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ABSTRACT

The Edge of Stability (EoS) is a phenomenon where the sharpness (largest eigen-
value) of the Hessian converges to 2/η during training with gradient descent (GD)
with a step-size η. Despite violating classical smoothness assumptions, EoS has
been widely observed in deep learning, but its theoretical foundations remain in-
complete. We propose a framework for analyzing EoS of non-Euclidean GD using
directional smoothness (Mishkin et al., 2024), which naturally extends to non-
Euclidean norms. This approach allows us to characterize EoS beyond the stan-
dard Euclidean setting, encompassing methods such as ℓ∞-descent, Block CD,
Spectral GD, and Muon without momentum. We derive the appropriate measure
of the generalized sharpness under an arbitrary norm. Our generalized sharpness
measure includes previously studied vanilla GD and preconditioned GD as special
cases. Through analytical results and experiments on neural networks, we show
that non-Euclidean GD also exhibits progressive sharpening followed by oscilla-
tions around the threshold 2/η. Practically, our framework provides a single,
geometry-aware spectral measure that works across optimizers, bridging the gap
between empirical observations and deep learning theory.

1 INTRODUCTION

In supervised settings, training machine learning models is posed as empirical risk minimization
minw∈Rd L(w), where w ∈ Rd are the neural network’s parameters, and L(w) is the full-batch
loss, which we assume is bounded below by L∗ > −∞. In deep learning, L is typically nonconvex
and highly structured (Li et al., 2018; Kim et al., 2024). Nevertheless, first-order methods such as
SGD and its adaptive variants (Duchi et al., 2011; Kingma & Ba, 2014) are the workhorses of practice
and scale effectively to large models, despite a limited theoretical understanding of their success.

Full-batch gradient descent (GD) serves as the canonical proxy for analyzing gradient-based training.
Classical results for L-smooth convex objectives guarantee descent for step sizes up to 2/L. In
contrast, recent empirical work reveals a characteristic two-phase behavior when deep networks
are trained with GD. In the initial phase, called the progressive sharpening phase, the loss L(wt)
decreases monotonically while the sharpness S(wt) := λmax(∇2L(wt)) grows. This is followed
by the edge-of-stability (EoS) phase, where the loss behaves non-monotonically yet decreases over
longer horizons, while the sharpness hovers near the threshold 2/η (Cohen et al., 2021).

The EoS phenomenon has been found to extend beyond vanilla GD. Cohen et al. (2022) showed that
adaptive preconditioning methods such as Adagrad and Adam exhibit an EoS characterization that
revolves around the top eigenvalue of the preconditioned Hessian, while Long & Bartlett (2024)
showed that SAM obeys a certain EoS characterization as well. Despite these advances, the question
of how EoS generalizes to other optimizers remains underexplored. In this work, we investigate
how the EoS phenomenon carries over to a broad family of optimization algorithms: that of non-
Euclidean gradient descent with respect to an arbitrary norm.

Definition 1.1. For a norm ∥·∥ and a step-size η > 0, the associated non-Euclidean GD method is
given by the minimization of the regularized linearization around the current point wt:

wt+1 = argmin
y

L(wt) + ⟨∇L(wt),y −wt⟩+ 1
2η∥y −wt∥2

1
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= wt − η∥∇L(wt)∥∗(∇L(wt))∗, (1)

where the dual norm ∥∇L(wt)∥∗ and dual gradient (∇L(wt))∗ are defined as:

∥∇L(wt)∥∗ := max
∥y∥=1

⟨∇L(wt),y⟩ , (∇L(wt))∗ := argmax
∥y∥=1

⟨∇L(wt),y⟩ . (2)

We let dt := ∥∇L(wt)∥∗(∇L(wt))∗ denote the update “direction” (i.e. the update without η).

This formulation reduces to vanilla GD when the norm ∥·∥ is taken to be the ℓ2 norm. It also subsumes
methods not previously studied by prior work on EoS such as ℓ∞-descent (for ∥·∥ = ℓ∞) and
Spectral GD (for ∥·∥ = ∥·∥2→2) (Carlson et al., 2015) (which underlies the popular Muon method
(Jordan et al., 2024)), as well as Block CD (Nesterov, 2012) and other coordinate descent variants.

Sometimes, the dual norm is omitted from the update (1). We refer to the resulting algorithm as
normalized non-Euclidean GD:1

Definition 1.2. For a norm ∥·∥ (not necessarily the ℓ2 norm) and a step-size η > 0, the associated
normalized non-Euclidean GD method is given by

wt+1 = wt − η(∇L(wt))∗, (3)

where the dual gradient (∇L(wt))∗ is defined in (2).

When ∥·∥ is the ℓ∞ norm, this formulation recovers SignGD (Bernstein et al., 2018), and when
∥·∥ is the spectral norm ∥·∥2→2, it recovers Muon (Jordan et al., 2024). Our main contributions are
summarized as follows:

1. We identify that an intermediary quantity called directional smoothness D∥·∥(y,w)
(Mishkin et al., 2024) can be used to study the dynamics of sharpness and the EoS. Di-
rectional smoothness is an average curvature between two consecutive iterates.

2. Through a simple identity, we show that if the loss decreases, and the gradient norm squared
is approximately stable, then directional smoothness must increase up to 2/η. Sharpness is
an (approximate) upper-bound on directional smoothness, thus when directional smooth-
ness increases up to 2/η, so will sharpness. Furthermore, if the loss oscillates, then direc-
tional smoothness must also oscillate around 2/η.

3. Extending directional smoothness beyond Euclidean norm, we define a generalized sharp-
ness S∥·∥ of GD under any norm ∥·∥. In the special cases of Euclidean and preconditioned
GD, this measure recovers previously established notions of sharpness.

4. Across MLPs, CNNs, and Transformers architectures, we observe that S∥·∥ hovers around
the stability threshold 2/η, demonstrating EoS behavior in diverse architectures.

5. To shed light on the mechanism underlying this behavior, we analyze the dynamics of non-
Euclidean GD on quadratic objectives.

1.1 RELATED WORKS

The EoS phenomenon was first documented for vanilla GD with step-size η, where the sharpness (the
maximum Hessian eigenvalue) was observed to hover near the stability threshold 2/η (Cohen et al.,
2021). This initial work also extended empirical observations to GD with momentum and provided
intuition for EoS on quadratic objectives. Building on this, Arora et al. (2022) gave a mathematical
analysis of the implicit regularization that arises at EoS, showing that in non-smooth loss landscapes
the updates of normalized GD follow a deterministic flow constrained to the manifold of minimal loss.
A subsequent study by Song & Yun (2023) demonstrated empirically that GD trajectories align with
a universal bifurcation diagram during EoS, while Damian et al. (2022) identified self-stabilization
as the key mechanism: a cubic term in the Taylor expansion along the top Hessian eigenvector intro-
duces negative feedback that drives sharpness back toward 2/η whenever it exceeds the threshold.
Beyond the stability plateau, Ghosh et al. (2025) analyzed loss oscillations in deep linear networks,

1We refer to algorithms that satisfy Def. 1.1 and 1.2 for ℓ∞ norm as ℓ∞-descent and SignGD respectively.
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demonstrating that they happen in a low-dimensional subspace whose dimension depends on the
step-size η. Finally, several works connect EoS with the catapult mechanism observed in training
with a large learning rate (Lewkowycz et al., 2020; Zhu et al., 2024; Kalra & Barkeshli, 2023).

The phenomenon has also been studied for preconditioned and adaptive methods. Cohen et al.
(2022) showed that the sharpness of the preconditioned Hessian stabilizes at the same threshold for
methods such as AdaGrad and RMSprop. Meanwhile, Long & Bartlett (2024) conducted a stability
analysis of SAM (Foret et al., 2020) on quadratics, empirically showing that SAM operates at the edge
of stability. Extensions beyond full-batch GD include Lee & Jang (2023), who analyzed the interac-
tion between batch-gradient distributions and loss geometry to extend EoS to SGD, and Andreyev &
Beneventano (2024), who proposed an alternative stochastic counterpart of EoS.

Despite this progress, most prior studies have focused on a narrow family of algorithms (e.g., vanilla
GD, preconditioned GD, or SAM), leaving a fundamental gap in our understanding of spectral proper-
ties and raising the question of whether these insights extend to substantially different optimization
methods such as Muon (Jordan et al., 2024) and SignGD (Bernstein et al., 2018). In this work, we
close this gap by introducing a unified framework for analyzing EoS across optimization algorithms,
leveraging the recent insight that many methods can be interpreted as variants of steepest descent
under an appropriate norm (Bernstein & Newhouse, 2024).

2 PROGRESSIVE SHARPENING AND DIRECTIONAL SMOOTHNESS

Classical descent guarantees for GD rely on global L-smoothness, but such bounds are often too
pessimistic for neural networks (Zhang et al., 2019). Instead, we adopt a local, trajectory-aware
notion of directional smoothness (Mishkin et al., 2024).

Definition 2.1. We call a function D∥·∥(wt,wt+1) a valid directional smoothness at iteration t if

L(wt+1) ≤ L(wt) + ⟨∇L(wt),wt+1 −wt⟩+ D∥·∥(wt,wt+1)
2 ∥wt+1 −wt∥2, (4)

where D∥·∥(wt,wt+1) depends only on the behavior of the loss L along the chord [wt,wt+1].

