira et al., 2020) demonstrating that the315

choice of Decoder tokens in an Encoder-Decoder316

architecture can have a significant influence on gen-317

eration outcomes, especially in data scarcity setting.318

CENSOR-Fine-tuned explores three different De-319

coder options based on three different hypothesis.320

Label-only Our first hypothesis use the Decoder321

(output as in Equation 1) tokens as predefined Class322

Label. To avoid any pretrained knowledge inter-323

ference with the prediction, we further modify the324

Decoder tokens to make them as unique (or special325

tokens).326

Label+Template_Reason To add additional con-327

text to the Decoder along with predefined Class328

Label, we propose second hypothesis. In this ap-329

proach, context is identified using the segment in330

an UA that is semantically closer to the SA us-331

ing Sentence Embeddings (Reimers and Gurevych,332

2019). The Decoder is then formulated as a333

“Label+Template_Reason”, which includes both334

context i.e., segment in an UA and the predefined335

Class Label.336

The intuition here is that if relevant UA and SA337

are consistent (referred to ground-truth class), then338

based on relevant UA and product context, the gen-339

erated content should be semantically close to SA.340

Label+LLM_Reason Our third hypothesis at-341

tempts to utilize the reason generated by off-the-342

shelf LLM when predicting predefined labels. The343

intuition here is that the reasons provided by an off-344

the-shelf LLM can be seen as an additional context345

which can benefit the Cross-attribute Consistency346

Detection task.347

We observed with CENSOR-Zero-shot that the348

reasons it generates provide information about rela-349

tional knowledge between UA and SA. Hence, we350

aim to include those reasons for each training data351

point. Therefore, Decoder of CENSOR-Fine-tuned352

is formulated as a “Label+LLM_Reason”, which353

includes both LLM reason and the predefined class 354

label. 355

4 Experimental Setup 356

In the following, we present the dataset information 357

and the evaluation metrics used for comparison. 358

4.1 Predefined Class Labels 359

Three different class labels are used. If the SA 360

value is consistent with the UA, the CONSISTENT 361

label is used. While if the SA value is inconsistent 362

with the UA, the INCONSISTENT label is used. If 363

the SA value is missing from the UA, the UAMS 364

label is used, which indicates that UA doesn’t have 365

any presence of SA. For example, color SA is 366

never mentioned in the Title of the product, it is 367

considered the predefined label of <color, Title> 368

pair is UAMS. 369

4.2 Dataset 370

We targeted 186 distinct combination of <Product 371

Type, SA> from a English locale country that cover 372

variety of products1. We collected the dataset by 373

leveraging our organization’s annotators by pro- 374

viding them with an <UA, SA> pair to annotate 375

predefined labels. As described in Section 4.1 , 376

CONSISTENT, INCONSISTENT, and UAMS are the pre- 377

defined labels used for annotating an <UA, SA> 378

pair. 379

The entire dataset is split into 66% for training 380

and 34% for the testing. Further, the training set is 381

split into 65% for training and 35% for the valida- 382

tion. 383

We also collected synthetic data using an off- 384

the-shelf LLM with prompt engineering techniques 385

presented in Section 3.2.2 for expanding the train- 386

ing data. This is motivated by following reasons: 387

• Combining augmented data with the actual 388

training data allows for training a more com- 389

pact and computationally efficient model. 390

• Overcome the human curated data collection 391

challenges such as scalability, bias, and cost. 392

Due to augmentation with the synthetic data the 393

training data overall size has increased by 68.5%. 394

We have kept the same size for the validation and 395

testing set to clearly identify the benefit from the 396

synthetic labels. 397

1Randomly sampled according to the task requirement and
do not reflect the overall quality.
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4.3 Evaluation Metrics398

