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Abstract001

Simultaneous Speech Translation (SimulST)002
systems stream in audio while simultaneously003
emitting translated text or speech. Such sys-004
tems face the significant challenge of balancing005
translation quality and latency. We introduce006
a strategy to optimize this tradeoff: wait for007
more input only if you gain information by008
doing so. Based on this strategy, we present009
Regularized Entropy INformation Adaptation010
(REINA), a novel loss to train an adaptive pol-011
icy using an existing non-streaming transla-012
tion model. We derive REINA from informa-013
tion theory principles and show that REINA014
helps push the reported Pareto frontier of the015
latency/quality tradeoff over prior works. Uti-016
lizing REINA, we train a SimulST model on017
French, Spanish and German, both from and018
into English. Training on only open source or019
synthetically generated data, we achieve state-020
of-the-art (SOTA) streaming results for mod-021
els of comparable size. We also introduce a022
metric for streaming efficiency, quantitatively023
showing REINA improves the latency/quality024
trade-off by as much as 21% compared to prior025
approaches, normalized against non-streaming026
baseline BLEU scores.027

1 Introduction028

Simultaneous Speech Translation (SimulST) in-029

volves real-time translation of speech in one lan-030

guage into text in another. This extends the simpler031

speech-to-text-translation (S2TT) task, which in-032

volves translation with the full context of an entire033

speech clip. While S2TT allows for offline applica-034

tions, conversational environments such as voice or035

video chat necessitate SimulST models to facilitate036

real-time communication across language barriers.037

Recently, End-to-end (E2E) S2TT models have038

largely superseded traditional cascaded approaches,039

which link separate Automatic Speech Recogni-040

tion (ASR) and Machine Translation (MT) systems.041

E2E models mitigate error propagation and reduce042

latency by directly mapping source speech to target 043

text (Communication et al., 2023; Peng et al., 2024; 044

Radford et al., 2023; Puvvada et al., 2024). 045

Rather than training SimulST models from 046

scratch, most works take advantage of advances in 047

S2TT research by adapting a non-streaming S2TT 048

model into a SimulST model (Communication 049

et al., 2023; Chen et al., 2024; Zhang et al., 2024; 050

Papi et al., 2024). To transition from non-streaming 051

S2TT to SimulST introduces the challenge of bal- 052

ancing translation quality and latency. This re- 053

quires a policy to decide whether to wait for more 054

input (READ) or generate output (WRITE) (Gu 055

et al., 2017). This problem is particularly diffi- 056

cult in the translation setting because different lan- 057

guages can have different word orderings, requir- 058

ing differing amounts of context before a suitable 059

translation can occur. Many approaches have been 060

formulated to determine this READ/WRITE policy, 061

from baking the policy into the model architecture 062

itself via monotonic attention mechanisms (Ari- 063

vazhagan et al., 2019; Ma et al., 2020c; Commu- 064

nication et al., 2023), or having a separate module 065

to dictate the policy (Chen et al., 2024). How- 066

ever, these existing approaches suffer from issues 067

including poor translation quality compared to non- 068

streaming models and expensive, numerically un- 069

stable training (Communication et al., 2023; Chen 070

et al., 2024). 071

In this paper, we address the problem of effi- 072

ciently training high quality SimulST models. The 073

major contributions of this paper can be summa- 074

rized as follows: 075

New Policy Training Technique. We pro- 076

pose Regularized Entropy INformation Adaptation 077

(REINA), a new technique for policy training that 078

can efficiently convert non-streaming Speech-to- 079

Text Translation (S2TT) models into simultaneous 080

S2TT (SimulST) models. REINA is guided by 081

an approximation of mutual information derived 082

from the S2TT model’s log probabilities on partial 083
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versus full audio and is shown to produce higher084

