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Abstract—A dynamic multi-scale spatiotemporal graph recur-
rent neural network (DMST-GRNN) model has been introduced,
which is leveraged to use human motion prediction on a 3D
skeleton-based human activity dataset. It offers a multi-scale ap-
proach to spatial & temporal graphs using multi-scale graph con-
volution units (MGCUs) to describe the human body’s semantic in-
terconnection. The proposed DMST-GRNN is an encoder-decoder
framework where a series of MGCUs are used as encoders to learn
spatiotemporal features and a novel graph-gated recurrent unit lite
(GGRU-L) for the decoder to predict human pose. Extensive exper-
iments have been carried out with two datasets, Human3.6M and
CMU Mocap, where both short and long videos were considered
to validate the performance of the proposed model. The DMST-
GRNN model outperforms the existing baseline on the Human3.6M
datasets by 11.95% and 7.74% of average mean angle errors (avg
MAE) for short and long-term motion prediction, respectively.
Similarly, CMU Mocap datasets, the DMST-GRNN model predicts
future posture more accurately than the previous best approaches
by 2.77% and 5.51% of average mean angle errors (avg MAE) for
short and long-term motion prediction, respectively. A comparison
analysis was also presented with other measures like mean angle
error, prediction loss and standard deviation. A separate discussion
has been included to analyze the effect of different multiscale on
spatial and temporal graphs, along with the impact of MGCU unit
counts.

Index Terms—CMU Mocap, DMST-GRNN, graph GRU lite,
human3.6M, human activity, multi-scale, skeleton, spatiotemporal.

I. INTRODUCTION

NOWADAYS human body 3D skeleton is used to estimate
the pose of the human body based on the previous activity.

Human motion prediction is becoming increasingly popular
since it enables computers to comprehend human activity. Such
a strategy (skeleton-based human motion prediction) might be
used in various computer vision and robotics applications, in-
cluding human-computer interaction, autonomous driving, and
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Fig. 1. Three body scales on H3.6M with 20, 10, and 5 scales, respectively.

pedestrian tracking [1], [2]. Real-world human motion pre-
diction is challenging since the movement is unpredictable,
flexible, and non-linear in nature. Many approaches have been
put forward to address this problem, such as the traditional
state-based and deep-network approaches, which provide group
posture features to learn the motion sequence [3]. Although these
approaches came up with satisfactory results and tried to handle
inherent challenges, studying spatial or temporal relationships
among the human body joints in this domain is still an oppor-
tunity. The temporal relationships represent inter-frame interac-
tion between displaying the continuous movements, while the
spatial relations record the underlying pose. Spatial features
are to be calculated by determining the spatial deviation of
each frame of the activity sequence. The temporal feature is
associated with or changes over time. So, it seems promising
to estimate the temporal change of each frame of the activity
sequence.

Traditional approaches are a single-scale model that fails to
represent a functional set of joints or high-order connections.
Discussing human motion, like running, involves the large limbs
moving together, while other acts, like smoking, include the
wrist moving very little or the elbow could result differently
in future poses. This is attracted to depict human motions by
its scalable attention and then multi-scale correlations used for
human motion prediction. Multi-scale has a huge advantage
over solving problems with important features at multiple scales
of time or space. Multi-scale shows the various scale of body
joints depending upon the joints/key points value of the human
body. Fig. 1 depicts the multi-scale body parts of the H3.6M
dataset. In this view, a spatial network comes up as an appealing
solution which covers each frame’s body joints and internal
interactions [4].

In this research study, a multi-scale spatiotemporal graph
recurrent neural network (DMST-GRNN) has been intro-
duced. The fundamental principle of the DMST-GRNN is to
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Fig. 2. Two multi-scale graphs temporal variation from one scale to another
scale, capturing local and distinct relations.

use multi-scale spatial and temporal graphs to learn the se-
mantic interconnection of a human body for kinematic feature
extraction. The spatial & temporal representation of the skele-
ton image. The multi-scale graph convolution unit (MGCU) is
developed to extract spatial and temporal features at each scale,
i.e. discussed in Fig. 2. A detailed discussion has been made in
Section IV. However, the major contributions of the article are
as follows:
� The DMST-GRNN model introduces an encoder-decoder

architecture, where the encoder incorporates MGCU and
the decoder incorporates GGRU-L as crucial components.
A decoder with a GGRU-L unit has been employed for the
first time for human motion prediction.

� The proposed DMST-GRNN model employs a minimum
of four MGCU units in the encoder, ensuring fewer pa-
rameters in the decoder without compromising overall
performance.

� The encoder of the proposed model utilises various num-
bers of multiscale graph convolution units (MGCU) to
effectively capture the spatio-temporal feature relationship
of human motion, resulting in optimal performance de-
scription.

� Two large datasets, i.e. Human3.6M [5], [6] & CMU Mo-
cap [7], [8] employed to validate proposed DMST-GRNN
model for human activity prediction.