Mishkin et al. (2024) provide several examples of the directional smoothness. In this work, we
choose the tightest one

D∥·∥(w,y) :=
L(y)− L(w)− ⟨∇L(w),y −w⟩

1
2∥y −w∥2

, (5)

which makes (4) hold with equality. Although this quantity might not be positive (and thus falls out-
side the positivity requirements of Mishkin et al. (2024)), positivity is not required in the following
presentation. Substituting one step of non-Euclidean GD into (4) yields

L(wt+1) = L(wt)− η ⟨∇L(wt),dt⟩+ η2

2 D∥·∥(wt,wt+1)∥dt∥2∗
= L(wt)− η

(
1− η

2D
∥·∥(wt,wt+1)

)
∥∇L(wt)∥2∗. (6)

Whenever ∥∇L(wt)∥∗ > 0, the loss decreases if and only if

L(wt+1) ≤ L(wt) ⇐⇒ D∥·∥(wt,wt+1) ≤ 2
η . (7)

The equivalence in (7) justifies the progressive sharpening of the directional smoothness. Note that
in deep learning experiments where EoS is observed, the gradient norm remains non-zero (Defazio
et al., 2023; Defazio, 2025), see the Gradient Norm panel in Fig. 1. Therefore, according to (7), if the
loss initially decreases and then starts to oscillate, as is often observed in training, then directional
smoothness must start below 2/η and then increase (sharpen) up to 2/η, and then oscillate around
2/η. Indeed, see the Directional Smoothness panel in Fig. 1, where we can see that the directional
smoothness progressively sharpens up to 2/η. Thus, by almost definition, directional smoothness
exhibits the sharpening and EoS phase.
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Figure 1: (Vanilla GD) Train loss, gradient norm, directional smoothness, and sharpness during
training MLP (top) and CNN (bottom) models on CIFAR10-5k dataset with vanilla GD. Horizontal
dashed lines correspond to the value 2/η.

2.1 CONNECTION TO SHARPNESS

Next, we show how directional smoothness is closely related to a Hessian quantity that we will call
the generalized sharpness. We can relate (5) to sharpness by using the 2nd-order Taylor expansion
of our objective and one step of non-Euclidean GD in (1)

D∥·∥(wt,wt+1) :=
L(wt+1)− L(wt)− ⟨∇L(wt),wt+1 −wt⟩

1
2∥wt+1 −wt∥2

=
d⊤
t

∫ 1

τ=0
∇2L(wt − τηdt)dτ dt

∥dt∥2
. (8)

We can further upper-bound (8) by taking the maximum over all directions

D∥·∥(wt,wt+1) ≤ max
τ∈[0,1]

d⊤
t ∇2L(wt − τηdt)dt

∥dt∥2
≤ max

d̸=0,τ∈[0,1]

d⊤∇2L(wt − τηdt)d

∥d∥2
. (9)

If we further assume that the Hessian is almost constant over the line segment {x : x = wt −
ητdt, τ ∈ [0, 1]}, we arrive at the following definition of generalized sharpness:

Definition 2.2. For any norm ∥·∥, we define the generalized sharpness as:

S∥·∥(w) := max
d̸=0

d⊤∇2L(w)d

∥d∥2
= max

d
d⊤∇2L(w)d s.t. ∥d∥2 ≤ 1. (10)

The optimization problem (10) involves maximizing a quadratic function over a convex constraint
set, and is thus challenging to solve in general. For some choices of norm ∥·∥, the problem (10)
has an analytical solution (e.g., vanilla GD or Block CD). For other norms, we will heuristically
approximate the solution to (10) using the Frank-Wolfe (FW) algorithm (Frank et al., 1956) run from
multiple random restarts (Alg. 1). On smooth, non-convex objectives, FW is known to converge
to a first-order stationary point over convex-sets with FW gap as a measure (Lacoste-Julien, 2016).

Algorithm 1: Frank-Wolfe to approximate (10)

Input: norm ∥·∥, γk = 2
2+k , S0 = 0

for restart m = 1, . . . ,M do
u0 ∼ N (0, I), u0 = Π∥·∥=1(u0)
for k = 0, 1, . . . ,K − 1 do

vk = Π∥·∥≤1(∇2L(wt)uk)
uk+1 = (1− γk)uk + γkvk

uK = Π∥·∥=1(uK), Ŝm = u⊤
K∇2L(wt)uK

Sm = max{Sm−1, Ŝm}
Output: SM

Since a stationary point is not necessarily the
global maximum, we repeatedly run Frank-
Wolfe from multiple random restarts and
then take the maximum over all trials. Em-
pirically, we usually observe that the gen-
eralized sharpness estimated using this pro-
cedure converges to some limiting value as
the number of random restarts grows. Note
that in Alg. 1, we project the output of FW
onto the unit norm sphere, as the final Frank-
Wolfe iterate may lie in the interior of the
norm ball while the true global maximizer

4
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Figure 2: (ℓ∞-descent) Train loss, gradient norm, directional smoothness, and generalized sharpness
(14) during training MLP on CIFAR10-5k (top) and Transformer on Tiny Shakespeare (bottom) with
ℓ∞-descent. Horizontal dashed lines correspond to the value 2/η.

must lie on the boundary. See App. A for a more detailed discussion of our procedure for approxi-
mating (10).

3 EXAMPLES OF NON-EUCLIDEAN GRADIENT DESCENT

We begin by showing that the generalized sharpness (10) recovers previously derived notions of
sharpness, establishing the tightness of our approach. We then examine generalized sharpness under
several non-Euclidean norms.

Euclidean ℓ2 Norm. We consider a standard Euclidean ℓ2 norm. In this case, the sharpness mea-
sure (10) can be computed explicitly. Indeed, the maximum in (10) equals the largest eigenvalue of
the Hessian λmax(∇2L(wt)). This result coincides with the sharpness measure introduced in Cohen
et al. (2021). In Fig. 1, we report the training dynamics of vanilla GD, flattening all parameters of the
networks. We observe that the directional smoothness and sharpness hover at 2/η when the algorithm
enters EoS stage, supporting our claims in (7).

Preconditioned ℓ2 Norm. Let Pt ∈ Rd×d be a symmetric positive definite matrix, which we
will use as a preconditioner. That is, we define the preconditioned ℓ2 norm (also referred to as the
Mahalanobis distance) by ∥w∥2Pt

:= ⟨Ptw,w⟩ = ∥P 1/2
t w∥22. Under this norm, preconditioned

GD (1) is given by
wt+1 = wt − ηP−1

t ∇L(wt). (11)

This case includes Adagrad (Duchi et al., 2011), RMSProp (Tieleman & Hinton, 2012) and Newton’s
method as special cases. According to (10), the correct notion of sharpness for this norm is given by

S∥·∥Pt (w) := max
d̸=0

d⊤∇2L(w)d

∥d∥2Pt

= max
v ̸=0

v⊤P
−1/2
t ∇2L(w)P

−1/2
t v

∥v∥22
, (12)

where we arrived at last equality by using the change of variables v = P
1/2
t d. This definition

matches the sharpness definition for preconditioned GD given in (Cohen et al., 2025).

Infinity ℓ∞ Norm. In this case, we consider the infinity norm over the parameters of the neural
network, that is ∥w∥∞ := maxj∈[d] |wj |. The resulting method (1) is the following variant of ℓ∞-
descent given by

wt+1 = wt − η∥∇L(wt)∥1sign(∇L(wt)), (13)
The corresponding definition of sharpness (10) under this norm is given by

S∥·∥∞(w) = max
d̸=0

d⊤∇2L(w)d

∥d∥2∞
= max

d
d⊤∇2L(w)d s.t. ∥d∥∞ ≤ 1. (14)

The optimization problem (14) has also appeared in statistical physics, where it is equivalent to find-
ing the maximum energy—or, correspondingly, the ground state in a flipped sign formulation—of

5
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Figure 3: (Block CD) Train loss, gradient norm, directional smoothness, and generalized sharpness
(16) during training MLP (top) and CNN (bottom) models on CIFAR10-5k dataset with Block CD.
Horizontal dashed lines correspond to the value 2/η.

an Ising spin glass on the hypercube. This corresponds to maximizing the Hamiltonian over binary
spin assignments di = ±1. The problem is known to be NP-hard in general (Zhang & Kamenev,
2025; Kochenberger et al., 2014). Therefore, we use Alg. 1 to approximate (14), with the projection
operator being Π∥·∥∞=1(·) ≡ sign(·).

Fig. 2 presents the convergence results of ℓ∞-descent, applied to the flattened networks’ parame-
ters. In this case, directional smoothness plateaus at 2/η. A similar behavior appears for generalized
sharpness. We observe several interesting phenomena. First, in some cases, the generalized sharp-
ness hovers slightly above the stability threshold 2/η, . As we review in App. C, a similar effect has
been observed for Euclidean GD when there are multiple Hessian eigenvalues at the edge of stabil-
ity, and we hypothesize this behavior could have a similar origin. Second, FW requires a sufficient
number of restarts to obtain a good approximation of the generalized sharpness in (14): see Fig. F.2.

Block ℓ1,2 Norm. In this case, we take into account the block-wise structure of neural networks.
Let the parameters w be split into L blocks, i.e., w = (w1, . . . ,wL) ∈ Rd1 ⊕ Rd2 . . . ⊕ RdL

where
∑L

ℓ=1 dℓ = d. We consider GD in ∥·∥1,2 norm2 defined as ∥w∥1,2 :=
∑L

ℓ=1 ∥wℓ∥2. Let
ℓmax := argmaxℓ∈[L]∥∇wℓL(wt)∥. Then GD in this norm reduces to Block CD

wℓmax
t+1 = wℓmax

t − η∇wℓmaxL(wt), wℓ
t+1 = wℓ

t for ℓ ̸= ℓmax. (15)

The derivations of GD in this norm are given in Lemma D.5. The corresponding definition of sharp-
ness (10) under this norm is given by

S∥·∥1,2(wt) = max
d̸=0

〈
d,∇2L(wt)d

〉
∥d∥21,2

= max
d

〈
d,∇2L(wt)d

〉
s.t.∥d∥1,2 ≤ 1. (16)

The solution to (16) can be given explicitly if the Hessian ∇2L(wt) is PSD (see Lemma D.8)

S∥·∥1,2(w) = max
ℓ∈[L]

λmax(∇2
wℓL(w)). (17)

However, for the general ∇2L(wt), solving (16) is NP-hard (Bhattiprolu et al., 2021), but still can
be approximated by the FW algorithm. The exact steps of FW in this case are derived in Lemma D.9.

