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Abstract

Simultaneous Speech Translation (SimulST)
systems stream in audio while simultaneously
emitting translated text or speech. Such sys-
tems face the significant challenge of balancing
translation quality and latency. We introduce
a strategy to optimize this tradeoff: wait for
more input only if you gain information by
doing so. Based on this strategy, we present
Regularized Entropy INformation Adaptation
(REINA), a novel loss to train an adaptive pol-
icy using an existing non-streaming transla-
tion model. We derive REINA from informa-
tion theory principles and show that REINA
helps push the reported Pareto frontier of the
latency/quality tradeoff over prior works. Uti-
lizing REINA, we train a SimulST model on
French, Spanish and German, both from and
into English. Training on only open source or
synthetically generated data, we achieve state-
of-the-art (SOTA) streaming results for mod-
els of comparable size. We also introduce a
metric for streaming efficiency, quantitatively
showing REINA improves the latency/quality
trade-off by as much as 21% compared to prior
approaches, normalized against non-streaming
baseline BLEU scores.

1 Introduction

Simultaneous Speech Translation (SimulST) in-
volves real-time translation of speech in one lan-
guage into text in another. This extends the simpler
speech-to-text-translation (S2TT) task, which in-
volves translation with the full context of an entire
speech clip. While S2TT allows for offline applica-
tions, conversational environments such as voice or
video chat necessitate SimulST models to facilitate
real-time communication across language barriers.

Recently, End-to-end (E2E) S2TT models have
largely superseded traditional cascaded approaches,
which link separate Automatic Speech Recogni-
tion (ASR) and Machine Translation (MT) systems.
E2E models mitigate error propagation and reduce

latency by directly mapping source speech to target
text (Communication et al., 2023; Peng et al., 2024;
Radford et al., 2023; Puvvada et al., 2024).

Rather than training SimulST models from
scratch, most works take advantage of advances in
S2TT research by adapting a non-streaming S2TT
model into a SimulST model (Communication
et al., 2023; Chen et al., 2024; Zhang et al., 2024;
Papi et al., 2024). To transition from non-streaming
S2TT to SimulST introduces the challenge of bal-
ancing translation quality and latency. This re-
quires a policy to decide whether to wait for more
input (READ) or generate output (WRITE) (Gu
et al., 2017). This problem is particularly diffi-
cult in the translation setting because different lan-
guages can have different word orderings, requir-
ing differing amounts of context before a suitable
translation can occur. Many approaches have been
formulated to determine this READ/WRITE policy,
from baking the policy into the model architecture
itself via monotonic attention mechanisms (Ari-
vazhagan et al., 2019; Ma et al., 2020c; Commu-
nication et al., 2023), or having a separate module
to dictate the policy (Chen et al., 2024). How-
ever, these existing approaches suffer from issues
including poor translation quality compared to non-
streaming models and expensive, numerically un-
stable training (Communication et al., 2023; Chen
et al., 2024).

In this paper, we address the problem of effi-
ciently training high quality SimulST models. The
major contributions of this paper can be summa-
rized as follows:

New Policy Training Technique. We pro-
pose Regularized Entropy INformation Adaptation
(REINA), a new technique for policy training that
can efficiently convert non-streaming Speech-to-
Text Translation (S2TT) models into simultanecous
S2TT (SimulST) models. REINA is guided by
an approximation of mutual information derived
from the S2TT model’s log probabilities on partial



versus full audio and is shown to produce higher
quality policies than existing methods.

Trained with open-source data. We train an
E2E S2TT model with REINA on 130k hours of
open-source data. Based on empirical studies, this
model achieves SOTA streaming translation perfor-
mance.

Streaming efficiency evaluation metric. We
propose a new evaluation metric to better com-
pare SimulST models. This metric normalizes
the streaming translation quality against the per-
formance of the underlying non-streaming model,
allowing for a fairer assessment of the capabilities
of the streaming policy itself.

2 Related Work

While learning adaptive policies for SimulST is a
fairly new research area, it builds on a rich body
of non-streaming S2TT work. In this section, we
outline the S2TT foundation for SimulST and then
move into a discussion of SimulST policies.

Training Speech to Text Translation Models
The literature around S2TT contains many large-
scale, powerful models including Whisper (Rad-
ford et al., 2023), SeamlessM4T (Communication
et al., 2023), Canary (Puvvada et al., 2024), and
the Open Whisper-style Speech Model (OWSM)
(Peng et al., 2024). These models vary in architec-
ture (e.g., Whisper’s Transformer, OWSMv3.1’s
E-Branchformer) and training data scale, rang-
ing from Canary’s 86k hours (leveraging pseudo-
labels) and OWSM’s 180k hours of public data
to Whisper’s 680k hours of web data and Seam-
lessM4T’s 600k hours of synthetically aligned
data.

Due to the relative scarcity of parallel ST data
compared to ASR or MT corpora, multi-task learn-
ing (MTL) is widely adopted (Ye et al., 2022; Chen
et al., 2024; Communication et al., 2023). Aux-
iliary tasks like ASR and neural machine transla-
tion (NMT) are jointly trained with S2TT to im-
prove representations and leverage abundant text
or speech data. Furthermore, contrastive learning
techniques, such as in ConST (Ye et al., 2022),
are used to explicitly bridge the modality gap be-
tween speech and text representations by encourag-
ing similarity between corresponding speech seg-
ments and their transcriptions. There is a notable
gap in the literature between industry work leverag-
ing massive proprietary datasets and less resourced
research making heavy use of MTL to get the most

out of smaller data scales. As OWSM (Peng et al.,
2024) bridges this gap for the non-streaming set-
ting, we aim to do the same for SimulST. We are
one of the first SimulST works to leverage large-
scale open source data that we train on with an
MTL framework including MT and ASR tasks.