quality policies than existing methods.085

Trained with open-source data. We train an086

E2E S2TT model with REINA on 130k hours of087

open-source data. Based on empirical studies, this088

model achieves SOTA streaming translation perfor-089

mance.090

Streaming efficiency evaluation metric. We091

propose a new evaluation metric to better com-092

pare SimulST models. This metric normalizes093

the streaming translation quality against the per-094

formance of the underlying non-streaming model,095

allowing for a fairer assessment of the capabilities096

of the streaming policy itself.097

2 Related Work098

While learning adaptive policies for SimulST is a099

fairly new research area, it builds on a rich body100

of non-streaming S2TT work. In this section, we101

outline the S2TT foundation for SimulST and then102

move into a discussion of SimulST policies.103

Training Speech to Text Translation Models104

The literature around S2TT contains many large-105

scale, powerful models including Whisper (Rad-106

ford et al., 2023), SeamlessM4T (Communication107

et al., 2023), Canary (Puvvada et al., 2024), and108

the Open Whisper-style Speech Model (OWSM)109

(Peng et al., 2024). These models vary in architec-110

ture (e.g., Whisper’s Transformer, OWSMv3.1’s111

E-Branchformer) and training data scale, rang-112

ing from Canary’s 86k hours (leveraging pseudo-113

labels) and OWSM’s 180k hours of public data114

to Whisper’s 680k hours of web data and Seam-115

lessM4T’s 600k hours of synthetically aligned116

data.117

Due to the relative scarcity of parallel ST data118

compared to ASR or MT corpora, multi-task learn-119

ing (MTL) is widely adopted (Ye et al., 2022; Chen120

et al., 2024; Communication et al., 2023). Aux-121

iliary tasks like ASR and neural machine transla-122

tion (NMT) are jointly trained with S2TT to im-123

prove representations and leverage abundant text124

or speech data. Furthermore, contrastive learning125

techniques, such as in ConST (Ye et al., 2022),126

are used to explicitly bridge the modality gap be-127

tween speech and text representations by encourag-128

ing similarity between corresponding speech seg-129

ments and their transcriptions. There is a notable130

gap in the literature between industry work leverag-131

ing massive proprietary datasets and less resourced132

research making heavy use of MTL to get the most133

out of smaller data scales. As OWSM (Peng et al., 134

2024) bridges this gap for the non-streaming set- 135

ting, we aim to do the same for SimulST. We are 136

one of the first SimulST works to leverage large- 137

scale open source data that we train on with an 138

MTL framework including MT and ASR tasks. 139

Streaming Policy Learning Transitioning S2TT 140

models to SimulST introduces the challenge of 141

learning a READ/WRITE policy that balances 142

translation quality and latency. Fixed policies like 143

wait-k are simple to implement but are usually sub- 144

optimal due to the mismatch between the sampling 145

rate of the input audio frames and the frequency of 146

outputted words (Ma et al., 2020b). 147

On the other hand, adaptive policies dynamically 148

adjust decisions based on context. Prior works 149

have integrated the policy within the model archi- 150

tecture, such as Transducer models (Graves, 2012; 151

Xue et al., 2022), which inherently support stream- 152

ing via monotonic alignment, or models using 153

monotonic attention mechanisms like MMA (Ari- 154

vazhagan et al., 2019) or EMMA (Communication 155

et al., 2023). Monotonic alignment methods afford 156

greater expressivity, but they tend to be excessively 157

expensive to compute at train time and suffer from 158

both poor numerical stability and difficulty in con- 159

verging. For more details on the difficulties of train- 160

ing monotonic attention methods see appendix D. 161

Other SimulST works avoid complex, explicit 162

policies, instead generating aligned data with 163

which to directly train SimulST models (Labiausse 164

et al., 2025; Fu et al., 2025; Deng et al., 2025). 165

These works often use existing models such as 166

NMT models (Labiausse et al., 2025) or LLM’s (Fu 167

et al., 2025; Deng et al., 2025) as teachers to create 168

synthetically aligned data for streaming training. 169

Such models can afford simpler architectures with- 170

out policy networks. That said, SimulST models 171

deriving their policies from generated data are of- 172

ten limited in their streaming performance based 173

on the quality of the teacher model. 174

Explicit policy training Other adaptive strate- 175

gies decouple the policy from the translation 176

model (Chen et al., 2024; Gu et al., 2017; Zhang 177

et al., 2024). Some leverage signals from pre- 178

trained offline models, such as using reinforce- 179

ment learning (RL) to directly optimize the quality- 180

latency trade-off (Gu et al., 2017). Although these 181

methods simplify the learning problem by decou- 182

pling the policy from the translation model, they 183

require explicit supervision from a suitable met- 184

ric and are often suboptimal. RL is hard to stabi- 185
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lize and efficiently train, especially in cases like186

SimulST, with further modifications required for187

stabilizing the policy head training and no guaran-188

tee of convergence (Gu et al., 2017).189

Closely related to our work is the divergence-190

guided approach of DiG-SST (Chen et al., 2024).191

DiG-SST trains a lightweight policy module using192

the expected divergence between output distribu-193

tions conditioned on partial versus complete input,194

estimated from a non-streaming S2TT model. This195

approach is efficient to train and directly optimizes196

for the SimulST task. Nevertheless, DiG-SST’s for-197

mulation fails to make use of valuable information198

from ground truth labels when computing diver-199

gence scores. In REINA, we propose an improved200

formulation of a similar concept, yielding better201

streaming results.202

3 Model203

In this section, we introduce REINAStream, a low204

latency SimulST model trained on large-scale, open205

source data. We present our architecture and loss206

functions visually in figure 1.207

3.1 Policy Learning208

To learn an effective READ/WRITE policy, we209

introduce a new loss function: Regularized En-210

tropy INformation Adaptation (REINA). REINA211

enables us to adapt a non-streaming speech transla-212

tion model into a streaming, SimulST model with213

minimal extra training.214

First, we outline the problem more formally.215

Suppose that we are translating an input audio216

stream a into a target language with a streaming217

chunk size of j frames. Given a partial audio218

recording at at frame t and previously emitted to-219

kens s1, s2, . . . , sn, we need to decide whether to220

produce token sn+1 (WRITE) or wait for another221

audio chunk (READ). If we READ, we consume222

another frame of audio, giving us at+1, whereas223

if we WRITE, we gain a token, yielding the same224

audio at but tokens s1, . . . , sn, sn+1. Our policy225

must learn to make READ/WRITE decisions that226

maximize translation quality while minimizing the227

latency with which we emit each token. This re-228

cursive setup appears to lend itself to a dynamic229

programming type of optimization, as in Seamless230

(Communication et al., 2023) or the Transducer231

architecture (Graves, 2012). However, in prac-232

tice, optimizing over all possible READ/WRITE233

sequences results in expensive, numerically unsta-234

ble training. 235

Instead, we start from a core idea: we should 236

wait for more audio (i.e. READ) if and only if 237

we gain information by doing so. We formalize 238

this notion using mutual information theory. Given 239

audio a of length T and ground truth translation 240

token sequence S = (s1, . . . , sN ), after writing 241

n < N tokens and listening to t < T timesteps of 242

audio, we can express the information gained about 243

the next token sn+1 by waiting for the rest of the 244

input audio as 245

F(a, S, n, t) := I(sn+1; aT , Sn)− I(sn+1; at, Sn)
(1)

246

where I is the symbol for mutual information. 247

We can then construct an ideal READ/WRITE pol- 248

icy πα on top of this quantity: πα(a, S, n, t) returns 249

READ when F(a, S, n, t) > α and WRITE other- 250

wise. We can then adjust α to control the latency 251

quality tradeoff. This policy READs exactly when 252

the information gained exceeds a given threshold. 253

We can rewrite F(a, S, n, t) using mutual infor- 254

mation equations (Barber and Agakov, 2004) as 255

follows 256

F(a, S, n, t) := I(sn+1; aT , Sn)− I(sn+1; at, Sn) 257

= H(sn+1)−H(sn+1|aT , Sn) 258

− [H(sn+1)−H(sn+1|at, Sn)] 259

= H(sn+1|at, Sn)−H(sn+1|aT , Sn) 260

= E [log p(sn+1|aT , Sn)− log p(sn+1|at, Sn)]
(2)

