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Abstract—Diabetic foot ulcers, a life-threatening complication
of diabetes, take a disproportionate toll on communities of color;
however, these communities are currently underrepresented in
dermatologic and wound image datasets. Further, many of these
datasets were collected under controlled conditions, limiting the
transferability of ulcer recognition models to naturalistic settings.
In support of more equitable and generalizable computational
modeling, we detail our two-year effort to create the first
repository of diabetic foot ulcer images collected predominantly
from patients of color in naturalistic settings. We conduct
an evaluation of state-of-the-art foot ulcer segmentation and
classification methods using our dataset of 3,362 foot images
collected from 252 patients, and provide evidence that current
ulcer recognition models result in insufficient performance:
the best performing baseline model (Mask R-CNN) has been
previously reported to achieve a Dice score of 90.2%, but achieves
only 39.5% on our more naturalistic dataset from patients of
color. We propose and evaluate a new pipeline which improves
segmentation performance, including an ulcer detection model
and a foundational segmentation model (Segment Anything 2
UNet) tailored to communities of color and specifically aiming for
naturalistic assessment scenarios. We release our image dataset
to support the development of larger, more diverse datasets, and
ultimately more equitable models for diabetic foot care.
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I. INTRODUCTION

Ten percent of U.S. American adults have a diagnosis of
diabetes, and 34% of those with diabetes will experience a
diabetic foot ulcer (DFU) within their lifetime [1]. These
open foot sores or wounds lead to an infection in 50% of
cases, and 20% of DFU patients may require an amputation,
with a mortality rate of 70% within 5 years [1]. Foot ul-
ceration is complex, with variable clinical presentation and
high recurrence rates. DFU healing is assessed in part through
dermatologic indicators: wound depth (to the dermis, fat,
muscle, or bone), wound surface area, and signs of infection.
Measuring wound area with a ruler is a traditional approach,
but it can be tedious and inaccurate [2]. Clinicians are in
urgent need of methods to efficiently assess and respond to
the complex pathogenesis, slow healing, and high rates of
recurrence and complications throughout the treatment course.

With recent advancements, computer vision approaches may
offer opportunities to routinely and automatically analyzing
images of the foot to segment ulcers and determine clinically
relevant characteristics. Researchers are therefore exploring
deep learning models for DFU segmentation from images
[3]. For example, Wang et al. [4] compiled the AZH Wound
Care Dataset, consisting of 1,010 close-up images of ulcers.
Utilizing convolutional neural networks (CNN) such as Mask
R-CNN [5], MobileNetV2 [6], U-Net [7], and SegNet [8],
they achieved a high Dice score of 90.5% in the task of DFU



segmentation. Additionally, Liao er al. proposed HarDNet-
DFUS [9], another CNN-based model that obtained state-
of-the-art performance on the DFU challenge (DFUC) 2022
dataset [10] comprised of 4,000 ulcer images.

Although many recent computer vision studies have offered
promising results, communities of color! are currently under-
represented in dermatologic and wound datasets [12], [13].
Diabetes takes a disproportionate toll on communities of color
[14], [15] and health disparities may be further propagated
by biased databases [16]. The very limited available data for
those with darker skin tones presents unique challenges for
utilizing current wound recognition models for communities
of color. This lack of data prevents a systematic analysis of
the generalizability of the state-of-the-art recognition models.

The contribution of this work is three-fold. In support of
more generalizable and equitable computational modeling,
we publicly release a repository of DFU images collected
mostly from patients of color. Our dataset consists of 3,362
foot images collected from 252 participants, including 1,551
instances of a DFU or pre-ulcerative lesion (a callous or ulcer
that does not penetrate to the subdermis). We compare our
dataset to other available wound datasets regarding dataset
composition and data collection techniques. Second, we lever-
age our dataset to contribute a performance evaluation of state-
of-the-art foot ulcer segmentation and classification models on
patients of color. Finally, to increase model performance, we
propose and evaluate a new pipeline including an ulcer detec-
tion model and a foundational segmentation model (Segment
Anything 2 UNet) tailored to communities of color and aiming
for naturalistic assessment scenarios.

II. DATASET CONSTRUCTION

We first discuss our over two-year effort to collect the first
diabetic foot ulcer (DFU) dataset predominantly from patients
of color, including image collection techniques and dataset
composition. Our work was approved by two IRBs, including
that of the hospital where data collection occurred.