Streaming Policy Learning Transitioning S2TT
models to SimulST introduces the challenge of
learning a READ/WRITE policy that balances
translation quality and latency. Fixed policies like
wait-k are simple to implement but are usually sub-
optimal due to the mismatch between the sampling
rate of the input audio frames and the frequency of
outputted words (Ma et al., 2020b).

On the other hand, adaptive policies dynamically
adjust decisions based on context. Prior works
have integrated the policy within the model archi-
tecture, such as Transducer models (Graves, 2012;
Xue et al., 2022), which inherently support stream-
ing via monotonic alignment, or models using
monotonic attention mechanisms like MMA (Ari-
vazhagan et al., 2019) or EMMA (Communication
et al., 2023). Monotonic alignment methods afford
greater expressivity, but they tend to be excessively
expensive to compute at train time and suffer from
both poor numerical stability and difficulty in con-
verging. For more details on the difficulties of train-
ing monotonic attention methods see appendix D.

Other SimulST works avoid complex, explicit
policies, instead generating aligned data with
which to directly train SimulST models (Labiausse
et al., 2025; Fu et al., 2025; Deng et al., 2025).
These works often use existing models such as
NMT models (Labiausse et al., 2025) or LLM’s (Fu
et al., 2025; Deng et al., 2025) as teachers to create
synthetically aligned data for streaming training.
Such models can afford simpler architectures with-
out policy networks. That said, SimulST models
deriving their policies from generated data are of-
ten limited in their streaming performance based
on the quality of the teacher model.

Explicit policy training Other adaptive strate-
gies decouple the policy from the translation
model (Chen et al., 2024; Gu et al., 2017; Zhang
et al., 2024). Some leverage signals from pre-
trained offline models, such as using reinforce-
ment learning (RL) to directly optimize the quality-
latency trade-off (Gu et al., 2017). Although these
methods simplify the learning problem by decou-
pling the policy from the translation model, they
require explicit supervision from a suitable met-
ric and are often suboptimal. RL is hard to stabi-



lize and efficiently train, especially in cases like
SimulST, with further modifications required for
stabilizing the policy head training and no guaran-
tee of convergence (Gu et al., 2017).

Closely related to our work is the divergence-
guided approach of DiG-SST (Chen et al., 2024).
DiG-SST trains a lightweight policy module using
the expected divergence between output distribu-
tions conditioned on partial versus complete input,
estimated from a non-streaming S2TT model. This
approach is efficient to train and directly optimizes
for the SimulST task. Nevertheless, DiG-SST’s for-
mulation fails to make use of valuable information
from ground truth labels when computing diver-
gence scores. In REINA, we propose an improved
formulation of a similar concept, yielding better
streaming results.

3 Model

In this section, we introduce REINAStream, a low
latency SimulST model trained on large-scale, open
source data. We present our architecture and loss
functions visually in figure 1.

3.1 Policy Learning

To learn an effective READ/WRITE policy, we
introduce a new loss function: Regularized En-
tropy INformation Adaptation (REINA). REINA
enables us to adapt a non-streaming speech transla-
tion model into a streaming, SimulST model with
minimal extra training.

First, we outline the problem more formally.
Suppose that we are translating an input audio
stream a into a target language with a streaming
chunk size of 7 frames. Given a partial audio
recording a, at frame ¢ and previously emitted to-
kens s1, s, ..., s,, we need to decide whether to
produce token s,,4+1 (WRITE) or wait for another
audio chunk (READ). If we READ, we consume
another frame of audio, giving us a;y1, whereas
if we WRITE, we gain a token, yielding the same
audio a; but tokens si, ..., Sy, Sp+1. Our policy
must learn to make READ/WRITE decisions that
maximize translation quality while minimizing the
latency with which we emit each token. This re-
cursive setup appears to lend itself to a dynamic
programming type of optimization, as in Seamless
(Communication et al., 2023) or the Transducer
architecture (Graves, 2012). However, in prac-
tice, optimizing over all possible READ/WRITE
sequences results in expensive, numerically unsta-

ble training.

Instead, we start from a core idea: we should
wait for more audio (i.e. READ) if and only if
we gain information by doing so. We formalize
this notion using mutual information theory. Given
audio a of length T" and ground truth translation
token sequence S = (s1,...,sn), after writing
n < N tokens and listening to t < T timesteps of
audio, we can express the information gained about
the next token s, 11 by waiting for the rest of the
input audio as

Fla,S,n,t) == I(spt1;ar,Sn) — I(Spt1;at, Sp)
(1)

where I is the symbol for mutual information.
We can then construct an ideal READ/WRITE pol-
icy 7, on top of this quantity: 7, (a, S, n, t) returns
READ when F(a, S,n,t) > « and WRITE other-
wise. We can then adjust « to control the latency
quality tradeoff. This policy READs exactly when
the information gained exceeds a given threshold.
We can rewrite F(a, S,n,t) using mutual infor-
mation equations (Barber and Agakov, 2004) as
follows

Fla,S,n,t) == I(spy1;a7,Sn) — L(Sp+1; at, Sp)
= H(sn+1) — H(sn+1lar, Sp)
— [H(sp+1) — H(sn+1]az, Sn)]
= H(sn+1lat, Sn) — H(Snt1lar, Sn)

= E [log p(sn+1lar, Sn) — log p(sn+1lat, Sn)]
2

Although we might not have access to
logp(SnJrl’aT, Sn) or logp(5n+1‘at, Sn)9 we are
able to estimate these via random sampling of
the log-probabilities of the base S2TT model as
log p(sn+1lar, Sn) and log p(s,+1|as, Sp), which
are the log-probabilities of the next label token
computed when passing the full audio and partial
audio through the model respectively. Note that
these are also the negatives of the cross-entropy
losses obtained when running the model on the full
and partial audio.