Figure 3 shows the convergence of Block CD, where we adopt the natural block-wise structure of
the network – each block corresponding to a weight matrix or bias vector of a layer. The general-
ized sharpness, which is approximated by the maximum eigenvalue of each block of the Hessian,
approaches the threshold 2/η, supporting our theoretical observations. In contrast, the directional
smoothness curves display sharper dynamics: while they also reach 2/η, they exhibit sudden drops
whenever training shifts from a layer already at the EoS regime to one that has not yet reached it.
These drops are also mirrored in the gradient norm dynamics. Similar to ℓ∞, FW algorithm is sensi-
tive to the number of restarts M . Fig. G.1 reports that FW with M = 10 provides a stable estimation
of the generalized sharpness, while FW with M = 1 does not.

2In this case, each block wℓ is treated as a vector.
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Figure 4: (Spectral GD) Train loss, gradient norm, directional smoothness, and generalized sharp-
ness (19) during training MLP (top, CIFAR10) and Transformer (bottom, Tiny Shakespeare) models
with the Spectral GD. Horizontal dashed lines correspond to the value 2/η.

Spectral ∥·∥2→2 Norm. To handle matrix norms, we shift perspective and treat the layers of the
network as blocks of matrices3 W := (W 1, . . . ,WL). In this setting, the natural inner product
is the matrix trace ⟨W ,G⟩ := tr

(
W⊤G

)
. In this framework, one may endow each block W ℓ

with a matrix norm, and then define a global norm on W by specifying an aggregation rule across
layers. One particularly neat choice Bernstein & Newhouse (2024) is max over the spectral norms
∥W ∥∞,2 := maxℓ∈[L] ∥W ℓ∥2, where ∥W ℓ∥2 := max∥d∥2=1 ∥W ℓd∥2. Under this geometry, GD
aligns with the top singular directions of each layer. Concretely, the update is

W ℓ
t+1 = W ℓ

t − ηγU ℓ
tV

ℓ
t , γ =

∑L
ℓ=1 tr

(
Σℓ

t

)
, (18)

where U ℓ
tΣ

ℓ
tV

ℓ
t = ∇W ℓL(Wt) is the reduced SVD of the gradient of the ℓ-th layer. The product

U ℓ
tV

ℓ
t is also known as the polar factor of the matrix ∇W ℓL(Wt), which can be computed effi-

ciently on GPU using variants of the Newton-Schulz method (Jordan et al., 2024; Higham, 1986) or
the PolarExpress (Amsel et al., 2025). The corresponding definition of sharpness (10) under this
norm is given by

S∥·∥2→2(W ) = max
D ̸=0

〈
D,∇2L(Wt)[D]

〉
∥D∥2∞,2

=max
D

〈
D,∇2L(W )[D]

〉
(19)

s.t. ∥Dℓ∥2 ≤ 1 ∀ℓ ∈ [L],

where the operator ∇2L(W )[D] is the directional derivative of the gradient ∇2L(Wt)[D] :=
d
dϵ ∇L(Wt + ϵD)|ϵ=0. This is exactly the operation computed by Hessian-vector-product in Py-
Torch (Paszke et al., 2019). The solution to (19) cannot be computed explicitly. Therefore, we rely
on the FW algorithm to approximate it. The exact steps of FW are derived in Lemma D.4.

Fig. 4 presents the convergence dynamics of Spectral GD. As in previous cases, both directional
smoothness and generalized sharpness approach the stability threshold 2/η. Notably, as with the
ℓ∞ norm, the generalized sharpness gradually reaches this threshold but remains slightly above it.
However, in contrast to ℓ∞ and ℓ1,2 norms, FW is not sensitive to the number of restarts M (Fig. H.2).

4 NORMALIZED NON-EUCLIDEAN GRADIENT DESCENT

In this section, we demonstrate that our theoretical observations extend to normalized non-Euclidean
GD. In more detail, the normalized update rule (3) with step-size η can be rewritten as the unnormal-
ized update rule (1) with effective step-size η̃ = η

∥∇L(wt)∥∗
. Therefore, the corresponding directional

smoothness D∥·∥(wt,wt+1) and generalized sharpness of normalized non-Euclidean GD hovers at
the threshold 2

η̃ = 2∥∇L(wt)∥∗
η . This can also be derived by substituting one step of normalized

non-Euclidean GD into (5), giving

L(wt+1) = L(wt)− η
(
∥∇L(wt)∥∗ − η

2D
∥·∥(wt,wt+1)

)
. (20)

3We use upper case notation to highlight the matrix structure.
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Figure 5: (Normalized non-Euclidean GD) Gradient norm, train loss, directional smoothness (nor-
malized by the dual gradient norm), and generalized sharpness (normalized by the dual gradient
norm) during training a CNN model with SignGD (CIFAR10-5k dataset, top line) and Muon without
momentum (CIFAR10 dataset, bottom line). Horizontal dashed lines correspond to the value 2/η.
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Figure 6: MSE loss (η = 0.002). At four marked iterations, we switch Spectral GD when training
CNN on CIFAR10 from the true objective to its quadratic Taylor approximation at the current iterate
(orange). (Two left, before EoS), the quadratic closely tracks the true loss; (two right, during EoS, it
quickly diverges.

Therefore, the loss decreases if and only if

L(wt+1) ≤ L(wt) ⇐⇒ D∥·∥(wt,wt+1) ≤ 2∥∇L(wt)∥∗/η. (21)

The derivations in Sec. 2.1 applies to normalized non-Euclidean GD. Fig. 5 empirically confirms the
claims for SignGD and Muon, extending our EoS observations to practical algorithms. We demon-
strate that the directional smoothness and generalized sharpness normalized by the dual gradient
norm, i.e., D∥·∥(wt,wt+1)

∥∇L(wt)∥∗
and S∥·∥(wt)

∥∇L(wt)∥∗
respectively, hover at the stability threshold 2/η.

5 TOWARDS UNDERSTANDING THE UNDERLYING MECHANISM

For Euclidean GD, the EoS dynamics are partly understood. The significance of the sharpness
λmax(∇2L(wt)) is that it determines whether or not GD is divergent on the local quadratic Tay-
lor approximation. Indeed, if GD with step size η is run on any quadratic objective function where
the Hessian matrix has any eigenvalue(s) greater than 2/η, then GD will oscillate with exponentially
growing magnitude along the corresponding eigenvector(s). This will occur starting from almost any
initialization (the one exception being if the iterate is initialized to be exactly orthogonal to the top
eigenvector(s), an event which occurs with probability zero under any typical random initialization).
Accordingly, on neural network objectives, once progressive sharpening drives the sharpness above
2/η, the iterate starts to oscillate with growing magnitude along any unstable eigenvectors, just as
one would expect based on the local quadratic Taylor approximation. These oscillations cause the
loss to (temporarily) increase, and the directional smoothness to exceed 2/η. The oscillations also
crucially induce reduction of sharpness, as is revealed by considering a local cubic Taylor expan-
sion (Damian et al., 2022), an effect which prevents the sharpness from rising further and thereby
stabilizes training.

For non-Euclidean GD, since we observe that the generalized sharpness (10) (or at least, our estimate
of it) hovers near 2/η, it is natural to ask if an analogous explanation holds. Standard arguments
from convex optimization give the following result.
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Theorem 5.1. Let L(w) := 1
2w

⊤Hw for some H ≻ 0. For some norm ∥·∥, define the general-
ized sharpness S = S∥·∥ := max∥d∥≤1 d

⊤Hd. If we run non-Euclidean GD (Def. 1.1) on L with
any step-size η < 2/S, it will converge at a linear rate starting from any initial point w0.

See App. E for the proof. This theorem generalizes, to non-Euclidean norms, the fact that GD is con-
vergent on quadratic functions so long as the sharpness is less than 2/η. However, for the Euclidean
norm, the key point is that the converse is also true: gradient descent diverges on quadratics if the
sharpness is greater than 2/η. We now show that this property also carries over, to an extent, to the
non-Euclidean setting.

Theorem 5.2. Let L(w) := 1
2w

⊤Hw for some H ≻ 0. For some norm ∥ · ∥, define the general-
ized sharpness S := max∥d∥≤1 d

⊤Hd. If we run non-Euclidean GD (Def. 1.1) on L, there exists
an initialization w0 from which GD will diverge for any step-size η > 2/S.

The full proof is in App. E, and the crux is the following lemma, which implies that the direction d̂
which attains the argmax in the generalized sharpness optimization problem is an invariant direction
under the non-Euclidean GD update:

Lemma 5.3. If d̂ ∈ argmax∥d∥=1 d
⊤Hd, then (Hd̂)∗ = d̂.

As a result, if the iterate is initialized in w0 ∈ span(d̂), then the evolution of wt is given by:
wt = (1− ηS)tw0. (22)

When η > 2/S ⇐⇒ S > 2/η, these dynamics oscillate with growing magnitude and diverge.
However, we note that Th. 5.2 is less strong than what is true for Euclidean GD, as Euclidean GD di-
verges from all but a zero-measure set of initializations, whereas Th. 5.2 only establishes divergence
when the initialization is on a particular line.