We evaluate the performance of the proposed ap-399

proaches with the weighted averages of Precision,400

Recall and F-1 score. With weighted averaging, the401

output measurements, (i.e., Precision, Recall, or402

F-1 score), have accounted for the contribution of403

each class as weighted by the number of examples404

of that given class.405

• Weighted Precision: Weighted mean of pre-406

cision with weights equal to class probability.407

• Weighted Recall: Weighted mean of recall408

with weights equal to class probability.409

• Weighted F-1 Score: Weighted mean of F1-410

measure with weights equal to class probabil-411

ity.412

5 Experimental Results413

5.1 Methods414

We design a simple Encoder-only model baseline415

termed as Expandable Validation (EVA). It is built in416

a two-step process. In the first step, self-supervised417

learning (SSL) (Gui et al., 2023) is leveraged to418

adapt the pretrained Encoder-only ALBERT Base419

v2 (Lan et al., 2020) model to E-commerce domain420

without any manually curated labels. While in421

the second step, the domain adapted model is fine-422

tuned with the actual dataset.423

We consider the CENSOR-Zero-shot which uti-424

lizes Claude-v1.3 (Anthropic, 2023) as the off-the-425

shelf LLM with a given prompt (Section 5.3) as426

the strong baseline. While, CENSOR-Fine-tuned427

which leverages Flan-T5-XL (Chung et al., 2022)428

as its Encoder-Decoder architecture as the improve-429

ments proposed over it.430

5.2 CENSOR-Fine-tuned Implementation431

We fine-tuned CENSOR-Fine-tuned variants for 3432

epochs with a constant learning rate of 10−4 us-433

ing AdamW optimizer. Decoder length was varied434

between 10 and 512 tokens based on the Decoder435

variants. We used BLEU score to comprehend the436

fine-tuned check-point model quality at the end437

of each epoch during fine-tuning and selected the438

best saved check-point for inference. All Experi-439

ments were executed on 8 NVIDIA A10G GPUs440

(each 24GB). To conserve memory and accelerate441

the fine-tuning process, all models were fine-tuned442

using the BF16 format.443

5.3 CENSOR-Zero-shot Prompt 444

In the following, we present the Chain-of-Thought 445

(CoT) (Wei et al., 2022) prompt constructed for 446

prompting Claude-v1.32. 447

• Step-1: Extract values in column ’UA’ {UA 448

Value} and column ’SA’ {SA Value}. Do not 449

return anything for this step. 450

• Step-2: Use your knowledge to understand 451

the relationship between value {UA Name} 452

and {SA Name}. Do not return anything for 453

this step. 454

• Step-3: Determine whether {UA Value} in- 455

cludes or expresses a similar meaning as {SA 456

Value}, relying on your knowledge and con- 457

sidering the relationship you identified be- 458

tween value {UA Value} and {SA Value}. If 459

you cannot find a relationship between {UA 460

Value} and {SA Value} from Step-2, your pre- 461

diction answer should be ’UAMS’, If (you 462

think the meanings of {UA Value} and {SA 463

Value} are relevant and similar) or (if value 464

{UA Value} contains value {SA Value}), your 465

prediction answer should be ’Consistent’, If 466

(you are very confident that the meanings of 467

{UA Value} and {SA Value} are relevant, but 468

(the meanings of {UA Value} and {SA Value} 469

are not similar)) and (value {UA Value} does 470

not contain value {SA Value}), your pre- 471

diction answer should be ’Inconsistent’ Oth- 472

erwise, your prediction answer should be 473

’UAMS’. If you cannot decide, your predic- 474

tion answer also should only be ’UAMS’. Do 475

not return anything except ’Consistent’, ’In- 476

consistent’ or ’UAMS’. 477

• Step-4: Collect the reason for your prediction. 478

Let’s work this out in a step by step way to be 479

sure we have the right prediction answer 480

• Step-5: Do not include any information gen- 481

erated from the above steps in the output. 482

• Step-6: After you provide the reason, pro- 483

vide all your response in JSON format 484

with the following keys: ’reason’, ’pre- 485

diction’, ’product_id’ from column ’prod- 486

uct_info’({product_info}). Do not return any- 487

thing except JSON. 488

2At the time of experimentation, Claude-v2.0 was not avail-
able.
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5.4 Results and Discussion489

Overall results attained using different methods are490

presented in the Table 1 and Table 23.491

Table 1: Overall Prediction Results (Weighted Preci-
sion and Weighted Recall) showing improvements over
Encoder-only baseline

Model Precision (↑) Recall (↑)
(Weighted) (Weighted)

CENSOR-Zero-shot
(Claude-v1.3) +21.9 +6.4

CENSOR-Fine-tuned
+Label +46.1 +16.6
+Label+Template_Reason +32.4 +7.8
+Label+LLM_Reason +41.6 +5.5

CENSOR-Fine-tuned
+Synthetic Data+Label +44.3 +22.4

Table 2: Overall Prediction Results (Weighted F1-score)
showing improvements over Encoder-only baseline

Model F1-score (↑)
(Weighted)

CENSOR-Zero-shot
(Claude-v1.3) +15

CENSOR-Fine-tuned
+Label +33.8
+Label+Template_Reason +19
+Label+LLM_Reason +25.4