We now have an estimate ﬁ(a, S,n,t). How-
ever, this estimate cannot be computed during in-
ference time as it requires access to the full target
text, so we instead formulate a heuristic to estimate
the information gain. We train a model parameter-
ized by 6 to estimate a heuristic gg = ¢(a, S, n, t|0)
that yields policy 7, which returns READ if and
only if g9 > . We train gy to strongly correlate
with F(a, S,n,t) by maximizing the covariance
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Figure 1: Non-streaming and streaming training procedures for REINAStream. For non-streaming training we

use a trainable MT encoder to train on parallel NMT data.

During streaming training we a) pass a full audio and

truncated audio through the model, b) compute the cross-entropy (CE) loss of each, c¢) predict a policy using the
policy network on top of the partial-audio output of the decoder, and finally d) calculate the REINA loss using the

CE terms and policy predictions.

between ¢y and the estimate F (a,S,n,t). This
gives us the following optimization problem:

max (COV(qa, F(a,S,n, t)))
— mGaX(E [qa ~.7:"(a, S, n, t)] —

E[g)] - E [ﬁ(m S.n, t)]) 3)

We can simplify this expression by normalizing
the information gain estimate F (a, S,n,t) to have
zero mean, making [E [gy] - E []:"(a, S, n, t)] evalu-
ate to 0. We achieve this at train time by normaliz-
ing over each batch, resulting in the final optimiza-
tion problem:

max [E {qg . BN(]:"(CL, S,n, t))”
= min|qs - BN[log "' — logpr™'] | (4)

where BN is the batchnorm operator, and we apply
a shorthand log pr®*+* = log p(sp+1lar, Syn) and
log py°"*+! = log p(Sn+1]at, Sy) for brevity.

The loss that optimizes the above optimization

problem is
N-1
> g5 - BN[log p*+' —log pip™+)]

n=0
(5)

1

ﬁp:N

where g5 = qg(a,S,n,t|f). This loss maxi-
mizes the covariance between our estimate of in-
formation gain F and our heuristic estimator net-
work gg. This is the "Policy Loss" in figure 1.
Since log p¢(sp+1) and log pr(sp+1) are the neg-
ative cross-entropy losses from the decoder given
partial and full audio respectively, in the diagram
we write £, as a difference of cross-entropy loss
terms.

To ensure stable training and a reasonable
learned policy, we add monotonicity and L9 regu-
larization terms, both of which are outlined below.
First, we note that at inference time, after predict-
ing a READ, we predict no further tokens. There-
fore, any WRITE:s after a READ are semantically
meaningless.

To better align train and inference, we add a
weak monotonicity constraint on gy to encourage
the probability of READ to increase uniformly
across each token sequence S

1 N
& O max (max{a") — gf — .0)]
©6)

The loss function £,, serves as a regulariza-
tion term to shape the learned heuristic gy used
in the policy 74 (a, S,n,t). It encourages the se-
quence of gy values for target text tokens, ordered
by index n, to be approximately non-decreasing

Ly, =



(gy > max,;,<n{qy'} — €), an inductive bias dis-
tinct from merely estimating information gain. This
imposed monotonicity biases the policy towards a
“commitment” behavior, encouraging it to commit
to stop predicting new tokens and READ new audio
instead once the threshold is crossed for an earlier
token.

Finally, we add a simple Lo regularization
penalty: £, = % Y01, (). We find this is
required to prevent gy values from exploding to
infinity during training. Putting all the terms to-
gether, we get the full REINA loss: Lrgina =
Ly, + Ly, + AL,. In our work, we set A = 0.05,
but find that final model performance is not very
sensitive to changes in A\. We will cover how we
train with Lrgmna in section 3.4.

3.2 Non-Streaming Architecture

Next, we describe the architecture of our base non-
streaming S2TT model, which is also outlined in
figure 1. We employ a straightforward architecture
comprising an acoustic encoder and a text decoder.
At train-time, we also use an extra text encoder to
facilitate a MT training task.

For the acoustic encoder, we adopt Whisper
Medium (Radford et al., 2023) and do not freeze its
weights during training. The randomly initialized
transformer decoder performs cross-attention over
the acoustic encoder’s final layer hidden states and
predicts text tokens. We adopt the generic mul-
tilingual tokenizer from Mistral 7B (Jiang et al.,
2023) but learn our own embedding dictionary. We
augment the vocabulary with language ids such
as <en> or <fr> so we can direct the decoder to
predict tokens of a specific target language by pre-
fixing the token sequence with the language id.
We apply a learned positional encoding similar to
Time2Vec (Kazemi et al., 2019) on the acoustic
encoder outputs to give the decoder a notion of
sequence ordering. The decoder is trained with a
cross-entropy loss.

At train-time, to support MT loss calculation,
we add a randomly initialized, trainable TS5 text
encoder (Raffel et al., 2020). We pass source-
language text through and then have the decoder
cross-attend to the TS5 last layer hidden states while
predicting target language text. This is facilitates a
machine translation task designed to improve the
quality of the decoder by making use of paired MT
data.