A. Data Collection Methodology

1) Image Collection: For over two years, university re-
searchers collaborated with a clinical team at an urban, safety
net hospital in a southern U.S. state. Per year, over 450 patients
receive DFU-related care at the hospital-based diabetes clinic,
and over 250 patients are hospitalized with a DFU [17]. Most
patients (80%) identify as non-Hispanic Black [17].

Foot images were collected by a team of students, re-
searchers, and clinicians. After a participant signed the consent
form, foot images were taken in the clinical examination
room or other clinical setting. Participants were excluded
from image collection if they were under 18 years old, could
not read and understand English, or if they had experienced
a major amputation. Our dataset does include patients with
amputations below the ankle, typically referred to minor

'In the United States, the term “communities of color” or “people of color”
is frequently used within health equity contexts to describe individuals not
considered “white” [11].

amputations. Participants provided consent at their baseline
(time 0) appointments to provide their foot images during
clinical appointments for up to 52 weeks. Participants were
compensated with $10 cash at their baseline appointment, as
well as an additional $10 per month for up to 4 months.

Images were collected using smartphones or iPads and were
taken from multiple angles, including dorsal, plantar, medial,
lateral, toe tips, and heel (See Fig. 1). The entire foot was
included in the photo, and the lighting and background varied.
Ground truth data was digitally recorded after clinical exami-
nation by a physician or podiatrist, including the presence and
location of ulcers and pre-ulcerative lesions.

Fig. 1. Six image angles: plantar, dorsal, medial, lateral, toe tips, and heel.

2) Dataset Annotation: A team of researchers annotated
the images using AnyLabeling software [18]. Boundaries were
first annotated for the foot. Segment Anything (SAM) [19] was
used to assist foot boundary annotation, but segmentation was
manually adjusted as needed to ensure accuracy. Referencing
the ground truth collected in-clinic, boundaries were then
annotated for ulcers and pre-ulcerative lesions.

To increase annotation reliability, each image was reviewed
by a second annotator and annotation discrepancies were dis-
cussed. Throughout the process, the research team held recur-
ring meetings with a podiatrist to verify annotation accuracy,
during which images from most (over 50%) of the patients
with ulcers and/or pre-ulcerative lesions were discussed. To
respect the podiatrist’s limited availability and prioritization
of clinical tasks (especially due to their affiliation with a
safety net hospital), patients were only discussed when image
annotators had questions. Two co-authors each completed a
final check of the entire dataset to ensure agreement.

In addition, the research team manually reviewed images
for any anonymity concerns to protect participant privacy.
Identifiable information including faces, names, and distinc-
tive tattoos were redacted from the dataset. Redacted areas
were annotated as such using AnyLabeling, to assist future
researchers in excluding these areas from modeling efforts.

3) Dataset Composition: In total, 3,362 foot images were
collected from 252 patients (252 baseline appointments and
126 follow-ups). The number of images from each patient var-
ied, ranging from 3 (only baseline, with a major amputation)
to 49 images (multiple follow-ups). The average patient age
at baseline was 57 years and the median was 58 years. 62%
of the patients were male and 38% were female.

As shown in Table I, the image dataset includes the fol-
lowing annotation instances: 882 DFUs (including surgical
wounds) and 669 pre-ulcerative lesions. Multiple annotations



TABLE I
OVERVIEW OF OUR DATASET (N=252 PARTICIPANTS)
Total Images
Instances (N=3362)
Ulcer or Surgical Wound 882 751 22.3%
Pre-Ulcerative Lesion 669 467 13.9%
Area of Concern (Ulcer or Lesion) | 1551 1135 33.8%

may be present in one image, and a wound may appear in more
than one photographed angle. Ulcers and pre-ulcerative lesions
were prevalent on the plantar (34% and 39%, respectively),
medial (21% and 20%), dorsal (15% and 14%), lateral (16%
and 18%), toe tips (11% and 8%), and heel (3% and 1%).
The image repository can be requested at
https://github.com/tploetz/dfu-recognition.

B. Comparison to Previous Datasets

Wound image collection and research has been supported
by challenges such as the DFU challenge [10], [20]. There are
now several DFU datasets available, ranging from 100 images
or less [21], [22] to thousands of images [10], [23].

Our dataset is the first known DFU dataset predominantly
collected from patients of color. Most previous studies do
not report the race or ethnicity of their participants and the
associated publications feature only images of white or pale
skin [4], [9], [10], [21], [24]-[26]. As communities of color
experience more severe diabetes complications [14], [15], their
equitable representation within wound datasets is imperative.