261

262Although we might not have access to 263

log p(sn+1|aT , Sn) or log p(sn+1|at, Sn), we are 264

able to estimate these via random sampling of 265

the log-probabilities of the base S2TT model as 266

log p̂(sn+1|aT , Sn) and log p̂(sn+1|at, Sn), which 267

are the log-probabilities of the next label token 268

computed when passing the full audio and partial 269

audio through the model respectively. Note that 270

these are also the negatives of the cross-entropy 271

losses obtained when running the model on the full 272

and partial audio. 273

We now have an estimate F̂(a, S, n, t). How- 274

ever, this estimate cannot be computed during in- 275

ference time as it requires access to the full target 276

text, so we instead formulate a heuristic to estimate 277

the information gain. We train a model parameter- 278

ized by θ to estimate a heuristic qθ = q(a, S, n, t|θ) 279

that yields policy π̂α, which returns READ if and 280

only if qθ > α. We train qθ to strongly correlate 281

with F(a, S, n, t) by maximizing the covariance 282
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Figure 1: Non-streaming and streaming training procedures for REINAStream. For non-streaming training we
use a trainable MT encoder to train on parallel NMT data. During streaming training we a) pass a full audio and
truncated audio through the model, b) compute the cross-entropy (CE) loss of each, c) predict a policy using the
policy network on top of the partial-audio output of the decoder, and finally d) calculate the REINA loss using the
CE terms and policy predictions.

between qθ and the estimate F̂(a, S, n, t). This283

gives us the following optimization problem:284

max
θ

(
Cov(qθ, F̂(a, S, n, t))

)
285

= max
θ

(
E
[
qθ · F̂(a, S, n, t)

]
−286

E [qθ] · E
[
F̂(a, S, n, t)

])
(3)287

We can simplify this expression by normalizing288

the information gain estimate F̂(a, S, n, t) to have289

zero mean, making E [qθ] · E
[
F̂(a, S, n, t)

]
evalu-290

ate to 0. We achieve this at train time by normaliz-291

ing over each batch, resulting in the final optimiza-292

tion problem:293

max
θ

[
E
[
qθ · BN

(
F̂(a, S, n, t)

)]]
294

= min
θ

[
qθ · BN

[
log p̂t

sn+1 − log p̂T
sn+1

]]
(4)295

where BN is the batchnorm operator, and we apply296

a shorthand log p̂T
sn+1 = log p̂(sn+1|aT , Sn) and297

log p̂t
sn+1 = log p̂(sn+1|at, Sn) for brevity.298

The loss that optimizes the above optimization299

problem is300

Lp =
1

N

N−1∑
n=0

qnθ · BN
[
log p̂t

sn+1 − log p̂T
sn+1)

]
(5)

301

302

where qnθ = qθ(a, S, n, t|θ). This loss maxi- 303

mizes the covariance between our estimate of in- 304

formation gain F̂ and our heuristic estimator net- 305

work qθ. This is the "Policy Loss" in figure 1. 306

Since log p̂t(sn+1) and log p̂T (sn+1) are the neg- 307

ative cross-entropy losses from the decoder given 308

partial and full audio respectively, in the diagram 309

we write Lp as a difference of cross-entropy loss 310

terms. 311

To ensure stable training and a reasonable 312

learned policy, we add monotonicity and L2 regu- 313

larization terms, both of which are outlined below. 314

First, we note that at inference time, after predict- 315

ing a READ, we predict no further tokens. There- 316

fore, any WRITEs after a READ are semantically 317

meaningless. 318

To better align train and inference, we add a 319

weak monotonicity constraint on qθ to encourage 320

the probability of READ to increase uniformly 321

across each token sequence S: 322

Lm =
1

N

N∑
n=1

[
max

(
max
m<n

{qmθ } − qnθ − ϵ, 0
)]

(6)

323

324The loss function Lm serves as a regulariza- 325

tion term to shape the learned heuristic qθ used 326

in the policy π̂α(a, S, n, t). It encourages the se- 327

quence of qθ values for target text tokens, ordered 328

by index n, to be approximately non-decreasing 329
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(qnθ ≥ maxm<n{qmθ } − ϵ), an inductive bias dis-330

tinct from merely estimating information gain. This331

imposed monotonicity biases the policy towards a332

“commitment” behavior, encouraging it to commit333

to stop predicting new tokens and READ new audio334

instead once the threshold is crossed for an earlier335

token.336

Finally, we add a simple L2 regularization337

penalty: Lr = 1
N

∑N
n=1 (q

n
θ )