Whisper Medium contains 307M parameters, the
text decoder has 101M, and the MT encoder has

38M for a total of 445M trainable parameters at
train time and 408M at inference-time. While
this is a larger parameter count than academic
works like Dig-SST (Chen et al., 2024), Stream-
Speech (Zhang et al., 2024), or Stream-Att (Papi
et al., 2024), it is still much smaller than most
industry systems like SeamlessM4T (Communica-
tion et al., 2023) or Hibiki (Labiausse et al., 2025).
While higher parameter counts demonstrably in-
crease translation quality, they also make it diffi-
cult to train and deploy models to large numbers
of users in the wild. We target the middle ground
between small and large systems in literature, yield-
ing a model with both the translation quality and
computational efficiency to be usable in real-world
chat settings.

3.3 Streaming Architecture

We augment the non-streaming model with a policy
network that makes binary READ/WRITE deci-
sions for each output token. This is the architecture
component that REINA serves to train. The policy
network is a small transformer encoder applied to
the last layer hidden states from the decoder. We
apply a single linear layer on top of the transformer
with output dimension 1 and sigmoid activation in
order to make the binary READ/WRITE decisions.
We apply a causal attention mask on the policy
network at both train and inference time. The pol-
icy network contains only 6M trainable parameters,
bringing the total parameter count for the streaming
model at train and inference time to 414M.

3.4 Training

We train REINAStream in 3 stages: 1) Learn non-
streaming S2TT 2) Adapt to truncated audios 3)
Learn a streaming policy.

In the first stage, we train on several tasks at
once in order to effectively leverage available data
to train the speech translation model. All data sam-
ples contain some subset of the following informa-
tion: source language 7, source language audio a;,
source language transcription 77, target language
I, and target language transcription 7. Using this
data, we have three training tasks.

ASR For samples with (a;,[7,T}), we pass a;
through the acoustic encoder, then decode to tokens
in source language [7. We compute cross-entropy
loss using label transcript 7;° yielding loss L.

NMT For samples with (TF,1L, T!), we pass
the source transcript through the T5 text encoder
and then decode into target language !. We com-



pute the cross-entropy loss using label transcript
T! yielding loss Lyt

S2TT For samples with (a;, I, T}), we pass a;
through the acoustic encoder, then decode into tar-
get language /. We compute cross-entropy loss
using label transcript 77 yielding loss Lozt

For the first stage training, we mix data support-
ing all tasks into every batch and minimize a sum
of all the losses: £ = Lysr + Lyt + Ls2t.

Before training the policy network on top of the
base model, we add a second step to ensure qual-
ity estimation of log p(s,,+1|Sn, a;) with partial
audios a;. In this phase, we fine-tune the speech
translation model on randomly truncated audios
using the same loss function L.

Lastly, we train the policy network by minimiz-
ing Lreina and freezing all other parameters. We
only train on S2TT data samples as our goal is to
learn a policy best for streaming speech translation
rather than streaming ASR or MT.

3.5 Data

We seek to bridge the gap between models trained
on large-scale, proprietary datasets and those
trained on small-scale open-source data. We lever-
age a variety of publicly available data sources plus
synthetic data generation to produce a large-scale
training set.

In this iteration, we focus only on en—de, fr, es
and de, fr, es—en language directions because of
their data availability. In future work, we plan
to expand to lower resourced languages. For
audio datasets, we draw from Multilingual Lib-
rispeech (MLS) (Pratap et al., 2020), Mosel (Gaido
et al., 2024), CVSS-C (Jia et al., 2022), MUST-C
(Di Gangi et al., 2019). We list details on these
datasets in table 1. We further augment the MLS
dataset by translating its transcripts using an in-
house NMT model to produce S2TT data to train
on. We also augment our dataset with text-to-text
MT training data from CCMatrix (Schwenk et al.,
2021). We use 10M samples per language pair
from CCMatrix for a total of 60M samples.

3.6 Inference Policy

Once our model is trained, we employ a streaming
beam search to perform inference. We split input
audios into 0.25s chunks and inference the model
on all audio up to the current chunk in sequence.
We first pick a policy threshold « to control the
quality-latency tradeoff while streaming. Each iter-
ation of the search, we run the policy network on

all beams and kill those with predictions less than
«. If the total number of waited beams exceeds the
beam size times a patience factor, or all beams are
waited at once, we end the search. After ending the
search, we return the killed beam with the highest
average log probability.

Once we have reached the end of the input audio,
we stop using the policy network and beam search
until we hit the EOS token, using the same patience
factor logic to decide when to end the search.

4 Experiments

In this section, we detail how we ran our experi-
ments and present our results compared with exist-
ing work.

4.1 Experimental Setup

To train REINAStream, we follow the procedure
outlined in section 3.4, starting by training our non-
streaming S2TT model on a mixture of all training
datasets. We train on 24 A100-80G GPUs for 5
days using an AdamW optimizer (Loshchilov and
Hutter, 2019) with hyperparameters given in ap-
pendix C. We use the exact same setup to train the
second truncated stage, but only train for 2 days.
Lastly, we perform the REINA training stage with
nearly the same setup, except this time using an
inverse square root learning rate scheduler with 5k
warmup steps. This final training runs 20 epochs
in under 12 hours.

We also re-implement DiG-SST’s divergence-
based loss from (Chen et al., 2024) based on the
description in the paper and train the policy net-
work with that loss using the same configuration as
we train REINA.

