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Abstract
Test-time compute has emerged as a power-001
ful paradigm in function-level code genera-002
tion. However, previous proposed strategies003
have been viewed as disparate, thus lacking a004
fair apples-to-apples analysis enabling under-005
standing of their operational mechanisms in006
execution-based benchmarks. Therefore, we007
present a mathematical framework that unifies008
generation and reranking with theoretical justi-009
fications through the lens of Minimum Bayes010
Risk (MBR) decoding. Our proposed frame-011
work leads to key research questions regard-012
ing the effectiveness of using parallel and/or013
iterative sampling, design choices of reranking014
signals and soft/hard MBR utility functions,015
and behaviors of the final selected program016
across different methods. Our empirical find-017
ings highlight the importance of the diversity018
of sampled candidates (over self-improvement),019
reranking with simple and high-quality signals,020
and the effectiveness of test-time compute to021
select programs that manifest general and edge022
test case robustness. We will open-source our023
analysis toolkit and implementation to enable024
reproducible research.025

1 Introduction026

Increasing test-time compute (TTC) has been027

shown to be a promising alternative to scaling train-028

ing compute to further improve the performance029

of large language models (LLMs) on math-related030

downstream tasks (Snell et al., 2024). One way to031

scale TTC is to prompt models to generate multi-032

ple candidates and rerank them, for example, by033

selecting the one that has the highest consistency034

with other candidates (Bertsch et al., 2023).035

However, unlike domains such as mathematical036

reasoning and machine translation, where exact037

matching and lexical metrics can be both used for038

evaluation and reranking (Wang et al., 2023; Fer-039

nandes et al., 2022; Farinhas et al., 2023), function-040

level code generation tasks adopt execution-based041

evaluation with unit tests to measure the correctness 042

of generated programs. Therefore, TTC practices 043

on this task are different and non-trivial. 044

Previous works on TTC have tried to utilize 045

reranking signals from likelihood features (Zhang 046

et al., 2023b), trial unit tests provided in the prompt 047

(Shi et al., 2022; Li et al., 2022), and generated unit 048

tests (Chen et al., 2023; To et al., 2024), with Chen 049

et al. (2024) focusing on improving the quality 050

of candidates reranked through self-improvement. 051

However, despite the improving performance on 052

existing benchmarks, the operational mechanism of 053

scaling TTC using unit tests is poorly understood. 054

We attribute this to two reasons. Firstly, there is 055

a strong inconsistency behind the mathematical for- 056

mulation of all these methods, with each of them 057

defining the problem independently, making un- 058

derstanding TTC prohibitive. Additionally, due to 059

the lack of unified experimental assumptions, e.g., 060

whether there is access to inputs to the unit test 061

for evaluation, analysis on the decisive decision 062

choices for better quality is missing. 063

The lack of mathematical and empirical formal- 064

izations thus calls for a unified framework to better 065

analyze TTC on function-level code generation. In 066

this paper, we present such a framework (See Fig- 067

ure 1) with empirical findings. Our contributions 068

are listed as follows: 069

• Mathematically, we unify TTC for function- 070

level code generation. We put forward candi- 071

date generation as the basis, with an emphasis 072

on the reranking stage. Importantly, we prove 073

that previous reranking works with unit test- 074

ing can be mathematically justified through 075

the lens of Minimum Bayes Risk (MBR) de- 076

coding, manifesting that the key differences 077

between methods lie in some decision choices 078

in reranking/utility functions. 079

• We design experiments under two contexts: 080

the user has access to private unit tests or can 081
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Natural Language Description
Write a function to find the median 
length of a trapezium.
--------------------------------

Trial Unit Test
assert median_trapezium(15,25,35) == 20

Sampling
y1
y2
…
yN

N-Best Reranker
/MBR

…

score(y1)

score(y2)

score(yN)

ŷ = y2

Self-Debug
(optional)

Private UT inputs

Gen UTs

Figure 1: Our proposed framework. Given a natural language description and trial unit tests, a generative model
performs parallel sampling and iterative sampling (as self-debug). Generated candidates are then reranked with
signals from trial, private, and generated unit tests according to different contexts, before a final solution is selected.