� The model is validated with various measures like mean
angle error (MAE), average MAE and prediction loss.

� A separate discussion is included to analyse the effect of
different multiscale graphs on spatial and temporal aspects
and the impact of MGCU unit counts.

The remaining article is organized as follows: Section II dis-
cussed a brief review of related work for the graph’s human ac-
tivity prediction and visualization learning. Section III presents a
methodology and the statistical underpinnings of our approach.
Section IV illustrates a detailed study of the DMST-GRNN
model: a multi-scale spatiotemporal graph computational unit.
Section V is about the datasets used for the experiment. Finally,
the model’s experiment results & validations are presented and
followed by the conclusion in Sections VI and VII, respectively.

II. RELATED WORK

Nowadays, visual information-based human motion predic-
tion is a hot topic among researchers. 3D human motion pre-
diction comprises estimating future postures from a previous

movement is a problem in computer vision and artificial in-
telligence, which can aid computers in understanding human
actions. It aims to develop temporal representations that can
perform short and long-term human motion prediction tasks. In
recent research, deep recurrent neural networks (RNNs) have
been utilised to simulate motion [9]. Here, the author focuses
on the issues like the apparent discrepancy between the actual
training result and the first predicted frame during the continuous
motion of a human body. Therefore, a CNN-based sequence-to-
sequence (seq2seq) architecture [10] was employed to resolve
this issue. It utilises a fixed-size context window, which proves
inadequate for capturing the short-term dynamics of human
body joint motion. Given human joint motion’s highly dynamic
and variable nature, accurately capturing these motions within
a short time interval presents a challenge for any CNN-based
model [11]. It is important to note that CNN treats each input
independently and does not retain information from previous
inputs or values, resulting in significant memory loss [12].
Furthermore, the model presented in [10] requires actual training
data to effectively learn complex patterns in the input sequence,
which was unavailable in their research. In conclusion, the
model must capture spatial-temporal information in short-term
intervals, leading to poor performance in short-term prediction
tasks.

A hypothesis discussed in [13] proposed a motion con-
text modelling by summarising the historical human motion
concerning the current prediction. A modified highway unit
(MHU) [13] is proposed to eliminate motionless joints and
estimate the next pose, given the motion context. In this research,
many activities are highly uncertain with different activity
classes because of the Restricted Boltzmann Machines (RBMs)
limitation. Therefore, the observed information cannot provide
enough evidence for modelling and predicting. [14] suggested
replacing it with Long short-term memory (LSTM), Gated re-
current unit (GRU) & Bi-LSTM [14] based encoder-recurrent-
decoder network. A non-linear transformation has been em-
ployed to encode the posture feature and decode the LSTM
output. The results claim it’s a better performance in under-
standing the temporal dynamics of human motion. RNN-based
models like LSTM and GRU struggle with learning long-term
sequences and capturing complex human behaviour [15]. They
treat all inputs equally and fail to determine the significance
within a context. Additionally, these models have difficulty
predicting future movements based on short-term data and cap-
turing non-linear patterns in human motion [13]. This limits
their accuracy in identifying short-term and long-term motion
patterns.. Their article doesn’t validate their experimental result
on the large state-of-the-art dataset. Therefore, the result of
models is not capable of identifying short-term & long-term
motion prediction.

Deep learning research aims to generalize graph neural net-
works (GNN) for motion prediction. In research work [16],
Graph convolution networks (GCNs) were introduced, combin-
ing CNNs with GNN. GCN is classified into temporal and spatial
perspectives, addressing locality and incorporating spectrum
analysis. Then ST-GCN model is introduced in [17], [18] while
applying CNN filters to the spatial domain on 1-neighbour
nodes. The input data scale remains constant across joints due to
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weight sharing. However, the ST-GCN model couldn’t validate
results on state-of-the-art datasets, excluding the discussion on
short and long-term human motion prediction.

A research article [19] discussed a recurrent neural network
with skeleton joint co-attention that captures spatial coherence
and temporal evolution in spatio-temporal space. However, it
struggles with generalizing to new or different motion patterns.
In [20], a self-renewing convGRU architecture predicts skeleton
motion by capturing temporal and spatial dependencies. The
model incorporates a long-term semantic vector to improve the
accuracy of generated motion sequences, but it may face chal-
lenges in capturing long-term dependencies in complex motions.

The study [21] introduced a hypothesis that not all body
joints are equally crucial for activity detection. Using recurrent
temporal encoding, an end-to-end action-attending network can
describe irregular skeletons as undirected attribute graphs. The
model is powerful enough to adaptively predict separate inco-
herent action units for various activities. The effectiveness of
the author’s model was assessed using medium and large-scale
datasets. Different joints contribute to human activity recogni-
tion for the skeleton-based system in different ways. The human
posture couldn’t be scaled up excessively in this model because it
only represented a single spatial and temporal scale in a network.