We evaluate on language pairs {fr, de, es} —
en on CVSS-C, and on language pairs en — {f,
de, es} on MUST-C. We use a beam size of 3 with
no length penalty, a streaming chunk size of 0.25s,
and a patience factor of 3. We sweep across sev-
eral thresholds for the policy network in order to
measure our model’s tradeoff between latency and
accuracy. Choosing the right thresholds to obtain
an informative sweep is done purely through trial
and error (more details in appendix C).

We compare to existing works on each dataset
that we believe to be at or near to state of the art
at the time of writing. On MUST-C, we compare
to Dig-SST (Chen et al., 2024), the work in liter-
ature closest to ours, and another strong SimulST
competitor called DiSeg (Zhang and Feng, 2023).



Source Language: en

Source Language: de

Source Language: es Source Language: fr

Split  Dataset
Target: de  Target: es  Target: fr  Target: en  Target: en  Target: de  Target: en  Target: es Target: en  Target: fr
MLS 13,789 13,785 13,787 41360 1,637 1,637 713 713 984 984
Train Must-C 386 476 468 1330 - - - - - -
CVSS-C - - - - 184 184 113 113 264 264
MOSEL 19,245 22,804 19,373 22,835
Dev Must-C 2.47 2.49 2.49 - - - - -
<V cvss-c - - - 21 - 2 - 2
Test Must-C 4 4 4 - - - - -
CVSS-C - - - 22 - 23 - 23

Table 1: Consolidated Dataset Hours (Source Audio) by Split and Dataset, Grouped by Source and Target Language.

On CVSS-C, we compare to StreamSpeech (Zhang
et al., 2024), a recent work showing strong simul-
taneous S2ST performance on CVSS with a small
model. As StreamSpeech only reports ASR-BLEU
whereas we report text BLEU, we are unable to
make a fair comparison. That said, StreamSpeech
is a stronger system than most in the literature on
CVSS-C, so we believe the results are still worth
showing. In appendix E, we also show some results
on the FLEURS (Conneau et al., 2023) dataset with
significant caveats. For all comparisons, we use
self-reported results from the original papers.

We also perform several ablations on the REINA
training stage of REINAStream to demonstrate the
utility of the different parts of the REINA loss and
make fairer comparisons. We train four model
variants:

REINA Our standard training procedure includ-
ing all S2TT training datasets with the standard
REINA loss function.

REINA w/o monotonicity Just like REINA but
without the monotonicity term in the loss. Trained
on all S2TT datasets.

REINA (MUST-C only) We train the policy net-
work with the full REINA loss on only the MUST-C
dataset for a fairer comparison to Dig-SST.

Dig-SST (Our impl. MUST-C only) We train
our own implementation of the Dig-SST loss on
top of the non-streaming REINAStream model on
only the MUST-C dataset.

4.2 Evaluation Metrics

We measure translation accuracy using BLEU as
implemented in the SacreBLEU package (Post,
2018) and Average Lag (AL), which we imple-
ment ourselves based on the original paper (Ma
et al., 2020a). Most existing works plot AL vs
BLEU curves by interpolating between several (AL,
BLEU) points generated by evaluating their model
with different streaming settings (Chen et al., 2024)
(Papi et al., 2024) (Zhang et al., 2024). We include
such graphs for all of our evaluations in appendix B.

We contend that this evaluation does not adequately
disentangle a model’s non-streaming translation
quality from its streaming ability. We observe that
many comparisons in the literature pitch models
with superior non-streaming BLEU as being bet-
ter at streaming due to having a higher BLEU vs
AL curve, when in reality the difference may be
accounted for entirely by the non-streaming BLEU
difference. Such comparisons do little to show the
quality of the actual READ/WRITE policy.

We wish to show that REINA adapts S2TT mod-
els of any non-streaming performance to SimulST
models with minimal degradation in translation
quality. To this end, we introduce a new metric,
Normalized Streaming Efficiency (NoSE), to mea-
sure streaming performance across the entire qual-
ity/latency spectrum normalized by non-streaming
translation quality. As shown in the diagram in ap-
pendix A, we measure the area under the AL/BLEU
curve, bounded on the left and right by z < y
respectively, divided by the area under the non-
streaming BLEU line. It is important to note that
while we require the z and y bounds to ensure the
metric is well-defined, NoSE is heavily dependent
on them. For our analysis, we simply pick the
smallest x and largest y for which our work and
the works we compare to all have reported values,
yielding the widest possible range for which all
models have a defined AL/BLEU curve. We rec-
ommend that future works using NoSE do report
the bounds used in their calculations.

4.3 Results

We present our NoSe scores in table 2 and selected
operating points in table 3 for MUST-C and CVSS
results respectively, with full AL-BLEU tradeoff
curves in appendix B.

Unfortunately, CVSS-C is not commonly evalu-
ated against in SimulST literature, so we are unable
to compare to many other works. However, with
an average utterance length of 4.9 seconds, CVSS
is the only dataset out of the three comprising pri-



marily shorter audios, which are quite common in
conversational SimulST use-cases. This makes it
an important benchmark for SimulST systems.