Further, an aim of automated wound segmentation is to al-
low for remote monitoring and increased patient engagement.
Images taken under controlled settings may not translate into
models that perform accurately on images taken in naturalistic
settings, such as in a patient’s own home. Some previous
wound datasets have been collected using an image capture
box with controlled lighting, angle, and distance to the foot
[21], [24]. Such methods which only capture the plantar view
may fail to identify foot complications on other regions of
the foot [27]. In our dataset, for example, 15% of the ulcers
photographed were on the dorsal region. Additionally, image
datasets which were taken by digital cameras [4], [10], [23]
may not be accessible to safety net hospitals. The images in
our dataset were taken exclusively with smartphones or iPads.

Two final distinctions of our dataset are that we capture the
entire foot and include control images, i.e., images in which
no ulcer or pre-ulcerative lesion is present. Many previous
studies only included close-up images of wounds [4], [10],
[22]-[24]. A system intended for patient self-monitoring and
clinical decision support must process the whole foot and
identify areas of concern, as opposed to requiring a patient
or caregiver to pre-assess the foot to identify such areas.

Compared to previous datasets, we believe our repository is
more representative of how real clinicians or patients would
capture foot images. This leads to a dataset with potentially
confounding factors influencing performance, but provides a
more realistic benchmark for eventual clinical impact.

III. METHODOLOGY

We now describe our approach for automatic ulcer recog-
nition from images, leveraging an ulcer detection model and
a segmentation model tailored for communities of color. We
then describe our experimental set-up.

A. Proposed Ulcer Recognition Pipeline

Our proposed pipeline (see Fig. 2) for automatic DFU
recognition integrates a segmentation model (Segment Any-
thing 2 [28] UNet), with an ulcer detection model (YOLOv12-
X [29]) which predicts bounding boxes for ulcers in images.
We treat the region within each bounding box as an area of
interest potentially containing an ulcer, and therefore assign
higher weights to pixels within the predicted bounding boxes
in the SAM2-UNet output. After weighting, we apply a
dynamic thresholding technique based on the maximum and
minimum pixel confidence scores in the image to generate the
final segmentation output. Below we provide further details on
the ulcer detection model and segmentation model.

Ulcer Detection Model: YOLOv12-X

We employ YOLOvV12-X [29] as our ulcer detection model.
With 59.3 million parameters, YOLOvI12-X is a relatively
lightweight CNN-based model that offers state-of-the-art ob-
ject detection performance. YOLOv12-X introduced the atten-
tion mechanism based on the original YOLO model, which
helps the model better capture local information of the image,
achieving more effective object detection. Its size and effi-
ciency make it particularly well-suited for our dataset, as it
minimizes the risk of overfitting that can occur with more
complex vision transformer-based models, especially when
trained on smaller datasets. We employed the SGD (Stochastic
Gradient Descent) optimizer with a learning rate of 1072 and a
weight decay of 10~2 for optimization. The model was trained
for 30 epochs with a batch size of 16. We followed the default
fine-tune loss function from YOLOv12 as shown in Equation
1, where Ly, is the bounding box regression loss, L is the
classification loss, and Lgq is the distribution focal loss. N is
the number of predictions, and H‘?bj is an indicator function
that equals 1 if an object exists in box i, and 0 otherwise. The
term CIoU(l;i, b;) represents the Complete IoU between the
predicted bounding box b; and the ground-truth box b;. The
variables ¢; and ¢; denote the ground-truth and predicted class
probabilities, respectively. For the Distribution Focal Loss, ]
and tJ are the left and right integer targets for each coordinate
j» and CZZ is the predicted distribution for coordinate j. The
weights w] and w] are calculated as w] = t} — ¢/ and
w = 1—wj. K represents the number of coordinates (four for
X, ¥, W, h). The term CE represents Cross Entropy loss. The
terms Apox, Acls, Adni denote the corresponding loss weights for
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Fig. 2. Overview of the proposed system. For classification, YOLOv12-X detects ulcers and outputs regions of interest. For segmentation, these are then
combined with a fine-tuned SAM2-UNet for mask prediction. For additional details on YOLOv12-X and SAM2-UNet, please refer to [29] and [28], respectively.

each component, set to 7.5, 0.5, and 1.5, respectively.
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Segmentation Model: SAM2-UNet

Medical image instance segmentation has traditionally been
tackled using end-to-end trained models, where all components
are trained simultaneously. Deep learning-based models have
been highly effective due to their proficiency in learning
intricate image features [7], [30], [31]. These models, however,
typically specialize in specific segmentation tasks and require
retraining for different applications, resulting in a “specialist
model.” Such task-specific design is a significant limitation,
as model performance can degrade when applied to new tasks
or types of data. This lack of versatility stands in contrast
to recent advances in natural image segmentation, such as
the foundational Segment Anything Model (SAM) [19]. Such
models demonstrate remarkable flexibility and effectiveness
across various segmentation challenges, offering a stark con-
trast to the more limited, specialist models commonly used
in medical imaging. While SAM has been applied to other
domains such as brain MRI and cancer segmentation [32],
[33], to our knowledge it has not yet been applied to DFU.

