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Abstract

Embodied agents face significant challenges when tasked with performing actions
in diverse environments, particularly in generalizing across object types and ex-
ecuting suitable actions to accomplish tasks. Furthermore, agents should exhibit
robustness, minimizing the execution of illegal actions. In this work, we present
Egocentric Planning, an innovative approach that combines symbolic planning and
Object-oriented POMDPs to solve tasks in complex environments, harnessing ex-
isting models for visual perception and natural language processing. We evaluated
our approach in ALFRED, a simulated environment designed for domestic tasks,
and demonstrated its high scalability, achieving an impressive 36.07% unseen
success rate in the ALFRED benchmark and winning the ALFRED challenge at
CVPR Embodied AI workshop. Our method requires reliable perception and the
specification or learning of a symbolic description of the preconditions and effects
of the agent’s actions, as well as what object types reveal information about others.
It can naturally scale to solve new tasks beyond ALFRED, as long as they can be
solved using the available skills. This work offers a solid baseline for studying
end-to-end and hybrid methods that aim to generalize to new tasks, including
recent approaches relying on LLMs, but often struggle to scale to long sequences
of actions or produce robust plans for novel tasks.

1 Introduction

Embodied task accomplishment requires an agent to process multi-modal information and plan
over long task horizons. Recent advancements in deep learning (DL) models have made grounding
visual and natural language information faster and more reliable (MBP+21). As a result, embodied
task-oriented agents have been the subject of growing interest (STG+20, YRT+22, WDKM21).
Benchmarks such as the Action Learning From Realistic Environments and Directives (ALFRED)
were proposed to test embodied agents’ ability to act in an unknown environment and follow language
instructions or task descriptions (STG+20). The success of DL has led researchers to attempt end-to-
end neural methods (ZC21, SGT+21). In an environment like ALFRED, these methods are mostly
framed as imitation learning, where neural networks are trained via expert trajectories. However,
end-to-end optimization leads to entangled latent state representation where compositional and
long-horizon tasks are challenging to solve. Other approaches use neural networks to ground visual
information into persistent memory structures to store information (MCR+22, BPF+21). These
approaches rely on templates of existing tasks, making them difficult to generalize to new problems
or unexpected action outcomes. ALFRED agents must navigate long horizons and skill assembly,
operating within a deterministic environment that only changes due to the agent’s actions.
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Long sequential decision problems with sparse rewards are notoriously difficult to train for gradient-
based reinforcement learning (RL) agents. But a symbolic planner with a well-defined domain can
produce action sequences composed of hundreds of actions in less than a fraction of a second for
many tasks. Embodied agents might need to conduct high-level reasoning in domains with long
action sequences. In such scenarios, human experts can opt to model the task within a lifted planning
language. Planning languages such as Planning Domain Definition Language, or PDDL (HLMM19),
is the most natural candidate, given the high scalability of planners that use such languages (GB13).
For instance, we define the tasks of a home cooking robot with actions, such as opening, move-to,
pick-up, put-on, and objects, such as desk, stove, egg found in common recipes.

However, most symbolic planning techniques are relatively slow in partially observable environments
with a rich set of objects and actions. Thus we propose an online iterative approach that allows our
agent to switch between exploration and plan execution. We explicitly model the process of actively
gathering missing information by defining a set of unknown-objects and exploration-actions that
reveals relevant information about an agent’s goal. Instead of planning for possible contingencies, we
use an off-the-shelf classical planner(Hof01) for fully-observable environments to determine whether
the current state has enough knowledge to achieve the goal. If more information is needed, our agent
will switch to a goal-oriented exploration to gather missing information. Our approach can seamlessly
incorporate any exploration heuristics, whether they are learned or specified.

We implemented and evaluated our method on the popular embodied benchmark ALFRED using
only natural language task descriptions. To demonstrate the effectiveness of our method, we use the
same neural networks for both visual and language grounding used in FILM, which was the SOTA
and winner of the 2021 ALFRED challenge (MCR+22). See a comparison with other methods in
Table 1. By replacing FILM’s template-based policies with our egocentric iterative planner, our
method improved FILM’s success rate (SR) by 8.3% (or a 30.0% relative performance increase) in
unseen environments winning the the ALFRED challenge at CVPR 2022 Embodied AI workshop.
Our empirical results show that the performance increase was attributed to a more robust set of
policies that account for goal-oriented exploration and action failures. We also show that our method
can conduct zero-shot generalization for new tasks using objects and actions defined in the ALFRED
setting.

2 ALFRED Challenge

ALFRED is a recognized benchmark for Embodied Instruction Following (EIF), focused on training
agents to complete household tasks using natural language descriptions and first-person visual input.
Using a predetermined set of actions, the agent operates in a virtual simulator, AI2Thor (KMG+17),
to complete a user’s task from one of seven specific classes instantiated in concrete objects. For
example, a task description may be "Put a clean sponge on the table," and instructions that suggest
steps to fulfill the task. The agent must conduct multiple steps, including navigation, interaction
with objects, and manipulation of the environment. Agents must complete a task within 1000
steps with fewer than 10 action failures. We base our approach on task descriptions rather than the
provided instructions. Task complexity varies, and an episode is deemed successful if all sub-tasks
are accomplished within these constraints. Evaluation metrics are outlined in Section 8.

3 Overview of Egocentric Planning for ALFRED

Figure 1 illustrates our proposed method integrating several components to facilitate navigation
and task completion: a visual module responsible for semantic segmentation and depth estimation,
a language module for goal extraction, a semantic spatial graph for scene memorization, and an
egocentric planner for planning and inference. Initially, high-level language task description is
utilized to extract goal information, and the agent is provided with a random exploration budget of
500 steps to explore its surroundings. The random exploration step is used to generate diverse set
of object cluster for further exploration using our planner. Subsequently, at t = 500, the gathered
information from the semantic spatial graph is converted into a PDDL problem for the agent. We
employ a novel open-loop replanning approach, powered by an off-the-shelf planner, to support
further exploration and goal planning effectively.
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Figure 1: Egocentric Planning for ALFRED

To facilitate egocentric planning, we first define the ontology of the planning problems, which
encompasses action schemas, object types, and potential facts schemas. The natural language task
description is subsequently converted into a planning goal. Following the initial exploration phase,
the semantic spatial graph is updated to indicate the new position of the agent and its perceptions.
The algorithm iterates through these steps: a) finding a plan for achieving the goal and returning it
upon success; b) if no plan exists, replacing the goal with another fact, called (explore), associated
with unvisited states. The semantic spatial graph is updated during each iteration to construct the new
initial state of the agent, allowing for an incremental egocentric view of the environment.

4 Embodied Agents: Generalization within Object Types and Skills

Embodied Agents are task solvers in environments linked to a hidden Object-oriented POMDP,
emphasizing objects, actions/skills, and costs rather than rewards. We assume that these objects
mediate perceptions and actions. An Environment is a tuple, E = ⟨AE , TE ,VE , reset, step⟩, with AE
being the set of parameterized actions, TE defining the set of object types and potential values VE ,
reset representing the first observation, and step representing an action execution that returns an
observation and cost. A Task is represented by a tuple, TE = ⟨IE , GE⟩, which sets the initial state and
the goal of the environment via the reset function. Lastly, Embodied Agents employ functions MI to
initialize their mental state and MU to update it, have a policy πM to select actions and a function
GM for deciding when they consider the goal to be achieved.

Agents that tackle a stream of tasks within the same environment have incentives to specialize to the
known object types and their inherent capabilities expressed through parameterized actions. Such
over-specialization provides an opportunity for developing robust agents that can generalize across
different tasks within the same environment. This principle applies to physical and software agents
whose actions are grounded in these objects. Our framework forms a basis for creating flexible
and adaptable agents that can perceive and act upon recognized object types. Further details and
implications are covered in Section D.

5 Egocentric Planning for Embodied Agents

Here, we introduce Egocentric Planning, an approach for embodied agents to solve tasks in Object-
oriented POMDP environments. The approach requires a symbolic planning model that assumes full
observability for testing both action applicability and goal achievement. However, the complexity of
specifying or learning such a symbolic model is simplified by its alignment with the Object-oriented
POMDP environment, object types, and action signatures. Egocentric planning relies on a reasonable
assumption to derive a sensor model, equivalent to a function that updates the distribution of possible
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current states given new observations (APG09). For instance, in a planning domain with objects for
different types and colors, the sensor model can say that cubes and rectangles are red, while ovals and
circles are black. When the agent examines an object, and observes that it is black, the agent should
filter the belief to represent that the object cannot be a cube or a rectangle. In contrast, our method
requires a set of anchor object types that are assumed to reveal information about other objects and
exploration actions that allow visiting new anchor objects, revealing new objects and their properties.
The method can be combined with standalone models for processing images or natural language. The
resulting method is both theoretically sound, assuming that the symbolic planning model is correct,
and practically applicable, as it leverages the speed of symbolic planners.

We present an abstract algorithm that lever-
ages the objects types and action signatures
of the Object-oriented POMDP to ground the
required symbolic planning model.

5.1 Background: Parameterized
Full-Observable Symbolic Planning

In the supplementary material, Section E, we
define Parameterized Full-Observable Sym-
bolic Planning domains and problems. A
planning domain is defined as a tuple PD =
⟨T ,V,P,A,Φ⟩ where T is a finite set of ob-
ject types with V a finite set of values, P is
a finite set of typed predicates, A is a finite
set of typed actions with preconditions and
effects, and Φ is a function that maps each
action and predicates to a tuple expressing
their typed arguments. A planning problem
consists of a planning domain, a finite set of
objects, and descriptions of the initial state
and the goal.

