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Abstract
Structured pruning reduces the computational cost of neural networks by removing filters, but con-
ventional regularizers such as L1 or Group Lasso exhibit strong magnitude bias and unstable deci-
sion boundaries, suggesting suboptimal pruning dynamics. In this work, we revisit pruning through
the lens of optimization, geometry and learning dynamics. We first characterize the precise alge-
braic conditions under which pruning preserves model outputs, then use this insight to design Cat-
alyst, a novel regularizer defined in an extended parameter space with auxiliary variables. Catalyst
reshapes the loss landscape to promote emergent bifurcation dynamics between filters to be pruned
or preserved, ensuring magnitude-invariant, fair, and robust pruning decisions. Our formulation
highlights how high-dimensional learning dynamics can be achieved via a well-founded regular-
izer for pruning. Empirically, the Catalyst pruning algorithm consistently outperforms standard
approaches, demonstrating both its theoretical soundness and practical effectiveness.

1. Introduction

Structure and sparsity in overparametrized neural networks pose fundamental challenge in under-
standing dynamics pertaining to deep learning. Structured pruning [3], a model compression tech-
nique that removes entire filters or channels, impacts both structure and sparsity of the model while
maintaining the model performance. Regularization techniques such as L1 and Group Lasso[16, 19]
are commonly employed in structured pruning to encourage sparsity by shrinking filter weights to-
ward zero, thereby mitigating the performance degradation caused by removing filters to be pruned.
Despite practical effectiveness, this norm-minimization strategy reduces the potential of structural
pruning. In particular, it creates magnitude bias in pruning, favoring the pruning of small-norm
filters regardless of their importance.

In this work, we propose Catalyst, a novel regularization scheme to enable lossless structured
pruning, and analyze the underlying dynamics of regularized pruning of overparametrized neural
network unveiled by Catalyst. Catalyst regularization for structured pruning is represented by re-
shaping the dynamics of learning which filters to prune by augmenting the neural network parameter
space with auxiliary “catalyst” variables. We show that Catalyst regularizer is geometrically aligned
with the pruning-invariant set for lossless pruning, thereby eliminating magnitude bias and inducing
a robust bifurcation: the filters naturally diverge into two groups – prune or preserve –following the
gradient flow along trajectories with a wide margin robust to perturbations. This bifurcation behav-
ior reveals a new perspective on pruning as a structured dynamic competition among filters, achieved
by analytically well-founded regularizer. We demonstrate this robust dynamics theoretically and
empirically, showing that Catalyst enhances both pruning stability and compression performance.
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2. Catalyst pruning: dynamics for lossless pruning

2.1. Equation of lossless pruning

Given weight matrix W and filters Fi =Wi,: for i = 1, · · · , C where C is number of channels, the
structured pruning sets Fi to zero for some i, to eliminate the ith channel. While existing regular-
ization methods attempt to minimize the damage due to pruning by sparsifying the filter parameters,
they fall short in one crucial aspect: the vicinity of the global minima of these regularizers does not
geometrically align with what we term the pruning-invariant set. We define this pruning-invariant
set, Xtgt , as a finite union of linear subspaces.

Xtgt :=

NW⋃
i=1

{W |Wi,: = Fi = 0}. (1)

If W is in Xtgt, then ith filter Fi is zero for some i and thus we can prune it without any damage.

2.2. Catalyst regularization

Geometry of Xtgt, the union of linear spaces is may not be an easy target for the optimization, since
the defining equation is complicated. Instead, we consider the scope from the higher dimension.
If we introduce auxiliary parameter and extend the weight space, following theorem simplifies the
problem.

Theorem 1 Let D = {D = diag(δ)|δ ∈ RNW } be space of diagonal matrices and consider
projection map

p : RNW×NI × D −→ RNW×NI

(W,D) 7−→W
(2)

then

(1) Xtgt = p({(W,D)|DW = 0 and D ̸= 0}).

(2) LetB(X, ϵ) be the ϵ-neighborhood ofX with the L2 norm. If k > 0 is a positive real number,
then

B(Xtgt, ϵ) = p({(W,D)|∥DW∥2,1 < kϵ and ∥D∥1 > k}) (3)

Proof [Proof of Theorem 1] We can easily prove (1) by the fact that dw = 0 implies d = 0 or
w = 0. For (2), we directly find D. The detailed proof is in Appendix C.

Sending weight matrix W to Xtgt, is equivalent to send (W,D) to V (DW ), the zero locus of
matrix equation DW = 0. Hence, we can achieve lossless pruning by minimization of ∥DW∥. In
particular, we choose to minimize ∥DW∥2,1 =

∑C
i=1 ∥DiiFi∥2 to invoke robust bifurcation.

In implementation, we exploit Bypass pipeline[4] with slight modification. Instead of the orig-
inal form of learnable activation ψD(x) = Dx + σ(x) with D = 0 initialization, we introduce a
modified version:

ψD,D = Dx−Dx+ σ(x) (4)

with initialization D = D = Dinit. Interestingly, our regularization target DW = 0 implies
ADW = 0, the comeback constraint of [4], and thus allow to remove D together without damage.
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Figure 1: Simulation on ∥DW∥2,1 minimization,

2.3. Dynamics of Catalyst regularization

The minimization of ∥DW∥2,1 is affected strongly by the initialization Dinit. To ensure the fair
chance of prunability and reduce the magnitude bias, we propose to useDinit = diag(∥F1∥2, · · · , ∥FC∥2).
This initialization places the filters (Fi, Dii) on the pruning decision boundary Dii

∥Fi∥ = 1 described
in the theorem below.