As a successor to SAM, Segment Anything 2 (SAM?2)
[28] utilizes a bigger dataset and has improved architectural
design. For example, MedSAM-2 achieved efficient organ
segmentation on medical CT images [34]. In the absence of
manual prompts, however, SAM2 still yields class-agnostic
segmentation results. To address this limitation, SAM2-UNet
builds upon SAM2’s hierarchical backbone by introducing a
more efficient U-shaped architecture. This design not only pre-
serves the model’s ability to generalize across diverse image
types but also enhances segmentation performance through
the well-established advantages of U-shaped networks [35].
SAM?2-UNet has demonstrated its effectiveness on tasks such
as polyp segmentation [35].

SAM?2-UNet consists of four components: image encoder,
decoder, receptive field blocks (RFBs), and adapters. The
image encoder utilizes the Hiera backbone pretrained by
SAM?2 to transform the input image into high-dimensional
embeddings. Following feature extraction, four receptive field
blocks are employed to reduce the channel dimensions to
64 while simultaneously enhancing lightweight features. Due
to the large number of parameters in Hiera, SAM2-UNet
freezes its weights and inserts adapters before each multi-scale
block to enable parameter-efficient fine-tuning. Finally, the
mask decoder adopts a customizable U-shaped architecture.
The output from each decoder block is passed through a
segmentation head to generate the final segmentation result.

Fine-tuning SAM on a downstream dataset can enhance
its performance in medical segmentation tasks [32]. We fine-
tuned SAM2-UNet on our dataset, using the sum of binary
cross entropy loss and dice loss as our loss function, as shown
in Equation 2. In Equation 2, y; and p; represent the ground
truth and predicted segmentation for pixel ¢, respectively, and
N is the total number of pixels. We employed the AdamW
optimizer with a learning rate of 104 and a weight decay of



10~2 for optimization. The model was trained for 20 epochs
with a batch size of 12, following previous work [32].
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B. Experimental Setup

Our first set of experiments contribute an evaluation of
both state-of-the-art foot ulcer recognition models and our
proposed pipeline on our dataset of wounds predominantly
collected from patients of color. We then evaluate our proposed
pipeline’s performance on currently available datasets, which
consist mostly of images of white or pale feet.

For DFU prediction and prevention, recognizing pre-
ulcerative lesions is just as important as recognizing ulcers.
We therefore consider both ulcers and lesions as “areas of
concern” and aim to detect and segment these areas from
images. Most participants presented with areas of concern;
however, these areas are not visible in all images due to
varying capture angles. Consequently, only 34% of our images
contain an area of concern, leading to an imbalanced dataset.

To balance the dataset and enhance training data, we ap-
ply transformation-based data augmentation. Transformations
included rotation (90, 180, 270 and £25 degrees random
rotation, applied with 0.8 probability), flipping (horizontal
flipping and vertical flipping with 0.8), zoom (scaling between
0.8x—1.2x with 0.8), distortion (0.5 with mild warping), and
shear (applied with 0.8 probability) while keeping the testing
dataset unaugmented for fair evaluation. All images are resized
to a resolution of 640 x 640 pixels for input consistency.

1) Evaluation of Models & Proposed Pipeline on Our
Dataset: In order to establish a baseline, we train and evaluate
five state-of-the-art models that have been previously evaluated
on the DFUC 2022 dataset [10] and the AZH Wound Care
dataset [4]. The models are HarDNet-DFUS [9], Mask R-CNN
[5], MobileNetV2 [6], U-Net [7], and SegNet [8].

We randomly split our dataset by participant and run a five-
fold evaluation. We used grid search to determine the learning
rate and weight decay. The learning rate varied from 1076 to
1072 and the weight decay varied from 10~% to 1072,

In addition to training the models on our dataset, we
evaluated versions of the HarDNet-DFUS model pretrained
on the DFUC2022 dataset. We obtained the open-source
model weights and applied them to evaluate that model’s
performance on our dataset, both directly (without further
training) and with fine-tuning on our dataset. This approach
allowed us to compare the effectiveness of the model when
trained on our dataset versus its performance with the
knowledge it had already acquired from the DFUC2022
dataset.