For ALFRED, we rely on Classical Planning,
a kind of full-observable planning that as-
sumes deterministic actions, where precondi-
tions are a set of predicates, and effects are a
pair of sets of predicates called add and delete,
representing the action’s modifications. Cor-
respondingly, a parametric classical planning
problem is a full-observable planning prob-
lem where the initial state and the goal are
conjunctions of grounded predicates.

5.2 Egocentric Planning for Embodied
Agents

Egocentric planning employs a user-specified
fully-observable symbolic planning model to
address tasks in Object-oriented POMDP en-
vironments. In the next section, we detail
the specifics of our ALFRED implementa-
tion. As actions in ALFRED are determinis-
tic, we can apply a classical planner to solve
the associated planning problems. We first
present a general algorithm for parametric
full-observable planning problems.

Algorithm 1
Iterative Exploration Replanning (IER)
Input: Environment ⟨AE , TE ,VE , reset, step⟩
Input: Planning domain PD = ⟨T ,V,P,A,Φ⟩
Input: Anchor Types & Exploration Acts ⟨Ta,X⟩
Input: Mental state Init & Update ⟨MPD

I ,MPD
U ⟩

Input: Task ⟨IE , GE⟩
Output: Successful trace τ or Failure

1: p← reset(IE , GE) ▷ Initial perception
2: O, I, G←MPD

I (p, IE , GE)
3: C ← {o′ | type(o′) ∈ Ta and o′ occurs in I}

▷ C: Observed Anchor Objects
4: τ, solved← [], False
5: while not solved do
6: πsolve ← Solve(⟨PD,O, I, G⟩)
7: if πsolve is None then
8: Ae ← A
9: for o ∈ O and type(o) ∈ Ta do

10: if o /∈ C then
11: I ← I ∪ {(unknown o)}
12: if (unknown o) ∈ I then
13: Ae ← Ae ∪ {ExploreAct(a, o)

for a ∈ X}
14: Ge ← {(explored)}
15: πexplore ←

Solve(⟨PD with Ae,O, I, Ge⟩)
16: return Failure if if πexplore is None
17: for a ∈ πexplore do
18: p, c← step(a)
19: Break if failed ∈ p
20: τ.append(a)
21: O, I ←MPD

U (O, I, a, p, c)
22: if a ∈ X then
23: C ← C ∪ {o′ | type(o′) ∈ Ta

and o′ argument of a}
24: else
25: for a ∈ πsolve do
26: p, c← step(a)
27: Break if failed ∈ p
28: τ.append(a)
29: O, I ←MPD

U (O, I, a, p, c)
30: solved← True if I satisfies G
31: return τ

Algorithm 1 implements our Egocentric Planning approach by constructing a sequence of planning
problems, alternating exploration and task solving. At each step, the agent’s mental state is updated
though sensory input to represent the current state and the known objects that will be part of the
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following planning problem. The agent deems the goal achieved when it finds a plan for achieving
it and executes the plan successfully. Our policy (πM ) leverages a standalone planner for both
exploration and task solving.

Our exploration and sensing strategy hinges on two elements. First, anchor object types Ta ⊆ T
are types of objects that reveal the presence of others. For example, in ALFRED, location is the
sole anchor object type. Second, exploration actions X ⊆ A enables the discovery of previously
unknown objects. For instance, moving to a new location in ALFRED enables observing new items
and locations. This object-centric view of the environment simplifies the creation of a symbolic
model required for planning. The function ExploreAct (a, o) returns a copy of the function where
(unknown o) is added to the precondition, and the effect is extended to cause (explored) to be
true and (unknown o)) to be false.

Our agent’s mental state is represented by a set of objects and an initial state of grounded predicates,
(O, I). The function MPD

I initializes the symbolic goal G and sets (O, I) with the initial objects and
true grounded predicates. The mental state update function, MPD

U , updates (O, I) given the executed
action a, the returned perception p, and the cost c of executing a. For example, the mental state
update in ALFRED adds new objects observed in the perception. It updates the initial state with these
new objects and their properties, including their relationship with non-perceived objects like location.
Both functions maintain the alignment between the current planning state and the environment with
an underlying object-oriented POMDP model.

Specifically, the actions, object types, and the values of the environment may be different from the
planning domain’s. While the ALFRED environment supports movement actions like move-forward
or turn-left, the planning domain might abstract these into a move action. Although the ALFRED
environment does not include a location type, we manually specify it so movable objects can be
associated with a specific location. Indeed, the first initial state I includes a first location and its
surrounding ones. Thus, the agent can revisit the location once it has found a solution involving
that object. While integrating these components may be challenging, it is a hurdle common to all
embodied agent approaches aiming to generalize across components under a constrained training
budget. In general, practical applications will likely monitor the agent’s performance regarding object
types and skills. We discuss the advantages and drawbacks of our approach in Section 9.

6 Approach for ALFRED

6.1 Model Overview

Our method is structurally similar to FILM but we substitutes the SLAM-style map with a graph
structure for object and location information storage (MCR+22). The action controller employs our
iterative egocentric planner that utilizes a semantic location graph for task completion and exploration.
The node of the graph are uniquely labeled by the coordinates (x-coordinate, y-coordinate, facing
direction), and the edges are labeled by actions(turn-right, turn-left, move-forward). Each node
in the graph stores object classes, segmentation masks, and depth information generated by the
vision module. We label the nodes with "known" if the agent has visited the particular location and
"unknown" if the node is only observed. Unknown nodes on the graph are prioritized for exploration
based on objects they contain. This setup promotes more robust action sequences and generalization
beyond the seven ALFRED-defined tasks. At each timestep, the vision module processes an egocentric
image of the environment into a depth map using a U-Net, and object masks using Mask2-RCNN
(HGDG17, LCQ+18). The module then computes the average depth of each object and stores only
those with an average reachable distance less than 1.5. A confidence score, calculated using the
sum of the object masks, assists the egocentric planner in prioritizing object interaction. We employ
text classifier to transform high-level language task description into goal conditions. Two separated
models determine the task type and the objects and their properties. For instance, a task description
like "put an apple on the kitchen table" would result in the identification of a "pick-up-and-place"
task and a goal condition of (on apple table). We convert the FILM-provided template-based
result into goal conditions suitable for our planner. The spatial graph, acting as the agent’s memory
during exploration, bridges grounded objects and the state representation required for our planner.
The graph, updated and expanded by policies produced by our egocentric planner, encodes location
as the node key and visual observations as values, with edges representing agent actions.
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6.2 Egocentric Agent for ALFRED

The object-oriented environment for ALFRED, denoted as E = ⟨AE , TE ,VE , reset, step⟩, includes
actions such as pick-up, put-down, toggle, slice, move-forward, turn-left, and turn-right. The FILM
vision module is trained as flat recognizer of all possible object types. We postprocess such detection
into high level types Object and Receptacle in TE , with corresponding VE indicating subtypes and
additional properties. For instance, the object type includes subtypes like apple and bread, while
Receptacle includes subtypes such as counter-top and microwave. Values incorporate properties like
canHeat, canSlice, isHeated, and isCooled.

The planning domain for ALFRED is denoted PD = ⟨T ,V,P,A⟩. T includes the Location type,
with corresponding values in V representing inferred locations as actions are deterministic. Predicates
in P represent the connection between locations and the presence of objects at those locations. Further
predicates express object properties, such as canHeat, canSlice, isHeated, and isCooled. Unlike
the ALFRED environment, actions in the planning domain are parametric and operate on objects
and locations. Instead of move-forward, the planning domain features a move action, representing
an appropriate combination of move-forward, turn-left, and turn-right. For actions like toggle in
ALFRED, which have different effects depending on the object in focus, we introduce high-level,
parametric actions like heat that can be instantiated with the relevant object. As the actions in
ALFRED are deterministic, we use a classical planner, enabling high scalability by solving one or
two fresh planning problem per iteration of Algorithm 1.

7 Related Work

Visual Language Navigation (VLN) involves navigating in unknown environments using language
input and visual feedback. In this context, we focus on the ALFRED dataset and methods based on the
AI2-Thor simulator, which serve as the foundation for various approaches to embodied agent tasks.
Initial attempts on ALFRED employed end-to-end methods, such as a Seq2Seq model (STG+20),
and transformers (ZC21). However, due to the long episodic sequences and limited training data,
most top-performing VLN models for ALFRED employ modular setups, incorporating vision and
language modules coupled with a higher-level decision-making module (MCR+22, MC22, IO22).
These methods typically rely on hand-crafted scripts with a predefined policy. However, this approach
has several downsides. First, domain experts must manually specify policies for each new task type,
regardless of the changes involved. Second, fixed-policy approaches do not allow the agent to recover
from errors in the vision and language modules, as the predefined policy remains unchanged.

Recently, there has been growing interest in utilizing planning as a high-level reasoning method for
embodied agents. Notable work in this area includes OGAMUS (LSS+22), and DANLI (ZYP+22).
These methods demonstrate the effectiveness of planning in achieving more transparent decision-
making compared to end-to-end methods while requiring less domain engineering than handcrafted
approaches. However, these works primarily tested in simpler tasks or rely on handcrafted planners
specifically tailored to address a subset of embodied agent problems.