2. We find this is338

required to prevent qθ values from exploding to339

infinity during training. Putting all the terms to-340

gether, we get the full REINA loss: LREINA =341

Lp + Lm + λLr. In our work, we set λ = 0.05,342

but find that final model performance is not very343

sensitive to changes in λ. We will cover how we344

train with LREINA in section 3.4.345

3.2 Non-Streaming Architecture346

Next, we describe the architecture of our base non-347

streaming S2TT model, which is also outlined in348

figure 1. We employ a straightforward architecture349

comprising an acoustic encoder and a text decoder.350

At train-time, we also use an extra text encoder to351

facilitate a MT training task.352

For the acoustic encoder, we adopt Whisper353

Medium (Radford et al., 2023) and do not freeze its354

weights during training. The randomly initialized355

transformer decoder performs cross-attention over356

the acoustic encoder’s final layer hidden states and357

predicts text tokens. We adopt the generic mul-358

tilingual tokenizer from Mistral 7B (Jiang et al.,359

2023) but learn our own embedding dictionary. We360

augment the vocabulary with language ids such361

as <en> or <fr> so we can direct the decoder to362

predict tokens of a specific target language by pre-363

fixing the token sequence with the language id.364

We apply a learned positional encoding similar to365

Time2Vec (Kazemi et al., 2019) on the acoustic366

encoder outputs to give the decoder a notion of367

sequence ordering. The decoder is trained with a368

cross-entropy loss.369

At train-time, to support MT loss calculation,370

we add a randomly initialized, trainable T5 text371

encoder (Raffel et al., 2020). We pass source-372

language text through and then have the decoder373

cross-attend to the T5 last layer hidden states while374

predicting target language text. This is facilitates a375

machine translation task designed to improve the376

quality of the decoder by making use of paired MT377

data.378

Whisper Medium contains 307M parameters, the379

text decoder has 101M, and the MT encoder has380

38M for a total of 445M trainable parameters at 381

train time and 408M at inference-time. While 382

this is a larger parameter count than academic 383

works like Dig-SST (Chen et al., 2024), Stream- 384

Speech (Zhang et al., 2024), or Stream-Att (Papi 385

et al., 2024), it is still much smaller than most 386

industry systems like SeamlessM4T (Communica- 387

tion et al., 2023) or Hibiki (Labiausse et al., 2025). 388

While higher parameter counts demonstrably in- 389

crease translation quality, they also make it diffi- 390

cult to train and deploy models to large numbers 391

of users in the wild. We target the middle ground 392

between small and large systems in literature, yield- 393

ing a model with both the translation quality and 394

computational efficiency to be usable in real-world 395

chat settings. 396

3.3 Streaming Architecture 397

We augment the non-streaming model with a policy 398

network that makes binary READ/WRITE deci- 399

sions for each output token. This is the architecture 400

component that REINA serves to train. The policy 401

network is a small transformer encoder applied to 402

the last layer hidden states from the decoder. We 403

apply a single linear layer on top of the transformer 404

with output dimension 1 and sigmoid activation in 405

order to make the binary READ/WRITE decisions. 406

We apply a causal attention mask on the policy 407

network at both train and inference time. The pol- 408

icy network contains only 6M trainable parameters, 409

bringing the total parameter count for the streaming 410

model at train and inference time to 414M. 411

3.4 Training 412

We train REINAStream in 3 stages: 1) Learn non- 413

streaming S2TT 2) Adapt to truncated audios 3) 414

Learn a streaming policy. 415

In the first stage, we train on several tasks at 416

once in order to effectively leverage available data 417

to train the speech translation model. All data sam- 418

ples contain some subset of the following informa- 419

tion: source language lsi , source language audio ai, 420

source language transcription T s
i , target language 421

lti , and target language transcription T t
i . Using this 422

data, we have three training tasks. 423

ASR For samples with (ai, l
s
i , T

s
i ), we pass ai 424

through the acoustic encoder, then decode to tokens 425

in source language lsi . We compute cross-entropy 426

loss using label transcript T s
i yielding loss Lasr. 427

NMT For samples with (T s
i , l

t
i, T

t
i ), we pass 428

the source transcript through the T5 text encoder 429

and then decode into target language lti . We com- 430
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pute the cross-entropy loss using label transcript431