only use generated unit tests. Following our082

mathematical framework, we analyze the ef-083

fect of different decision choices in different084

contexts.085

• We observe that candidate diversity should be086

emphasized more than self-improvement in087

the generative stage, and the optimal decision088

choices vary under different contexts. That089

being said, simple high-quality reranking sig-090

nals like trial unit tests are always preferred.091

Through behavioral analysis, we observe that092

the selected candidates with the best decision093

choices are general and edge case robust.094

• We provide further analysis by scaling unit095

testing and combining iterative sampling with096

reranking. Results support our findings on097

reranking decision choices and emphasis on098

parallel over iterative sampling.099

We hope our findings provide practical insights100

for implementing test-time compute strategies in101

code generation tasks, particularly the importance102

of matching unit test behavior types and using soft103

reranking methods when leveraging automatically104

generated unit tests. We will open-source our anal-105

ysis toolkit and implementation to enable future106

principled research.107

2 Formalizing Test-Time Compute for108

Function-Level Code Generation109

In this section, we provide a formal definition of110

test-time compute in function-level code genera-111

tion. We first introduce the sampling and evaluation112

of the task. We then provide a formulation from113

the perspective of MBR decoding of reranking of 114

generated candidates. 115

2.1 Evaluating and Sampling for 116

Function-Level Code Generation 117

Evaluation. We evaluate a generated program 118

y using a set of private unit tests Tprivate = 119

{(i1, o1), . . . , (iM , oM )} that remain inaccessible 120

to the LLM. Specifically, a generated program is 121

considered correct if and only if it satisfies all pri- 122

vate tests, i.e., ∀(i, o) ∈ Tprivate, y(i) = o. Follow- 123

ing Chen et al. (2021), we measure performance 124

using Pass@N, defined as the probability that at 125

least one of N generated programs successfully 126

passes all unit tests. 127

Sampling from Code LLMs. A code generation 128

LLM defines a conditional probability distribution 129

pθLLM
(y | x) over possible programs, conditioned 130

on input x. Typically, x includes a natural language 131

description nl and a set of trial unit tests Ttrial.1 132

Sampling usually takes two forms: 133

• Parallel Sampling. The most common 134

method is ancestral sampling that generates N 135

programs Y = {y1, . . . , yN} independently 136

by controlling temperature (Dabre and Fujita, 137

2021) and top-p (Holtzman et al., 2020). 138

• Iterative Sampling. This is a broader term 139

in general. However, we refer to iterative 140

sampling as self-debug (Chen et al., 2024) 141

in this paper, where a generated program is 142

iteratively fed into the same LLM, along with 143

1Trial unit tests may overlap with private tests; however,
the private tests should never be entirely contained within the
trial tests.
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Method f(y)

Ttrial Filtering (FT)
∏

(i,o)∈Ttrial
1{y(i) = o}

Exec. Filtering (FE)
∏

(i,o)∈I′private
1{y(i) ̸= NULL}

Test Scoring (TS) 1
|Tgen|

∑
(i,o)∈Tgen

1{y(i) = o}

Table 1: Summary of n-best reranking scoring functions.
Note that NULL means the program cannot yield an
output given a test input.

execution feedback running this program on144

Ttrial. Iterative sampling stops once the gener-145

ated program has passed Ttrial or a maximum146

number of turns has been reached.147

Note that these two types of sampling can be148

combined, with multiple generated programs being149

resubmitted multiple times.150

2.2 Rerank with Unit Tests151

With N sampled candidates, choosing the best can-152

didate is crucial after introducing the variation of153

contexts. We now introduce a clear unification of154

reranking strategies using n-best Reranking and155

MBR Reranking. Importantly, we provide theoreti-156

cal justifications to show that previous works lies157

in either one of these strategies or a combination158

of these, as their claimed innovations are no more159

than decision choices from our formalization of160

n-Best/MBR reranking.161

2.2.1 Access to Unit Tests162

For function-level code generation, a set of exam-163

ples as trial unit tests is usually provided by annota-164

tors to help both annotators and models understand165

the program (Chen et al., 2021; Austin et al., 2021;166

Jain et al., 2024). However, there are two different167

cases depending on the context.168

In some cases of online assessment, interviewees169

have access to some of the input from private tests170

Iprivate = {io, . . . , iK},K ≤ M to help them ver-171

ify the validity of the written program (Chen et al.,172

2024). In other cases, reranking requires models173

to generate unit tests Tgen (Li et al., 2022; Chen174

et al., 2023; To et al., 2024). Note that there are175

also strategies utilizing inputs of trial unit tests (Shi176

et al., 2022; Zhang et al., 2023b), which we do177

not include in this paper as they provide weaker178

reranking signals compared to simply filtering with179

the entire trial unit tests.180

2.2.2 n-Best Reranking with Unit Tests181

In its simplest form, n-best reranking selects the182

candidate maximizing a scoring function f :183

Method U(y, y′)

MBR-i-H
∏

(i,o)∈T 1{y(i) = y′(i)}
MBR-i-S 1

|T |
∑

(i,o)∈T 1{y(i) = y′(i)}
MBR-io-H

∏
(i,o)∈Tgen

1{y(i) = o} · 1{y′(i) = o}
MBR-io-S 1

|Tgen|
∑

(i,o)∈Tgen
1{y(i) = o} · 1{y′(i) = o}

Table 2: Choice of utility functions and test inputs. “i”
and “io” refer to using only test inputs and using the
entire input-output pairs. “H” and “S” refer to hard and
soft utilities, respectively. Note that MBR-io can only
be applied with generated test cases, obviously.

ŷ = argmax
y∈Y

f(y). (1) 184

Table 1 summarizes reranking strategies defined 185

by their respective scoring functions. Note that ex- 186

ecutability can only be done with access to I ′private. 187

2.2.3 Formalization of MBR Decoding 188

While MBR decoding has been formalized in many 189

generation tasks, including machine translation 190

(Fernandes et al., 2022; Farinhas et al., 2023) and 191

mathematical reasoning (Wang et al., 2023), the for- 192

malization in code generation is not clear. Specif- 193

ically, the only effort we are aware of is Shi et al. 194

(2022), which has not been experimented on with 195

inputs of Ttrial. 196

With a utility function U(y⋆, y) measuring the 197

similarity between a candidate y and some refer- 198

ence (correct) code y⋆, MBR selects the candidate 199

in Y that maximizes the expected utility consider- 200

ing all candidates as possible references: 201

ŷ = argmax
y′∈Y

1

N

∑
y∈Y

U(y, y′). (2) 202

Choice of Utility Functions and Unit Testing. 203

We categorize utility functions based on two di- 204

mensions: soft/hard, and input-only/input-output 205

pairs. Table 2 summarizes the utility functions of 206

these decision choices. Note that most previous 207

works utilizes MBR-i-H (Shi et al., 2022; Li et al., 208

2022; Chen et al., 2024) except for CodeT (Chen 209

et al., 2023) and SRank (To et al., 2024). We now 210

show that these two methods can also be recovered 211

as MBR decoding. 212

CodeT (Chen et al., 2023) is MBR-io-H. Chen 213

et al. (2023) introduced a clustering method to form 214

different “consensus sets” of the generated pro- 215

grams that pass the same set of generated unit tests. 216

Concretely, a consensus set S = {(y, (i, o))|y ∈ 217
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Works Context FT FE Iter. Sampling