Theorem 2
Let d be the scalar parameter and M be N-dimensional vector. Mt and dt be the trajectory of

gradient descent movement of ∥dM∥2 at timestep t positive learning rate λt and weight decay term
α≪ 1. Let ct =

|dt|
∥Mt∥2 and assume that

0 < λ∗ < λt ≪ min

(
(1− α)
c0

, (1− α)c0
)

(5)

where λ∗ = inft λt is the infimum λt.

(1) If c0 = 1, then ct = 1 for all timestep t.

(2) If c0 < 1, then ct exponentially shrinks to λt
1−α . i.e, If T be the smallest integer satisfying

cT ≤ λT
1−α then there exists k ∈ (0, 1) such that ct+1 ≤ kct for all t < T − 1.

(3) If c0 > 1, then ct exponentially grows to (1−α)
λt

. i.e, if T is the smallest integer satisfying
cT ≥ 1−α

λT
then there exists k > 1 such that ct+1 ≥ kct for all t < T − 1

Proof We can find recurrence relation between ct and ct+1. Detailed proofs can be found in Ap-
pendix E.

During training, due to performance loss L (red arrows in Fig. 1(a)), the (Dii, Fi) escapes
this decision boundary almost surely, and then move according to its position whether the ratio
c
(i)
0 := Dii

∥Fi∥2 is larger than 1 or not. This movement is illustrated in Fig. 1 by dashed lines.

Precisely, according to Theorem 2, if c(i)0 > 1 then ith filter parameters Fi the parameters
(Dii, Fi) move toward hyperplane F = 0 of (d, F )-space and thus ith filter would be pruned.
Otherwise if c0 < 1, then the destination would be d = 0 and the ith filter would be preserved. This
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Table 1: Performance Comparison of Various Filter Pruning Methods

Method
Baseline Pruned

∆ ACC(%) speedup
ACC(%) ACC(%)

Resnet56+ CIFAR10

Slimming[9, 21] 93.80 93.27 -0.53 1.92x
Polar[21] 93.80 93.83 +0.03 1.89x
SCP [5] 93.69 93.23 -0.46 2.06x

ResRep[1] 93.71 93.71 0.00 2.12x
Depgraph[2] 93.53 93.77 +0.24 2.13x

ATO[17] 93.50 93.74 +0.24 2.22x
Ours-BN 93.53 94.00 +0.47 2.06x

VGG19+ CIFAR100

SCP[5] 72.56 72.15 -0.41 2.63x
Greg-1 [15] 74.02 71.30 -2.72 2.96x

DepGraph[2] 73.50 72.46 -1.04 3.00x
Ours-BN 73.51 73.37 -0.14 3.00x

DepGraph[2] 73.50 70.39 -3.11 8.92x
Greg-2 [15] 74.02 67.75 -6.27 8.84x
EigenD[14] 73.34 65.18 -8.16 8.80x

Ours-BN 73.51 70.08 -3.43 8.96x
DepGraph[2] 73.50 66.20 -7.30 12.00x

Ours-BN 73.51 68.13 -5.38 11.84x
Ours-BN 73.51 66.44 -7.07 13.83x

Resnet50+Imagenet

PFP[8] 76.13 75.21 -0.91 1.49x
Greg-1[15] 76.13 76.27 +0.14 1.49x
Ours-BN 76.15 76.40 +0.36 1.49x

ThiNet70[10] 72.88 72.04 -0.84 1.69x
Whitebox[20] 76.15 75.32 -0.83 1.85x

Ours-BN 76.15 76.04 -0.11 1.82x
Slimming[9, 21] 76.15 74.88 -1.27 2.13x

Polar[21] 76.15 75.63 -0.52 2.17x
Depgraph[2] 76.15 75.83 -0.32 2.08x
OICSR[7] 76.31 75.95 -0.37 2.00x
Ours-group 76.15 75.96 -0.19 1.96x

gives the natural policy of pruning decision, that we can just prune filters with ct > 1 after t steps of
regularization. Since the pruning decision is made on c, filters with smaller initial magnitudes are
not any more preferred to be pruned than those with larger magnitudes and thus completely resolved
the magnitude bias.

3. Experiments

3.1. Experiment Settings

We use Resnet-56 [18] on CIFAR10 [6], VGG-19 [13] on CIFAR100 and Resnet50 on Imagenet
[12] for empirical verification. The detailed experimental settings including augmentation and hy-
perparameters such as learning rate and number of epochs can be found in Appendix F.

3.2. Performance Analysis

In Table 1, we show the performance of Catalyst, by comparing the test accuracy before and after the

overall regularization and pruning process. The speedup is measured by the ratio FLOPs of pretrained
FLOPs of pruned .
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Figure 2: The histograms of ratio c = Dii
∥Fi∥ , filter vector Fi of weight tensor W , and Dii’s for each

layers of Resnet50-1.8G model trained on Imagenet. The z-axis represents the frequency.

The Catalyst shows the superior performance compared to the benchmark methods [1, 2, 5, 7, 15,
17, 20] which smaller accuracy degradation driven from the pruning process.

3.3. Robust Bifurcation

We present a typically observed bifurcation behavior catalyst regularization in Fig. 2. Fig. 2(a)
shows robust bifurcation of c = Dii

∥Fi∥ centered at c = 1, by ∥DW∥2,1 minimization, as theoretically
expected in Theorem 2. The ratio of c between pruned filters and preserved filters are extremely
large, around 108, since the c value changes exponentially during the minimization.