T t
i yielding loss Lnmt.432

S2TT For samples with (ai, l
t
i, T

t
i ), we pass ai433

through the acoustic encoder, then decode into tar-434

get language lti . We compute cross-entropy loss435

using label transcript T t
i yielding loss Ls2tt.436

For the first stage training, we mix data support-437

ing all tasks into every batch and minimize a sum438

of all the losses: L = Lasr + Lnmt + Ls2tt.439

Before training the policy network on top of the440

base model, we add a second step to ensure qual-441

ity estimation of log p̂(sn+1|Sn, at) with partial442

audios at. In this phase, we fine-tune the speech443

translation model on randomly truncated audios444

using the same loss function L.445

Lastly, we train the policy network by minimiz-446

ing LREINA and freezing all other parameters. We447

only train on S2TT data samples as our goal is to448

learn a policy best for streaming speech translation449

rather than streaming ASR or MT.450

3.5 Data451

We seek to bridge the gap between models trained452

on large-scale, proprietary datasets and those453

trained on small-scale open-source data. We lever-454

age a variety of publicly available data sources plus455

synthetic data generation to produce a large-scale456

training set.457

In this iteration, we focus only on en−→de, fr, es458

and de, fr, es−→en language directions because of459

their data availability. In future work, we plan460

to expand to lower resourced languages. For461

audio datasets, we draw from Multilingual Lib-462

rispeech (MLS) (Pratap et al., 2020), Mosel (Gaido463

et al., 2024), CVSS-C (Jia et al., 2022), MUST-C464

(Di Gangi et al., 2019). We list details on these465

datasets in table 1. We further augment the MLS466

dataset by translating its transcripts using an in-467

house NMT model to produce S2TT data to train468

on. We also augment our dataset with text-to-text469

MT training data from CCMatrix (Schwenk et al.,470

2021). We use 10M samples per language pair471

from CCMatrix for a total of 60M samples.472

3.6 Inference Policy473

Once our model is trained, we employ a streaming474

beam search to perform inference. We split input475

audios into 0.25s chunks and inference the model476

on all audio up to the current chunk in sequence.477

We first pick a policy threshold α to control the478

quality-latency tradeoff while streaming. Each iter-479

ation of the search, we run the policy network on480

all beams and kill those with predictions less than 481

α. If the total number of waited beams exceeds the 482

beam size times a patience factor, or all beams are 483

waited at once, we end the search. After ending the 484

search, we return the killed beam with the highest 485

average log probability. 486

Once we have reached the end of the input audio, 487

we stop using the policy network and beam search 488

until we hit the EOS token, using the same patience 489

factor logic to decide when to end the search. 490

4 Experiments 491

In this section, we detail how we ran our experi- 492

ments and present our results compared with exist- 493

ing work. 494

4.1 Experimental Setup 495

To train REINAStream, we follow the procedure 496

outlined in section 3.4, starting by training our non- 497

streaming S2TT model on a mixture of all training 498

datasets. We train on 24 A100-80G GPUs for 5 499

days using an AdamW optimizer (Loshchilov and 500

Hutter, 2019) with hyperparameters given in ap- 501

pendix C. We use the exact same setup to train the 502

second truncated stage, but only train for 2 days. 503

Lastly, we perform the REINA training stage with 504

nearly the same setup, except this time using an 505

inverse square root learning rate scheduler with 5k 506

warmup steps. This final training runs 20 epochs 507

in under 12 hours. 508

We also re-implement DiG-SST’s divergence- 509

based loss from (Chen et al., 2024) based on the 510

description in the paper and train the policy net- 511

work with that loss using the same configuration as 512

we train REINA. 513

We evaluate on language pairs {fr, de, es} −→ 514

en on CVSS-C, and on language pairs en −→ {fr, 515

de, es} on MUST-C. We use a beam size of 3 with 516

no length penalty, a streaming chunk size of 0.25s, 517

and a patience factor of 3. We sweep across sev- 518

eral thresholds for the policy network in order to 519

measure our model’s tradeoff between latency and 520

accuracy. Choosing the right thresholds to obtain 521

an informative sweep is done purely through trial 522

and error (more details in appendix C). 523

We compare to existing works on each dataset 524

that we believe to be at or near to state of the art 525

at the time of writing. On MUST-C, we compare 526

to Dig-SST (Chen et al., 2024), the work in liter- 527

ature closest to ours, and another strong SimulST 528

competitor called DiSeg (Zhang and Feng, 2023). 529
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Split Dataset
Source Language: en Source Language: de Source Language: es Source Language: fr

Target: de Target: es Target: fr Target: en Target: en Target: de Target: en Target: es Target: en Target: fr

Train

MLS 13,789 13,785 13,787 41360 1,637 1,637 713 713 984 984
Must-C 386 476 468 1330 - - - - - -
CVSS-C - - - - 184 184 113 113 264 264
MOSEL - - - 19,245 - 22,804 - 19,373 - 22,835

Dev Must-C 2.47 2.49 2.49 - - - - - - -
CVSS-C - - - - 21 - 22 - 22 -

Test Must-C 4 4 4 - - - - - - -
CVSS-C - - - - 22 - 23 - 23 -

Table 1: Consolidated Dataset Hours (Source Audio) by Split and Dataset, Grouped by Source and Target Language.

On CVSS-C, we compare to StreamSpeech (Zhang530

et al., 2024), a recent work showing strong simul-531

taneous S2ST performance on CVSS with a small532

model. As StreamSpeech only reports ASR-BLEU533

whereas we report text BLEU, we are unable to534

make a fair comparison. That said, StreamSpeech535

is a stronger system than most in the literature on536

CVSS-C, so we believe the results are still worth537

showing. In appendix E, we also show some results538

on the FLEURS (Conneau et al., 2023) dataset with539

significant caveats. For all comparisons, we use540

self-reported results from the original papers.541

We also perform several ablations on the REINA542

training stage of REINAStream to demonstrate the543

utility of the different parts of the REINA loss and544

make fairer comparisons. We train four model545

variants:546

REINA Our standard training procedure includ-547

ing all S2TT training datasets with the standard548

REINA loss function.549

REINA w/o monotonicity Just like REINA but550

without the monotonicity term in the loss. Trained551

on all S2TT datasets.552

REINA (MUST-C only) We train the policy net-553

work with the full REINA loss on only the MUST-C554

dataset for a fairer comparison to Dig-SST.555

Dig-SST (Our impl. MUST-C only) We train556

our own implementation of the Dig-SST loss on557

top of the non-streaming REINAStream model on558

only the MUST-C dataset.559

4.2 Evaluation Metrics560

We measure translation accuracy using BLEU as561

implemented in the SacreBLEU package (Post,562

2018) and Average Lag (AL), which we imple-563

ment ourselves based on the original paper (Ma564

et al., 2020a). Most existing works plot AL vs565

BLEU curves by interpolating between several (AL,566

BLEU) points generated by evaluating their model567

with different streaming settings (Chen et al., 2024)568

(Papi et al., 2024) (Zhang et al., 2024). We include569

such graphs for all of our evaluations in appendix B.570

We contend that this evaluation does not adequately 571

disentangle a model’s non-streaming translation 572

quality from its streaming ability. We observe that 573

many comparisons in the literature pitch models 574

with superior non-streaming BLEU as being bet- 575

ter at streaming due to having a higher BLEU vs 576

AL curve, when in reality the difference may be 577

accounted for entirely by the non-streaming BLEU 578

difference. Such comparisons do little to show the 579

quality of the actual READ/WRITE policy. 580

We wish to show that REINA adapts S2TT mod- 581

els of any non-streaming performance to SimulST 582

models with minimal degradation in translation 583

quality. To this end, we introduce a new metric, 584

Normalized Streaming Efficiency (NoSE), to mea- 585

sure streaming performance across the entire qual- 586

ity/latency spectrum normalized by non-streaming 587

translation quality. As shown in the diagram in ap- 588

pendix A, we measure the area under the AL/BLEU 589

curve, bounded on the left and right by x < y 590

respectively, divided by the area under the non- 591

streaming BLEU line. It is important to note that 592

while we require the x and y bounds to ensure the 593

metric is well-defined, NoSE is heavily dependent 594

on them. For our analysis, we simply pick the 595

smallest x and largest y for which our work and 596

the works we compare to all have reported values, 597

yielding the widest possible range for which all 598

models have a defined AL/BLEU curve. We rec- 599

ommend that future works using NoSE do report 600

the bounds used in their calculations. 601

4.3 Results 602

We present our NoSe scores in table 2 and selected 603

operating points in table 3 for MUST-C and CVSS 604

results respectively, with full AL-BLEU tradeoff 605

curves in appendix B. 606

Unfortunately, CVSS-C is not commonly evalu- 607

ated against in SimulST literature, so we are unable 608

to compare to many other works. However, with 609

an average utterance length of 4.9 seconds, CVSS 610

is the only dataset out of the three comprising pri- 611
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marily shorter audios, which are quite common in612

conversational SimulST use-cases. This makes it613

an important benchmark for SimulST systems.614

MUST-C

Model en→de en→fr en→es

Bounds [x, y] [1.193, 2.629] [1.11, 2.887] [1.144, 2.611]

Dig-SST (Original) 0.923 0.945 0.927
DiSeg 0.881 - 0.880
Dig-SST (Our impl. MUST-C only) 0.737 0.846 0.740
REINA (MUST-C only) 0.957 0.972 0.980
REINA 0.945 0.966 0.976

CVSS

Model de→en fr→en es→en

Bounds [x, y] [1.955, 5.039] [1.637, 5.169] [1.806, 5.587]

StreamSpeech∗ 0.842 0.886 0.837
REINA w/o monotonicity 0.976 0.980 0.982
REINA 0.974 0.983 0.981

Table 2: NoSE (↑) values for the MUST-C and CVSS-C
datasets. Bounds [x, y] for NoSE are specified per lan-
guage pair. Best values per language pair are bolded.
Results for other works are taken from their correspond-
ing papers. ∗Note StreamSpeech only reports ASR-
BLEU, so values for StreamSpeech represent ASR-
BLEU scores rather than BLEU.