TABLE II
MODEL PERFORMANCE WHEN TRAINED AND EVALUATED ON DFUC2022
AND AZH WOUND CARE DATASETS. RESULTS FROM [10] AND [4]

HarDNet-DFUS | Mask R-CNN MobileNetV2 U-Net SegNet
Dataset | DFUC2022 AZH Wound Care
Dice 72.9 90.2 90.3 90.2  85.1
ToU 62.5 (Not Provided in [4])

Classification Task

We first consider the problem of detecting whether there
is an area of concern (i.e., ulcer or pre-ulcerative lesion), as
not all of our images contain such areas. Simply providing
binary information (presence or absence) regarding a foot
complication can be informative for patients, serving as a sign
to consult a clinician. For this classification problem, we use
precision, recall, and the binary F1 score as evaluation metrics.

Segmentation Task

While the classification task requires only a binary assess-
ment of an image (i.e., area(s) of concern is absent or present),
the segmentation task requires not only detecting all areas
of concern but also forming accurate boundaries for each of
these areas. If a foot has multiple areas of concern, accurate
classification requires only recognizing one of them, while
accurate segmentation would require recognizing and forming
accurate boundaries for all of them. We employ the commonly
used Dice Similarity Index and Intersection Over Union (IoU)
as evaluation metrics for segmentation performance. However,
we note that all of the images in the DFUC2022 dataset and
the AZH Wound Care dataset contain ulcers. To establish a
fair comparison of models trained on different datasets, we
therefore only evaluate the segmentation results on the images
within our testing set which include an area of concern.

2) Evaluation of Proposed Pipeline on Previous Datasets:
We also evaluate our propose pipeline’s performance on three
currently available datasets, which consist mostly of images of
white or pale feet. We trained our model on the FUSeg dataset
[4], AZH Wound Care dataset [4], and Medetec dataset [36],
and compare the results.

IV. EXPERIMENTAL RESULTS
A. Evaluation of Models & Proposed Pipeline on Our Dataset

Tables II and III show the results of the five state-of-the-art
models when trained and evaluated on previous datasets and
our dataset predominantly collected from patients of color,
respectively. For all five models, the Dice scores and IoU
achieved on our dataset are significantly lower compared to
those achieved on the DFUC2022 and the AZH Wound Care
datasets. This observation indicates that our dataset may be
more challenging to model due to factors such as skin tone,
naturalistic settings, and areas of concern (i.e., ulcers or pre-
ulcerative lesions) which are a small region of the image. In
the DFUC2022 dataset, 34% of the ulcers are less than 0.5%
of the image size, whereas in our dataset (which captures the
entire foot), the majority of the areas of concern are less than
0.5% of the image size. These relatively small areas of concern



present a significant challenge, as deep learning segmentation
models are known to struggle in detecting small regions [37].

Table III also shows the performance of our proposed
pipeline (detailed in Section III-A and Fig. 2). All models were
trained and evaluated on our dataset, except for “HarDNet-
DFUS (Pretrain),” which was first trained on the DFUC2022
dataset, then was evaluated on our dataset. In Table III, Dice
and IoU scores are obtained by evaluating the model solely
on images within our testing dataset that contain an area of
concern. Our model outperforms all baselines across both
classification and segmentation. Specifically, it achieves the
highest classification precision (86.8%), recall (83.4%), and F1
score (85.1%), as well as the best segmentation performance
with a Dice of 54.4% and IoU of 45.4%. Our proposed pipeline
results in relative Dice performance improvements ranging
from 37.7% (Mask R-CNN) to 197.3% (SegNet).

We conducted focused ablation analyses on the most critical
components of our pipeline: YOLOv12-X and the dynamic
thresholding module. YOLO plays an essential role in sup-
pressing false positives by preventing mask generation on
ulcer-free images. While its presence slightly reduces the Dice
score on ulcerated regions due to its bounding box focus,
this trade-off is necessary for robust overall performance. The
thresholding module enhances results by effectively filtering
noise, particularly low-confidence regions along ulcer bound-
aries and small isolated artifacts.