Large Language Models (LLMs) have recently been harnessed to guide embodied actions, offering
new problem-solving approaches. Works like Ichter et al.’s SayCan utilize LLMs’ likelihoods and
robots’ affordances, grounding instructions within physical limitations and environmental context
(iBC+23). Song et al.’s (SWW+23) LLM-Planner and Yao et al.’s (YZY+23) ReAct have further
demonstrated the potential of LLMs for planning and reasoning for embodied agents. Alternative
methods not using LLMs, include Jia et al. and Bhambri et al.’s hierarchical methods utilizing task
instructions(JLZ+22, BKMC22). However, the scalability and robustness of these methods is under
study. Our approach, in contrast, is ready to capitalize on the expressivity of objects and actions for
superior generalization in new tasks, ideal for rich environments with multiple domain constraints.
This challenges of using LLM for symbolic planning is noted by Valmeekam et al. (VSM+23) who
showed the weakness of prompting-based approaches, and Pallagani et al. (PMM+22), who highlight
the massive amount of data required for reaching high accuracy.

8 Experiments and Results

The ALFRED dataset contains a validation dataset which is split into 820 Validation Seen episodes
and 821 Validation Unseen episodes. The difference between Seen and Unseen is whether the room
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Test Seen Test Unseen

SR GC PLWSR PLWGC SR GC PLWSR PLWGC
Seq2Seq 3.98 9.42 2.02 6.27 0.39 7.03 0.08 4.26
ET 38.42 45.44 27.78 34.93 8.57 18.56 4.1 11.46
HLSM 25.11 35.15 10.39 14.17 24.46 34.75 9.67 13.13
FILM 28.83 39.55 11.27 15.59 27.8 38.52 11.32 15.13
LGS-RPA 40.05 48.66 21.28 28.97 35.41 45.24 15.68 22.76
EPA 39.96 44.14 2.56 3.47 36.07 39.54 2.92 3.91
Prompter 53.23 64.43 25.81 30.72 45.72 58.76 20.76 26.22

Table 1: Comparison of our method with other methods on the ALFRED challenge. The challenge
declare as winner the method with higher Unseen Success Rate (SR). For all metrics, higher is better.
EPA is our approach. Under the line are approaches submitted after the challenge leader board closed.

environment is available in the training set. We use the validation set for the purpose of fine-tuning.
The test dataset contains 1533 Test Seen episodes and 1529 Test Unseen episodes. The labels for the
test dataset are contained in an online server and are hidden from the users. Four different metrics
are used when evaluating ALFRED results. Success Rate (SR) is used to determine whether the
goal is achieved for a particular task. Goal-condition Success is used to evaluate the percentage of
subgoal-conditions met during an episode. For example, if an objective is to "heat an apple and put it
on the counter," then the list of subgoals will include "apple is heated" and "apple on counter." The
other two metrics are Path Length Weighted by Success Rate (PLWSR) and Path Length Weighted
by Goal Completion (PLWGC), which are SR and GC divided by the length of the episode. For
all the metrics, higher is better. We compare our methods, Egocentric Planning Agent (EPA), with
other top performers on the current ALFRED leaderboard. Seq2Seq and ET are neural methods
that uses end-to-end training (STG+20, ZC21). HLSM, FILM, LGS-PRA are hybrid approach that
disentangles grounding and modeling (BPF+21, MCR+22, MC22, IO22).

8.1 Results

Table 1 presents a comparison of our outcomes with other top performing techniques on the ALFED
dataset. With an unseen test set success rate of 36.07% and a seen test set rate of 44.14%, our EPA
method won the last edition of the ALFRED challenge. The ALFRED leaderboard ranks based
on SR on unseen data, reflecting the agent’s capacity to adapt to unexplored environments. At the
moment of writing, our achievements rank us second on the ALFRED leaderboard. The only method
surpassing ours is Prompter(IO22), which utilizes the same structure as FILM and incorporates
search heuristics-based prompting queries on an extensive language model. However, their own
findings indicate that the performance enhancements are largely attributed to increasing obstacle
size and reducing the reachable distance represented on the 2D map. The other top performer is
LGS-PRA, which is also based on the FILM architecture, that improves performance via techniques
on landmark detection method and local pose adjustment. In contrast, EPA employs a semantic
graph, a representation distinct from the top-down 2D map applied by FILM, HLSM, LGS-PRA and
Prompter. Our findings suggest that the performance boost over FILM and similar methods stems
from our iterative planning approach, which facilitates recovery from failure scenarios via flexible
subgoal ordering. Techniques outlined in LGS-PRA and Prompter should be compatible with our
approach as well. The integration of these techniques with EPA an interesting area to investigate for
future works. Our method exhibits lower PLWSR and PLWGC due to our initial 500 exploration
steps. These steps are convenient for our planner to amass a diverse of of objects clusters and action
angles to determine a proper expandable initial state. Although a pure planning-based exploration
would eventually provide us with all the information required to solve the current task, it tends to
excessively exploit known object clusters before exploring unknown areas. We only save object
information when they are within immediate reach which means the agent is acting on immediate
observations. This is done for convenience of converting observation into symbolic state and to
reduce the plan length generated by the planner. Additional integration with a top-down SLAM map
should help decrease the initial exploration steps, consequently enhancing both PWSR and PLWGC.
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Failure Modes Seen Unseen

Obj not found 19.36 23.54
Collison 9.14 11.34
Interactions fail 7.33 8.98
Obj in closed receptcle 18.21 16.33
Language error 17.92 21.31
Others 28.04 18.5
Table 2: Percentage Error of each types in the
validation set.

Ablation Valid Unseen Valid Seen

SR GC SR GC
Base Method 40.11 44.14 45.78 51.03
w/ gt segment 45.13 49.72 49.22 53.21
w/ gt depth 41.85 46.03 48.98 51.46
w/ gt language 52.29 56.39 60.55 64.76
w/ all gt 58.33 63.71 68.49 73.35
Table 3: Ablation study with ground truth(w/ gt)
of different perceptions

Ablation - parameters Valid Unseen

SR GC PLWSR PLWGC
Base Method 40.11 44.14 2.04 3.71
w/o init observation 30.75 36.16 17.34 21.93
200 init observation 37.3 42.23 12.41 16.34
w/o object pref 32.89 35.95 3.05 3.81
w/o fault recovery 27.31 26.55 2.41 3.36
w/o symbolic planning 3.47 4.61 2.16 2.98

Table 4: Ablation study with different parameters

8.2 Ground Truth Ablation

Our model, trained on the ALFRED dataset, incorporates neural perception modules to understand
potential bottlenecks in visual perception and language, as explored via ablation studies detailed in
Table 3. We observed modest enhancements when providing the model with ground truth depth and
segmentation, with ground truth language offering the most significant improvement (18.22% and
19.87%). Our egocentric planner, responsible for generating dynamic policies through observation and
interaction, proves more resilient to interaction errors compared to policy-template based methods
like HLSM and FILM (MCR+22, BPF+21). Thus, having the correct interpretation of the task
description impacts our method more significantly than ground truth perception. We examined
common reasons for failed episodes using both the seen and unseen datasets. The most prevalent error
(23.54% unseen) is the inability of the agent to locate objects of interest due to failed segmentation or
an unreachable angle. Errors stemming from language processing, where the predicted task deviates
from the ground truth, are given priority. The results can be seen in Table 2.

8.3 Parameter Ablation

Neural vision modules may struggle with out-of-distribution data, such as ALFRED’s unseen envi-
ronments, leading to potential errors in object segmentation and distance estimation. Unlike hybrid
methods like FILM and HLSM, our goal-oriented egocentric planner reassesses the environment
after failure, generating new action sequences. For instance, in a task to hold a book under a lamp, a
failure due to obscured vision can be addressed by altering the action sequence, as illustrated by the
drop in performance to 27.31% in our ablation study (Table 4).

FILM’s semantic search policy, trained to predict object locations using top-down SLAM maps,
differs from our symbolic semantic graph representation, which precludes us from adopting FILM’s
approach. Instead, we hand-crafted two strategies to search areas around objects and receptacles
based on common sense knowledge, which improved our Success Rate by 7.22% with no training.
However, our agent only forms a node when it visits a location, necessitating an initial observation
phase. Neglecting this step resulted in a 9.35% performance drop. FILM’s SLAM-based approach
can observe distant objects, requiring fewer initial observation steps and leading to better PLWSR
and PLWGC. Combining a top-down SLAM map with our semantic graph could mitigate the need
for our initial observation step and improve these scores.

Our algorithm’s frequently re-plans according to new observation which is also essential for real-
world applications using online planning system. Using modern domain-independent planners, such
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as Fast Downward and Fast Forward (Hof01, Hel06), we’ve significantly reduced planning time.
We tested a blind breadth-first search algorithm but found it impractical due to the time taken. A
10-minute cut-off was introduced for each task, which didn’t impact our results due to an average
execution time of under 2 minutes. Yet, this constraint severely lowered the success rate of the blind
search method, only completing 3.47% of the validation unseen tasks (Table 4).

8.4 Generalization to Other Tasks

Our approach allows zero-shot generalization to new tasks within the same set of objects and
relationships, offering adaptability to new instructions without manually specify new task types and
templates. While neural network transfer learning remains challenging in embodied agent tasks,
and FILM’s template system requires hand-crafted policies for new tasks, our egocentric planning
breaks a task into a set of goal conditions, autonomously generating an action sequence. This
allows our agent to execute tasks without transfer learning or new task templates. We have chosen
environments in which all objects for each task have been successfully manipulated in at least one
existing ALFRED task. This selection is made to minimize perception errors. We tested this on five
new task types not in the training data, achieving an 82% success rate, as shown in Table 6, sectionC.2
of the Supplementary Material. We could also adapt to new objects, actions, and constraints, such
as time and resource restrictions. However, the current ALFRED simulator limits the introduction
of new objects and actions. This flexibility to accommodate new goals is a key advantage of our
planning-based approach.