Empirically, we can assess whether non-Euclidean GD is indeed divergent on the quadratic Taylor
approximation when operating on the edge of stability. In Fig. 6, for points during training both
before and after entering EoS, we switch from running non-Euclidean GD on the real objective to
running non-Euclidean GD on the quadratic Taylor approximation (similar to App. E from Cohen
et al. (2021)). We observe that GD is stable before reaching EoS, but divergent afterwards. This
supports the idea that the significance of the generalized sharpness hovering around 2/η is related
to the dynamics becoming divergent on the local quadratic Taylor approximation.

Nevertheless, we note that our explanation of this behavior is not fully satisfying, as our theory
only proves that non-Euclidean EoS is divergent under a specific initialization, whereas in practice
we observe that this divergence seems to occur quite generically. Bridging this gap would be an
interesting question for future work.

It is worth highlighting an additional point of difference between the Euclidean and non-Euclidean
cases. For Euclidean GD, the directional smoothness only starts to grow from ≈ 0 to 2/η after the
sharpness crosses 2/η. By contrast, for non-Euclidean GD under some norms (in particular, ℓ∞ and
∥·∥2→2), we observe that the directional smoothness starts to climb towards 2/η before the general-
ized sharpness has reached 2/η (Appendix B). During this period, we find that the iterates oscillate
in weight space, but the dynamics are not yet divergent on the quadratic Taylor approximation.
This suggests an intermediate regime between stability and EoS regimes, which does not occur for
Euclidean GD. Understanding this behavior would be an interesting question for future work.

6 CONCLUSION AND FUTURE WORK

We extend EoS to previously unstudied methods such as Spectral GD, ℓ∞-descent, and Muon, but
several questions remain: (i) the mechanism underlying stability at the 2/η threshold for general
non-Euclidean GD; (ii) the differing dynamics of directional smoothness in Euclidean vs. non-
Euclidean GD, including a possible intermediate regime between stability and EoS; and (iii) stronger
convergence theory for non-Euclidean GD on quadratics, especially when η > 2/S for arbitrary
initialization.

9
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for an arbitrary norm ∥·∥ and symmetric matrix H . Even in the convex case where H is positive
definite, problem (23) is NP-hard (Burer & Letchford, 2009) and is recognized as a fundamental
challenge in global optimization (Horst et al., 2000). Consequently, without exploiting additional
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structure, global optimality guarantees cannot be expected from generic first-order methods. In-
stead, one can provide stationarity-type guarantees or approximation bounds via relaxations (Burer
& Letchford, 2009).

The Frank–Wolfe (FW) algorithm is a projection-free method that relies on a linear minimization
oracle min∥w∥=1⟨w − u,Hu⟩. For maximization problems such as (23), this oracle is applied in
reverse, i.e., minimizing −u⊤Hu. For L-smooth functions over convex domains, which includes
(23), the FW algorithm provides convergence to approximate stationary points, measured through the
Frank–Wolfe gap

G(u) := max
∥w∥≤1

⟨w − u,−Hu⟩,

where the last term comes with minus since we minimize −u⊤Hu. Specifically, FW identifies
an iterate uK satisfying G(uK) ≤ ε in O(1/ε2) iterations, i.e., at rate O(1/

√
K) (Lacoste-Julien,

2016). While this guarantee does not imply global optimality for (23), it provides a principled and
certifiable stopping criterion. However, the solution to (23) must lie at the boundary of the unit ball
in ∥·∥ norm, since the quadratic function is continuous. Therefore, in the experiments, we add a
projection step. We observe that such a projection step always improved the final iterate.

As an alternative, consider the projected power iteration

uk+1 = Π∥·∥(Huk).

For the Euclidean norm, this reduces to the classical Power method, which converges to the
normalized leading eigenvector provided the initialization has a nonzero component along it
(Golub & Van Loan, 2013). For general norms, however, no global convergence guarantees are
known: the projected iterates can stall or even cycle–for example, when they approach general-
ized eigenvectors, namely unit vectors v that are fixed points of the linear minimization oracle,
v = argmin

∥w∥=1

⟨w − v,−Hv⟩. Empirically, we found that FW provides a good estimation of (10)

when a sufficient number of restarts is used.

B AN OSCILLATORY REGIME BEFORE EOS

In this appendix, we briefly elaborate on an oscillatory regime that occurs for some optimizers
(including ℓ∞-descent and Spectral GD) before the algorithm reaches EoS. This stands in contrast
to Euclidean GD, which generally does not oscillate before the sharpness reaches 2/η (Cohen et al.,
2024).

In Figure B.1, we train a network using ℓ∞ descent. Initially, the generalized sharpness is less than
2/η, the directional smoothness is ≈ 0, and the network’s predictions are not oscillating. Then,
around step 300, even though the generalized sharpness is less than 2/η, the directional smoothness
starts to rise and the network’s predictions start to oscillate, which are indications that the iterates
are oscillating in weight space. Finally, around step 450, the generalized sharpness and directional
smoothness reach 2/η and the algorithm reaches EoS. The network’s predictions oscillate wildly.

The existence of the pre-EoS oscillatory regime is interesting, since no such regime exists for Eu-
clidean GD.

In Figure B.2, we further explore this phenomenon. At three points during training, we switch from
running ℓ∞ descent on the real objective to running it on the quadratic Taylor approximation. We
show the evolution of the network output under the resulting trajectory. Initially (left), the network
output does not oscillate, indicating that the iterates are not oscillating in weight space. On the
other hand, once the dynamics are in the pre-EoS oscillatory regime (middle), the network output
oscillates but does not diverge. Finally, once the dynamics are at EoS (right), the network output
diverges.

An interesting avenue for future work would be to understand why non-Euclidean GD starts to oscil-
late when it does.
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C THE GAP BETWEEN THE GENERALIZED SHARPNESS AND 2/η

Prior studies of Euclidean GD at EoS have observed that there is often a gap between the sharpness
and 2/η; for example, in Figure 1 of Cohen et al. (2021), the sharpness can be seen to sometimes
exceed the critical threshold of 2/η by 150%. Similar effects can be observed in plots throughout
this paper for the generalized sharpness during non-Euclidean GD. We now review the prevailing
explanation for this phenomenon for Euclidean GD, and suggest that a similar mechanism is at play
for non-Euclidean GD.

For Euclidean GD, Cohen et al. (2025) argue that when multiple Hessian eigenvalues are near 2/η, GD
should be conceived of as oscillating within the subspace spanned by the correponding eigenvectors.
The EoS phenomenon is that for every direction d in this subspace, the local time-average of the
directional curvature d⊤∇2L(w)d is approximately equal to 2/η. Concretely, if at some iteration t,
one computes the top Hessian eigenvector d, and then monitors the quantity d⊤∇2L(wt+j)d for the
next j = 1, . . . ,m iterations, then the local time-average of this quantity 1

m

∑k
j=1 d

⊤∇2L(wt+j)d

is predicted to be approximately 2/η. By contrast, if we compute the top Hessian eigenvalue anew
at every iteration {λmax(∇2L(wt))}, then due to the chaotic oscillatory dynamics, we get back a
different vector within this subspace at every step, and because the largest Hessian eigenvector is the
direction with the largest curvature, there is an upward bias.

For an analogy, consider the random d-dimensional matrix

H := U [ 2η Ik + εdiag(z)]U⊤, z ∼ N (0, Ik),

where U ∈ Rd×k has orthogonal columns and ϵ > 0 is a small number. Here, H is an analogy
to the Hessian, the columns of U are the k ≥ 2 unstable Hessian eigenvectors, and the random
noise z is an analogy to the chaotic oscillatory dynamics. The nonzero eigenvalues of H are exactly
2
η + ϵ z, and so the largest eigenvalue λmax(H) is precisely 2

η + ϵ max1≤i≤k zi. It can be shown
that E[max1≤i≤k zi] > 0 provided that k ≥ 2, and thus we have E[λmax(H)] > 2

η . On the other

hand, for any fixed vector v ∈ Range(U), we have that E[v⊤Hv]
∥v∥2 = 2

η .

Generalizing this argument to the case of non-Euclidean GD is nontrivial, as in the non-Euclidean
case we do not yet know if there is an analogous concept to multiple eigenvalues being at the edge of
stability. Nevertheless, in Figure C.1, we empirically show that while the generalized sharpness (10)
hovers strictly above 2/η, if we fix a timestep t0 and compute the maximizer d of the generalized
sharpness problem (10) at this timestep, then the quadratic form d⊤∇2L(wt0+j)d computed over
the next j = 1, . . . ,m steps is much closer to 2/η.

D USEFUL LEMMAS

D.1 MISSING PROOFS FOR THE SPECTRAL BLOCK NORM ℓ∞,2

First, we derive the step of Spectral GD.
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Figure B.1: An oscillatory regime before EoS. We train a network using ℓ∞-descent. From steps
∼300−450, the generalized sharpness is less than 2/η (so the algorithm is not yet at EoS), but
the directional smoothness has already started to climb from ≈ 0 towards 2/η, and the network’s
predictions have already started to oscillate. This would not occur for Euclidean GD. This network
is a fully connected network trained on a subset of CIFAR-10 using MSE loss and η = 1× 10−7.
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Figure B.2: In the pre-EoS oscillatory regime, training on the quadratic Taylor approximation
oscillates without diverging. While training the network from Figure B.1, we switch from training
on the real objective to to training on the quadratic Taylor approximation at three points during
training: at step 100 (while the optimizer is stable and non-oscillatory), at step 300 (while the
optimizer is in the pre-EoS oscillatory regime), and at step 800 (when the network is at EoS). For
these trajectories, we plot the network’s output on an arbitrary test example. In the first case, this
output evolves smoothly; in the third case, it diverges; and, interestingly, in the second case, it
oscillates with sustained magnitude and without diverging.