Shi et al. (2022) Inputs of Ttrial ✗ ✓ ✗

Li et al. (2022) Tgen ✓ ✗ ✗

Chen et al. (2023) Tgen ✗ ✗ ✗

To et al. (2024) Tgen ✗ ✗ ✗

Chen et al. (2024) I ′private ✓ ✓ on single candidate
Ours Tgen and I ′private ✓ ✓ ✓

Table 3: Unification for analysis in our work compared
with experimental settings from previous works.

Sy, (i, o) ∈ STgen , where ∀y ∈ Sy, (i, o) ∈218

STgen , y(i) = o, which is equivalent to MBR-io-219

H combined with generated test scoring. We leave220

the proof to Appendix A.1.221

SRank (To et al., 2024) is MBR-i-H. According222

to To et al. (2024), after generated programs are223

clustered by output agreement into K clusters C =224

{C1, . . . , Ck} given inputs of generated tests. By225

defining an interaction matrix I ∈ RK×K and a226

cluster feature V ∈ RK×1. This is equivalent to227

MBR-i-S. We leave the proof to Appendix A.2.228

3 Experiments229

3.1 Systematic Analysis230

Table 3 illustrates the experimental design of previ-231

ous works and our analysis. We are mainly moti-232

vated to combine disparate contexts, i.e., whether233

having access to private test inputs. Notably, we234

also find that most previous works omitted simple235

but effective reranking features like FT, which we236

are motivated to include in our analysis as well.237

3.2 Datasets and Models238

We conduct experiments using three widely recog-239

nized execution-based datasets: HumanEval (Chen240

et al., 2021), MBPP (Austin et al., 2021), and Live-241

CodeBench (Jain et al., 2024). Concretely, we242

utilize EvalPlus (Liu et al., 2023), which includes243

more than 35 times more private unit tests than the244

original benchmark, enabling our study of rerank-245

ing using both generated unit tests and private test246

inputs. See Appendix B for further details.247

We generate candidates with the CodeLlama-248

{7B,13B,34}-Instruct (Rozière et al., 2023)249

and DeepSeekCoder-{6.7B,V2-Lite,33B}-Instruct250

(Guo et al., 2024; DeepSeek-AI et al., 2024). We251

use instruction-tuned models that enable simple252

processing of generated codes for both candidate253

generation and iterative sampling (self-debug).254

3.3 Generation 255

We generate 5 to 50 candidates for each task. We 256

first explore sampling temperature by varying it 257

between 0.2 and 2.0 with p-nucleus sampling p 258

0.95, before deciding what sampling temperature 259

we use for subsequent experiments. With MBPP- 260

S and LiveCodeBench, we vary the temperature 261

between 0.2 and 1.8. When generating multiple 262

candidates, we use the open-source vLLM (Kwon 263

et al., 2023) for fast inference. To answer research 264

questions related to generation and reranking, we 265

present the results from CodeLlama-7B-Instruct. 266

The final temperature selection is based on the best 267

performance with FT-only to ensure fairness. 268

For iteratively sampling, i.e., self-debug, we con- 269

sider the simple setting proposed by Chen et al. 270

(2024), using only unit test (UT) feedback, i.e., the 271

feedback obtained from execution when a gener- 272

ated candidate is tested on trial unit tests. We only 273

consider this simple setting because 1) our main 274

focus is to test generally the impact of self-debug 275

on improving the oracle’s performance, 2) it does 276

not require steps of generation using the LLM other 277

than self-debug, thus requires less computation at 278

test-time and 3) it is the feedback that gives the 279

largest gain to execution accuracy post-debugging 280

according to Chen et al. (2024). We perform 3 281

rounds of self-debug for candidates generated with 282

sampling because Chen et al. (2024) demonstrated 283

that most debugging can be finished in 3 rounds. In 284

each round, the LLM debugs the candidates gener- 285

ated in the last round. 286

3.4 Reranking 287

For a fair comparison across contexts, we use either 288

100 generated tests or 20 private test inputs for most 289

experiments. For experiments on HumanEval, we 290

use 200 generated tests or 50 private test inputs. 291

For n-best reranking, we consider two types of 292

filtering, i.e., filtering on trial unit tests and filtering 293

executability on private unit tests. For MBR decod- 294

ing, we considered all utility functions we present, 295

providing a more panoramic view of reranking with 296

generated or private tests. Note that we do not in- 297

dependently test generated test scoring as it is inte- 298

grated into the original implementation of CodeT 299

(Chen et al., 2023). 300

Note that we only include execution-based sig- 301

nals here. We also include reranking with non- 302

execution-based signals in Appendix C.3. 303
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(a) HumanEval+ (b) MBPP-S+ (c) LiveCodeBench

Figure 2: Performance of reranking and oracle over
sampling temperatures using CodeLlama-7B-Instruct
with 50 generated candidates over 4 runs.

(a) HumanEval+ (b) MBPP-S+ (c) LiveCodeBench

Figure 3: Improvement in Pass@k of CodeLlama-7B-
Instruct after iterative sampling (SD) compared to no
iterative sampling applied.