9 Discussion

Our contribution poses Embodied Agents as acting in a Partially Observable Markov Decision Process
(POMDP), which allows us to tackle a broad class of problems, and further expands on the potential
applications of planning-based methods for embodied agents. By adopting this approach, our method
offers a more flexible and adaptable solution to address the challenges and limitations associated with
fixed-policy and handcrafted methods.

We found that using intentional models with a factored representation in embodied agents is crucial.
Whereas a learned world model provides a degree of useful information, their associated policies
might under-perform for long horizon high-level decision-making, unless they are trained on massive
amounts of interactions (SSS+17). Comparing a world model with classical planning uncovers
interesting distinctions. While creating a PDDL-based solution requires an initial investment of
time, that time is amortized in contexts that require quality control per type and skill. On the other
hand, the cost spent on crowdsourcing or interacting with a physical environment can be significant
(STG+20).

Learning classical planning models is relatively straightforward with given labels for objects and
actions (AFP+18, CDVA+22). On the other hand, if we aim to learn a world model, we should
consider the performance at planning time and end-to-end solutions may not be the ideal approach
in this context. When compared to intentional symbolic-based methods, end-to-end strategies tend
to compound errors in a more obscure manner. Furthermore, as learned world models rely on blind
search or MCTS, in new tasks the model might waste search time in a subset of actions that are
irrelevant if action space is large, while symbolic planning can obtain long plans in a few seconds.
We also propose addressing challenging planning tasks using simpler planning techniques, providing
a foundation for more complex planning paradigms. Our method could be further enhanced by
encoding explicit constraints and resources, such as energy.

While other methods might outperform our model in the ALFRED benchmark, they are often limited
in scope. For instance, despite its high unseen success rate, the Prompter model serves as a baseline
rather than a comprehensive solution for embodied agents. Our contribution provides a method that
can adapt to shifts in task distribution without changing the symbolic planning model, while also
supports changes in the agent’s capabilities by modifying the symbolic planning model.

We acknowledge certain limitations in our approach. While we support safe exploration assuming
reversible actions, real scenarios beyond ALFRED could include irreversible actions and failures. Our
model is also sensitive to perception errors, making end-to-end methods potentially more robust in
specific scenarios. Furthermore, our perception model lacks memory, potentially hindering nuanced

9



belief tracking. Despite these challenges, our method offers a promising direction for future research
in embodied agent applications. In section B, we expand on the discussion of our approach.

10 Conclusion and Future Work

Our work introduces a novel iterative replanning approach that excels in embodied task solving,
setting a new baseline for ALFRED. Using off-the-shelf automated planners, we improve task
decomposition and fault recovery, offering better adaptability and performance than fixed instruction
and end-to-end methods. Moving forward, we aim to refine our location mapping for precise
environment understanding, extract more relational data from instructions, and integrate LLMs as
exploration heuristics. We plan to tackle NLP ambiguity in multi-goal scenarios by prioritizing and
pruning goals based on new information. Moreover, we aim to upgrade our egocentric planner to
manage non-deterministic effects, broadening our method’s scope beyond ALFRED. This direction,
leveraging efficient planning methods for non-deterministic actions, is promising for future research
(MBM14).
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A Supplementary Material

This Supplementary Material section provides additional details and discussions to complement our
main paper. In section B, we expand on the discussion of our approach. Section C presents specific
results for the seven tasks of the ALFRED challenge as well as new tasks that can be solved in
the environment. Section D provides a formal definition of Object-Oriented Partially Observable
Markov Decision Processes (OO-POMDPs), while section E provides a detailed background for
our planning approach. Finally, section F provides an in-depth explanation of our method for the
ALFRED challenge.

B Further Discussion

In section 9, we touched on various aspects of our methodology. This section provides more detail on
these areas. Our approach to the ALFRED challenge hinges on egocentric planning and a user-defined
symbolic planning model. We refer to these models as intentional, as they are purposefully crafted by
the user, integrating specific environmental objects and properties. Symbolic models function as a
form of world model that facilitates planning. Some methods seek to learn a latent representation,
but this often comes with a high sample complexity (HPBL23). Modular meta-learning can reduce
the sample complexity (ALPK18, ORCC21, MvSE22). If cost is not a constraint, world models can
become components of efficient strategies trained to solve problems in specific domains (SAH+20).

However, with limited resources or data, generalizing to new situations can be challenging. Take
an embodied agent in an environment (def D.8) with N skills and M types of objects, tasked with
carrying out a sequence of tasks that require plans involving a new combination of k skills and m
types of objects, where n≪ N and m≪M 3. Such setting is within the scope of methods like meta-
learning or continual learning for adapting the latent representation for such unfamiliar environments
(FAL17). The priors in some modular meta-learning approaches are related with our notions of
objects and actions, but their inference algorithms might not scale well for long plans or ignore
that some users might also want intentional modelling (ALPK18, ORCC21, MvSE22). Egocentric
planning, on the other hand, may provide predictable scalability in these scenarios. While the
definition of open-world generalization might be more elusive, our method leans towards systematic
generalization across actions and object types.

Planning using certain latent representations or world models can also prove costly. As explained
by (AKFM22) (LATPLAN), not all factored representations afford the same level of scalability.
The authors of LATPLAN apply variational autoencoders to learn a discrete latent representation,
incorporating additional priors so the representation can be interpreted as a STRIPS symbolic model,
the most basic type of symbolic model we use for egocentric planning. Symbolic models like STRIPS
enable solvers with greater scalability and generalization.

An alternative approach involves methods that learn a symbolic planning model (AFP+18,
CDVA+22). Object-oriented POMDPs are especially suitable as the grounding on objects and
action labels allows for more efficient algorithms (CMW13, MCRW09), an advantage not enjoyed
by the authors of LATPLAN as they only use pairs of images as training data. Learning a symbolic
model helps manage the risk of compounding errors since the model can be debugged and improved.
Real-world applications may require monitoring the agent’s behaviour for specific objects or actions.
Furthermore, specific actions may carry inherent risks that need to be avoided. In general, we antici-
pate that developers of embodied agents will use as much learning as possible, as much intentional
modelling as necessary, and symbols to blend the two of them (KSV+22).

Further integration between symbolic planning models and other ML models might help to reduce
some limitations of our approach. For instance, in ALFRED, searching for a pan should make the
agent head toward the kitchen. If another model like an LLM finds it likely that the pan is in the
kitchen, we can use the scores to produce action cost in a similar way to the integration done in
SayCan, (iBC+23).

Egocentric planning connects to a body of work aimed at tackling expressive planning problems by
harnessing the scalability of classical planners. While egocentric planning focuses on the partial
observability of objects, (APG09, PG09) consider partial observability given a set of possible initial

3While the state space is unknown to the agent, it is aware of the actions and object types.
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states and deterministic actions, and (MMB14) considers full observability but with nondeterministic
actions. Though these strategies can provide complete solutions proven offline, they can also serve
as approximate methods for solving online problems. When planning with probabilistic effects,
replanning assuming randomized determinization of actions can be a strong approach if there are no
dead ends (YFG07).

Our symbolic planning models are extensions of STRIPS, but other options exist. Hierarchical
task networks (HTN) (NAI+03, GA14), for example, offers an alternative to STRIPS as they allow
the specification of plans at various abstraction levels. Sometimes, it is more practical to outline
potential plans using formalisms like linear temporal logic (LTL) formulae (DV13). Nonetheless,
the relationship between these models has been examined, and it is feasible to integrate them with
STRIPS-based planning (CC04, HBB+19, MH13).

C Results in ALFRED’s Task and New Tasks

C.1 ALFRED Task Performance

ALFRED Tasks Valid Unseen Valid Seen

SR GC SR GC

look_at_obj_in_light 53.77 54.27 47.22 30.11
pick_and_place_simple 43.14 47.11 37.15 39.77
pick_cool_then_place_in_recep 46.76 45.82 47.01 48.89
pick_clean_then_place_in_recep 38.77 41.37 38.01 42.21
pick_cool_then_place_in_recep 46.26 46.81 47.21 47.33
pick_heat_then_place_in_recep 37.69 40.50 39.82 41.33
pick_two_obj_and_place 30.33 35.71 27.37 31.21
Table 5: Performance on Valid Unseen and Valid Seen for each task

To analyze the strengths and weaknesses of our approach in different types of tasks, we conducted
further evaluations by task type as in Table 5. Our findings reveal several noteworthy observations.
Firstly, the success rates (SR) and goal completion rates (GC) for the "Pick_two_obj_and_place"
task are lower than the rest, mostly due to these tasks involving more objects and with smaller
masks. The task "look_at_obj_in_light" has the best performance due to the variety of lamp is low
compare to other common objects. Secondly, there is no strong correlation between the number
of interactions involved in a task type and its performance (STG+20). For example, the task
"pick_cool_then_place_in_receptacle" has an extra cooling step compare to "pick_and_place_simple"
but still have better performance. A detailed description of each task can be found in the original
ALFRED paper on page 16 to 19 (STG+20).

C.2 New Task Performance

In section 8.4, we discuss the generalization of our approach to new tasks. The results are summarized
in table 6.