MUST-C
Model en—de en—fr en—es
Bounds [z, y] [1.193,2.629] [1.11,2.887] [1.144,2.611]
Dig-SST (Original) 0.923 0.945 0.927
DiSeg 0.881 - 0.880
Dig-SST (Our impl. MUST-C only) 0.737 0.846 0.740
REINA (MUST-C only) 0.957 0.972 0.980
REINA 0.945 0.966 0.976
CVSS

Model de—en fr—en es—en
Bounds [z, y] [1.955, 5.039] [1.637, 5.169] [1.806, 5.587]
StreamSpeech™ 0.842 0.886 0.837
REINA w/o monotonicity 0.976 0.980 0.982
REINA 0.974 0.983 0.981

Table 2: NoSE (1) values for the MUST-C and CVSS-C
datasets. Bounds [z, y] for NoSE are specified per lan-
guage pair. Best values per language pair are bolded.
Results for other works are taken from their correspond-
ing papers. *Note StreamSpeech only reports ASR-
BLEU, so values for StreamSpeech represent ASR-
BLEU scores rather than BLEU.

4.3.1 Quantitative results

On both MUST-C and CVSS-C, we observe
REINA outperforms all competing methods on all
language splits at low latencies. Significantly, this
holds for the "MUST-C only" model with policy
network trained only on MUST-C, as well as the
REINA model trained on all datasets, demonstrat-
ing our streaming performance gains are not merely
attributable to increased data scale when training
the policy, but come from the improved objective.
The only exception to this, as seen in table 3, is
German, where DigSST is slightly better at higher
latencies than REINA. Still, this shows REINA
excels at lower latency streaming, even when its
non-streaming BLEU is lower than competitors.

The MUST-C-only REINA model yields NoSE
scores 3.0% higher than Dig-SST and 8.9%
higher than DiSeg, highlighting the advantages of
REINA’s mutual information formulation. Our im-
plementation of DiG-SST performs far below every
other model in evals, suggesting there may be de-
tails to the authors’ implementation that we failed
to recreate.

4.3.2 Ablations on Monotonicity Loss

In figure 2, we observe that the REINA model out-
performs the REINA w/o monotonicity model ex-
clusively at low latencies, indicating that mono-
tonicity is useful on the most aggressive streaming
settings. For example, at about 35 BLEU, AL de-

REINA (mustc only) DIGSST (reported)
Lang. AL BLEU 1 AL| BLEU?T
De 1.01 21.44 1.08 21.13
1.59 23.71 1.45 23.25
2.24 24.32 1.83 24.29
Es 0.86 26.92 0.90 23.92
1.16 29.68 1.27 26.74
1.51 30.38 1.66 27.90
Fr 0.77 33.13 1.11 30.51
1.24 36.29 1.26 32.61
1.88 37.73 2.00 35.65

Table 3: Comparison of REINA (mustc only) with
DIGSST (reported) on En—{De, Es, Fr} speech trans-
lation. Selected operating points are reported.

—e— reina (Streaming)

--- reina (Non-streaming)

—— reina w/o monotonicity (Streaming)
275 —m— streamspeech (Streaming)

-- streamspeech (Non-streaming)

BLEU Score

2 5 6

3 4
Average Lagging (AL, s)

Figure 2: AL/BLEU curve on es-en split of the CVSS-C
dataset.

creases from 1.95 to 1.57, a 19% improvement. We
hypothesize this is because monotonicity forces the
policy to decide on a clear boundary of when to
READ when the information gain waffles between
timesteps. Ultimately, we find the monotonicity
loss improves low-latency streaming with a negli-
gible impact to overall streaming efficiency.

5 Conclusion and Future Work

In this paper, we present a new method for SimulST.
We introduce the REINA loss function that en-
ables cheaply converting non-streaming speech
translation models into streaming ones. We con-
duct extensive experiments over several datasets,
showing REINA outperforms the state of the art
in SimulST conversion. We also propose a new
metric, NoSE, to improve the state of evaluation
of SimulST systems. Ultimately, we train a large-
scale system entirely on open source or syntheti-
cally generated data, encouraging further research
into scaling SimulST.

The next step to enable real-time crosslingual
interaction is to extend REINAStream into a simul-
taneous speech to speech translation (SimulS2ST)
model. This is achievable by using a high quality,
low latency, streaming text-to-speech model as a
synthesizer. We are presently working on extend-
ing REINAStream to the SimulS2ST use-case.



6 Limitations

6.1 Evaluation Datasets

Evaluations in literature are split between several
datasets, namely MUST-C and CVSS-C. These
datasets alone already present a variety of is-
sues—for example, MUST-C is no longer publicly
available for download and many of its audios do
not contain any speech at all. Furthermore, none
of these datasets contain large-scale training data,
resulting in a variety of data augmentation and train-
ing strategies across the literature, making it diffi-
cult to fairly compare models trained on the same
data. We train on a custom mix of synthetic and
human-labeled data that is not directly comparable
to any one prior piece of research. We evaluate on
all three of the aforementioned datasets, but have
no guarantees that our data cleaning or inference
procedures are identical to existing work.

6.2 Implementation of Evaluation

On the implementation side, we also likely do
not achieve implementation-parity with existing
work. Most SimulST research is built on top of
the fairseq package, obfuscating implementation
details. Fairseq performs a number of optimiza-
tions under the hood that are not fully described in
literature but affect model quality and evaluation
results. Examples include checkpoint averaging
on the training side and cleaning audios that are
too short or long on the evaluation side. To im-
prove reproducibility, control over our architecture,
and eventual ease-of-serving, we take the route
of implementing REINAStream, our entire evalua-
tion suite, and our data preprocessing from scratch.
This means there are likely implementation details
that differ between our evaluation and works built
on top of fairseq. In the future, where possible,
we should aim to run open source existing works
through our evaluation pipeline.