4.3.1 Quantitative results615

On both MUST-C and CVSS-C, we observe616

REINA outperforms all competing methods on all617

language splits at low latencies. Significantly, this618

holds for the "MUST-C only" model with policy619

network trained only on MUST-C, as well as the620

REINA model trained on all datasets, demonstrat-621

ing our streaming performance gains are not merely622

attributable to increased data scale when training623

the policy, but come from the improved objective.624

The only exception to this, as seen in table 3, is625

German, where DigSST is slightly better at higher626

latencies than REINA. Still, this shows REINA627

excels at lower latency streaming, even when its628

non-streaming BLEU is lower than competitors.629

The MUST-C-only REINA model yields NoSE630

scores 3.0% higher than Dig-SST and 8.9%631

higher than DiSeg, highlighting the advantages of632

REINA’s mutual information formulation. Our im-633

plementation of DiG-SST performs far below every634

other model in evals, suggesting there may be de-635

tails to the authors’ implementation that we failed636

to recreate.637

4.3.2 Ablations on Monotonicity Loss638

In figure 2, we observe that the REINA model out-639

performs the REINA w/o monotonicity model ex-640

clusively at low latencies, indicating that mono-641

tonicity is useful on the most aggressive streaming642

settings. For example, at about 35 BLEU, AL de-643

REINA (mustc only) DIGSST (reported)

Lang. AL ↓ BLEU ↑ AL ↓ BLEU ↑

De 1.01 21.44 1.08 21.13
1.59 23.71 1.45 23.25
2.24 24.32 1.83 24.29

Es 0.86 26.92 0.90 23.92
1.16 29.68 1.27 26.74
1.51 30.38 1.66 27.90

Fr 0.77 33.13 1.11 30.51
1.24 36.29 1.26 32.61
1.88 37.73 2.00 35.65

Table 3: Comparison of REINA (mustc only) with
DIGSST (reported) on En→{De, Es, Fr} speech trans-
lation. Selected operating points are reported.

Figure 2: AL/BLEU curve on es-en split of the CVSS-C
dataset.

creases from 1.95 to 1.57, a 19% improvement. We 644

hypothesize this is because monotonicity forces the 645

policy to decide on a clear boundary of when to 646

READ when the information gain waffles between 647

timesteps. Ultimately, we find the monotonicity 648

loss improves low-latency streaming with a negli- 649

gible impact to overall streaming efficiency. 650

5 Conclusion and Future Work 651

In this paper, we present a new method for SimulST. 652

We introduce the REINA loss function that en- 653

ables cheaply converting non-streaming speech 654

translation models into streaming ones. We con- 655

duct extensive experiments over several datasets, 656

showing REINA outperforms the state of the art 657

in SimulST conversion. We also propose a new 658

metric, NoSE, to improve the state of evaluation 659

of SimulST systems. Ultimately, we train a large- 660

scale system entirely on open source or syntheti- 661

cally generated data, encouraging further research 662

into scaling SimulST. 663

The next step to enable real-time crosslingual 664

interaction is to extend REINAStream into a simul- 665

taneous speech to speech translation (SimulS2ST) 666

model. This is achievable by using a high quality, 667

low latency, streaming text-to-speech model as a 668

synthesizer. We are presently working on extend- 669

ing REINAStream to the SimulS2ST use-case. 670
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6 Limitations671