SR GC PLWSR PLWGC
Pickup and Place Two Objects 90.00 93.44 3.71 4.37
Clean-and-Heat Objects 80.00 89.77 2.56 3.90
Clean-and-Cool Objects 85.00 93.38 4.44 4.78
Heat-and-Cool Objects 80.00 89.20 4.01 4.66
Pick and Place Object in Drawer 70.00 77.81 2.59 3.22

Table 6: New tasks

Our approach enable us to reuse the definition of existing models to achieve zero-shot generalization
to new tasks as long as the set of actions, objects and their relationships remain the same. In
many embodied agent applications, agent need to have ability to adapt to new tasks. For instance,
organizing a living room could involve storing loose items on a shelf or arranging them on a table. An
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agent familiar with common household objects and equipped with the skills to handle them should
seamlessly manage both types of cleaning tasks. However, transfer learning for neural networks
remains challenging in the context of embodied agent tasks generalizing across objects and skills.
Similarly, the template system used in FILM demands hand-crafted policies for new task types. The
ALFRED dataset include instructions for each tasks that (STG+20), although our approach does not
use them. In a our egocentric planning formulation, a task can be broken down into a set of goal
conditions that comprise objects of interest. The planner can then autonomously generate an action
sequence to reach these goals. Consequently, our method can independently execute these tasks
without the need for transfer learning or the addition of new task templates. To demonstrate this, we
devised 5 new task types that were not present in the training data. We have chosen environments in
which all objects for each task have been successfully manipulated in at least one existing ALFRED
task. This selection is made to minimize perception errors. These tasks share the same world model
as ALFRED and thus do not necessitate any additional modification beyond specifying a new goal.
We selected environments and layouts from the training set where subgoals required for each new task
type are feasible, ensuring the feasibility of the new task for our agent. Table 6 lists these new tasks
and their success rates. We selected 20 scenarios for each new task and maintained the maximum 10
interaction error as in the ALFRED problem. Our method was able to achieve an impressive overall
success rate of 82% without any additional adjustments beyond the new goal specification. However,
due to the constraints of the ALFRED simulator, we’re unable to experiment with introducing new
objects and action types beyond what’s available. For instance, "heating" in ALFRED is solely
accomplished via a microwave. In real-world scenarios, we could easily incorporate ovens and
actions to operate them with minor alterations to our PDDL domains. Similarly, we could introduce
time and resource restrictions for each action, which are common in many PDDL benchmarks. The
ability to accommodate new goals and constraints is a key advantage of our planning-based approach.

C.3 Computation

Perception and Language module was fine-tuned on a Nvidia 3080. The planning algorithm uses a 8
core Intel i7 CPU with 32 GB of ram. More detailed on traning can be found in (MCR+22)

D Embodied Agents Generalizing within given Objects Types

In this section, we provide further details about embodied agents presented in section 4. Embodied
agents perceive and act in environments to accomplish tasks. Navigating challenges and constraints
imposed by their environment and tasks, these agents ensure safety and adhere to physical restrictions.
Taskable agents rely on their surroundings and inherent capabilities, creating a strong dependency
and often specializing in particular environments. This specialization shapes their cognition and
problem-solving strategies, presenting an opportunity for robust agent design.

We exploit this limitation by focusing on generalization across tasks involving the same object types
and their relationships, applicable to both physical and software agents. Taskable agents possess
specialized capabilities for these object types, as seen in robotics where battery level, body state,
and actuators are distinct variables (CST+22). Object types also serve as inputs/outputs in end-to-
end approaches with learned representations and appear in embodied agents operating in software
environments, using APIs and maintaining internal states. Our symbolic planning approach aims to
provide a basis for designing adaptable and flexible agents that sense and act upon given object types.
We start by defining object types, and entities grounded in these types.

Definition D.1 (Objects and Object Types). An Object Type, denoted as ⟨T ,V⟩, consist of a finite
set of object types T , along with a mapping V : ti → Vi that assigns each type ti ∈ T a set of
possible values Vi. An Object o = (ti, v) is an instance of a type with a specific value, i.e., ti ∈ T
and v ∈ V(ti).
Example D.2 (Object types and Values). An example of an object type is tobjectSeen with values
V(x,y)×Vdirection×VobjectSubtype×Vid where V(x,y) is position in a grid, Vdirection is the direction
the object is facing, VobjectSubtype is the category of the object observed, and Vid is a unique identifier
for the object. Other related examples of object types are tmovable with values VmovableSubtype×Vid×
Vobjectproperties, and tobstacle with values VobstacleSubtype × Vid × Vobjectproperties. Furthermore,
an action pickup with parameters ΦE(a) = (tobjectSeen) is an action that picks up a specific object.
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Object types are used as parameters of entities of actions of Object-oriented POMDP defined, and as
parameters of actions and predicates in planning domains in section E.
Definition D.3 (Typed Entity). Given a set of entities Ξ, object types ⟨T ,V⟩, and a mapping
Φ : ξ →

⋃
k∈N T k. A Type Entity ξ ∈ Ξ is mapped to Φ(ξ) = (t1, t2, ..., tkξ

), with each ti ∈ T .
This mapping associates each entity with a kξ-tuple of object types, corresponding to kξ parameters of
the entity, defining the arity of the entity ξ. We refer to the variables var ∈ {var1, var2, ..., varkξ

}
as the positional parameters of the entity kξ, denoted ξ(var1, var2, ..., vark).
Definition D.4 (Grounded Entity). Given a set of typed entities Ξ, with object types ⟨T ,V⟩, and
a mapping Φ, a Grounded Entity, denoted as ξg for ξ ∈ Ξ, is a parametric object where each type
argument of ξ specified by Φ(ξ) is replaced by an object of the corresponding type. Specifically,
ξg = ξ(o1, o2, ..., okξ

), where each oi = (ti, vi) with vi ∈ V(ti). The set of all grounded entities is
denoted by Ξg .

Now we define the environment where the embodied agent operates as a Partially Observable Markov
Decision Process (POMDP) with costs. Cost POMDPs are related to classical MDPs but feature
partial observability and use costs instead of rewards (MK12, GB13).

The literature sometimes confound the environment with the underlying the POMDP, but we want
to make explicit what is available to the agent. Thus, while our underlying model is a POMDP, we
consider agents that can aim to generalize without being fully aware of the distribution of future tasks,
except for the actions and object types that are explicit in the environment. Therefore, we abuse
slightly the notation to annotate with the objects defined below with the environment, denoted E .
Definition D.5 (Cost POMDP). A Cost POMDP is a tuple ⟨SE , AE , TE , CE , PE , ZE⟩, where SE is
a set of states, AE is a finite set of actions, TE : SE × AE × SE → [0, 1] is the transition function,
CE : SE×AE → R > 0 is the cost function, PE is a set of perceptions, and ZE : SE×AE×PE×SE →
[0, 1] is the sensor function.

Object-oriented POMDP is an extension of a Cost POMDP that includes objects and their properties
to be used for expressing perceptions and actions.
Definition D.6 (Object-oriented POMDP). An Object-oriented POMDP Γ, represented by
⟨SE , AE ,ΦE , TE , CE , PE , ZE , TE ,VE⟩, extends a Cost POMDP by incorporating a predefined set
of Object Types ⟨TE ,VE⟩. It defines the set of perceptions PE where a perception p ∈ PE is a finite
set of objects {o1, o2, . . . , om}, and the set of typed actions AE defined for the object types ⟨TE ,VE⟩
and the map ΦE .

In this context, Grounded Actions refer to grounded entities, where the set of entities is the actions
AE . Values in object-oriented POMDPs can be dense signals like images or sparse signals like object
properties. Values can have any structure, so they can refer to values in the domain of other types.
Indeed, Object-oriented POMDPs can express Relational POMDPs (WK10, WJK08, SB09, TGD04,
WPY05, DNR+20). However, our approach emphasizes the compositionality of the objects and their
properties.

Agents interact with the POMDP through an environment. Given a task, we initialize the environment
using the task details. The agent receives the tasks and acts until it achieves the goal or fails due to
some constraint on the environment. The agent achieves a goal if, after a sequence of actions, the
environment’s hidden state satisfies the goal.
Definition D.7 (Task). Given an Object-oriented POMDP Γ, a Task is a tuple TE = ⟨IE , GE⟩, where
IE is an object that the environment interpret for setting the initial state, and GE is a set of goal
conditions expressed as objects {g1, g2, . . . , gn}, with each gi being an instance of an object.
Definition D.8 (Object-oriented Environment). Given a hidden Object-oriented POMDP Γ, an Object-
oriented Environment, or just Environment, is a tuple E = ⟨AE , TE ,VE , reset, step⟩, where AE , TE ,
and VE are as previously defined, reset : TE → PE is a function that takes a task TE = ⟨IE , GE⟩, resets
the environment’s internal state using IE and returns an initial observation, and step : Ag

E → PE × R
is the interaction function that updates the environment’s internal state according to the execution of
a grounded action ag , for a ∈ AE , and returns an observation and a cost.