6.3 Translation Quality Metrics

We only use BLEU to report translation quality,
which is widely known to not correlate well with
human perception of translation quality. While
BLEU allows us to compare to existing work, we
plan to move toward more robust neural metrics
such as COMET or LLM-based metrics.

6.4 Synthetic vs Human Labeled Data

Our training data for ASR, MT, and S2TT tasks
is largely synthetically generated by existing ASR

and NMT models. This bounds REINAStream’s
performance based on the quality of the models
used to aid in the generation of our datasets. Seam-
less tackles this data scarcity issue by using their
SONAR alignment model to mine pairs from real-
world data. We may try out the same technique in
future work. Another mitigation strategy could be
to make heavier use of human-labeled NMT and
ASR data that is available online. We may also be
able to use of RLHF methods becoming popular in
the NMT world to improve our translation quality
with less human-labeled data.

6.5 Low Resource Languages

We train and evaluate only on four languages all
with relatively similar grammatical structure and
substantial open source data to train on. It is widely
known that low training data resources heavily af-
fect translation quality. Similarly, translating be-
tween different language families is much harder
than translating between related languages. This is
especially true in the SimulST case where different
word orders make the READ/WRITE policy’s task
more difficult and necessitate higher latency for
the same translation quality. For instance, Japanese
has a subject-object-verb structure whereas English
uses subject-verb-object. When translating simul-
taneously from Japanese to English, a good policy
likely will have to learn to wait until late in the
Japanese utterance to determine the verb and use it
in the English translation. In future work, we will
extend our training and evaluation to multiple lan-
guage families and include low resource language
pairs.

6.6 REINA Mutual Information
Approximation

In the REINA loss, we only approximate
log p(8pn+1|Sn, at) —log p(sn+1|Sn, ar) using our
translation model. However, there is an easy
way we could compute the true value rather than
merely approximating. If we generated syn-
thetic labels Sy by sampling from our trans-
lation model and then trained the policy us-
ing the REINA loss on these synthetic la-
bels, 10g p(sn+11Sn, ar) — log p(sns1]Su, ar) =
log p(Spn+1|Sn,at) — logp(sp+1|Sn,ar) would
hold. We did not have enough time to experiment
with this idea before submitting and plan on pursu-
ing it in future work.



6.7 Setting Policy Threshold

We find that determining the appropriate threshold
« for our policy 7, at inference time is rather diffi-
cult. Depending on the training data and evaluation
dataset, the range of thresholds that produce reason-
able AL/BLEU tradeoff varies. This forces us to
try out many different thresholds at inference time,
which wastes time and compute. In the future, we
plan on investigating ways of cheaply automatically
finding usable policy thresholds.

6.8 FLEURS Evaluation

Along with MUST-C and CVSS, FLEURS is an
S2TT dataset evaluated on by SimulST works, most
notably Seamless. We originally sought to include
FLEURS in our evaluation suite, but ran into sev-
eral challenges.

First, as FLEURS contains multiple speakers
speaking each utterance, we were unsure to what
level we should dedupe in order to compare to
other work, and could not find reliable documen-
tation specifying this. Second, we found that es-
pecially when translating en — X, we had poor
non-streaming BLEU scores, suggesting some do-
main mismatch between our other datasets and
FLEURS. Third, we found Seamless difficult to
compare against because a) they modify the test
dataset using VAD, b) they report a very small
range of AL scores to compute NoSE over, ¢) Due
to scarce documentation, we were unable to re-
produce Seamless’ results locally. Due to these
difficulties, we leave our caveat-ridden FLEURS
evaluation in appendix E.
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A NOoSE Score

To clarify our definition of the NoSE score, we
provide a diagram in figure 3.
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Figure 3: We define NoSE as the area of the orange
shaded region divided by the area of the blue rectangle.

B Latency vs BLEU Evaluations

When evaluating our models on each dataset, we
sweep across several policy thresholds. We find
that the unique features of each dataset necessitate
different thresholds to get the best results. In table
4 we show the list of thresholds we used for infer-
encing each model on each dataset. Unfortunately,
the only we have to determine these thresholds is
trial and error. We had to perform several offline
inference sweeps across thresholds before finding
a sweep that a) allowed us to compare to other
works b) contained points in the AL/BLEU curve
that were representative of how our model might
be likely to be used in production.

We show AL vs BLEU graphs for all evaluations
that appear in the paper in figures 4 and 5.

C Hyperparameters

We report model and dataset hyperparameters in
table 5.

D EMMA Discussion

In our paper, we touch on the complexities of im-
plementing streaming via monotonic attention as
in the EMMA method used in (Communication
et al., 2023). In this section, we wish to provide
some more background on the computational and
numerical challenges that arise from training with
EMMA.

In our research, we implemented EMMA from
scratch on top of a non-streaming REINAStream
model. The train-time computations for EMMA
requires computing a matrix of size [batch_size
x attention_heads x num_text_tokens X au-
dio_sequence_length x audio_sequence_length]
within each cross-attention layer of the decoder.
Seeing as the audio sequence length coming out
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Figure 4: Average Lagging (AL) vs. BLEU score on
CVSS-C. Dotted lines represent non-streaming BLEU
scores. Note that StreamSpeech only reports ASR-
BLEU in their paper, so we report StreamSpeech’s ASR-
BLEU rather than BLEU.



Table 4: Thresholds swept for generating AL vs. BLEU points for different models and datasets.