Lemma D.1. Let ∥Xℓ∥Wℓ
be the norm of the ℓ-th layer and ∥X∥2 =

∑L
ℓ=1 ∥Xℓ∥2Wℓ

. The
solution to

∆W∗ = argmin
∆W

tr
(
∆W⊤G

)
+

1

2η
∥∆W ∥2. (24)

is given by
∆W ℓ

∗ = η · ∥Gℓ∥∗Wℓ
· argmin
∥X∥Wℓ

=1

tr
(
X⊤Gℓ

)
(25)

where ∥·∥∗Wℓ
denotes the dual norm of ∥ · ∥Wℓ

.

Proof. First, note that this problem is separable over each layer since

tr
(
∆W⊤G

)
+

1

2η
∥W ∥2 =

L∑
ℓ=1

(
tr
(
(∆W ℓ)⊤Gℓ

)
+

1

2η
∥∆W ℓ∥2Wℓ

)
.

Thus, we can solve over each layer separately. Changing coordinates with ∆W ℓ = cX where
∥X∥Wℓ

= 1 and c ≥ 0 we have that

min
∆W ℓ

tr
(
(∆W ℓ)⊤Gℓ

)
+

1

2η
∥∆W ℓ∥2Wℓ

= min
c≥0

c min
∥X∥Wℓ

=1
tr
(
X⊤Gℓ

)
+

1

2η
c2

= min
c≥0

−c∥Gℓ∥∗Wℓ
+

1

2η
c2.

Figure C.1: For a stretch of training, we plot both the (estimated) generalized sharpness
max∥d∥≤1 d⊤∇2L(wt)d (blue), as well as the quadratic form d∗

⊤∇2L(wt)d∗ where d∗ ∈
argmax∥d∥≤1 d⊤∇2L(wt0)d is the maximizing direction at step t0 = 1000. While the first quan-
tity is consistently larger than 2/η, the second is much closer to 2/η. This is a fully-connected
network trained on a subset of CIFAR-10 using MSE loss and ℓ∞ descent with η =2e-7.
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Here, we use the fact that argmin
X

tr(X⊤Gℓ) = −(Gℓ)∗ is the dual matrix of Gℓ. Finally solving

in c ≥ 0 gives c = η · ∥Gℓ∥∗Wℓ
.

If we use the infinity norm over layers instead of the Euclidean one, we get the following re-
sult.

Lemma D.2. The solution to

∆W∗ = argmin
∆W

tr
(
∆W⊤Gt

)
+

1

2η
max
ℓ∈[L]

∥∆W ℓ∥2Wℓ
. (26)

is given by
∆W ℓ

∗ = ηγ · argmin
∥X∥Wℓ

=1

tr
(
X⊤Gℓ

t

)
(27)

where γ :=
∑L

ℓ=1 ∥Gℓ
t∥∗Wℓ

and ∥·∥∗Wℓ
denotes the dual norm of ∥ · ∥Wℓ

.

Remark D.3. If ∥ · ∥Wℓ
= ∥ · ∥2 for all ℓ ∈ [L], then ∆W ℓ = ηγU ℓ

tV
ℓ
t where Gℓ

t = U ℓ
tΣ

ℓ
tV

ℓ
t is

the reduced SVD decomposition. Moreover, γ =
∑L

ℓ=1 ∥Gℓ
t∥∗ is the sum of nuclear norms over

the layers. See the proof in (Bernstein & Newhouse, 2024).

Proof. The problem that we want to solve is

min
∆W

L∑
ℓ=1

tr
(
(∆W ℓ)⊤Gℓ

t

)
+

1

2η
max
ℓ∈[L]

∥∆W ℓ∥2Wℓ
;

Let S := {∆W | ∥∆W ℓ∥Wℓ
≤ t ∀ℓ ∈ [L]}. We can rewrite this problem as

min
t≥0

min
∆W∈S

[
L∑

ℓ=1

tr
(
(∆W ℓ)⊤Gℓ

t

)
+

1

2η
∥∆W ℓ∥2Wℓ

]
= min

t≥0
min

∆W∈S

[
L∑

ℓ=1

tr
(
(∆W ℓ)⊤Gℓ

t

)
+

t2

2η

]

= min
t≥0

[
L∑

ℓ=1

min
∥∆W ℓ∥Wℓ

≤t
tr
(
(∆W ℓ)⊤Gℓ

t

)
+

t2

2η

]
= min

t≥0

[
L∑

ℓ=1

−t max
∥∆W ℓ∥Wℓ

≤1
tr
(
(∆W ℓ)⊤Gℓ

t

)
+

t2

2η

]

= min
t≥0

[
L∑

ℓ=1

−t∥Gℓ
t∥∗Wℓ

+
t2

2η

]
.

Now it is a quadratic problem in t. The minimizer t∗ is given by

t∗ := η

L∑
ℓ=1

∥Gℓ
t∥∗Wℓ

.

Therefore, the final solution is given by

∆W ℓ = η

(
L∑

ℓ=1

∥Gℓ
t∥∗Wℓ

)
argmin
∥X∥Wℓ

≤1

tr
(
X⊤Gℓ

t

)
.

Lemma D.4. Let ∥·∥ be the spectral block norm ∥·∥2→2. Then the iterates of the FW to approxi-
mate (19) are given by

U ℓ
kV

ℓ
k = polar(∇W ℓF (Dt)), Dℓ

k+1 = (1− γk)Dk + γkU
ℓ
kV

ℓ
k ,
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where polar(·) is the polar decomposition of a matrix, γk = 2
2+k

Proof. We consider the Frank-Wolfe method for finding an approximate solution. For shortness,
let H := ∇2L(Wt), and note that the objective F (D) := ⟨D,H[D]⟩ is a quadratic form, whose
gradient is given by

∇F (D) = 2H[D].

To compute a step of the Frank-Wolfe method, we need to solve

argmin
D

⟨∇F (Dk),D⟩ subject to ∥Dℓ∥2 ≤ 1, for ℓ = 1, . . . , L.

Clearly, this problem is separable over layers and is thus equivalent to solving (Bernstein & New-
house, 2024)

U ℓ
kV

ℓ
k = argmin

Dℓ

〈
∇W ℓF (Dk),D

ℓ
〉

subject to ∥Dℓ∥2 ≤ 1,

where ∇W ℓF (Dk) is the directional derivative of the gradient of the ℓ-th layer given by

∇W ℓF (Dk) =
d

dϵ
∇W ℓL(D1

k, . . . ,D
ℓ
k + ϵDℓ, . . . ,DL

k )
∣∣
ϵ=0

and where U ℓ
kΣ

ℓ
kV

ℓ
k = ∇W ℓF (Dk). The matrix U ℓ

kV
ℓ
k is also known as the polar factor of

∇W ℓF (Dk). The resulting Frank-Wolfe method is thus given by

U ℓ
kV

ℓ
k = polar(∇W ℓF (Dk)), Dℓ

k+1 = (1− γk)D
ℓ
k + γkU

ℓ
kV

ℓ
k ,

where γk = 2
k+2 .

D.2 MISSING PROOFS FOR THE BLOCK ℓ1,2 NORM

Lemma D.5. The solution to the problem

∆w∗ = argmin
w

⟨∆w,gt⟩+
1

2η
∥∆w∥21,2

can be written as

∆wℓ
∗ =


0 if gt = 0,

0 if gt ̸= 0 and ℓ /∈ J,

− η
|J|g

ℓ
t ℓ ∈ J,

where J := {ℓ ∈ [L] | ∥gℓ
t∥2 = maxj∈[L] ∥gj

t∥2}.

Remark D.6. In the case when J is a singleton, we obtain Block CD

wℓ
t+1 =

{
wℓ

t − ηgℓ
t if ℓ = ℓmax,

wℓ
t otherwise,

where ℓmax = argmax
ℓ∈[L]

∥gℓ
t∥2.

Remark D.7. In the case when L = d, we obtain vanilla coordinate descent (CD)

wj
t+1 =

{
wjmax

t − ηgjmax

t if j = jmax

wj
t otherwise,

where jmax = argmax
j∈[d]

|gj
t |.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Proof. We need to find a solution to the problem

min
∆w

⟨∆w,gt⟩+
1

2η

(
L∑

ℓ=1

∥∆wℓ∥2

)2

= min
∆w

L∑
ℓ=1

⟨∆wℓ,gℓ
t⟩+

1

2η

(
L∑

ℓ=1

∥∆wℓ∥2

)2

Let ∆w∗ be the solution to the problem. Therefore,

0 ∈ gt +
1

η

(
L∑

ℓ=1

∥∆wℓ
∗∥2

)
∂

(
L∑

ℓ=1

∥∆wℓ
∗∥2

)

= gt +
1

η

(
L∑

ℓ=1

∥∆wℓ
∗∥2

)
(∂∥∆w1

∗∥⊤2 , . . . , ∂∥∆wL
∗ ∥⊤2 )⊤. (28)

Let χ =
∑L

ℓ=1 ∥∆wℓ
∗∥2. Note that

∂∥x∥ =

{
x

∥x∥2
if x ̸= 0,

{y | ∥y∥2 ≤ 1} otherwise
.

Therefore, we should satisfy the following L equalities

−gℓ
t =

χ

η
∂∥∆wℓ

∗∥2, and ∥gℓ
t∥2 =

χ

η

∥∥∂∥∆wℓ
∗∥2
∥∥ ≤ χ

η
. (29)

This implies that each block of gt has a norm at most χ/η, and whenever some block ℓ satisfies

∂∥∆wℓ
∗∥2 =

∆wℓ
∗

∥∆wℓ
∗∥2

, then the corresponding block ∥gℓ
t∥2 = χ

η .