As shown in Fig. 2(b) and Fig. 2(c), bifurcation on C derives the bifurcation on W and D
inherently. Also, we can achieve lossless pruning since the filter norms of pruned filters are pushed
to have extremely small value, while the filter norms the rest are preserved.

3.4. Effect of prune operation

The prune operation, which is composition of pruning and proj for D removal, does not harm the
model when DW = 0, but numerically the norm ∥DW∥ is inevitably nonzero hence the prune
does change the model’s functionality.

Table 2: Effect of prune operation in Catalyst pruning.

Task phase
avg avg MACs

∆ acc (%p) ∆L (%) drop(%)

R56 2.06x CIFAR10
opt1 -0.001 0.0032 9.062
opt2 0.004 -0.0025 46.562

V19 8.96x CIFAR100
opt1 -0.019 0.0001 85.075
opt2 0.009 0.0021 25.179

R50 1.82x Imagenet
opt1 0.002 -0.0001 19.233
opt2 -0.037 0.0008 31.811

In Table 2 we measure the difference of accuracy and loss value, before and after the prune for
each layer and report the average. Due to successful regularization, the prune shows minimal effect
on model performance and shows the success of regularization.

5



4. Discussion

The loss landscape of deep neural networks is notoriously complex, shaped by overparameterization
and diverse architectural choices, making it difficult to derive general intuitions or common behav-
iors. However, by intentionally extending the parameter space with auxiliary variables, it is possible
to reshape this landscape and induce desirable training dynamics. Prior work such as Bypassing [4]
has leveraged this idea to escape unfavorable stationary points. In our work, we apply a similar
principle to structured pruning, using an extended space to guide sparsification and promote robust
filter bifurcation.

The ratio c has geometric meaning in the extended space, when we define projective space on
it, that it is in fact a cotangent of angular distance between representation of zero-filter and current
parameter. Future directions include a deeper theoretical exploration of the projective geometry
underlying Catalyst’s behavior, as well as extending this framework to analyze other forms of mod-
ularity and sparsity in neural networks. Also, carefully design of dynamics in augmented parameter
spaces may offer new ways to address longstanding challenges in optimization, generalization, and
structure learning in high-dimensional neural networks.

5. Conclusion

We introduce Catalyst, a novel regularizer for structured pruning, grounded in an algebraic char-
acterization of lossless pruning. Catalyst induces a controlled deformation of the network during
training, enabling magnitude-independent pruning decisions and robust bifurcation dynamics with
a wide decision margin. The resulting Catalyst pruning algorithm achieves strong empirical perfor-
mance across benchmarks, aligning with its theoretical guarantees and outperforming conventional
regularizers for structured pruning. Our work highlights how carefully designed regularization can
offer insight into emergent dynamics that links function approximation, model compression, and
learning behavior of overparametrized neural networks. Structural modifications through controlled
parameter extension opens up a promising direction for future research on high-dimensional neural
networks.
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Appendix A. Detailed components of Bypassing for Catalyst

The algebraic constraint for the pruning, DW = 0 is defined on extended parameter space with di-
agonal matrixD. To exploit this constraint with external parameterD, we modify bypass algorithm[4]
to manage the model extension and regularization for the implementation.

Referring [4], Given model φ1 : D1 → F with φ1(θ) = fθ, the Bypass pipeline is comprised
of the following three core components:

1. φ2 : D2 → F : extension of model φ1 satisfying Imφ1 ⊆ Imφ2

2. embed: extends the model parameter θ ∈ D1 into extended space by

embed : D1 → D2 s.t. φ1 = φ2 ◦ embed (A1)

3. proj : contracts the model parameter ω ∈ φ−1
2 (Imφ1) into original space by

proj : φ−1
2 (Imφ1)→ D1 s.t.

φ2 = φ1 ◦ proj on φ−1
2 (Imφ1)

(A2)

In this section, we describe how the three core components of Bypass pipeline would be constructed
for structured pruning.

A.1. Model extension

Unlike the original bypass algorithm [4], we propose to use learnable activation which employs two
parameters D and D for extended model φ2, to give nontrivial initialization on D, as follows:

Definition 3 Let θ = (W, bW , A, bA) and rewrite

φ1(θ) = φ1(W, bW , A, bA) = NN(W, bW , A, bA, σ). (A3)

1. We first define learnable activation ψD,D with additional parameter D and D:

ψD,D : x 7→ Dx−Dx+ σ(x) (A4)

2. We define φ2 by
φ2(θ,D,D) = φ2(W, bW , A, bA, D,D)

= NN(W, bW , A, bA, ψD,D)
(A5)

3. The φ2(θ,D,D) is defined by replacing φ1(θ) to φ2(θ,D,D) from original model φ1(θ).

A.2. The embed function

Now we set the embed map as follows:

Definition 4 Given Dinit, we define embed(Dinit) as function-preserving operator on extended
parameter space, as follows:

embed(Dinit) : θ 7→ (θ,Dinit, Dinit) (A6)
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Remark 5 The map embed defined in Theorem 4 has a function-preserving property on φ2, that
φ2 = φ2 ◦ embed(Dinit) because ψDinit,Dinit = σ.