An empirical review of model errors provides further in-
sights (see Fig. 3). Classification false positives primarily oc-
curred due to abnormal nails, minor amputations, or calluses.
Indirect angles of capture occasionally led to false negatives.
Segmentation errors occurred when the model struggled with
precise edge delineation, e.g., for ulcers with gradual tran-
sitions or irregularly shaped ulcers. The model sometimes
over-segmented by including peri-wound skin, and complete
misses occurred most often for small (less than lcm) or
atypically-colored ulcers. We believe our work provides a
path towards applications for wound size measurement and
screening purposes; however, our findings highlight the need
for improved edge detection and skin tone adaptation.

B. Evaluation of Proposed Pipeline on Previous Datasets

We also evaluate our proposed pipeline’s performance on
three accessible foot ulcer datasets: FUSeg [4], AZH [4], and
Medetec [36]. Table IV highlights the cross-dataset generaliza-
tion performance of our segmentation model, measured using
mean Dice coefficient (mDice), when trained and tested on
these publicly available ulcer datasets. In Table IV, the “Com-
bination” dataset is the combination of these three available
datasets, totaling just under 2,500 images.

An important trend observed is the poor generalization
performance on our dataset when models are trained on these
other datasets consisting mostly of images of white or pale
feet. For example, training on FUSeg or AZH yields mDice
scores of just 27.0% and 18.9%, respectively, when tested
on our dataset, indicating a significant domain gap. Even
training on the “Combination” set, which performs well on

other benchmarks, results in only 20.8% mDice on our dataset.
In contrast, a model trained specifically on our dataset achieves
better generalization to other datasets, with scores ranging
from 70.7% (FUSeg) to 84.0% (Medetec). This asymmetry
highlights the unique challenges and visual characteristics
present in our dataset, which contains more naturalistic images
from patients of color. These findings reinforce the need for in-
clusive training data and further motivate our design of models
tailored to populations underrepresented in dermatologic and
wound image datasets.

V. DISCUSSION AND CONCLUSION

Communities of color are disproportionately impacted by
diabetes and DFUs [14], [15] but underrepresented in wound
image datasets. This has prevented systematic generalizabil-
ity analyses of ulcer recognition models. Our experimental
findings show that existing computer vision methods do not
achieve state-of-the-art results for these communities. To sup-
port more equitable computational modeling, we created and
released the first known repository of naturalistic DFU images
predominantly collected from patients of color. By evaluating
state-of-the-art DFU recognition models on this dataset and
proposing a new pipeline, our work shows that concerted
dataset collection with a particular community can increase
model performance for that community.

The evaluation provided in this work reinforces that the im-
pact of skin color is not only skin deep: future work in wound
recognition must actively recruit patients of color. Researchers
should also collect longitudinal images and expand the scope
of their models to segment “areas of concern,” including
pre-ulcerative lesions. This would also allow for predictive
work with the aim of limb preservation, which is especially
important for under-resourced settings. An ulcer recognition
model could be deployed on a mobile phone, for example to
enhance patient engagement and enable remote wound self-
monitoring [3], [38]. More equitable detection models may
also be deployed in safety net hospitals to assist health care
professionals in triaging patients, ensuring that those who need
immediate intervention are prioritized [38].

Our work has limitations. The performance of our proposed
pipeline still falls short compared to the models trained on
previous datasets of white or pale feet. Researchers must probe
the causes of inequities and underrepresentation, and advocate
for the multi-institutional collection of a much larger dataset.
To increase model performance, future researchers might also
consider methods such as post-processing refinements, gener-
ative adversarial networks, self-supervised learning, and incor-
porating multi-angle information. XAl techniques (e.g., Grad-
CAM) could help visualize decision-critical features across
skin tones and conduct rigorous subgroup fairness analysis. In
addition, our dataset was predominantly collected from Black
patients. Our work provides evidence that state-of-the-art DFU
recognition models are not generalizable to all skin tones. We
hope our work will serve as a call to action for researchers
to work towards more equitable models, including working
with other underrepresented communities of color to collect



TABLE III
MODEL PERFORMANCE WHEN TRAINED AND EVALUATED ON OUR DATASET

Precision Recall FI1 Dice ToU
Classification Segmentation
HarDNet-DFUS (Pretrained on DFUC2022) | 58.2 69.1 63.2 23.3 18.1
HarDNet-DFUS (Finetuned) 67.9 79.1 73.1 36.0 30.0
Mask R-CNN 66.5 82.2 735 39.5 335
MobileNet 64.6 81.7 722 30.4 23.6
U-Net 52.1 80.4 62.3 21.9 16.5
SegNet 57.3 63.0 60.0 18.3 13.5
Our Model 86.8 83.4 85.1 54.4 454
TABLE IV
MODEL PERFORMANCE TRAINED AND TESTED ON DIFFERENT DATASET
mDice Training Dataset
FUSeg | AZH | Medetec | Combination | Our Dataset | All Combo
Test on FUSeg 87.0 80.4 60.3 86.8 70.7 86.5
Test on AZH 74.4 87.5 75.7 87.5 71.5 87.0
Test on Medetec 76.2 76.8 97.7 97.0 84.0 96.3
Test on Combination 80.2 84.0 69.1 87.4 71.4 87.1
Test on Our Dataset 27.0 18.9 27.8 20.8 54.4 61.5