3.5 Classifying Behaviors of Unit Testing304

A unit test, generated or written down by experts,305

tests a specific behavior of a generated program.306

Therefore, inspired by Langr et al. (2015), we de-307

velop a unit test profiling dataset that classifies unit308

tests into one of the following categories: General309

case, which tests general behaviors of the gener-310

ated code Cardinality edge case, which tests if a311

program can handle an input of length or size that is312

either zero or one; Extreme edge case, which tests313

if a program can handle inputs that require signifi-314

cantly more memory or time compared to normal315

cases; Other edge cases, which test if a program316

can handle other types of edge cases, dependent on317

the task itself.318

In practice, we ask DeepSeek-V3 to generate319

the profiling functions of different tasks, followed320

by refinement from three experts with at least 8321

years of software engineering experience. Note that322

we ask experts to discuss with each other before323

making a final decision.324

With this dataset, we analyze behaviors of differ-325

ent types of unit test cases and the performance of326

reranked programs on these unit tests.327

4 Results328

In this section, we provide results of our experi-329

ments and discuss the operational mechanism be-330

hind test-time compute. We propose research ques-331

HE+ MBPP-S+ LCB

Random 30.2 41.9 13.3
Greedy 39.0 44.8 13.4
Oracle 76.2 72.0 44.1

FT 59.7 60.8 29.6

Reranking w/ Tgen

MBR-i-S 46.0 48.7 20.8
MBR-i-H 36.1 46.8 18.4
MBR-io-S 37.0 44.9 15.7
MBR-io-H 41.6 48.8 19.3
MBR-io-S + TS 34.9 47.3 16.6
MBR-io-H + TS 43.3 49.4 19.6
FT + MBR-i-S 64.2 61.6 32.0
FT + MBR-i-H 46.8 54.8 27.0
FT + MBR-io-S 54.6 56.2 29.3
FT + MBR-io-H 58.1 58.9 29.3
FT + MBR-io-S + TS 56.6 58.6 27.7
FT + MBR-io-H + TS 58.7 58.9 29.9

Reranking w/ I ′private

FE 69.8 68.3 14.8
MBR-i-S 34.5 43.1 19.4
MBR-i-H 69.5 68.1 21.6
FT + MBR-i-S 52.4 55.2 30.4
FT + MBR-i-H 71.8 69.4 33.0
FT + FE 71.0 70.0 31.6
FE + MBR-i-S 67.5 65.9 23.0
FE + MBR-i-H 70.9 68.6 23.7
FT + FE + MBR-i-S 71.8 69.4 32.3
FT + FE + MBR-i-H 72.0 69.7 33.2

Table 4: Comparison of reranking methods on Hu-
manEval (HE)+, MBPP-S+, and LiveCodeBench (LCB).
Some results are centered as they do not use either
generated or private unit tests. We highlight best and
second best reranking results.

tions (RQs) with respect to generation, reranking, 332

and behaviors that reranked programs manifest. For 333

results on more experiments, see Appendix C. 334

4.1 RQ1: How should we configure sampling 335

for better candidates? 336

We answer this question by focusing on studying 337

sampling temperature for parallel sampling and the 338

number of debugging rounds for iterative sampling. 339

Selecting high temperature is helpful, and 340

reranking performance with FT is indicative. 341

We show results in Figure 2, finding that sampling 342

with a previously unseen high gives a higher ora- 343

cle of reranking performance, peaking between 1.6 344

and 1.8 for HumanEval+ and MBPP+, and between 345

1.2 and 1.4 for LiveCodeBench. This suggests that 346

sampling with a lower temperature is suggested 347

when applied to tasks that are more difficult, e.g., 348

competitive programming, when compared to ba- 349

sic programming. However, sampling in practice 350
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Avg MBR-i-S-Gen MBR-i-H-P + FE
Base +FT Base +FT

HumanEval+

Gen. 37.2 52.2 69.6 76.1 76.7
+40.2% +87.5% +104.4% +106.1%

Ext. 52.6 65.7 77.1 81.9 81.9
+25.0% +46.7% +55.8% +55.8%

Card. 58.3 71.1 82.6 87.2 87.2
+22.0% +41.5% +49.6% +49.6%

Other 40.1 54.3 71.5 80.0 80.1
+35.3% +78.2% +99.7% +99.7%

MBPP+

Gen. 44.8 52.7 68.2 71.1 72.2
+17.7% +52.3% +58.7% +61.2%

Ext. 51.7 61.5 68.8 73.6 73.6
+19.1% +33.0% +42.3% +42.3%

Card. 63.6 73.1 80.1 84.3 84.3
+14.8% +25.9% +32.4% +32.4%

Other 55.4 64.5 74.2 78.7 79.0
+16.5% +34.0% +42.1% +42.7%

Table 5: Pass rates (pass@1) by category using the best
methods in Section 4.2. The improvement percentages
are highlighted in green.