In some environments, IE might be opaque for the agent. In others, it might containg information not
used by the environment like user’s preferences about how to complete a task. However, we abuse
this notion and refer to IE as the initial state of the environment.
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Separating Object-oriented POMDPs from environments allows us to consider the scope of the
generalization of our agents within the same POMDP. While the agent cannot see the state space
directly, it is aware of the actions and the object types.
Definition D.9 (Embodied Agent). Given an environment E = ⟨AE , TE ,VE , reset, step⟩, and a task
TE = ⟨IE , GE⟩, an Embodied Agent is a tuple ⟨MI , πM ,MU , GM ⟩, where MI : PE×IE×GE →M
is a function that takes an initial observation, a task, and returns the initial internal state of the agent,
πM :M→ Ag

E is the agent’s policy function that maps mental states to a grounded action in Ag
E ,

MU :M×Ag
E × PE × R→M is the mental state update function receiving a grounded executed

action, the resulting observation, and the cost, and GM :M→ [0, 1] is the goal achievement belief
function that returns the belief that the agent has achieved the goal based on its mental state M .

Algorithm 2 provides a general framework for
an agent’s execution process. By instantiat-
ing the policy, mental state update function,
and goal achievement belief function using
appropriate techniques, the agent can adapt
to a wide range of environments and tasks.
Although new tasks can set the agent in un-
seen regions of the state space SE , the agent
remains grounded on the known types and
the actions parameterized on object types, TE .
They offer opportunities for generalization by
narrowing down the space of possible policies
and enabling compositionality. The agent’s
mental state M can include its belief state,
internal knowledge, or other structures used
to make decisions. The policy πM can be a
deterministic or stochastic function, learned
from data or user-specified, or a combination
of both. As the agent has an internal state, its
policy can rely on a compact state or on the
history of interactions.

Algorithm 2 Agent Execution
Input: Environment ⟨AE , TE ,VE , reset, step⟩
Input: Agent ⟨MI , πM ,MU , GM ⟩
Input: Task ⟨IE , GE⟩
Input: Probability threshold θ
Output: Successful trace τ or Failure

1: p← reset(IE , GE)
2: τ = [] ▷ Empty trace
3: M ←MI(p, IE , GE)
4: while GM (M) < θ do
5: ag = a(o1, o2, ..., oka) ∼ πM (M,Ag

E)
▷ where a in AE and oi are objects.

6: τ.append(ag)
7: p′, c← step(ag)
8: if failed ∈ p′ then
9: return Failure

10: M ←MU (M,ag, p′, c)

11: return τ

The agent starts in the initial state set from IE and aims to achieve the goal GE . While the agent
does not know the true state of the environment, agents can aim to generalize across actions and the
object types as they are always available. While we prefer policies with lower expected cost, our
main concern is achieving the goal. It is possible that a task might be unsolvable, possibly because
of actions taken by the agent. We assume that failures can be detected, for instance, by receiving a
special observation type failed . We further assume that after failure, costs are infinite, and failed is
always observed.

The Iterative Exploration Replanning (IER), Algorithm 1 in section 5, is a instance of algorithm 2.
Instead of using a parameter θ, it considers the problem solved when it obtains a plan that achieves
the goal.

E Detailed Background: Parameterized Full-Observable Symbolic Planning

In this section, we describe the background definitions of parameterized full-observable symbolic
models mentioned in section 5.1. We define planning domains and problems assuming full ob-
servability, including classical planning that further assumes deterministic actions, also known as
STRIPS (GNT04, GB13). Planning domains and problems rely on typed objects (Def D.1), as
object-oriented POMDPs, but planning actions include a model of the preconditions and effects.
Definition E.1 (Parametric Full-Observable Planning Domain). A parametric full-observable plan-
ning domain is a tuple PD = ⟨T ,V,P,A,Φ⟩, where ⟨T ,V⟩ is a set of object types, P is a set of
typed predicates and A is a set of typed actions, both typed by the object types and the map Φ. Each
action a has an associated PREa, expressing the preconditions of the action, and EFFa, expressing its
effects. For each grounded action a(o1, o2, ..., ok) ∈ Ag , the applicability of the grounded action in a
state s is determined by checking whether the precondition PREa is satisfied in s. The resulting state
after applying the grounded action is obtained by updating s according to the effect update EFFa.
The specification of EFFa is described below.
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While the values in both parametric full-observable planning domains and object-oriented POMDPs
can be infinite (def D.6), the values used in concrete planning problems are assumed to be finite. As a
consequence, the set of grounded actions of a planning problems is finite (def D.4).
Definition E.2 (Parametric Full-Observable Planning Problem). A parametric full-observable plan-
ning problem is a tuple ⟨PD,O, I, G⟩, where PD = ⟨T ,V,P,A,Φ⟩ is a parametric full-observable
planning domain, O is a finite set of objects, each associated with a type in T , I is a description of
the initial state specifying the truth value of grounded predicates in Pg, G is a description of the
goal specifying the desired truth values of grounded predicates in Pg , where Pg are the predicates P
grounded on object types ⟨T ,V⟩ and the map Φ encoding their typed arguments.

This definition covers a wide range of symbolic planning problems featuring full observability
including probabilistic effects (KHW95). In particular, the definition can be specialized for classical
planning problems, where the actions are deterministic, corresponding to STRIPS, to the most studied
symbolic model (GB13).

For classical planning, given an action a ∈ A parameterized by a list of object types
a(t1, t2, ..., tk), their precondition or effect are formulas γ expresse in terms of the variables
var ∈ {var1, var2, ..., vark} that refer to positional parameters of the action. We denote the
grounded formula γ(o1, o2, . . . , ok) as γ with each variable vari that occurs in γ is replaced by
corresponding objects oi.
Definition E.3 (Parametric Classical Planning Domain). A parametric classical planning domain
is a parametric full-observable planning domain where each action a ∈ A has preconditions PREa,
and an effect update EFFa represented as a tuple (ADDa, DELa) of add and delete effects, all sets
of predicates in P . Given a grounded action a(oarg) with oarg = o1, o2, . . . , ok, the precondition
PREa is satisfied in a state s if PREa(oarg) ⊆ s. The effect update EFFa describes the resulting state
as (s \ DELa(oarg)) ∪ ADDa(oarg) after applying the action.
Definition E.4 (Parametric Classical Planning Problem). Given a parametric classical planning
domain PD, a parametric classical planning problem is a parametric full-observable planning
problem where I and G are conjunctions of predicates in P (equivalently viewed as sets).

As Egocentric Planning relies on replanning over a sequence of related planning problems, it is
convenient to define some operations required for exploration, as the agent discovers more objects.
They allow us to implement the function ExploreAct in Algorithm 1.
Definition E.5 (Precondition Extension). Given a parametric full-observable planning problem and
an action a ∈ A, extending the precondition PREa with ∆PREa, denoted PREa ⊕∆PREa, is a new
precondition that is satisfied in a state s if PREa and ∆PREa are both satisfied in s.
Definition E.6 (Effect Extension). Given a parametric full-observable planning problem and an action
a ∈ A, extending the effect EFFa with (∆ADDa,∆DELa), denoted EFFa ⊕ (∆ADDa,∆DELa), is a
new effect that applied to a state s results the new state s′ that is like s but with modifications EFFa,
then ∆DELa is not true in s′, and ∆ADDa is true in s′, in that order, assuming that neither ∆DELa

nor ∆ADDa appear in EFFa.

With these operations we can define the Egocentric Planning algorithm for parametric full-observable
planning problems. For instance, in the case of probabilistic planning the preconditions can be defined
as in classical planning, so the precondition update is the same. The effect update of probabilistic
actions is a probability distribution over the possible effects. However, extending the effect with a new
effect is straightforward as the new effect must enforce that Pr(ADDa|s) = 1 and Pr(DELa|s) = 0.

For classical planning, the precondition extension is the union of the original precondition and the new
precondition as both are a set of predicates. The EFFa of classical planning actions (ADDa, DELa) is
a tuple of sets of predicates, so updating the effect amounts to updating both sets of predicates.
Definition E.7 (Precondition Extension Classical). For parametric classical planning problems,
extending the precondition PREa ⊕∆PREa is PREa ∪∆PREa.
Definition E.8 (Effect Update Classical). For parametric classical planning problems, an update to
the effect (ADDa, DELa) with (∆ADDa,∆DELa) is (ADDa ∪∆ADDa, DELa ∪∆DELa).

For ALFRED, as the planning domain in classical, ExploreAct (a, o) creates a copy of a extended
with a new precondition (unknown o) so a can only be applied if o is still unknown. The effects
are extended by deleting (unknown o) and adding (explored), so applying the exploration action
satisfies the goal (explored).
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F Approach: Additional Details

In this section, we provide additional details on our approach discussed in section 6. Both the
environment and the symbolic planning model consider objects and parametric actions, but they are
represented differently.

For instance, our approach involves a vision model that perceives in a scene objects of known classes,
such as apple or fridge, including their depths and locations (see sections 4 and D). Similarly,
the planning domain includes corresponding object types, such as AppleType and FridgeType
(see sections 5.1 and E). When the agent perceives an apple at location l1, the algorithm creates
a fresh object o1 for the apple, sets its type to (objectType o1 AppleType), and its location to
(objectAtLocation o1 l1). Additionally, the domain contains information about what can be
done with the apple, such as (canCool FridgeType AppleType). Likewise, while the ALFRED
environment contains actions like toggle, the planning domain contains actions like coolObject,
which is parameterized on arguments such as the location, the concrete object to be cooled, and
the concrete fridge object. Finally, if the task provided in natural language requests to cool down
an apple, the planning problem goal contains, for instance, (exists (isCooled ?o)), which is
satisfied when some object has been cooled down.