Lo

Fig. 3. Examples of model failure cases showing false positive (red), false negative (blue), and correct (green) segmentation masks.

additional datasets. Increasing dataset size will be imperative,
as this would help address potential biases, increase model
generalizability, and better capture patient diversity. Due to the
scarcity of specialized images in dermatologic datasets, future
work could also explore self-supervised learning to leverage
unlabeled data, enhancing model robustness. Finally, clinical
deployments could evaluate clinical impacts of model perfor-
mance, e.g., patient engagement, clinical decision-making.

Our work assessed the ability of state-of-the-art models
trained on other wound datasets (predominantly collected
from white patients) to generalize to our dataset collected
predominantly from patients of color. It is clear from our
experimental results that larger, more diverse datasets will be
crucial for the next generation of wound recognition mod-
els. In support of more equitable ulcer recognition models,
we have made available both the full image dataset (3,362
images) and the computational models utilized in this work:
https://github.com/tploetz/dfu-recognition. To our knowledge,
this is the first available image dataset of ulcers predominantly
collected from patients of color. As automated wound recog-
nition may improve clinician delivery of care, it is vital to
advance equity for those who face the greatest disease burden.

ACKNOWLEDGMENT

We would like to thank our 252 participants and the image
annotation team at the Georgia Tech Ubicomp Health &
Wellness Lab. This work was supported by the American
Diabetes Association Grant 11-22-ICTSHD-09, the GT-Emory
Al Humanity seed grant, and NIH award DK124647. The first
two authors contributed equally to this work.

REFERENCES

D. G. Armstrong, A. J. M. Boulton and S. A. Bus, “Diabetic foot ulcers
and their recurrence,” N. Engl. J. Med., vol. 376, no. 24, Jun. 2017.
A. Shah, C. Wollak and J. B. Shah, “Wound measurement techniques:
Comparing the use of ruler method, 2D imaging and 3D scanner,” J Am
Coll Clin Wound Spec, vol. 5, no. 3, Dec. 2013.

C. Baseman et al., “Intelligent care management for diabetic foot ulcers:
A scoping review of computer vision and machine learning techniques
and applications,” J. Diabetes Sci. Technol., Nov. 2023.

C. Wang et al., “Fully automatic wound segmentation with deep con-
volutional neural networks,” Sci. Rep., vol. 10, no. 1, Dec. 2020.

K. He, G. Gkioxari, P. Dolldr, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE ICCV, 2017.

M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” In Proceedings
of the IEEE CVPR, 2018.

O. Ronneberger, P. Fischer and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in MICCAI 2015.

V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep con-
volutional encoder-decoder architecture for image segmentation,” IEEE
transactions on pattern analysis and machine intelligence, 2017.

[1]
[2]

[3]

[4]
[5]
[6]

[7]
[8]



[10]

[11]

[12]

(13]

[14]

[15]
[16]

(17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]
[30]
[31]
[32]
[33]

[34]

[35]

[36]

[37]

T. Y. Liao et al., “Hardnet-dfus: An enhanced harmonically-connected
network for diabetic foot ulcer imagesegmentation and colonoscopy
polyp segmentation,” 2022, arXiv:2209.07313.

C. Kendrick et al., “Translating clinical delineation of diabetic foot ul-
cers into machine interpretable segmentation,” 2022, arXiv:2204.11618.
American Medical Association, (2021). “Advancing health equity:
A guide to language, narrative and concepts,” https://www.ama-
assn.org/system/files/ama-aamc-equity-guide.pdf

A. S. Adamson and A. Smith, “Machine learning and health care
disparities in dermatology,” JAMA Dermatol., Nov. 2018.

J. K. Paulus and D. M. Kent, “Predictably unequal: understanding and
addressing concerns that algorithmic clinical prediction may increase
health disparities,” NPJ Digit Med, vol. 3, no. 99, 2020.