For the implementation, we need to chooseDinit to complete the model extension. In this paper,
we proposed to use Dinit = diag(∥F1∥2, · · · , ∥FNW

∥2), where N is the number of entries in each
filter. With the proposed initialization, the fair pruning chance would be ensured and the ∥DW∥2,1
minimization would show bifurcation behavior. The detailed explanation and mathematical back-
grounds which supports this proposed initialization are included in Section 2.3 with simulations.

A.3. prune: combination of pruning and proj

Now we propose the last core component of Catalyst pruning by defining contraction map prune,
which replaces proj of bypass pipeline.

Definition 6 Let P be set of filter indices to be pruned and P c be its complement.
We define prune by

prune(P ) : (W, bW , A, bA, D,D) 7→
(W [P c], bW [P c], (AT [P c])T , b′A,−D[P c], 0)

(A7)

where b′A = bA +ADbW + (AT [P ])T (ψ−D,0(bW ))[P ]

Theorem 7 Let prune be the mappings defined in Theorem 6. If DW = 0 and P = {i|Dii ̸=
0} = {i|∀jWij = 0} ∈ 2NW , then prune(P ) becomes function-preserving. That is,

φ2 = φ2 ◦ prune(P ). (A8)

Proof [Proof of Theorem 7] For arbitrary input, ifDW = 0 then some filters would provide constant
features. We pass those constant filters to next layer and add them to bias vector of next layer. The
detailed proof is presented in Appendix D.

Combining φ2, embed(Dinit) and prune(P ) we can build the training pipeline for the struc-
tured pruning, with constrained optimization algorithm, opt1 and opt2. Starting with φ1(θ), we
extend the model to φ2(θ,D,D) by embed(Dinit), train with constrained optimization opt1 and
algebraic constraints DW = 0, and prune the model by prune(P ) to get pruned but still extended
model φ2(θ[P ], D[P ], 0). Again, with constrained optimization opt2 and ∥DW∥2,1 = 0, we get fi-
nal pruned model by second prune. As stated in Theorem 5 and Theorem 7, the embed(Dinit) and
prune(P ) are function-preserving operations and thus there would be no pruning-caused damage
if ∥DW∥2,1 = 0.

Appendix B. Pseudocode of Catalysis pruining

We present our implementation of Catalyst pruning in Appendix B which is adaptation of Bypass
pipeline [4] with catalyst regularization and other theoretical aspects described in Section 2. The
algorithm can be summarized as: extend the model φ1 by introducing additional parameters D and
D, train in extended space with constrained optimization, and contract back to the original model.
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The proposed algorithm starts with embed(Dinit), where Dinit is set to be Dinit = c ×
diag(∥F1∥2, · · · , ∥FNW

∥2) with c = 1, as proposed in Section 2.3. The c = 1 is proposed to
place the pair of (Dii, Fi) on the pruning decision boundary, but the practitioners may set this value
to c > 1 to prune more, or c < 1 to prune less.

After initialization, the proposed algorithm repeats regularize-and-prune loop twice, to remove
D and D with pruning operation, respectively. During the first loop, namely opt1 (line 3-6 in
Appendix B), we minimize L∈(θ,D,D) + γt(∥DW∥2,1) with SGD optimizer until the training
budget T . The Optimizerλ(·) represents the single SGD update with hyperparameter λ and γt is
the parameter which controls the weight of regularization as in [4].

We can control the pressure of sparsification during opt1, by changing αθ and αD which are the
weight decay terms of θ and D each. Those are considered to be same in Section 2.3, but we may
set αθ > αD to promote larger pruning ratio. In case of αθ > αD, larger γt would induce larger
pressure on sparsification since the influence of ∇L2 is weakened, compared to the deterministic
movement of∇∥DW∥2,1.

If ∥DW∥2,1 decreases to small positive value ϵ (line 6 of Appendix B) or all ct are bifurcated
enough to satisfy |log(ct)| > κ, the regularization loop of opt1 may be stopped early. For experi-
ments,we used κ = 1 for Imagenet and κ =∞ for CIFAR, since early stopping was not necessary.
After regularization stage, we choose the pruning indices by threshold c = 1, which is equivalent
to P = {i|Dii > ∥Fi∥2}, and prune the selected filters by embed(P ) defined in Appendix A to
obtain intermediate pruning results with extra (but pruned) parameter D. Applying similar loop in
line 9-14 of Appendix B, but with D = 0, we can prune the model again and obtain pruned model
with original architecture.

Algorithm 1: Regularization with catalyst
1: Input θ = (W, bW , A, bA), λ, λ

′,L2, ϵ, ϵ′, γt, γ′t, T, T ′, c = 1
2: Initialize θ,D,D ← embed(Dinit)(θ, 0, 0) where Dinit = c · diag(∥F1∥2, · · · , ∥FNW

∥2)
3: repeat
4: θ,D,D ← Optimizerλ(L2(θ,D,D) + γt∥DW∥2,1)
5: t← t+ 1
6: until ∥DW∥2,1 < ϵ or log(ct) > κ or t > T
7: P ← {i|Dii > ∥Fi∥2}
8: θ,D, 0← prune(P )(θ,D,D)
9: repeat

10: θ,D, 0← Optimizerλ′(L2(θ,D, 0) + γ′t∥DW∥2,1)
11: t← t+ 1
12: until ∥DW∥2,1 < ϵ′ or log(ct) > 1or t > T ′

13: P ← {i|Dii > ∥Fi∥2}
14: θ, 0, 0← prune(P )(θ,D, 0)
15: return the pruned parameter θ (and continue finetune.)
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Appendix C. Proof of Theorem 1

Theorem 1 Let D = {D = diag(δ)|δ ∈ RNW } be space of diagonal matrices and consider
projection map

p : RNW×NI × D −→ RNW×NI

(W,D) 7−→W
(2)

then

(1) Xtgt = p({(W,D)|DW = 0 and D ̸= 0}).