The remainder of this section is structured as follows. First, we provide additional details on the
Language and Vision modules, including the specific classes they detect and how they are utilized.
Next, we elaborate on the semantic spatial graph and its role in generating the agent’s mental model,
which tracks object locations as the agent perceives and modifies the environment. We then provide
specific details on the planning domain used for ALFRED, which completes the elements used in
our architecture depicted in Figure 1. Finally, we conclude the section with additional details on the
egocentric planning agent that won the ALFRED challenge.

F.1 Language and Vision Module

Table 7: List of Objects
alarmclock apple armchair baseballbat basketball
bathtub bathtubbasin bed blinds book
boots bowl box bread butterknife
cabinet candle cart cd cellphone
chair cloth coffeemachine countertop creditcard
cup curtains desk desklamp dishsponge
drawer dresser egg floorlamp footstool
fork fridge garbagecan glassbottle handtowel
handtowelholder houseplant kettle keychain knife
ladle laptop laundryhamper laundryhamperlid lettuce
lightswitch microwave mirror mug newspaper
ottoman painting pan papertowel papertowelroll
pen pencil peppershaker pillow plate
plunger poster pot potato remotecontrol
safe saltshaker scrubbrush shelf showerdoor
showerglass sink sinkbasin soapbar soapbottle
sofa spatula spoon spraybottle statue
stoveburner stoveknob diningtable coffeetable sidetableteddybear
television tennisracket tissuebox toaster toilet
toiletpaper toiletpaperhanger toiletpaperroll tomato towel
towelholder tvstand vase watch wateringcan
window winebottle

F.1.1 Language Module

We used a BERT-based language models to convert a structured sentence into goal conditions for
PDDL (DCLT19). Since the task types and object types of defined in the ALFRED metadata, we
use a model to classify the type of task given a high-level language task description listed in Table 9
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Table 8: List of Receptacles
Bathtub Bowl Cup Drawer
Mug Plate Shelf Sink
Box Cabinet CoffeeMachine CounterTop
Fridge GarbageCan HandTowelHolder Microwave
PaintingHanger Pan Pot StoveBurner
DiningTable CoffeeTable SideTable ToiletPaperHanger
TowelHolder Safe BathtubBasin ArmChair
Toilet Sofa Ottoman Dresser
LaundryHamper Desk Bed Cart
TVStand Toaster

Table 9: List of Goals
pick_and_place_simple pick_two_obj_and_place
look_at_obj_in_light pick_clean_then_place_in_recep
pick_heat_then_place_in_recep pick_cool_then_place_in_recep
pick_and_place_with_movable_recep

and a separate model for deciding objects and their state based on the output of the second model
in Table 7 and Table 8. For example, given the task description of "put an apple on the kitchen
table," the first model will tell the agent it needs to produce a "pick-up-and-place" task. The second
model will then predict the objects and receptacle we need to manipulate. Then the goal condition
will be extracted by Tarski and turn in to a PDDL goal like (on apple table) using the original task
description and output of the both models. We use the pre-trained model provided by FILM and
convert the template-based result into PDDL goal conditions suitable for our planner. Although
ALFRED provides step-by-step instructions, we only use the top-level task description since they are
sufficient to predicate our goal condition. Also, our agent needs to act based on the policy planner,
which makes step-by-step instructions unnecessary. This adjustment could also make the agent more
autonomous since step-by-step instructions are often not available in many embodied agent settings.

F.1.2 Vision Module

The vision module is used to ground relevant object information into symbols that can be processed by
our planning module. At each time step, the module receives an egocentric image of the environment.
The image is then processed into a depth map using a U-Net, and object maks using Mask-RCNN.
(HGDG17, LCQ+18). Both masks are WxH matrices where W, and N are the width and height of
the input image. Each point in the depth mask represents the predicted pixel distance between the
agent and the scene. The average depth of each object is calculated using the average of the sum of
the point-wise product of the object and the depth mask. Only objects with an average reachable
distance smaller than 1.5 meter is stored. The confidence score of which our agent can act on an
object is calculated using the sum of their mask. This score gives our egocentric planner a way to
prioritize which object to interact with.

F.2 Semantic Spatial Graph

The spatial graph plays the role of an agent’s memory during exploration and bridges the gap between
grounded objects and the planner’s state representation requirements. The exploration employs
an egocentric agent who only has direct access to its local space where action can be executed
within a distance threshold of 1.5 meters. The key for each node is encoded as location, with visual
observations being the values. The edges represent the agent’s actions, comprising four specific
actions: MOVEAHEAD, MOVEBACK, TURNLEFT, and TURNRIGHT, with movement actions having
a step size of 0.25 meter and turning actions featuring a turn angle of 90◦. This spatial graph is
updated and expanded over time through policies generated by our egocentric planner, with each node
storing object classes, segmentation masks, and depth information produced via the vision module.
Fig. 2 shows an example of a semantic spatial graph.
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Figure 2: Example of a Semantic Spatial Graph after partial Exploration. The agent is at one of the
nodes.

The spatial graph undergoes continuous updates and expansions as a result of the policies generated
by our egocentric planner. It involves the extraction and storage of objects within the graph, subject
to a confidence score threshold of 0.8. Objects that meet or exceed this confidence score are deemed
reliable and considered for storage. Each node within the graph maintains a record of various attributes
associated with the objects, including object classes, segmentation masks, and depth information. The
object classes provide information about the category or type of each object, allowing for efficient
categorization and analysis. The segmentation masks of the extracted objects are stored as a list of
pixel coordinates. These masks outline the boundaries of each object within the captured visual data.
By storing the masks in this format, we can later retrieve and utilize the spatial information of each
object during subsequent analyses or interactions. Moreover, the distance to each object is calculated
by leveraging the predicted distance of the top 100 pixels with reference to the depth mask generated
by the U-net model. The U-net model is responsible for producing a depth mask that estimates the
distances of various points within the scene. By employing the predicted distance values of the top
100 pixels associated with each object, we obtain an approximate measure of its distance from the
egocentric viewpoint. Actionable objects are treated as affordances at each node, allowing the agent
to perform desired actions. Nodes with objects of interest are ranked based on the confidence scores
outlined earlier output by the MaskRCNN.

F.3 Egocentric Algorithm for ALFRED

The egocentric planning algorithm for ALFRED uses location as the only anchor types Ta, and
the move action as the only exploration action X . Consequently, exploration plans employ move
actions to visit unexplored locations, revealing new objects visible from such locations. As the
agent explores, the mental model creates new objects and adds them to the initial state, facilitating
the incremental construction of a semantic spatial graph, which maps the environment and object
locations. An ALFRED task, TE = ⟨IE , GE⟩, is characterized by a goal that corresponds to one of
the seven tasks detailed in section 2, and involves specific predicates for the task-related objects. The
goal is expressed as an existential formula over potential objects, as it refers to objects not visible
from the initial state (Listings 2).
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We also implemented some ALFRED-specific optimizations. For example, we mitigate the risk of
executing irreversible actions by only attempting them after devising a plan projected to achieve the
goal. This strategy implies that some actions are unavailable during the exploration phase. For each
time step, our egocentric planner will produce a goal or exploration action depending on whether the
agent has sufficient information to achieve its goal. The replanning loop repeats when an action fails.
Priority are given to unknown location based on objects of interest for a particular task and number
of total objects found in an area. They are ranked base on number of such objects. Information are
gathered for each action taken which is stored in the semantic map. In order to reduce the amount
of overall exploration required at the online planning stage, we allow our agent to first conduct
500 random exploration movements. The semantic graph after exploration is used as the initial
state for our egocentric planning setup. To enhance efficiency, we tailor the planning domain to the
specific task, disregarding actions unlikely to contribute to reasonable plans to achieve the goal. This
optimization can be automatically implemented via reachability analysis, a technique commonly used
in classical planning to prevent grounding actions irrelevant to achieving the goal from the initial
state (Hof01).

F.4 PDDL Example

Below we provide examples assuming that the natural language description of the task is "heat
potato in the microwave and put the potato on the table." We start by generating the planning setup
for the egocentric planner, given the task identified as "pick-heat-then-place-in-recep." The objects
involved in this manipulation are classified as "MicrowaveType", "PotatoType" and "TableType". The
egocentric planner will eventually produce a sequence of actions to accomplish the desired task. In
this case, the steps might include picking up the potato, heating it, and then placing it on the table.

Listings 1 and 2 show the PDDL domain and problem files for the example task. In a PDDL
domain for classical planning, both predicates and actions arguments are expressed as a list of
arguments, each one a variable with an optional type. For instance, (conn ?x1 - location ?x2
- location ?x3 - movement) express a predicate conn with three arguments: two locations and
a kind movement: ahead, rotate-left or rotate-right. In a PDDL problem for classical planning, object
constants are associated with an optional type, and the initial state is a list of predicates grounded on
existing constants. For instance, l1 l2 l3 - location means three constants of type location.
The initial state could be (and (at l1) (conn l1 l2 ahead)). An action (MoveAgent ?from
?to - location ?dir - movement) has as a precondition that the agent is at the location ?from
and both locations are contiguous in the direction ?dir. Executing the action sets to false that the
agent is at the location ?from, and sets to true that the agent is at the location ?to. Classical plans in
PDDL are sequences of actions grounded on constants. For instance, a first possible action might be
(MoveAgent l1 l2 ahead), leading to the state (and (at l2) (conn l1 l2 ahead)). For
an introduction to PDDL see (HLMM19).