If ∥gℓ
t∥2 = 0 for all ℓ ∈ [L], i.e., gt = 0, then for all ∆wℓ

∗ = 0.

Now let us assume that there is at least one block ℓ ∈ [L] such that ∥gℓ
t∥2 ̸= 0. Let J := {ℓ ∈ [L] |

∥gℓ
t∥2 = maxj∈[L] ∥gj

t∥2} ̸= ∅. Then, for all blocks ℓ ∈ J we have ∥gℓ
t∥2 = χ

η . Indeed, if it is not
the case, i.e., if for all ℓ ∈ [L] we have ∥gℓ

t∥2 < χ
η , then ∆w∗ = 0 and we obtain a contradiction to

(28) since gt ̸= 0.

We summarize that for any block ℓ /∈ J such that ∥gℓ∥2 < χ
η we obtain ∆wℓ

∗ = 0. In the opposite
case for ℓ ∈ J , we have that

∥gℓ
t∥2 = max

j∈[L]
∥gj

t∥2 =
χ

η
⇒ χ =

∑
ℓ∈J

∥∆wℓ
∗∥2 = |J |max

ℓ∈J
∥∆wℓ

∗∥ = ηmax
ℓ∈[L]

∥gℓ
t∥,

and from (29) we obtain ∆wℓ
∗ = −ηmaxj∈[L] ∥gj

t∥2

|J|
gℓ
t

∥gℓ
t∥2

= − η
|J|g

ℓ
t for ℓ ∈ J. This concludes the

proof.

Lemma D.8. Let ∥·∥ be the block ℓ1,2 norm. Assume that the Hessian ∇2L(wt) is positive semi-
definite. Then the generalized sharpness (16) is given by

S∥·∥1,2(wt) = max
ℓ∈[L]

λmax(∇2
wℓ(wt)).

Proof. If H = ∇2L(wt) is positive semidefinite, then the function f(d) = ⟨d,Hd⟩ is convex.
Our goal is to find the maximum of this quadratic convex function over a ℓ1,2-norm unit ball. It
attains the maximum at the border, i.e., ∥d∥1,2 = 1. Any point y at the border of the ℓ1,2 unit norm
can be expressed as

y = (α1d
1, . . . , αLd

L) where ∥dℓ∥2 = 1 ∀ℓ ∈ [L] and
L∑

ℓ=1

αℓ = 1.

Let y1 = (d1, 0, . . . , 0),y2 = (0,d2, . . . , 0), . . . ,yL = (0, 0, . . . ,dL), ∥dℓ∥2 = 1 for all ℓ ∈
[L]. Then y =

∑L
ℓ=1 αℓyℓ. Since f is convex, then f(y) ≤

∑L
ℓ=1 αℓf(yℓ) ≤ maxℓ∈[L] f(yℓ).

Therefore, our problem reduces to

max
ℓ∈[L]

max
∥dℓ∥2=1

〈
dℓ,∇2

wℓL(wt)d
ℓ
〉
= max

ℓ∈[L]
λmax(∇2

wℓL(wt)), (30)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

where ∇2
wℓL(wt) is the ℓ-th diagonal block of the Hessian. In the special case of L = d, we have

the sharpness measure

max
d

d⊤∇2L(wt)d

∥d∥21
= max

j
|∇2L(wt)jj |.

Lemma D.9. Let ∥·∥ be the block ℓ1,2 norm. Then the iterates of the FW to approximate (16) are
given by

vk =
(∇2L(wt)dk)ℓ

∥(∇2L(wt)dk)ℓ∥2
, dk+1 = (1− γk)dk + γkvk,

where (∇2L(wt)dk)ℓ is the ℓ-th block of the vector ∇2L(wt)dk, and γk = 2
2+k .

Proof. We consider the Frank-Wolfe method for finding an approximate solution. For shortness, let
H := ∇2L(wt), and not that the objective F (d) := d⊤Hd is a quadratic form, whose gradient is
given by ∇F (d) = 2Hd. To compute a step of the Frank-Wolfe method, we need to solve

argmin
d

⟨∇F (dk),d⟩ subject to ∥d∥1,2 ≤ 1.

The solution to this is given by the dual norm and the dual gradient

min
∥d∥1,2≤1

⟨∇F (dk),d⟩ = ∥∇F (dk)∥∞,2 = max
ℓ∈[L]

∥∇dℓF (dk)∥2.

This is true, since

⟨∇F (dk),d⟩ =
L∑

ℓ=1

⟨∇dℓF (dk),d
ℓ⟩ ≤

L∑
ℓ=1

∥∇dℓF (dk)∥2 · ∥dℓ∥2

≤ max
ℓ∈[L]

∥∇dℓF (dk)∥2 ·
L∑

ℓ=1

∥dℓ∥2 = max
ℓ∈[L]

∥∇dℓF (dk)∥2. (31)

The maximizer is obtained by concentrating all mass on any group ℓ ∈ {ℓ : ∥∇dℓF (dk)∥2 =
maxi∈[L] ∥∇diF (dk)∥2}, namely,

dℓ
∗ =

{
∇

dℓF (dk)

∥∇
dℓF (dk)∥2

, ℓ ∈ {j : ∥∇djF (dk)∥2 = maxi∈[L] ∥∇diF (dk)∥2}
0, otherwise.

E NON-EUCLIDEAN GRADIENT DESCENT ON QUADRATICS

To prove convergence of Non-Euclidean GD for the case of a sufficiently small step size, (Theorem
5.1) we follow standard arguments of smoothness and strong convexity. The following definitions
of smoothness and strong convexity are standard generalizations from the Euclidean norm to an
arbitrary norm.

Definition E.1. We say that L : Rd → R is (L, ∥·∥)-smooth if

∥∇L(w)−∇L(v)∥∗ ≤ L∥w − v∥ (32)

for all w,v ∈ Rd.

Definition E.2. We say that L : Rd → R is (µ, ∥·∥)-strongly convex if

L(v) ≥ L(w) + ⟨∇L(w),v −w⟩+ µ

2
∥v −w∥2 (33)
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for all w,v ∈ Rd.

The following lemmas show that our quadratic L(w) = 1
2w

⊤Hw is smooth and strongly convex.

Lemma E.3. The objective L(w) = 1
2w

THw is (L, ∥·∥)-smooth with L = sup∥z∥=1 z
THz.

Proof. For any w,v ∈ Rd, denote d = (w − v)/∥w − v∥. Then

∥∇L(w)−∇L(v)∥∗
∥w − v∥

=
∥Hw −Hv∥∗

∥w − v∥
= ∥Hd∥∗ = sup

∥u1∥=1

u⊤
1 Hd ≤ sup

∥u1∥=∥u2∥=1

u⊤
1 Hu2,

(34)

where in the third equality we used the definition of dual norm. Next we will prove that

sup
∥u1∥=∥u2∥=1

u⊤
1 Hu2 = sup

∥z∥=1

z⊤Hz.

The (≥) direction is immediate since

sup
∥u1∥=∥u2∥=1

u⊤
1 Hu2 ≥ sup

∥z∥=1

z⊤Hz. (35)

To show the other direction, let

(u∗
1,u

∗
2) ∈ argmax

∥u1∥=∥u2∥=1

u⊤
1 Hu2, (36)

and
z∗ ∈ argmax

∥z∥=1

z⊤Hz. (37)

Note that these argmax operations make sense, since we are considering the maximum of continu-

ous functions on compact domains, which always achieve their supremum. Then

(u∗
1 − u∗

2)
⊤H(u∗

1 − u∗
2) ≥ 0

(u∗
1)

⊤Hu∗
1 − 2(u∗

1)
⊤Hu∗

2 + (u∗
2)

⊤Hu∗
2 ≥ 0

(u∗
1)

⊤Hu∗
1 + (u∗

2)
⊤Hu∗

2 ≥ 2(u∗
1)

⊤Hu∗
2

2(z∗)⊤Hz∗ ≥ 2(u∗
1)

⊤Hu∗
2

(z∗)⊤Hz∗ ≥ (u∗
1)

⊤Hu∗
2,

where the first inequality uses that H is PSD, the second inequality uses that H is symmetric, and
the fourth inequality uses (u∗

1)
⊤Hu∗

1 ≤ (z∗)⊤Hz∗ and (u∗
2)

⊤Hu∗
2 ≤ (z∗)⊤Hz∗. This proves

the (≤) direction, and proves the claim. Then Equation (34) becomes

∥∇L(w)−∇L(v)∥∗
∥w − v∥

≤ sup
∥z∥=1

z⊤Hz, (38)

or

∥∇L(w)−∇L(v)∥∗ ≤

(
sup

∥z∥=1

z⊤Hz

)
∥w − v∥. (39)

Lemma E.4. The objective L(w) = 1
2w

THw is (µ, ∥·∥)-strongly convex with µ =

inf∥v∥=1 v
THv.

Proof. The strong convexity property

L(v) ≥ L(w) + ⟨∇L(w),v −w⟩+ µ

2
∥v −w∥2 (40)
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for our particular L is equivalent to each of the following statements:

1

2
v⊤Hv ≥ 1

2
w⊤Hw + (v −w)⊤Hw +

µ

2
∥v −w∥2 (41)

1

2
v⊤Hv − v⊤Hw +

1

2
w⊤Hw ≥ µ

2
∥v −w∥2 (42)

(v −w)⊤H(v −w) ≥ µ∥v −w∥2 (43)(
v −w

∥v −w∥

)⊤

H
v −w

∥v −w∥
≥ µ, (44)

which is satisfied by µ = inf∥v∥=1 v
THv.

Theorem 5.1. Let L(w) := 1
2w

⊤Hw for some H ≻ 0. For some norm ∥·∥, define the general-
ized sharpness S = S∥·∥ := max∥d∥≤1 d

⊤Hd. If we run non-Euclidean GD (Def. 1.1) on L with
any step-size η < 2/S, it will converge at a linear rate starting from any initial point w0.