Dataset Model Name Thresholds Swept
Dig-SST (Original) Self-reported results
DiSeg Self-reported results
MUST-C Dig-SST (Our impl. MUST-C only) [.475, .5, .51, .52, .53, .54]
REINA (MUST-C only) [.935, .94, .9425, .945, 9475, .95]
REINA [.97, .975, .976, .977, .978, .979]
REINA [.97,.975, .976, .9717, 978, 979, .98, .983, .985, .987]
CVSS REINA w/o monotonicity [.976, .977, .978, .979, .98, .983, .985, .987]
StreamSpeech Self-reported results
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Figure 5: Average Lagging (AL) vs. BLEU score on
MUST-C. Dotted lines represent non-streaming BLEU
scores.
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Table 5: Hyperparameters and Dataset Mixing Ratios
used for training the S2TT model and the REINA policy
network.

Parameter / Setting Value
Text Decoder Configuration

Dimension 512
Attention Heads 8
Number of Layers 16
Feedforward Multiplier 4
Label Smoothing 0.1
Dropout 0.1
Policy Network Configuration (REINA)
Monotonicity Epsilon (¢)* 0.5
L2 Regularization Weight () 0.05
Number of Layers 2
Attention Heads 4
Feedforward Multiplier 4
Dimension 512

Training Configuration

Learning Rate 0.0001 (fixed)

Weight Decay 0.0001
Gradient Clipping 10.0
Batch Size per Device 16
Gradient Accumulation Steps 2
Effective Batch Size 768

Dataset Mixing: Base S2TT Model Training (Stage 1 & 2)

Dataset Name Mixing Ratio

MUST-C (train split)
CVSS (train split)
MLS (en — X)**
MLS (X — en)**
CCMatrix

Mosel

AR~~~

Dataset Mixing: REINA Policy Training (Stage 3)

Dataset Name Mixing Ratio
MUST-C (train split) 2
CVSS (train split) 2
MLS (en — X)** 6
MLS (X — en)** 6

* Corresponds to € in the monotonicity loss (Equation 3).
** Derived from Multilingual Librispeech (MLS) dataset
(see Section 3.5).



of the whisper encoder is 1500, we use 8 atten-
tion heads, and a short token sequence may contain
around 25 tokens, using fp32 precision, we require
2GB of VRAM for a single cross-attention layer
at batch size 1. Ultimately, we were only able to
train EMMA with batch size 1 and truncating the
encoder output sequence length to 500, despite us-
ing A100-80G GPUs. This made for very slow,
expensive training.

Furthermore, the EMMA estimation requires
computing a cumulative product across the audio
sequence length dimension. A cumulative product
of 500 small floating point values is numerically
unstable and often results in rounding to 0. Per-
haps the original authors used a sum of log values
instead.

Lastly, as EMMA computes a separate policy for
every attention head of every cross-attention layer,
it is unclear which one to use for the final inference
policy. In the public inference code associated with
(Communication et al., 2023), the layer to use for
the policy is simply taken as an argument. Atten-
tion heads from that layer are aggregated via a max,
min, or mean. Empirically, we found that some
layers and heads learned useful policies, while the
majority did not.

Due to these challenges implementing and train-
ing EMMA, we did not include it in our evaluations
and pursued simpler streaming methods, motivat-
ing us to invent REINA.

We also note that many of the same issues arise
with training neural transducer (Graves, 2012) mod-
els. We also spent considerable effort implement-
ing transducers for SimulST. As with EMMA, we
found transducer methods to be excessively expen-
sive to train and very hard to make converge.

E FLEURS Evaluation

In this section, we present an attempt at compar-
ing to Seamless on FLEURS. We construct the
FLEURS dataset for en — de, en, fr and de, en, fr
— en, deduplicating on unique source audio and
target language. We trim the dataset using the same
Silero VAD Seamless uses. When inferencing, we
soon noticed that as our model is trained entirely
on audios not trimmed with VAD, it tends to expect
an ending silence and over-generates, resulting in
decreased BLEU scores. We also attempted in-
ferencing Seamless on our copy of FLEURS using
their open source code, but ran into implementation
difficulties due to scarce documentation.
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In a final attempt at a comparison, we use Seam-
less’ reported scores from their paper. We use VAD
to trim our audios and then augment them with
2 seconds of white noise at the end to help our
model. We tested this trick without VAD on our
other datasets and found it has a negative impact
on BLEU, but we found it was still an improve-
ment over inferencing on VAD-trimmed audios on
FLEURS.

We show NoSE scores in table 6, graphs for the
X — en direction in figure 6, and graphs for the en
— X direction in figure 7. As our model is much
smaller than Seamless, our non-streaming BLEU
is unsurprisingly much lower. Of more interest are
the NoSE scores, which show we are comparable
to Seamless on the X — en directions but worse
on en — X. We believe this difference is primarily
accounted for by the aforementioned VAD issues.
We also note that REINA is vastly cheaper and
easier to train than Seamless’ EMMA streaming
method (see appendix D), meaning that even with
comparable streaming quality, REINA is in most
cases preferable to EMMA.



Dataset Item / Model en—de en—f{r en—es de—en fr—en es—en
Bounds [z,y] [1.87,2.05] [1.71,1.86] [1.83,1.99] [1.68,1.85] [1.42,1.55] [1.36,1.52]

FLEURS Seamless 0.914 0.951 0.960 924 940 936
REINAStream 0.896 0.861 0.916 943 .866 936

Table 6: Comparison of NoSE (7) values on FLEURS for Seamless and REINAStream.
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Figure 6: Average Lagging (AL) vs. BLEU score on

FLEURS X — en. Dotted lines represent non-streaming
BLEU scores.
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