CENSOR-Fine-tuned
+Synthetic Data+Label +34.4

We found that CENSOR-Zero-shot can directly492

compare the relevant UA and SA values despite493

their length discrepancy. Furthermore, it can pro-494

vide reasons for classification that are human in-495

terpretable with a few or even no post-processing.496

Such effective characteristics makes it a suitable497

stand-alone approach.498

Also, we present the UA-wise results of pro-499

posed approaches in the Table 3 and per class re-500

sults in the Table 4.501

Effectiveness of data augmentation through the502

inclusion of synthetic data generated by off-the-503

shelf LLM has been demonstrated in the Table 1504

and Table 2 . CENSOR-Fine-tuned with data aug-505

mentation outperforms CENSOR-Zero-shot, and506

the same method without data augmentation on507

weighted avg. F-1 score. This can be accredited508

to the quality of synthetic data created by handling509

3Due to organization policy, we do not report the baseline
numbers and only showcase overall improvements over the
baseline with proposed approaches.

non-deterministic behavior of off-the-shelf LLM 510

(discussed in Section 3.2.3) that retained consistent 511

responses as augmented instances. 512

CENSOR’s advantages shine through in its ability 513

to substantially cut down human annotation costs 514

and the time needed for crafting top-notch synthetic 515

training data. Specifically, compared to the variant 516

with no synthetic data augmentation, adding more 517

synthetic data improves the weighted avg. Recall 518

by a significant margin, which indicates the syn- 519

thetic data generation can effectively capture more 520

relevant instances. The high recall is especially 521

meaningful in the E-commerce domain since the 522

goal of identifying consistent information is crucial 523

to reduce the customer perceived incorrectness. 524

6 Conclusion and Future Work 525

In this paper, we presented CENSOR and its variants 526

which takes <UA, SA> pair as input and generate 527

predefined class labels targeted towards estimation 528

of the quality of the e-commerce product data. We 529

leveraged off-the-shelf LLM and also open-sourced 530

pretrained LLM to showcase that fine-tuned smaller 531

parameter model perform better in comparison. In 532

the future, we aim to improve the performance 533

by exploring different LLM architectures which 534

can address the estimation of quality effectively 535

including more modalities. 536

7 Limitations 537

Our work did not explore the possibility of fine- 538

tuning Decoder-only architectures. Our exper- 539

iments specifically focused on examining the 540

encoder-decoder architecture such as Flan-T5- 541

XL (Chung et al., 2022) and fine-tuning it using 542

a product catalog dataset that combines human- 543

curated data with weakly labeled data generated 544

with an off-the-shelf LLM. This choice is primar- 545

ily influenced by its recognized excellence in per- 546

formance and our resource constraints. We note 547

that our data augmentation approach by off-the- 548

shelf LLMs and fine-tuning strategy can be used 549

with any other pretrained Decoder-only models 550

such as OpenLlama (Geng and Liu, 2023) and Mis- 551

tral (Jiang et al., 2023). 552
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Table 3: UA-specific Results.

UA-wise Results

Model Precision (↑) Recall(↑) F1-score(↑)
(Weighted) (Weighted) (Weighted)

Title

CENSOR-Zero-shot +29.3 +6.3 +11.2

CENSOR-Fine-tuned
+Label +36.8 +14.8 +29.4
+Synthetic Data+Label +46.4 +21.4 +33.5

Bullet Points

CENSOR-Zero-shot +19.3 +5.1 +14.7

CENSOR-Fine-tuned
+Label +38.8 +16.2 +30.8
+Synthetic Data+Label +44.6 +24.5 +36.3

Product Description

CENSOR-Zero-shot +23.7 +9.1 +18.7

CENSOR-Fine-tuned
+Label +33.9 +11.5 +26.5
+Synthetic Data+Label +41.2 +19.9 +32.2

Table 4: Class-specific Results.

Class-wise Results

Model Precision (↑) Recall (↑) F1-score (↑)

INCONSISTENT

CENSOR-Zero-shot -7.1 -1.4 -3.7

CENSOR-Fine-tuned
+Label -0.2 +18.7 +9.7
+Synthetic Data+Label +0.9 +31.4 +15.1

CONSISTENT

CENSOR-Zero-shot +9.2 -8.2 +5.3

CENSOR-Fine-tuned
+Label +42.9 -28.9 +13.1
+Synthetic Data+Label +27 -4.9 +18.3

UAMS

CENSOR-Zero-shot +6.9 -44.9 -19.5

CENSOR-Fine-tuned
+Label +22.1 -5.3 +11.6
+Synthetic Data+Label +36.6 -20.7 +7.8
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