(2) LetB(X, ϵ) be the ϵ-neighborhood ofX with the L2 norm. If k > 0 is a positive real number,
then

B(Xtgt, ϵ) = p({(W,D)|∥DW∥2,1 < kϵ and ∥D∥1 > k}) (3)

Proof [Proof of Theorem 1 (1)] We first prove that Xtgt ⊆ p({(W,D)|DW = 0 and D ̸= 0}).
if W ∈ Xtgt, then there exists i such that Wi = 0. Without loss of generality, let i = 1 and

consider
D = diag(1, 0, · · · , 0). (C1)

Then DW = 0 and D ̸= 0. Therefore, we have

(W,D) ∈ {(W,D)|DW = 0 and D ̸= 0} (C2)

and hence
W = p(W,D) ∈ p({(W,D)|DW = 0 and D ̸= 0}). (C3)

For the opposite inclusion, let W̃ ∈ p({(W,D)|DW = 0 and D ̸= 0}). Then, there exist
D̃ ̸= 0 that satisfy D̃W̃ = 0.

Without loss of generality, we have D̃11 ̸= 0 and thus W̃1 = 0 since (D̃W̃ )1 = 0. Therefore,
W̃ in Xtgt and

X = p({(W,D)|DW = 0 and D ̸= 0}). (C4)

Proof [Proof of Theorem 1 (2)]
Suppose W ∈ B(Xtgt, ϵ) and let i = argmini∈[NW ]∥Wi,:∥2. WLOG, let i = 1 then we have

∥W1,:∥2 < ϵ and thus we can choose k′ ∈ (k, ϵ
∥W1,:∥2k).

Let D = diag(k′, 0, · · · , 0). Then we have ∥D∥1 = k′ > k and

∥DW∥2,1 = k′∥W1,:∥2 +
∑
j>1

0 · ∥Wj,:∥2 < kϵ. (C5)

Therefore, W ∈ {(W,D)|∥DW∥2,1 < kϵ and ∥D∥1 > k}.
For the opposite direction, let ∥D̃W̃∥2,1 < kϵ and ∥D̃∥1 > k. Let ĩ = argmini∈[NW ]∥W̃i,:∥2

Then we have

∥W̃i,:∥2 =
NW∑
i=1

|D̃ii|
∥D̃∥1

∥W̃i,:∥2 ≤
NW∑
i=1

|D̃ii|
∥D̃∥1

∥W̃i,:∥2 <
1

k

NW∑
i=1

|Dii|∥W̃i,:∥2 =
1

k
∥D̃W̃∥2,1 < ϵ

(C6)
Therefore, we have ∥W̃i,:∥2 < ϵ and thus W ∈ B(Xtgt, ϵ).
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Appendix D. Proof of Theorem 7

Theorem 7 Let prune be the mappings defined in Theorem 6. If DW = 0 and P = {i|Dii ̸=
0} = {i|∀jWij = 0} ∈ 2NW , then prune(P ) becomes function-preserving. That is,

φ2 = φ2 ◦ prune(P ). (A8)

Proof [Proof of Theorem 7] Recall that

prune(P )(W, bW , A, bA, D,D) = (W [P c], bW [P c], (AT [P c])T , b′A, 0, D[P c]) (D1)

where b′A = bA +ADbW + (AT [P ])T (ψ−D,0(bW ))[P ].
Let |P | = n and WLOG let P = {1, · · · , n}. Then we can write each parameters can be written

by block matrix representations:

A =
[
AT [P ]T AT [P c]T

]
,W =

[
0

W [P c]

]
, bW =

[
bW [P ]
bW [P c]

]
(D2)

Let Xtgt be arbitrary input tensor of φ2(θ,D,D) then the output would be given by

φ2(θ,D,D)(x) = bA +AψD,D(bW +Wx)

= bA +ADbW +A���:0
DWx−ADbW −ADWx+Aσ(bW +Wx)

= bA +ADbW +Aψ0,D(bW +Wx)

(D3)

Since ψ0,D is channel-wise operation, ψ−D,0(bW )[P ] = ψ0,D[P ](bW [P ]). Considering the
block matrix representation Eq. (D2), Aψ0,D(bW +Wx) becomes

Aψ0,D(bW +Wx)

=
[
AT [P ]T AT [P c]T

]
ψ0,D

([
bW [P ]

bW [P c] +W [P c]x

])
=

[
AT [P ]T AT [P c]T

] [ ψ0,D[P ](bW [P ])

ψ0,D[P c](bW [P c] +W [P c]x)

]
= AT [P ]Tψ0,D[P ](bW [P ])

+AT [P c]Tψ0,D[P c](bW [P c] +W [P c]x)

(D4)

Hence, letting b′A = bA +ADbW + (AT [P ])T (ψ−D,0(bW ))[P ] we finish the proof by

φ2(θ,D,D)(x) = b′A +AT [P c]Tψ0,D[P c](bW [P c] +W [P c]x)

= φ2(bW [P c],W [P c], AT [P c]T , b′A, 0, D[P c])

= (φ2 ◦ prune)(θ,D,D)(x)

(D5)
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Appendix E. Proof of Theorem 2

Theorem 2
Let d be the scalar parameter and M be N-dimensional vector. Mt and dt be the trajectory of

gradient descent movement of ∥dM∥2 at timestep t positive learning rate λt and weight decay term
α≪ 1. Let ct =

|dt|
∥Mt∥2 and assume that

0 < λ∗ < λt ≪ min

(
(1− α)
c0

, (1− α)c0
)

(5)

where λ∗ = inft λt is the infimum λt.