Proof. To show convergence, we prove a generalization of the Polyak-Łojasiewicz (PL) property,
then follow the standard analysis of gradient descent for smooth and PL functions.

Lemma E.4 implies that L is µ-strongly convex with µ = inf∥v∥=1 v
⊤Hv. We also know that

L(w) ≥ L∗ := 0, and that this minimum is achieved at w∗ = 0. So we apply (33) with v = w∗
and any w:

L∗ ≥ L(w) + ⟨∇L(w),w∗ −w⟩+ µ

2
∥w∗ −w∥2 (45)

≥ inf
v

{
L(w) + ⟨∇L(w),v −w⟩+ µ

2
∥v −w∥2

}
. (46)

From (1), we know the inf above is minimized when v = w − 1/µ∥∇L(w)∥∗(∇L(w))∗. We also
know that L(w) ≥ L∗ := 0 for all w. So

L∗ ≥ L(w)− 1

µ
∥∇L(w)∥∗⟨∇L(w), (∇L(w))∗⟩+

1

2µ
∥∇L(w)∥2∗∥(∇L(w))∗∥2 (47)

= L(w)− 1

µ
∥∇L(w)∥2∗ +

1

2µ
∥∇L(w)∥2∗ (48)

= L(w)− 1

2µ
∥∇L(w)∥2∗, (49)

so
∥∇L(w)∥2∗ ≥ 2µ(L(w)− L∗), (50)

which is the PL property we need.

Lemma E.3 implies that L is L-smooth with L = S, so

L(wt+1) ≤ L(wt) + ⟨∇L(wt),wt+1 −wt⟩+
S

2
∥wt+1 −wt∥2 (51)

≤ L(wt) + η∥∇L(wt)∥∗⟨∇L(wt), (∇L(wt))∗⟩+
Sη2∥∇L(wt)∥2∗

2
∥(∇L(wt))∗∥2

(52)

≤ L(wt)− η∥∇L(wt)∥2∗ +
Sη2∥∇L(wt)∥2∗

2
(53)

≤ L(wt)− η

(
1− ηS

2

)
∥∇L(wt)∥2∗ (54)

≤ L(wt)− 2µη

(
1− ηS

2

)
(L(wt)− L∗) , (55)

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

where the last line uses the PL property from (50) and that η < 2/S. Subtracting L∗ from both
sides:

L(wt+1)− L∗ ≤
(
1− 2µη

(
1− ηS

2

))
(L(wt)− L∗) , (56)

so that for all t,

L(wt)− L∗ ≤
(
1− 2µη

(
1− ηS

2

))t

(L(w0)− L∗). (57)

The key to showing divergence when η > 2/S (Theorem 5.2) is the following lemma.

Lemma 5.3. If d̂ ∈ argmax∥d∥=1 d
⊤Hd, then (Hd̂)∗ = d̂.

Proof. Since H is symmetric and PSD, we have for any such v

(v − ŵ)⊺H(v − ŵ) ≥ 0 (58)
v⊺Hv − 2v⊺Hŵ + ŵ⊺Hŵ ≥ 0 (59)

v⊺Hv + ŵ⊺Hŵ ≥ 2v⊺Hŵ (60)
2ŵ⊺Hŵ ≥ 2v⊺Hŵ (61)
ŵ⊺Hŵ ≥ v⊺Hŵ, (62)

where the fourth line uses that ŵ⊺Hŵ ≥ v⊺Hv. Therefore
(Hŵ)∗ = argmax

∥v∥=1

v⊺Hŵ = ŵ. (63)

Theorem 5.2. Let L(w) := 1
2w

⊤Hw for some H ≻ 0. For some norm ∥ · ∥, define the general-
ized sharpness S := max∥d∥≤1 d

⊤Hd. If we run non-Euclidean GD (Def. 1.1) on L, there exists
an initialization w0 from which GD will diverge for any step-size η > 2/S.

Proof. Let w0 ∈ span(d̂) for some d̂ ∈ argmax
∥d∥=1

d⊤Hd, so d̂ = w0/∥w0∥. We will show

wt = (1 − ηS)tw0 by induction on t. With the property of d̂ from Lemma 5.3, the proof is
essentially a direct calculation. From the definition of gradient descent,

wt+1 = wt − η ∥Hwt∥∗ (Hwt)∗ (64)

= ∥w0∥(1− ηS)td̂− η∥w0∥(1− ηS)t
∥∥∥Hd̂

∥∥∥
∗
(∥w0∥(1− ηS)tHd̂)∗ (65)

= ∥w0∥(1− ηS)td̂− η∥w0∥(1− ηS)t
∥∥∥Hd̂

∥∥∥
∗
(Hd̂)∗ (66)

= ∥w0∥(1− ηS)td̂− η∥w0∥(1− ηS)t
∥∥∥Hd̂

∥∥∥
∗
d̂ (67)

= ∥w0∥(1− ηS)t
(
1− η∥Hd̂∥∗

)
d̂ (68)

= ∥w0∥(1− ηS)t+1d̂ (69)

= (1− ηS)t+1w0. (70)
where the second line uses the inductive hypothesis, the third line uses that the dual map v 7→ (v)∗
is invariant to positive scaling of the input, uses Lemma 5.3, and the fifth line uses

∥Hd̂∥∗ = sup
∥v∥=1

v⊺Hd̂ = (Hd̂)⊺∗Hd̂ = d̂⊺Hd̂ = sup
∥v∥=1

v⊺Hv = S. (71)

As an aside, we can also show that GD will diverge for every initialization when η is sufficiently
large.
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Figure F.1: (ℓ∞-descent) Train loss, gradient norm, directional smoothness, and generalized sharp-
ness (14) during training CNN on CIFAR10-5k with ℓ∞-descent. Horizontal dashed lines corre-
spond to the value 2/η. Gradient norm and train loss curves are smoothed using an exponential
smoothing with α = 0.1. We use FW with K = 50 and M = 5 to approximate (14).

Theorem E.5. Let L(w) := 1
2w

⊤Hw for some H ≻ 0. For some norm ∥ · ∥, define the
generalized sharpness S∥·∥ := max∥d∥≤1 d

⊤Hd. Then, if we run non-Euclidean GD (Definition
1.1) on L, there GD will diverge for every initial point w0 any step-size η > 2/µ.

Proof. Starting from the definition of gradient descent,

wt+1 = wt − η∥Hwt∥∗(Hwt)∗ (72)
Hwt+1 = Hwt − η∥Hwt∥∗H(Hwt)∗ (73)

∥Hwt+1∥∗ =

∥∥∥∥Hwt − η∥Hwt∥∗H(Hwt)∗

∥∥∥∥
∗

(74)

∥Hwt+1∥∗ ≥ η∥Hwt∥∗
∥∥∥∥H(Hwt)∗

∥∥∥∥
∗
− ∥Hwt∥∗ (75)

∥Hwt+1∥∗ ≥
(
η

∥∥∥∥H(Hwt)∗

∥∥∥∥
∗
− 1

)
∥Hwt∥∗. (76)

We can bound the coefficient of η as∥∥∥∥H(Hwt)∗

∥∥∥∥
∗
≥ inf

∥v∥=1
∥Hv∥∗ = inf

∥v∥=1
sup

∥u∥=1

u⊺Hv ≥ inf
∥v∥=1

v⊺Hv = µ, (77)

so

∥Hwt+1∥∗ ≥ (ηµ− 1) ∥Hwt∥∗, (78)

and therefore

∥Hwt∥∗ ≥ (ηµ− 1)
t ∥Hw0∥∗. (79)

Since η > 2/µ =⇒ ηµ − 1 > 1, the parameter norm ∥Hwt∥∗ increases exponentially, and GD
diverges.

F ADDITIONAL EXPERIMENTAL RESULTS WITH ℓ∞ DESCENT

F.1 CONVERGENCE WHEN TRAINING CNN MODEL

F.2 SENSITIVITY OF FRANK-WOLFE ALGORITHM IN ESTIMATING THE GENERALIZED
SHARPNESS FOR SIGN GRADIENT DESCENT

In this section, we study the sensitivity of the Frank-Wolfe algorithm in estimating the general-
ized sharpness of non-Euclidean gradient descent methods. Our experiments are conducted on a
CNN with two convolutional layers, followed by a linear layer, trained on the CIFAR10-5k dataset
(Krizhevsky & Hinton, 2009). We run ℓ∞-descent, and approximate the generalized sharpness by
Frank-Wolfe with 50 iterations, using {1, 7, 15} initialization points drawn from a standard normal
distribution, and take the maximum over restarts as the generalized sharpness estimate.

In Fig. F.2, we show that the Frank-Wolfe estimate of the generalized sharpness is sensitive to the
number of restarts. With a single random initialization, the algorithm generally underestimates the
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Figure F.2: The approximation of the generalized sharpness of ℓ∞-descent by the Frank-Wolfe
algorithm varying the number of initialization points in {1, 5, 10} for the Frank-Wolfe algorithm.
Here, FW(k) denotes k restarts of the Frank-Wolfe algorithm, with varying initialization points.
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Figure F.3: (ℓ∞-descent) Train loss, gradient norm, directional smoothness, generalized sharpness
(14), and L2 sharpness (λmax(∇2L(wt))) during training Resnet20 (top, η = 10−4) and VGG11
(bottom, η = 10−7) on CIFAR10 with ℓ∞-descent. Horizontal dashed lines correspond to the value
2/η.

value. Increasing the number of restarts to 15 yields a much more stable estimate that closely aligns
with the true value almost everywhere.