6.1 Evaluation Datasets672

Evaluations in literature are split between several673

datasets, namely MUST-C and CVSS-C. These674

datasets alone already present a variety of is-675

sues—for example, MUST-C is no longer publicly676

available for download and many of its audios do677

not contain any speech at all. Furthermore, none678

of these datasets contain large-scale training data,679

resulting in a variety of data augmentation and train-680

ing strategies across the literature, making it diffi-681

cult to fairly compare models trained on the same682

data. We train on a custom mix of synthetic and683

human-labeled data that is not directly comparable684

to any one prior piece of research. We evaluate on685

all three of the aforementioned datasets, but have686

no guarantees that our data cleaning or inference687

procedures are identical to existing work.688

6.2 Implementation of Evaluation689

On the implementation side, we also likely do690

not achieve implementation-parity with existing691

work. Most SimulST research is built on top of692

the fairseq package, obfuscating implementation693

details. Fairseq performs a number of optimiza-694

tions under the hood that are not fully described in695

literature but affect model quality and evaluation696

results. Examples include checkpoint averaging697

on the training side and cleaning audios that are698

too short or long on the evaluation side. To im-699

prove reproducibility, control over our architecture,700

and eventual ease-of-serving, we take the route701

of implementing REINAStream, our entire evalua-702

tion suite, and our data preprocessing from scratch.703

This means there are likely implementation details704

that differ between our evaluation and works built705

on top of fairseq. In the future, where possible,706

we should aim to run open source existing works707

through our evaluation pipeline.708

6.3 Translation Quality Metrics709

We only use BLEU to report translation quality,710

which is widely known to not correlate well with711

human perception of translation quality. While712

BLEU allows us to compare to existing work, we713

plan to move toward more robust neural metrics714

such as COMET or LLM-based metrics.715

6.4 Synthetic vs Human Labeled Data716

Our training data for ASR, MT, and S2TT tasks717

is largely synthetically generated by existing ASR718

and NMT models. This bounds REINAStream’s 719

performance based on the quality of the models 720

used to aid in the generation of our datasets. Seam- 721

less tackles this data scarcity issue by using their 722

SONAR alignment model to mine pairs from real- 723

world data. We may try out the same technique in 724

future work. Another mitigation strategy could be 725

to make heavier use of human-labeled NMT and 726

ASR data that is available online. We may also be 727

able to use of RLHF methods becoming popular in 728

the NMT world to improve our translation quality 729

with less human-labeled data. 730

6.5 Low Resource Languages 731

We train and evaluate only on four languages all 732

with relatively similar grammatical structure and 733

substantial open source data to train on. It is widely 734

known that low training data resources heavily af- 735

fect translation quality. Similarly, translating be- 736

tween different language families is much harder 737

than translating between related languages. This is 738

especially true in the SimulST case where different 739

word orders make the READ/WRITE policy’s task 740

more difficult and necessitate higher latency for 741

the same translation quality. For instance, Japanese 742

has a subject-object-verb structure whereas English 743

uses subject-verb-object. When translating simul- 744

taneously from Japanese to English, a good policy 745

likely will have to learn to wait until late in the 746

Japanese utterance to determine the verb and use it 747

in the English translation. In future work, we will 748

extend our training and evaluation to multiple lan- 749

guage families and include low resource language 750

pairs. 751

6.6 REINA Mutual Information 752

Approximation 753

In the REINA loss, we only approximate 754

log p(sn+1|Sn, at)− log p(sn+1|Sn, aT ) using our 755

translation model. However, there is an easy 756

way we could compute the true value rather than 757

merely approximating. If we generated syn- 758

thetic labels SN by sampling from our trans- 759

lation model and then trained the policy us- 760

ing the REINA loss on these synthetic la- 761

bels, log p̂(sn+1|Sn, at) − log p̂(sn+1|Sn, aT ) = 762

log p(sn+1|Sn, at) − log p(sn+1|Sn, aT ) would 763

hold. We did not have enough time to experiment 764

with this idea before submitting and plan on pursu- 765

ing it in future work. 766
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6.7 Setting Policy Threshold767

We find that determining the appropriate threshold768

α for our policy π̂α at inference time is rather diffi-769

cult. Depending on the training data and evaluation770

dataset, the range of thresholds that produce reason-771

able AL/BLEU tradeoff varies. This forces us to772

try out many different thresholds at inference time,773

which wastes time and compute. In the future, we774

plan on investigating ways of cheaply automatically775

finding usable policy thresholds.776

6.8 FLEURS Evaluation777

Along with MUST-C and CVSS, FLEURS is an778

S2TT dataset evaluated on by SimulST works, most779

notably Seamless. We originally sought to include780

FLEURS in our evaluation suite, but ran into sev-781

eral challenges.782

First, as FLEURS contains multiple speakers783

speaking each utterance, we were unsure to what784

level we should dedupe in order to compare to785

other work, and could not find reliable documen-786

tation specifying this. Second, we found that es-787

pecially when translating en → X, we had poor788

non-streaming BLEU scores, suggesting some do-789

main mismatch between our other datasets and790

FLEURS. Third, we found Seamless difficult to791

compare against because a) they modify the test792

dataset using VAD, b) they report a very small793

range of AL scores to compute NoSE over, c) Due794

to scarce documentation, we were unable to re-795

produce Seamless’ results locally. Due to these796

difficulties, we leave our caveat-ridden FLEURS797

evaluation in appendix E.798
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Figure 3: We define NoSE as the area of the orange
shaded region divided by the area of the blue rectangle.

B Latency vs BLEU Evaluations987

When evaluating our models on each dataset, we988

sweep across several policy thresholds. We find989

that the unique features of each dataset necessitate990

different thresholds to get the best results. In table991

4 we show the list of thresholds we used for infer-992

encing each model on each dataset. Unfortunately,993

the only we have to determine these thresholds is994

trial and error. We had to perform several offline995

inference sweeps across thresholds before finding996

a sweep that a) allowed us to compare to other997

works b) contained points in the AL/BLEU curve998

that were representative of how our model might999

be likely to be used in production.1000

We show AL vs BLEU graphs for all evaluations1001

that appear in the paper in figures 4 and 5.1002

C Hyperparameters1003

We report model and dataset hyperparameters in1004

table 5.1005

D EMMA Discussion1006

In our paper, we touch on the complexities of im-1007

plementing streaming via monotonic attention as1008

in the EMMA method used in (Communication1009

et al., 2023). In this section, we wish to provide1010

some more background on the computational and1011

numerical challenges that arise from training with1012

EMMA.1013

In our research, we implemented EMMA from1014

scratch on top of a non-streaming REINAStream1015

model. The train-time computations for EMMA1016

requires computing a matrix of size [batch_size1017

× attention_heads × num_text_tokens × au-1018

dio_sequence_length × audio_sequence_length]1019

within each cross-attention layer of the decoder.1020

Seeing as the audio sequence length coming out1021

(a) French → English (fr-en)

(b) Spanish → English (es-en)

(c) German → English (de-en)

Figure 4: Average Lagging (AL) vs. BLEU score on
CVSS-C. Dotted lines represent non-streaming BLEU
scores. Note that StreamSpeech only reports ASR-
BLEU in their paper, so we report StreamSpeech’s ASR-
BLEU rather than BLEU.
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Table 4: Thresholds swept for generating AL vs. BLEU points for different models and datasets.

Dataset Model Name Thresholds Swept

MUST-C

Dig-SST (Original) Self-reported results
DiSeg Self-reported results
Dig-SST (Our impl. MUST-C only) [.475, .5, .51, .52, .53, .54]
REINA (MUST-C only) [.935, .94, .9425, .945, .9475, .95]
REINA [.97, .975, .976, .977, .978, .979]

CVSS
REINA [.97, .975, .976, .977, .978, .979, .98, .983, .985, .987]
REINA w/o monotonicity [.976, .977, .978, .979, .98, .983, .985, .987]
StreamSpeech Self-reported results

(a) English → French (en-fr)

(b) English → Spanish (en-es)

(c) English → German (en-de)

Figure 5: Average Lagging (AL) vs. BLEU score on
MUST-C. Dotted lines represent non-streaming BLEU
scores.