(1) If c0 = 1, then ct = 1 for all timestep t.

(2) If c0 < 1, then ct exponentially shrinks to λt
1−α . i.e, If T be the smallest integer satisfying

cT ≤ λT
1−α then there exists k ∈ (0, 1) such that ct+1 ≤ kct for all t < T − 1.

(3) If c0 > 1, then ct exponentially grows to (1−α)
λt

. i.e, if T is the smallest integer satisfying
cT ≥ 1−α

λT
then there exists k > 1 such that ct+1 ≥ kct for all t < T − 1

Proof [Proof of Theorem 2] First consider the gradient descent movement of dt and M (i)
t , the ith

entry of Mt, as follows:

dt+1 = dt − αdt − sgn(dt)λt∥Mt∥2 = (1− α− λt
ct
)dt

M
(i)
t+1 =M

(i)
t − αM

(i)
t − λt|dt| ·

M
(i)
t

∥Mt∥2
= (1− α− λtct)M (i)

t .

(E1)

Note that the second inequalities of each are induced from the definition of ct =
|dt|

∥Mt∥2 .
From second equation of Eq. (E1) we can induce following vector-formed updates:

Mt+1 = (1− α− λtct)Mt. (E2)

Therefore, if
λt

1− α
≤ ct ≤

(1− α)
λt

(E3)

then we have

∥Mt+1∥2 = (1− α− λtct)∥Mt∥2. (E4)

and
dt+1 = (1− α− λt

ct
)dt. (E5)

Therefore, we get

ct+1 =
1− α− λt

ct

1− α− λtct
ct = f(ct, λt)ct (E6)

where f(x, y) = 1−α− y
x

1−α−xy .
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(1) Suppose c0 = 1 then simple induction shows that ct = 1 for all time t since Eq. (E3) holds
by assumption in Eq. (5).

(2) Suppose c0 < 1 and let T be the smallest integer which satisfies λT
1−α > cT .

If t < T and ct < 1, then f(ct, λt) < 1 by Theorem 8(1) and thus ct+1 < ct < 1, which
means that {ct} is a decreasing sequence.

Also, by Theorem 8(1) we have f(ct, λt) < f(c0, λ∗) < 1 since ct < c0 because {ct} is a
decreasing sequence, and λt > λ∗ due to the assumption in Eq. (5). Therefore, we have

ct < f(c0, λ∗)ct−1 < · · · < f(c0, λ∗)
tc0 (E7)

which finishes the proof of (2).

(3) Suppose c0 > 1 and let T be the smallest integer which satisfies λT
1−α < cT .

If t < T and ct > 1, then f(ct, λt) > 1 by Theorem 8(2) and thus ct+1 > ct > 1, which
means that {ct} is a increasing sequence.

Also, by Theorem 8(2) we have f(ct, λt) > f(c0, λ∗) > 1 since ct > c0 because {ct} is a
increasing sequence, and λt > λ∗ due to the assumption in Eq. (5). Therefore, we have

ct > f(c0, λ∗)ct−1 > · · · > f(c0, λ∗)
tc0 (E8)

which completes the proof of (3).

Lemma 8 Let f(x, y) = 1−α− y
x

1−α−xy and y ∈ (0, 1− α).

(1) If x ∈ (0, 1) then f(x, y) < 1, ∂f
∂x > 0 and ∂f

∂y < 0

(2) If x ∈ (1,∞) then f(x, y) > 1, ∂f
∂x > 0 and ∂f

∂y > 0

Proof We first compute the partial derivatives:

∂f

∂x
=

y(1− α)
x2(1− α− xy)2

{(x− y

1− α
)2 − y2

(1− α)2
+ 1} (E9)

∂f

∂y
=

(1− α)(x2 − 1)

x(1− α− 1xy)2
(E10)

Since y ∈ (0, 1 − α), the − y2

(1−α)2
+ 1 term in RHS of Eq. (E9) becomes positive. Therefore,

∂f
∂x > 0 for all Xtgt.

Now assume that x ∈ (0, 1). Then f(x, y) < 1 since x < 1
x and ∂f

∂y < 0 because x2 − 1 < 0.

Similarly, if x ∈ (1,∞) then f(x, y) > 1 and ∂f
∂y > 0.
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Appendix F. Details on experiments

In this section, we list the details on expeirment designs.
For Resnet-56 and VGG-19, we utilize the implementation and pre-trained models from [2],

which achieve 93.53% and 73.50% top-1 accuracy, respectively. For Resnet-50, we use official
torchvision [11] base model with pre-trained weights, which has 76.15% top-1 accuracy. Standard
data augmentation including random cropping and flipping were applied.

All experiments in this paper were conducted with Linux (Ubuntu 20.04) computer equipped
with single RTX 4090 GPU with 24GB VRAM. For imagenet experiment, we use gradient accu-
mulation to run with single GPU.