M. B. Brennan et al., “Association of race, ethnicity, and rurality
with major leg amputation or death among Medicare beneficiaries
hospitalized with diabetic foot ulcers,” JAMA Network Open, 2022.

S. L. Murphy, J. Xu, K. D. Kochanek, E. Arias, and B. Tejada-Vera,
“Deaths: final data for 2018, Natl Vital Stat Rep, vo. 69, no. 13, 2021.
N. Norori, Q. Hu, F. M. Aellen, F. D. Faraci, and A. Tzovara, “Address-
ing bias in big data and Al for health care,” Patterns, Oct. 2021.

M. C. Schechter et al., “Evaluation of a comprehensive diabetic foot
ulcer care quality model,” J. Diabetes Complications, vol. 34, no. 4,
2020.

V. A. Nguyen, “AnyLabeling - Effortless data labeling with Al support,”
https://github.com/vietanhdev/anylabeling

A. Kirillov et al., “Segment anything,” 2023, arXiv:2304.02643.

M. H. Yap et al., “Development of diabetic foot ulcer datasets: an
overview,” Diabetic Foot Ulcers Grand Challenge, 2021.

L. Wang, P. C. Pedersen, E. Agu, D. M. Strong, and B. Tulu, “Area
determination of diabetic foot ulcer images using a cascaded Two-Stage
SVM-Based classification,” IEEE Trans. Biomed. Eng., Sep. 2017.

S. Chairat, S. Chaichulee, T. Dissaneewate, P. Wangkulangkul, and
L. Kongpanichakul, “Al-assisted assessment of wound tissue with au-
tomatic color and measurement calibration on images taken with a
smartphone,” Healthcare, vol. 11, no. 2, 2023.

M. H. Yap et al., “Analysis towards classification of infection and
ischaemia of diabetic foot ulcers,” in 2021 IEEE EMBS BHI, 2021.

Z. Liu et al., “Comprehensive assessment of fine-grained wound images
using a patch-Based CNN with context-preserving attention,” [EEE
Open J Eng Med Biol, vol. 2, Jun. 2021.

V. N. Shenoy, E. Foster, L. Aalami, B. Majeed, and O. Aalami,
“Deepwound: Automated postoperative wound assessment and surgical
site surveillance through convolutional neural networks,” in IEEE BIBM,
2018.

M. Goyal, N. D. Reeves, S. Rajbhandari, and M. H. Yap, “Robust
methods for real-time diabetic foot ulcer detection and localization on
mobile devices,” IEEE JBHI, 2018.

M. Swerdlow, L. Shin, K. D’Huyvetter, W. J. Mack, and D. G.
Armstrong, “Initial clinical experience with a simple, home system for
early detection and monitoring of diabetic foot ulcers: the foot selfie,”
J. Diabetes Sci. Technol., vol. 17, no. 1, 2023.

N. Ravi et al., “SAM 2: Segment anything in images and videos,”
2024,arXiv:2408.00714.

Y. Tian, Q. Ye and D. Doermann, “YOLOvVI12: Attention-centric real-
time object detectors,” 2025, arXiv:2502.12524.

O. Oktay et al., “Attention u-net: Learning where to look for the
pancreas,” in Medical Imaging with Deep Learning, 2018.

R. Wang et al., “Medical image segmentation using deep learning: A
survey,” IET Image Processing, vol. 16, no. 5, 2022.

J. Ma et al., “Segment anything in medical images,” Nature Communi-
cations, vol. 15, no. 1, 2024.

Y. Zhang and R. Jiao, “Towards segment anything model (SAM) for
medical image segmentation: a survey,” 2023, arXiv:2305.03678.

J. Zhu, A. Hamdi, Y. Qi, Y. Jin and J. Wu, “Medical SAM 2: Segment
medical images as video via Segment Anything Model 2,” 2024,
arXiv:2408.00874.

X. Xiong et al., “SAM2-UNet: Segment Anything 2 Makes Strong
Encoder for Natural and Medical Image Segmentation,” 2024,
arXiv:2408.08870,

S. Tomas, “Medetec Wound Database: Stock Pictures of Wounds”,
http://www.medetec.co.uk/files/medetec-image-databases.html,

M. Goyal and M. H. Yap, “Multi-class semantic segmentation of skin
lesions via fully convolutional networks,” 2017, arXiv:1711.10449.

[38] B. Najafi and R. Mishra, “Harnessing digital health technologies to

remotely manage diabetic foot syndrome: a narrative review,” Medicina,
vol. 57, no. 4, 2021.