generally can be done with a higher temperature351

than previously suggested (Chen et al., 2021; Li352

et al., 2022; Shi et al., 2022; Liu et al., 2023; Jain353

et al., 2024).354

Moreover, we observe substantial differences in355

oracle and FT performances when different tem-356

peratures are selected for generation, highlighting357

the importance of controlling this hyperparame-358

ter. Last but not least, we find that selecting tem-359

perature with FT performances is indicative, as it360

closely follows changes of oracle performance2.361

Iterative sampling improves oracle performance362

of reranking, and one single round is enough.363

According to Figure 3, iterative sampling helps364

improve the oracle of reranking, represented by365

the improvement on Pass@k across different ks.366

However, later rounds of iterative sampling do not367

show substantial improvement in the oracle com-368

pared to the first round. Moreover, iterative sam-369

pling with one single round LiveCodeBench shows370

larger Pass@k improvement with larger ks. A sen-371

sible guess for this trend is related to the higher372

level of difficulty of problems in LiveCodeBench,373

with iterative sampling regenerating a few sensi-374

ble programs on problems that originally had no375

2For later experiments, we choose the number of generated
candidates to be 50. We adopt sampling temperature 1.6 for
HumanEval and MBPP-S and 1.2 for LiveCodeBench, with
nucleus p 0.95. For DeepSeek models, we use temperature
1.2, as we observe that with temperature >1.2 on DeepSeek
models, sampling is more likely to generate token indices that
are not defined in the vocabulary, see https://github.com/
vllm-project/vllm/pull/3685.

sensible candidates. The disappearance of this im- 376

provement suggests that, since most code LLMs 377

have not been trained extensively on debugging ob- 378

jectives, iterative sampling regenerates candidates 379

close to greedy decoding. 380

4.2 RQ2: What are the best decision choices 381

under different contexts? 382

We now try to provide an apples-to-apples compar- 383

ison between different reranking methods utilizing 384

information from executing unit tests. 385

Soft and hard MBR utility functions have dif- 386

ferent best cases. According to Table 4, the per- 387

formance using soft versus hard utility functions 388

varies in different cases. In the case of using 389

only test inputs for reranking, MBR-i-S outper- 390

forms MBR-i-Hard when these test cases are gen- 391

erated once. In contrast, MBR-i-H leads to higher 392

Pass@1 when high-quality test cases are provided. 393

This finding is contrary to the claims from Ku- 394

mar and Byrne (2004), implicating the difference 395

in nature between function-level code generation 396

and other tasks. We attribute this to the nature of 397

this task, where evaluation is performed by execut- 398

ing a generated program on private unit test cases. 399

Our findings are different from Shi et al. (2022), 400

who claimed little difference between MBR-i-S and 401

MBR-i-H. Our findings also illustrated that reach- 402

ing best performance with SRank (To et al., 2024) 403

is no more than utilizing a soft utility function. 404

Better programs are selected with simpler sig- 405

nals. First, we find that using only generated unit 406

test inputs, when applied with soft utility func- 407

tions, outperforms using both generated inputs and 408

outputs, supporting the hypothesis that generating 409

more tokens as test outputs induces more halluci- 410

nation. This being said, when high-quality unit 411

test inputs are provided, simply applying FE and 412

MBR with a hard utility function is even a better 413

choice. The same applies to FT, which already out- 414

performs all previously proposed methods that lie 415

in the domain of MBR decoding. 416

4.3 RQ3: What behavior improvements do 417

selected unit tests manifest? 418

Even though we experiment with as many as 5 419

times the generated unit tests, the performance 420

of MBR-i with them is still short of that of one 421

using fewer private test inputs. Figure 5 further 422

showcases the pass rate (as pass@1) of reranking 423

methods on different types of unit tests. We only 424
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Model HumanEval+ MBPP-S+ LiveCodeBench
MBR SD-1 SD-Multi MBR SD-1 SD-Multi MBR SD-1 SD-Multi

∼7B Scale

CL-7B-Ins (P) 69.5 69.5 70.5 68.1 68.8 70.4 21.6 21.3 24.0
+ FT + FE 72.0 71.1 73.3 69.7 69.2 72.1 33.2 33.0 34.0
(Gen) 46.0 46.0 46.6 48.7 49.0 50.6 20.8 20.3 21.2
(Gen) + FT + FE 64.2 64.2 65.3 61.6 62.0 63.5 20.8 20.4 22.0

DS-6.7B-Ins (P) 85.5 86.0 87.0 78.6 78.8 79.3 30.6 30.6 31.3
+ FT + FE 90.7 90.4 90.4 82.1 81.7 82.8 41.9 41.2 42.0
(Gen) 83.5 84.0 85.2 75.2 75.3 75.6 29.3 29.1 29.9
(Gen) + FT + FE 88.0 87.0 87.0 79.2 79.3 81.0 40.8 39.9 41.1

∼13B Scale

CL-13B-Ins (P) 72.6 73.1 74.4 71.2 71.0 72.4 27.0 27.6 27.6
+ FT + FE 76.1 76.5 77.6 74.7 74.2 76.2 40.6 40.8 46.8

∼16B Scale

DS-V2-Lite-Ins (P) 83.5 83.4 85.1 80.1 81.0 81.4 45.8 45.4 46.6
+ FT 89.6 88.4 89.6 81.8 82.2 82.8 58.7 58.3 58.5

∼33B Scale

CL-34B-Ins (P) 74.1 74.5 75.9 72.6 72.6 74.5 27.5 27.9 28.3
+ FT 77.1 77.8 78.0 75.2 76.2 76.8 44.0 44.0 48.1

DS-33B-Ins (P) 84.8 83.9 86.8 80.3 82.0 82.2 42.8 42.6 42.9
+ FT 90.2 89.0 90.8 81.7 83.0 83.5 55.9 55.1 55.6

Table 6: Comparison of self-debugging methods with 50 candidates generated by CodeLlama-{7,13,34}B-Instruct
and DeepSeekCoder-{6.7B,V2-Lite,33B}-Instruct, and debugged over {1, Multi} candidates. We also provide the
upper bound after debugging. Results are averaged across 2 runs for LiveCodeBench and 4 runs for the rest.