F.3 RESULTS ON RESNET20 AND VGG11

In this section, we provide additional empirical results on larger models, such as Resnet20 (He
et al., 2016) and VGG11 (Simonyan & Zisserman, 2014), trained on the CIFAR10 dataset with ℓ∞-
descent and MSE loss. From the results in Figure H.5, we observe that both directional smoothness
and generalized sharpness hover at the stability threshold 2/η. In contrast, a standard notion of
sharpness, i.e., λmax(∇2L(wt)) defined in the Euclidean norm, lies significantly below the thresh-
old (brown line in the right subfigure). Note that for Resnet20 model, the generalized sharpness
stabilizes slightly above the threshold due to several unstable directions as explained in Section C.

G ADDITIONAL EXPERIMENTAL RESULTS WITH BLOCK GRADIENT
DESCENT

G.1 TRAINING DETAILS

Our implementation is based on open source code from Cohen et al. (2021) together with publicly
available datasets. In all our experiments, we use algorithms with full-batch gradient, i.e., we run
them in the deterministic setting. The datasets and step-sizes η used in the experiments are specified
in the figures. In not specified, we use the Frank-Wolfe algrorithm with M = 5 restarts and K = 50
iterations, and PolarExpress with 5 steps.
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Figure G.1: The maximum block-wise Hessian eigenvalue (solid line), which is the generalized
sharpness of Block CD, and its approximation by the Frank-Wolfe algorithm varying the number of
initialization points in {1, 7, 15} for the Frank-Wolfe algorithm. Here, M is the number of restarts
of the Frank-Wolfe algorithm, varying the initialization point.
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Figure H.1: (Spectral GD) Train loss, gradient norm, directional smoothness, and generalized
sharpness (19) during training CNN model on CIFAR10 dataset with the Spectral GD. Horizontal
dashed lines correspond to the value 2/η.

In the training of CNN and MLP models, we use MSE loss, while in the training of the Transformer
model, we use a rescaled MSE loss from Hui & Belkin (2020).

G.2 SENSITIVITY OF FRANK-WOLFE ALGORITHM IN ESTIMATING THE GENERALIZED
SHARPNESS FOR BLOCK GRADIENT DESCENT

In this section, we study the sensitivity of the Frank-Wolfe algorithm in estimating the general-
ized sharpness of non-Euclidean gradient descent methods. Our experiments are conducted on a
CNN with four convolutional layers, followed by a linear layer, trained on the CIFAR10-5k dataset
(Krizhevsky & Hinton, 2009). Now we evaluate Block GD, where the generalized sharpness has a
closed-form expression (30). We run Frank-Wolfe for 50 iterations, using {1, 7, 15} initialization
points drawn from a standard normal distribution, and take the maximum over restarts as the gen-
eralized sharpness estimate. The Frank-Wolfe procedure is applied every 100 iterations of Block
CD.

In Fig. G.1, we show that the Frank-Wolfe estimate of the maximum block-wise Hessian eigenvalue
is sensitive to the number of restarts. With a single random initialization, the algorithm provides
a good approximation at a few iterations but generally underestimates the value. Increasing the
number of restarts to 15 yields a much more stable estimate that closely aligns with the true value
almost everywhere.

H ADDITIONAL EXPERIMENTAL RESULTS WITH SPECTRAL GRADIENT
DESCENT

H.1 CONVERGENCE WHEN TRAINING CNN MODEL

In this section, we present the results when training CNN model on CIFAR10 dataset with Spectral
GD; see Figure H.1. The results support our theoretical observations.
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Figure H.2: The approximation of the generalized sharpness by the Frank-Wolfe algorithm for
Spectral GD varying the number of initialization points in {1, 5, 10} for the Frank-Wolfe algo-
rithm.
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Figure H.3: The sensitivity of the generalized sharpness estimation of Spectral GD to the number
of Polar Express steps in Spectral GD (left) and in Frank-Wolfe (right). Here # PE means the
number of Polar Express steps in Spectral GD or Frank-Wolfe algorithm respectively.

H.2 SENSITIVITY OF FRANK-WOLFE ALGORITHM IN ESTIMATING THE GENERALIZED
SHARPNESS FOR SPECTRAL GRADIENT DESCENT

Next, we switch to the Spectral GD to train CNN model on the full CIFAR10 dataset. We perform
a similar procedure to the one done in the previous section. We fix the number of Polar Express
steps in both Spectral GD and Frank-Wolfe to 5 and vary the number of initialization points for
Frank-Wolfe in {1, 5, 10}. Each run of Frank-Wolfe has 50 iterations.

In Fig. H.2, we observe that Spectral GD is less sensitive to the number of initialization points for
Frank-Wolfe than Block GD. Therefore, it is not necessary to do restarts for Frank-Wolfe when it is
used to measure the generalized sharpness of the Spectral GD algorithm.

H.3 SENSITIVITY OF SPECTRAL GRADIENT DESCENT TO THE NUMBER OF POLAR EXPRESS
STEPS

We investigate how the number of Polar Express steps affects the generalized sharpness estimation
of Spectral GD. To this end, we fix the number of Polar Express steps in Spectral GD and vary
the number of steps in the Frank-Wolfe algorithm across {5, 10, 15}, and vice versa. All experiments
are conducted using a CNN with four convolutional layers, trained on the full CIFAR-10 dataset.

As shown in Fig. H.3, we do not observe any significant differences across the different configura-
tions. This indicates that 5 steps of the Polar Express algorithm are sufficient to obtain an accurate
and stable estimate of Spectral GD’s generalized sharpness.

H.4 QUADRATIC TAYLOR APPROXIMATION OF THE REAL OBJECTIVE

H.5 RESULTS ON RESNET20 AND VGG11

In this section, we provide additional empirical results on larger models, including ResNet20 (He
et al., 2016) and VGG11 (Simonyan & Zisserman, 2014), trained on the CIFAR10 dataset using
Spectral GD with MSE loss. As shown in Figure H.5, both the directional smoothness and the
generalized sharpness remain close to the stability threshold 2/η. In contrast, the standard notion of
sharpness—namely λmax(L(wt)) computed in the Euclidean norm—stays well below this thresh-
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Figure H.4: MSE loss (top row η = 0.003, bottom row η = 0.004). At 4 different iterations during
the training of the CNN from Fig. 4 (marked by the vertical dotted black lines), we switch from
running Spectral GD on the real neural training objective (for which the train loss is plotted in
gray) to running Spectral GD on the quadratic Taylor approximation around the current iterate
(for which the train loss is plotted in orange). Two left figures are timesteps before Spectral GD
has entered EoS; observe that the orange line (Taylor approximation) closely tracks the blue line
(real objective). Two right figures are timesteps during the EoS; observe that the orange line quickly
diverges, whereas the blue line does not.

0 1000 2000 3000 4000 5000
Iterations

0:2

0:3

0:4

0:5

Train Loss

0 1000 2000 3000 4000 5000
Iterations

10¡3

10¡1

101

Gradient Norm

0 1000 2000 3000 4000 5000
Iterations

0

1

2

3

4

5

6
Directional Smoothness, £103

0 1000 2000 3000 4000 5000
Iterations

0

1

2

3

4

5

6
Generalized Sharpness, £105

Generalized sharpness
L2 sharpness

5300 5400

1200

1600

0 100 200 300 400
Iterations

0:1

0:2

0:3

0:4

0:5

Train Loss

0 100 200 300 400
Iterations

10¡3

10¡1

101
Gradient Norm

0 100 200 300 400
Iterations

0

2

4

6

8

10

Directional Smoothness, £103

0 100 200 300 400
Iterations

0

2

4

6

8

10

Generalized Sharpness, £103
Generalized sharpness
L2 sharpness

420 440

150

250

Figure H.5: (Spectral GD) Train loss, gradient norm, directional smoothness, generalized sharp-
ness (14), and L2 sharpness (λmax(∇2L(wt))) during training Resnet20 (top, η = 5 · 10−5) and
VGG11 (bottom, η = 5 · 10−4) on CIFAR10 with ℓ∞-descent. Horizontal dashed lines correspond
to the value 2/η.

old (brown curve in the right panel). For the ResNet20 model, the generalized sharpness stabilizes
slightly above 2/η, which can be attributed to the presence of several unstable directions, as dis-
cussed in Section C.

I ℓ∞-DESCENT AND RMSprop

In this section, we report results for the RMSprop algorithm when training an MLP on the CIFAR10-
5k subset with MSE loss. Although SignGD can be viewed as a limiting case of RMSprop as β2 → 0,
the adaptive EoS (AEoS) condition of Cohen et al. (2022) is valid only when β2 is large (i.e., close to
1 in practical settings) and breaks down as β2 becomes small. For small β2, the largest eigenvalue
of the preconditioned Hessian λmax(P

−1
t ∇2L(wt)) does not stabilize around 2/η; instead, it often

exceeds this value by a substantial margin. The underlying issue is that as β2 → 0, the algorithm no
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longer resembles preconditioned gradient descent with a slowly-changing preconditioner, which is
the approximation that inspires the AEoS condition.

Our results in Figure I.1 support this observation. We plot the top four eigenvalues of the precondi-
tioned Hessian for RMSprop, showing that they stabilize around the threshold 2/η only when β2 is
large, while for small β2 the behavior deviates significantly.

Figure I.1: Sharpness of RMSprop when training MLP model on a subset of CIFAR10 dataset,
varying β2 hyperparameter. Here, colored lines correspond to the evolution of the top-4 largest
eigenvalues of the preconditioned Hessian, while the dashed line is 2/η threshold. We observe that
RMSprop reaches AEoS only for realistic (close to 1) values of β2, while for small β2 the precondi-
tioned sharpness is not at 2/η, but significantly higher.
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