Table 5: Hyperparameters and Dataset Mixing Ratios
used for training the S2TT model and the REINA policy
network.

Parameter / Setting Value

Text Decoder Configuration

Dimension 512
Attention Heads 8
Number of Layers 16
Feedforward Multiplier 4
Label Smoothing 0.1
Dropout 0.1

Policy Network Configuration (REINA)

Monotonicity Epsilon (ϵ)* 0.5
L2 Regularization Weight (λ) 0.05
Number of Layers 2
Attention Heads 4
Feedforward Multiplier 4
Dimension 512

Training Configuration

Learning Rate 0.0001 (fixed)
Weight Decay 0.0001
Gradient Clipping 10.0
Batch Size per Device 16
Gradient Accumulation Steps 2
Effective Batch Size 768

Dataset Mixing: Base S2TT Model Training (Stage 1 & 2)

Dataset Name Mixing Ratio

MUST-C (train split) 1
CVSS (train split) 1
MLS (en → X)** 2
MLS (X → en)** 4
CCMatrix 4
Mosel 4

Dataset Mixing: REINA Policy Training (Stage 3)

Dataset Name Mixing Ratio

MUST-C (train split) 2
CVSS (train split) 2
MLS (en → X)** 6
MLS (X → en)** 6
* Corresponds to ϵ in the monotonicity loss (Equation 3).
** Derived from Multilingual Librispeech (MLS) dataset
(see Section 3.5).
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of the whisper encoder is 1500, we use 8 atten-1022

tion heads, and a short token sequence may contain1023

around 25 tokens, using fp32 precision, we require1024

2GB of VRAM for a single cross-attention layer1025

at batch size 1. Ultimately, we were only able to1026

train EMMA with batch size 1 and truncating the1027

encoder output sequence length to 500, despite us-1028

ing A100-80G GPUs. This made for very slow,1029

expensive training.1030

Furthermore, the EMMA estimation requires1031

computing a cumulative product across the audio1032

sequence length dimension. A cumulative product1033

of 500 small floating point values is numerically1034

unstable and often results in rounding to 0. Per-1035

haps the original authors used a sum of log values1036

instead.1037

Lastly, as EMMA computes a separate policy for1038

every attention head of every cross-attention layer,1039

it is unclear which one to use for the final inference1040

policy. In the public inference code associated with1041

(Communication et al., 2023), the layer to use for1042

the policy is simply taken as an argument. Atten-1043

tion heads from that layer are aggregated via a max,1044

min, or mean. Empirically, we found that some1045

layers and heads learned useful policies, while the1046

majority did not.1047

Due to these challenges implementing and train-1048

ing EMMA, we did not include it in our evaluations1049

and pursued simpler streaming methods, motivat-1050

ing us to invent REINA.1051

We also note that many of the same issues arise1052

with training neural transducer (Graves, 2012) mod-1053

els. We also spent considerable effort implement-1054

ing transducers for SimulST. As with EMMA, we1055

found transducer methods to be excessively expen-1056

sive to train and very hard to make converge.1057

E FLEURS Evaluation1058

In this section, we present an attempt at compar-1059

ing to Seamless on FLEURS. We construct the1060

FLEURS dataset for en → de, en, fr and de, en, fr1061

→ en, deduplicating on unique source audio and1062

target language. We trim the dataset using the same1063

Silero VAD Seamless uses. When inferencing, we1064

soon noticed that as our model is trained entirely1065

on audios not trimmed with VAD, it tends to expect1066

an ending silence and over-generates, resulting in1067

decreased BLEU scores. We also attempted in-1068

ferencing Seamless on our copy of FLEURS using1069

their open source code, but ran into implementation1070

difficulties due to scarce documentation.1071

In a final attempt at a comparison, we use Seam- 1072

less’ reported scores from their paper. We use VAD 1073

to trim our audios and then augment them with 1074

2 seconds of white noise at the end to help our 1075

model. We tested this trick without VAD on our 1076

other datasets and found it has a negative impact 1077

on BLEU, but we found it was still an improve- 1078

ment over inferencing on VAD-trimmed audios on 1079

FLEURS. 1080

We show NoSE scores in table 6, graphs for the 1081

X → en direction in figure 6, and graphs for the en 1082

→ X direction in figure 7. As our model is much 1083

smaller than Seamless, our non-streaming BLEU 1084

is unsurprisingly much lower. Of more interest are 1085

the NoSE scores, which show we are comparable 1086

to Seamless on the X → en directions but worse 1087

on en → X. We believe this difference is primarily 1088

accounted for by the aforementioned VAD issues. 1089

We also note that REINA is vastly cheaper and 1090

easier to train than Seamless’ EMMA streaming 1091

method (see appendix D), meaning that even with 1092

comparable streaming quality, REINA is in most 1093

cases preferable to EMMA. 1094
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Dataset Item / Model en→de en→fr en→es de→en fr→en es→en

FLEURS

Bounds [x, y] [1.87, 2.05] [1.71, 1.86] [1.83, 1.99] [1.68, 1.85] [1.42, 1.55] [1.36, 1.52]

Seamless 0.914 0.951 0.960 .924 .940 .936
REINAStream 0.896 0.861 0.916 .943 .866 .936

Table 6: Comparison of NoSE (↑) values on FLEURS for Seamless and REINAStream.

(a) French → English (fr-en)

(b) Spanish → English (es-en)

(c) German → English (de-en)

Figure 6: Average Lagging (AL) vs. BLEU score on
FLEURS X → en. Dotted lines represent non-streaming
BLEU scores.

(a) English → French (en-fr)

(b) English → Spanish (en-es)

(c) English → German (en-de)

Figure 7: Average Lagging (AL) vs. BLEU score on
FLEURS en → X. Dotted lines represent non-streaming
BLEU scores.
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