Resnet56+CIFAR10 VGG19+CIFAR100 Resnet50+Imagenet

batch size 128 128 64
Gradient accumulation 1 1 2
optimizer SGD(momentum=0.9) SGD(momentum=0.9) SGD(momentum=0.9)
Weight decay (αθ, αD) (5e-4,5e-5) (5e-4,0) (1e-4,0)
c 1 1 1
γt 0.007(1+0.25t), γ(1+0.25t), γ=[2e-3,9e-3,12e-3] 3e-4(1+0.25t)
ϵ (opt1,opt2) 1e-6,1e-6 2e-6,1e-6 3e-6,3e-6
Stage finish epochs

100,200,300 200,300,400 20,40,170
(opt1,opt2,finetune)
LR

1e-2,1e-2
5e-3,5e-3, 1e-3 for 3x

5e-3,5e-3,(5e-3,1e-5)
(opt1,opt2,finetune) 0.01, 0.01, 0.01
LR decay epoch

[50],[150],[240,270]
[],[],[390] for 3x [10,15],[30,35]

(opt1,opt2,finetune) [75,750],[250],[340,370] for rest ,[70,100,120,160]
LR decay ratio

0.1, 0.1, 0.1
NA,NA,0.1 for 3x

0.1,0.1,0.1
(opt1,opt2,finetune) 0.2,0.2,0.1 for rest
training runtime 2 hours 2 hours 60.42hours

Appendix G. Loss curves during the training

In this section, we plot the training logs of loss, accuracy, ∥DW∥ and MACs, in CIFAR10 experi-
ment. The target layers of the model were pruned early in epoch 51 and 116.
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Figure 3: Learning curves of CIFAR10 experiment with Resnet56
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Appendix H. Full evaluation on bifurcation behavior

In this section, we provide histograms of filter norm, {Dii}i∈[NW ] and C = D
∥W∥2,1 for every layer

of our pruned VGG19 model (in Section 3.2) and Resnet50 model(speedup 2.00x), to show that the
bifurcation behavior claimed in Section 2.3 always happens.

H.1. Resnet56+CIFAR10
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Figure 4: The histograms of ratio c = Dii
∥Fi∥ , filter vector Fi of weight tensor W , and Dii’s for

each layers of Resnet56 model trained on CIFAR10. The z-axis represents the frequency. The layer
indices of results in opt2 are shifted to start from the last layer.
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H.2. VGG19+CIFAR100
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Figure 5: The histograms of ratio c = Dii
∥Fi∥ , filter vector Fi of weight tensor W , and Dii’s for each

layers of VGG19 model (3x speedup) trained on CIFAR100. The z-axis represents the frequency.
The layer indices of results in opt2 are shifted to start from the last layer.
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Figure 6: The histograms of ratio c = Dii
∥Fi∥ , filter vector Fi of weight tensor W , and Dii’s for each

layers of VGG19 model (8.96x speedup) trained on CIFAR100. The z-axis represents the frequency.
The layer indices of results in opt2 are shifted to start from the last layer.
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each layers of VGG19 model (11.84x speedup) trained on CIFAR100. The z-axis represents the
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H.3. Resnet50+Imagenet
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Figure 8: The histograms of ratio c = Dii
∥Fi∥ , filter vector Fi of weight tensor W , and Dii’s for each

layers of Resnet50 model (1.49x speedup) trained on Imagenet. The z-axis represents the frequency.
The layer indices of results in opt2 are shifted to start from the last layer.
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Figure 9: The histograms of ratio c = Dii
∥Fi∥ , filter vector Fi of weight tensor W , and Dii’s for each

layers of Resnet50 model (1.96x speedup) trained on Imagenet. The z-axis represents the frequency.
The layer indices of results in opt2 are shifted to start from the last layer.
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Figure 10: The histograms of ratio c = Dii
∥Fi∥ , filter vector Fi of weight tensor W , and Dii’s for each

layers of Resnet50 model (2.33x speedup) trained on Imagenet. The z-axis represents the frequency.
The layer indices of results in opt2 are shifted to start from the last layer.
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Appendix I. Visualizations on fair pruning chance

The L1 and Group Lasso regularizer is claimed to prefer the filters with small initial magnitude. In
this section, we regularize VGG19 model on CIFAR100, prune filters according to magnitude with
pruning ratio which is same to our pruned VGG19 model (speedup 8.96x in Table 1) and visualize
the initial magnitude of pruned filters on every layers.

We also visualize the histogram of filter norms after the regularization too. The bifurcation
behaviors can be found on some layers, but still there is preference of small initial magnitude.
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Figure 11: Initial magnitude and regularized magnitude of L1, Group Lass and our regularizer on
1st layer of VGG19 model. Each columns correspond to L1, Group Lasso, ∥DW∥2,1 respectively.
First row is histogram of initial filter norms and second is historgram of regularized filter norms.
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VGG19 Layer (block0.4) pruned: (37/64)

Figure 12: Initial magnitude and regularized magnitude of L1, Group Lass and our regularizer on
2nd layer of VGG19 model. Each columns correspond to L1, Group Lasso, ∥DW∥2,1 respectively.
First row is histogram of initial filter norms and second is historgram of regularized filter norms.
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VGG19 Layer (block1.1) pruned: (80/128)

Figure 13: Initial magnitude and regularized magnitude of L1, Group Lass and our regularizer on
3rd layer of VGG19 model. Each columns correspond to L1, Group Lasso, ∥DW∥2,1 respectively.
First row is histogram of initial filter norms and second is historgram of regularized filter norms.
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VGG19 Layer (block1.4) pruned: (70/128)