(a) HumanEval+ (b) MBPP-S+

Figure 4: Percentage of different test cases. “Evaluate”
refers to test cases used for evaluation, and “Private”
refers to private test cases used for reranking by sub-
sampling from “Evaluate” ones.

show results applied to HumanEval+ and MBPP+425

since only these two benchmarks provide canonical426

solutions for all problems.427

MBR-i-S improves reranking performance428

on all types of unit tests. According to Figure 5,429

MBR-i-S works not only because it can improve430

performance in general, but also because it helps431

select candidates that can pass general test cases432

and different types of edge cases. FT further boosts433

this reranking, showcasing robustness over differ-434

ent types of test cases used for evaluation.435

Improvement on the reranking methods re-436

lated to the types of the unit test distribution.437

According to Figure 4, private test cases for rerank-438

ing show high similarity to the ones for evaluation,439

especially in the category of general tests and task-440

related edge tests. This is opposite to the distribu-441

tion of generated tests, with false-positive test cases442

(a) HumanEval+ (b) MBPP-S+ (c) LCB

Figure 5: Scaling unit test cases for reranking.

replacing a large portion of general tests and task- 443

related edge tests detected with Evalplus’s false- 444

positive classifier (Liu et al., 2023). 445

5 Further Analysis 446

5.1 Scaling Unit Test Numbers for Reranking 447

Following our findings in Section 4.2, we now ana- 448

lyze the effect of reranking performances by scal- 449

ing unit tests. 450

When it comes to generated unit tests, improve- 451

ments of scaling only happen when it’s done 452

with MBR-i-S instead of an exact match. Ac- 453

cording to Figure 5, different trends happen when 454

applying exact matches versus MBR-i-S. For MBR- 455

i-S, we see an increasing trend with more test cases 456

used for reranking, while for MBR-i-H, we see the 457

opposite. This finding further indicates that adopt- 458

ing soft utility functions when using generated unit 459

tests is helpful, challenging existing practices us- 460

ing hard utility functions (Li et al., 2022; Shi et al., 461
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2022; Ni et al., 2023; Chen et al., 2024).462

5.2 Combining Both Sampling Strategies with463

Reranking464

Applying MBR-i-H on private test inputs with FT465

gives close-to-oracle performances, suggesting that466

improving the oracle performance with iterative467

sampling (Chen et al., 2024) is a more sensible468

choice than providing better reranking methods. In469

this section, we first analyze the improvement in Or-470

acle performance. We then compare our proposed471

SD-Multi and SD-1 proposed by Chen et al. (2024).472

For SD-Multi, we only use results with one round473

of debugging, while we use results with 3 rounds474

of debugging for SD-1. When using generated test475

cases, we experiment with 7B models.476

SD-Multi outperforms SD-1. According to Ta-477

ble 6, SD-Multi consistently outperforms SD-1 in478

most experiments, with better-performing models479

having smaller margins of improvement with iter-480

ative sampling. The only exceptions we find are481

on experiments with candidates generated and self-482

improved with DeepSeekCoder-{6.7B, V2-Lite}-483

Instruct, where either the task is considered more484

difficult compared to basic programming, or the485

baseline performance with MBR-i-H on private486

test inputs is already above 90.487

6 Related Work488

Reranking in function-level code generation.489

Shi et al. (2022) and Li et al. (2022) proposed MBR490

decoding using agreement on execution outputs.491

Chen et al. (2023) extended the framework utilizing492

generated input-output pairs. Huang et al. (2024)493

utilized formal verifications as part of reranking.494

Ma et al. (2025) further trained test case genera-495

tors to help reranking. Li et al. (2025) utilized an496

execution agreement assisted by a stronger LLM.497

Our work differs from these works as our focus lies498

in the formalization of TTC instead of proposing499

methods. Specifically, while Ma et al. (2025) stud-500

ies unit test generation, their generation focuses501

on the “unittest” Python class, making it difficult502

to study from our MBR decoding framework with503

nuanced decision choices. Additionally, we do not504

include Li et al. (2025) into our MBR framework505

as we do not think utilizing a stronger LLM leads506

to a fair comparison in our experimental settings.507

Reranking on Other Execution-Dependent508

Tasks. One related domain is Text-to-SQL gen-509

eration, with Gao et al. (2024) including self- 510

consistency (Wang et al., 2023) into studying TTC 511

performances. Ehrlich et al. (2025) employed 512

TTC on repository-level software engineering tasks. 513

While all these tasks are related, we do not perform 514

analysis on these tasks due to their nature. Text-to- 515

SQL generation can be explicitly reranked through 516

exact-matching without requesting any test inputs, 517

and repository-level tasks focus on passing a new 518

set of unit tests without sacrificing current ones. 519

Generation strategies. Zhang et al. (2023a) pro- 520

posed Monte Carlo Tree Search on code generation. 521

Wang et al. (2025) studied concept planning based 522

on LLMs before generation. Zheng et al. (2025) 523

then incorporates multi-turn code generation with 524

execution feedback into model training. Our work 525

differs from these efforts as we only treat gener- 526

ation as a basis for TTC. While these efforts do 527

manifest impressive performances, we do not think 528

they will lead to many changes in our findings, in 529

which decision choices of reranking are a key part. 530

7 Conclusion and Future Work 531

We propose a formalization of test-time compute 532

for functional code generation. Mathematically, we 533

unify previous approaches through a generation- 534

reranking framework and provide theoretical justi- 535

fications of our reranking module, recovering previ- 536

ous works. Empirically, we ask key research ques- 537

tions with respect to generation, reranking, and be- 538

havior testing for this task. Our empirical findings 539

highlight the importance of configuring generation 540

parameters, reranking with appropriate and high- 541

quality signals, and different types of test cases 542

reranking methods manifest robustness on. 543

Limitation 544

First of all, our paper is limited by the scale of 545

experiments as we cannot experiment with all the 546

large language models due to the limit of computa- 547

tion and the vast set of analysis, and our solution is 548

to select representative classes of open-source mod- 549

els and experiments. Additionally, the paper is lim- 550

ited by the inclusion of various sampling strategies 551

while we do not think it will be a game-changing 552

module for us to analyze TTC in our framework 553

with a major focus on reranking stage. 554

Ethical Considerations 555

We do not consider the existence of ethical issues 556

related to the paper, due to the nature of code gen- 557
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eration and our usage of publicly available datasets558