Listing 1: ALFRED PDDL domain file
1 (define (domain alfred_task)
2 (:requirements :equality :typing)
3 (:types
4 agent - object
5 location - object
6 receptacle - object
7 obj - object
8 itemtype - object
9 movement - object

10 )
11

12 (:predicates
13 (conn ?x1 - location ?x2 - location ?x3 - movement)
14 (move ?x1 - movement)
15 (atLocation ?x1 - agent ?x2 - location)
16 (receptacleAtLocation ?x1 - receptacle ?x2 - location)
17 (objectAtLocation ?x1 - obj ?x2 - location)
18 (canContain ?x1 - itemtype ?x2 - itemtype)
19 (inReceptacle ?x1 - obj ?x2 - receptacle)
20 (recepInReceptacle ?x1 - receptacle ?x2 - receptacle)
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21 (isInReceptacle ?x1 - obj)
22 (openable ?x1 - itemtype)
23 (canHeat ?x1 - itemtype ?x2 - itemtype)
24 (isHeated ?x1 - obj)
25 (canCool ?x1 - itemtype ?x2 - itemtype)
26 (isCooled ?x1 - obj)
27 (canClean ?x1 - itemtype ?x2 - itemtype)
28 (isCleaned ?x1 - obj)
29 (isMovableReceptacle ?x1 - receptacle)
30 (receptacleType ?x1 - receptacle ?x2 - itemtype)
31 (objectType ?x1 - obj ?x2 - itemtype)
32 (holds ?x1 - obj)
33 (holdsReceptacle ?x1 - receptacle)
34 (holdsAny)
35 (unknown ?x1 - location)
36 (explore)
37 (canToggle ?x1 - obj)
38 (isToggled ?x1 - obj)
39 (canSlice ?x1 - itemtype ?x2 - itemtype)
40 (isSliced ?x1 - obj)
41 (emptyObj ?x1 - obj)
42 (emptyReceptacle ?x1 - receptacle)
43 )
44

45 (:action explore_MoveAgent
46 :parameters (? agent0 - agent ?from0 - location
47 ?loc0 - location ?mov0 - movement)
48 :precondition (and (atLocation ?agent0 ?from0)
49 (move ?mov0) (conn ?from0 ?loc0 ?mov0)
50 (unknown ?loc0) (not (explore)))
51 :effect (and
52 (not (atLocation ?agent0 ?from0))
53 (atLocation ?agent0 ?loc0)
54 (not (unknown ?loc0))
55 (explore))
56 )
57

58 (:action MoveAgent
59 :parameters (? agent0 - agent ?from0 - location
60 ?loc0 - location ?mov0 - movement)
61 :precondition (and (atLocation ?agent0 ?from0)
62 (move ?mov0) (conn ?from0 ?loc0 ?mov0))
63 :effect (and
64 (not (atLocation ?agent0 ?from0))
65 (atLocation ?agent0 ?loc0))
66 )
67

68 (:action pickupObject
69 :parameters (? agent0 - agent ?loc0 - location ?obj0 - obj)
70 :precondition (and (atLocation ?agent0 ?loc0)
71 (objectAtLocation ?obj0 ?loc0)
72 (not (isInReceptacle ?obj0)) (not (holdsAny)))
73 :effect (and
74 (not (objectAtLocation ?obj0 ?loc0))
75 (holds ?obj0)
76 (holdsAny))
77 )
78

79 (:action pickupObjectFrom
80 :parameters (? agent0 - agent ?loc0 - location
81 ?obj0 - obj ?recep0 - receptacle)
82 :precondition (and (atLocation ?agent0 ?loc0)
83 (objectAtLocation ?obj0 ?loc0) (isInReceptacle ?obj0)
84 (inReceptacle ?obj0 ?recep0) (not (holdsAny)))
85 :effect (and
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86 (not (objectAtLocation ?obj0 ?loc0))
87 (holds ?obj0)
88 (holdsAny)
89 (not (isInReceptacle ?obj0))
90 (not (inReceptacle ?obj0 ?recep0)))
91 )
92

93 (:action putonReceptacle
94 :parameters (? agent0 - agent ?loc0 - location ?obj0 - obj
95 ?otype0 - itemtype ?recep0 - receptacle
96 ?rtype0 - itemtype)
97 :precondition (and
98 (atLocation ?agent0 ?loc0)
99 (receptacleAtLocation ?recep0 ?loc0)

100 (canContain ?rtype0 ?otype0) (objectType ?obj0 ?otype0)
101 (receptacleType ?recep0 ?rtype0)
102 (holds ?obj0) (holdsAny) (not (openable ?rtype0))
103 (not (inReceptacle ?obj0 ?recep0)))
104 :effect (and
105 (not (holdsAny))
106 (not (holds ?obj0))
107 (isInReceptacle ?obj0)
108 (inReceptacle ?obj0 ?recep0)
109 (objectAtLocation ?obj0 ?loc0))
110 )
111

112 (:action putinReceptacle
113 :parameters (? agent0 - agent ?loc0 - location ?obj0 - obj
114 ?otype0 - itemtype ?recep0 - receptacle
115 ?rtype0 - itemtype)
116 :precondition (and
117 (atLocation ?agent0 ?loc0)
118 (receptacleAtLocation ?recep0 ?loc0)
119 (canContain ?rtype0 ?otype0) (objectType ?obj0 ?otype0)
120 (receptacleType ?recep0 ?rtype0) (holds ?obj0)
121 (holdsAny) (openable ?rtype0)
122 (not (inReceptacle ?obj0 ?recep0)))
123 :effect (and
124 (not (holdsAny))
125 (not (holds ?obj0))
126 (isInReceptacle ?obj0)
127 (inReceptacle ?obj0 ?recep0)
128 (objectAtLocation ?obj0 ?loc0))
129 )
130

131 (:action toggleOn
132 :parameters (? agent0 - agent ?loc0 - location ?obj0 - obj)
133 :precondition (and (atLocation ?agent0 ?loc0)
134 (objectAtLocation ?obj0 ?loc0) (not (isToggled ?obj0)))
135 :effect (and
136 (isToggled ?obj0))
137 )
138

139 (:action heatObject
140 :parameters (? agent0 - agent ?loc0 - location ?obj0 - obj
141 ?otype0 - itemtype ?recep0 - receptacle
142 ?rtype0 - itemtype)
143 :precondition (and
144 (atLocation ?agent0 ?loc0)
145 (receptacleAtLocation ?recep0 ?loc0)
146 (canHeat ?rtype0 ?otype0)
147 (objectType ?obj0 ?otype0)
148 (receptacleType ?recep0 ?rtype0)
149 (holds ?obj0) (holdsAny))
150 :effect (and
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151 (isHeated ?obj0))
152 )
153 )

Next, Listings 2 shows the generated the planning problem based on the initial observation. This
involves specifying the initial state of the environment and the goal that we want to achieve through
the planning process.

Listing 2: ALFRED PDDL problem file with task achievement goal
1 (define (problem problem0)
2 (:domain alfred_task)
3

4 (:objects
5 agent0 - agent
6 AlarmClockType AppleType ArmChairType BackgroundType
7 BaseballBatType BasketBallType BathtubBasinType BathtubType
8 BedType BlindsType BookType BootsType BowlType BoxType

BreadType
9 ButterKnifeType CDType CabinetType CandleType CartType

10 CellPhoneType ... - itemtype
11 f0_0_0f f0_0_1f f0_0_2f f0_0_3f f0_1_0f - location
12 MoveAhead RotateLeft RotateRight - movement
13 emptyO - obj
14 emptyR - receptacle
15 )
16

17 (:init
18 (emptyObj emptyO)
19 (emptyReceptacle emptyR)
20 (canContain BedType CellPhoneType)
21 (canContain CounterTopType PotatoType)
22 (canContain CoffeeTableType StatueType)
23 (canContain DiningTableType PanType)
24 ....
25 (openable MicrowaveType)
26 (atLocation agent0 f0_0_0f)
27 (move RotateRight)
28 (move RotateLeft)
29 (move MoveAhead)
30 (canHeat MicrowaveType PlateType)
31 (canHeat MicrowaveType PotatoType)
32 (canHeat MicrowaveType MugType)
33 (canHeat MicrowaveType CupType)
34 (canHeat MicrowaveType BreadType)
35 (canHeat MicrowaveType TomatoType)
36 (canHeat MicrowaveType AppleType)
37 (canHeat MicrowaveType EggType)
38 (conn f0_0_1f f0_0_0f RotateLeft)
39 (conn f0_0_3f f0_0_2f RotateLeft)
40 (conn f0_0_0f f0_0_1f RotateRight)
41 (conn f0_0_1f f0_0_2f RotateRight)
42 (conn f0_0_2f f0_0_3f RotateRight)
43 (conn f0_0_0f f0_1_0f MoveAhead)
44 (conn f0_0_2f f0_0_1f RotateLeft)
45 (conn f0_0_3f f0_0_0f RotateRight)
46 (conn f0_0_0f f0_0_3f RotateLeft)
47 (unknown f0_1_0f)
48 )
49

50 (:goal
51 (exists
52 (? goalObj - obj ?goalReceptacle - receptacle)
53 (and (inReceptacle ?goalObj ?goalReceptacle)
54 (objectType ?goalObj PotatoType)
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55 (receptacleType ?goalReceptacle TableType)
56 (isHeated ?goalObj)))
57 )
58 )

As not plan was found for the problem in Listing 2, the goal is changed to exploration in listing 3.

Listing 3: ALFRED PDDL problem file with exploration goal
1 (:goal
2 (and (explore ) (not (holdsAny )))
3 )
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