Figure 14: Initial magnitude and regularized magnitude of L1, Group Lass and our regularizer on
4th layer of VGG19 model. Each columns correspond to L1, Group Lasso, ∥DW∥2,1 respectively.
First row is histogram of initial filter norms and second is historgram of regularized filter norms.
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VGG19 Layer (block2.1) pruned: (162/256)

Figure 15: Initial magnitude and regularized magnitude of L1, Group Lass and our regularizer on
5th layer of VGG19 model. Each columns correspond to L1, Group Lasso, ∥DW∥2,1 respectively.
First row is histogram of initial filter norms and second is historgram of regularized filter norms.
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VGG19 Layer (block2.4) pruned: (163/256)

Figure 16: Initial magnitude and regularized magnitude of L1, Group Lass and our regularizer on
6th layer of VGG19 model. Each columns correspond to L1, Group Lasso, ∥DW∥2,1 respectively.
First row is histogram of initial filter norms and second is historgram of regularized filter norms.
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VGG19 Layer (block2.7) pruned: (154/256)

Figure 17: Initial magnitude and regularized magnitude of L1, Group Lass and our regularizer on
7th layer of VGG19 model. Each columns correspond to L1, Group Lasso, ∥DW∥2,1 respectively.
First row is histogram of initial filter norms and second is historgram of regularized filter norms.
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VGG19 Layer (block2.10) pruned: (143/256)

Figure 18: Initial magnitude and regularized magnitude of L1, Group Lass and our regularizer on
8th layer of VGG19 model. Each columns correspond to L1, Group Lasso, ∥DW∥2,1 respectively.
First row is histogram of initial filter norms and second is historgram of regularized filter norms.
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VGG19 Layer (block3.1) pruned: (271/512)

Figure 19: Initial magnitude and regularized magnitude of L1, Group Lass and our regularizer on
9th layer of VGG19 model. Each columns correspond to L1, Group Lasso, ∥DW∥2,1 respectively.
First row is histogram of initial filter norms and second is historgram of regularized filter norms.
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VGG19 Layer (block3.4) pruned: (293/512)

Figure 20: Initial magnitude and regularized magnitude of L1, Group Lass and our regularizer on
10th layer of VGG19 model. Each columns correspond to L1, Group Lasso, ∥DW∥2,1 respectively.
First row is histogram of initial filter norms and second is historgram of regularized filter norms.
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VGG19 Layer (block3.7) pruned: (350/512)

Figure 21: Initial magnitude and regularized magnitude of L1, Group Lass and our regularizer on
11th layer of VGG19 model. Each columns correspond to L1, Group Lasso, ∥DW∥2,1 respectively.
First row is histogram of initial filter norms and second is historgram of regularized filter norms.
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VGG19 Layer (block3.10) pruned: (331/512)

Figure 22: Initial magnitude and regularized magnitude of L1, Group Lass and our regularizer on
12th layer of VGG19 model. Each columns correspond to L1, Group Lasso, ∥DW∥2,1 respectively.
First row is histogram of initial filter norms and second is historgram of regularized filter norms.
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VGG19 Layer (block4.1) pruned: (339/512)

Figure 23: Initial magnitude and regularized magnitude of L1, Group Lass and our regularizer on
13rd layer of VGG19 model. Each columns correspond to L1, Group Lasso, ∥DW∥2,1 respectively.
First row is histogram of initial filter norms and second is historgram of regularized filter norms.
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VGG19 Layer (block4.4) pruned: (270/512)

Figure 24: Initial magnitude and regularized magnitude of L1, Group Lass and our regularizer on
14th layer of VGG19 model. Each columns correspond to L1, Group Lasso, ∥DW∥2,1 respectively.
First row is histogram of initial filter norms and second is historgram of regularized filter norms.
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VGG19 Layer (block4.7) pruned: (277/512)

Figure 25: Initial magnitude and regularized magnitude of L1, Group Lass and our regularizer on
15th layer of VGG19 model. Each columns correspond to L1, Group Lasso, ∥DW∥2,1 respectively.
First row is histogram of initial filter norms and second is historgram of regularized filter norms.

36



0.6 0.5 0.4 0.3 0.2 0.1
log10(|W|)

0

20

40

60

80

co
un

ts

L1_layer15_initial magnitude

total
prune

0.6 0.5 0.4 0.3 0.2 0.1
log10(|W|)

0

20

40

60

80

co
un

ts

GroupLasso_layer15_initial magnitude

total
prune

0.6 0.5 0.4 0.3 0.2 0.1
log10(|W|)

0

20

40

60

80

co
un

ts

Ours_layer15_initial magnitude

total
prune

8 6 4 2 0
log10(|W|)

0

5

10

15

20

25

co
un

ts

L1_layer15_regularized magnitude

preserve
prune

5 4 3 2 1 0
log10(|W|)

0

2

4

6

8

10

12

14

16
co

un
ts

GroupLasso_layer15_regularized magnitude

preserve
prune

8 6 4 2 0
log10(|W|)

0

5

10

15

20

co
un

ts

Ours_layer15_regularized magnitude

preserve
prune

VGG19 Layer (block4.10) pruned: (460/512)

Figure 26: Initial magnitude and regularized magnitude of L1, Group Lass and our regularizer on
16th layer of VGG19 model. Each columns correspond to L1, Group Lasso, ∥DW∥2,1 respectively.
First row is histogram of initial filter norms and second is historgram of regularized filter norms.
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