that have been verified. However, we noticed the559

risk of ethical concern due to our choice of sam-560

pling temperature. We checked generations and561

found no ethical issues in the generated content.562
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A Proofing the Equivalence between802

MBR and other reranking methods803

A.1 Proof: Equivalence between CodeT and804

MBR-io-H805

(Chen et al., 2023) defined a consensus set S =806

{(y, (i, o))|y ∈ Sy, (i, o) ∈ STgen}, where ∀y ∈807

Sy, (i, o) ∈ STgen , y(i) = o. The final score for a808

generated program y ∈ Sy is809

|Sy| · |STgen |. (3)810

Obviously,811

|Sy| =
∑
y′∈Y

∏
(i,o)∈Tgen

1{y(i) = o} · 1{y′(i) = o},

(4)812

and813

|STgen | =
1

|Tgen|
∑

(i,o)∈Tgen

1{y(i) = o}. (5)814

Therefore, MBR-io-S with the scoring on trial815

unit tests is recovered.816

A.2 Proof: Equivalence between SRank and817

MBR-io-H818

To et al. (2024) defined K clusters {C1, . . . , Ck}819

based on exact match of test outputs given M820

generated test inputs Igen = {i1, . . . , iM}, i.e.821

∀y, y′ ∈ Ci,822

1 =
∏

i∈Igen

1(y(i) = y′(i)). (6)823

The interaction matrix I ∈ RK×K is defined as824

Ii,j =
1

M

M∑
m=1

1(y(im) = y′(im)), (7)825

where y ∈ Ci and y′ ∈ Cj .826

To et al. (2024) also defined a cluster feature827

V ∈ RK×1. Note that we only include the cluster828

size as the feature, i.e. Vi = |Ci|.829

After all, the final reranking score is R = I · V .830

Specifically, the score that Ci receive is831

Ri = Ii,1 · |C1|+ · · ·+ Ii,1 · |CK |. (8)832

Specifically, for yi ∈ Ci,833

Ii,j · |Cj | =
1

M

∑
yj∈Cj

M∑
m=1

1(yi(im) = yj(im))

(9)834

Note that any generated program must belong to 835

a cluster, and any two different clusters are mutu- 836

ally exclusive. Therefore, 837

Ri =
1

M

∑
yj∈Y

M∑
m=1

1(yi(im) = yj(im)). (10) 838

Thus, the score for any candidate y is 839

1

M

∑
y′∈Y

M∑
m=1

1(y′(im) = y′(im)). (11) 840

Regarless of the normalization across N gener- 841

ated programs, MBR-i-S is recovered. 842

B Dataset Statistics 843

We use the HumanEval (Chen et al., 2021) and 844

MBPP (Austin et al., 2021) datasets in EvalPlus 845

(Liu et al., 2023), consisting of 164 and 395 prob- 846

lems respectively. For LiveCodeBench (Jain et al., 847

2024), we use the version that includes competitive 848

programming problems from July 2023 to Septem- 849

ber 2024 to balance the risk of data contamination 850

and size of the dataset. For fair MBR decoding, we 851

only include problems presented as “functional”, 852

obtaining 283 problems, among which 88/135/60 853

are easy/mid/hard problems. 854

Note that when prompting the model to generate 855

programs for MBPP, EvalPlus adopts the format 856

that uses the first private unit test as the trial unit 857

test. The average numbers of trial unit tests in 858

HumanEval/MBPP/LiveCodeBench are 2.8/1/2.47. 859

C Experimental Results 860

C.1 Candidate Generation 861

To validate our choice of temperature, we present 862

the choice of sampling temperature of using 863

other models. For CodeLlama-13B-Instruct and 864

DeepSeekCoder-6.7B-Instruct, we compare results 865

with our choice of temperature for further experi- 866

ments with results using temperature 0.8. Results 867

are presented in Table 7. All models we experi- 868

ment with allow a sampling temperature over 1, 869

with lower mean execution accuracy but higher or- 870

acle performance. Combined with filtering on trial 871

unit tests, MBR-i allows constant improvement 872

in execution accuracy when sampling with higher 873

temperatures, which is not guaranteed without fil- 874

tering. 875
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(a) HumanEval (b) MBPP-S (c) HumanEval+ (d) MBPP-S+

Figure 6: Improvement in Pass@k of CodeLlama-7B-Instruct after self-debugging compared to no self-debugging
applied.

(a) HumanEval (b) MBPP-S (c) HumanEval+ (d) MBPP-S+

Figure 7: Improvement in Pass@k of DeepSeekCoder-6.7B-Instruct after self-debugging compared to no self-
debugging applied.

(a) HumanEval (b) MBPP-S (c) HumanEval+ (d) MBPP-S+

Figure 8: Improvement in Pass@k of CodeLlama-13B-Instruct after self-debugging compared to no self-debugging
applied.

(a) HumanEval (b) MBPP-S (c) HumanEval+ (d) MBPP-S+

Figure 9: Improvement in Pass@k of DeepSeekCoder-V2-Lite-Instruct after self-debugging compared to no self-
debugging applied.
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Model DS-6.7B-Instruct CL-13B-Instruct DS-V2-Lite-Instruct
temp = 0.8 temp = 1.2 temp = 0.8 temp = 1.6 (1.2 for LCB) temp = 0.8 temp = 1.2

HumanEval(+)

Mean 77.3 (70.6) 72.5 -4.8 (65.1 -5.5) 45.7 (40.0) 35.8 -9.9 (31.1 -8.9) 81.7 (76.6) 81.7 -0 (76.6 -0)
MBR 87.0 (85.8) 86.4 -0.6 (85.5 -0.3) 72.0 (67.4) 74.3 +2.3 (72.6 +5.2) 84.8 (81.3) 85.8 +1.0 (83.5 +2.2)
FT + FE + MBR 90.7 (89.8) 91.6 +0.9 (90.7 +0.9) 76.5 (76.1) 80.5 +4.0 (76.1 +6.9) 91.5 (87.2) 92.4 +1.0 (89.6 +2.4)
Oracle 92.9 (91.5) 95.2 +2.3 (93.2 +1.7) 82.8 (75.1) 88.7 +5.9 (82.4 +7.3) 94.5 (89.7) 95.7 +1.2 (92.3 +2.6)

MBPP(+)

Mean 71.4 (61.8) 68.6 -2.8 (58.6 -3.2) 60.7 (51.0) 52.5 -8.2 (43.5 -7.5) 79.7 (67.2) 79.1 -0.6 (66.8 -0.4)
MBR 83.7 (78.2) 84.0 +0.3 (78.6 +0.4) 71.5 (64.7) 77.9 +6.4 (71.2 +6.5) 88.6 (78.5) 89.1 +0.5 (80.1 +1.6)
FT + FE + MBR 87.3 (80.5) 89.1 +1.8 (82.1 +1.6) 78.0 (67.8) 84.1 +6.1 (74.7 +6.9) 89.7 (79.6) 91.2 +1.5 (81.8 +2.2)
Oracle 91.2 (82.8) 93.2 +2.0 (85.6 +2.8) 82.0 (70.4) 88.4 +6.4 (78.0 +7.4) 91.3 (80.9) 93.1 +1.8 (83.9 +3.0)

LiveCodeBench

Mean 19.9 17.5 -2.4 17.4 15.9 -1.5 36.1 35.4 -0.7
MBR 30.0 30.6 +0.6 24.9 27.0 +2.1 42.6 45.8 +3.2
FT + FE + MBR 43.1 41.9 -1.2 35.7 40.6 +4.9 57.8 58.7 +0.9
Oracle 52.5 53.6 +1.1 46.8 50.4 +3.6 63.1 68.2 +5.1

Table 7: Comparison of performance of sampling and reranking using temperature 0.8 and those chosen for further
experiments. We report mean execution accuracies, MBR-i results, and oracle performances of 50 candidates
generated by DeepSeekCoder-{6.7B, V2-Lite}-Instruct or CodeLlama-13B-Instruct. Results that end with + mean
that it is evaluated on the plus with extended test cases, otherwise, it is evaluated on the original test cases. We also
show decreases and improvements of results in our choice of temperature over 0.8. Results are averaged across 4
runs for HumanEval(+) and MBPP-S(+), and 2 runs for LiveCodeBench.

(a) CL-7B (b) DS-6.7B (c) CL-13B (d) DS-V2-Lite

Figure 10: Improvement in Pass@k on LiveCodeBench.

C.2 Improving Oracle with Iterative876

Sampling877

We first present results of improvement of Pass@k878

that estimates oracle improvement using candi-879

dates generated and self-debugged by CodeLlama-880

7B-Instruct (see Figure 6), DeepSeekCoder-6.7B-881

Instruct (see Figure 7), CodeLlama-13B-Instruct882

(see Figure 8), and DeepSeekCoder-V2-Lite-883

Instruct (see Figure 9). We also provide cases for884

LiveCodeBench (see Figure 10). Our findings align885

with Section 5.2 as one round of self-debugging is886

enough to improve the oracle.887

C.3 Reranking with Non-Execution-Based888

Metrics889

Table 8 presents our preliminary results on non-890

execution-based metrics including Coder-Reviewer891

(Zhang et al., 2023b), CodeScore (Dong et al.,892

2023), and CodeBertScore (Zhou et al., 2023). As893

we observe that they do not perform as ideal as894

HE+ MBPP-S+ LCB

Random 30.2 41.9 13.3
Greedy 39.0 44.8 13.4
Oracle 76.2 72.0 44.1

N-Best Reranking

LL 38.7 42.6 16.3
CR 40.5 43.1 15.9
CS 30.2 - 14.1

MBR

MBR-CBS 35.5 45.4 -
MBR-CS 31.9 - -

Table 8: Comparison of non-execution based reranking
methods on HumanEval (HE)+, MBPP-S+, and Live-
CodeBench(LCB). For N-Best Reranking, we compare
Likelihood (LL), Coder-Reviewer (CR), and CodeScore
(CS). For MBR, we compare CodeScore and Code-
BertScore (CBS). We highlight best and second best
reranking results of the class of reranking methods.

execution-based metrics, we decide to focus on 895
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execution-based metrics.896
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