The article in [4] proposed dynamic multi-scale graphs to rep-
resent the human body and introduce dynamic multi-scale graph
neural networks (DMGNN) with an encoder-decoder architec-
ture for human motion prediction on 3D skeleton-based data. It
develops a multi-scale graph computational unit (MGCU) in the
encoder for feature extraction and a graph-based GRU (G-GRU)
in the decoder for future posture generation. A multi-scale net-
work with nodes representing body parts at different scales and
edges representing pairwise relationships between body parts is
addressed in [4]. Human motion prediction is a sequence-based
method that needs an attention model, a limitation of this re-
search.

Therefore, a hypothesis [1] discussed human motion pre-
diction on 3D skeleton data with an attention model. This
article introduces a multi-scale spatiotemporal graph neural
network (MST-GNN) with an encoder-decoder architecture. It
also creates multi-scale spatiotemporal graphs representing the
performance of different human body movements. Multi-scale
spatiotemporal graph computational units (MST-GCU) develop
features in the encoder, while graph attention-based GRU (GA-
GRU) generates poses in the decoder. A multi-scale spatiotem-
poral graph represents the spatiotemporal relationships among
human motion based on 3D skeleton data. There are three distinct
intuitions. The first is that while moving, human bodies are
subject to a few limitations; the second is that locations obtained
at several timestamps are inertial and correlated; the third is that
many motions include a group’s joints at temporal intervals.
These three findings point to the requirement for a multi-scale
spatiotemporal graph to be developed to analyse the dynamics
of human activity. This research created an issue in updating
weights for spatiotemporal modelling because of the manual
modification in weight.

In light of various literature surveys, several limitations
have been identified that can be addressed by employing the

proposed model. These limitations include the underutilisation
of spatio-temporal information, the complexity of the model
used to learn spatio-temporal features, limited opportunities for
learning more comprehensive features, and a weaker ability
to handle long-term context dependencies. To overcome these
shortcomings, the proposed model utilises an encoder-decoder
architecture. The encoder facilitates the effective extraction of
spatial-temporal features, while the decoder enables accurate
human motion prediction with fewer parameters compared to
state-of-the-art models. The proposed encoder-decoder model
has demonstrated its ability to learn non-linear short and long-
term sequences.

III. PROBLEM FOUNDATION & MATHEMATICAL FORMULATION

This section helps to understand the mathematics behind
predicting human motion pose based on historical motion.
3D skeleton-based human action prediction aims to create a
sequence of observation-generated future postures. The body
joints of the human body help to estimate human motion, i.e.
mathematically described here, P t ∈ RJ∗3 = posture matrix
that logs J body joint’s three-dimensional (3D) positions at
time t. P= [P 1, P 2 . . . . . . PN ] ∈ RN∗J∗3 = Pose matrices are
concatenated into a three-mode tensor using a series of N
timestamps. P [t,i,c] = ith body joint’s cth coordinate value at
timestamp t.

Therefore, PHist = [P (−N+1), . . . . . . . . . P (0)] ∈ RN∗J∗3

is tensor that represents N historical poses, PFut =
[P (1), . . . . . . . . . P (N)] ∈ RN∗J∗3 is tensor that represents N
future poses. So PFut = Fpred(P

hist). To approach the ground
truth PFut in motion prediction, a trainable predictor Fpred is
presented, which creates a series of predicted poses PFut =
Fpred(P

hist).

A. Multi-Scale Spatial & Temporal Graph

A multi-scale spatiotemporal network is based on a skele-
ton representing human motion’s spatiotemporal relationships.
There are three different intuitions; first, human bodies are
regularised by a few spatial restrictions while moving; second,
positions taken at different timestamps are inertial and corre-
lated; third, many motions include a functional set of joints
and some temporal segments. These three findings suggest the
potential introduction of a multi-scale spatiotemporal graph to
study the dynamics of human activities.

A spatiotemporal graph at the first joint scale should be pre-
sented initially to define the multi-scale graph. G0(V0, E0, A0)
is a spatiotemporal graph that simulates the inter-joint relations,
where A0 ∈ R(NJ)(NJ) is the graph adjacency matrix, E0 is
the edge set carrying the spatiotemporal relations, and V0 is the
vertex set with |V0|=NJ joints. Then rearrangeP and combine
the first two dimensions to form a posture matrix supported on
this spatiotemporal graph, P ∈ R(NJ)∗3 [1], [22].

A multi-scale spatiotemporal graph consists of R+ 1 lay-
ered graphs based on the spatiotemporal graph at the joint
scale. We abstract additional R graphs, in addition to the ini-
tial as G0(V0, E0, A0), G1(V1, E1, A1), . . .GR(VR, ER, AR)
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Fig. 3. (a) Single-scale spatial skeleton. (b) Multi-scale spatial skeleton.
(c) Single-scale temporal skeleton. (d) Multi-scale temporal skeleton.

includesN1J1, . . ., NRJR vertices. In the rth scale, every vertex
in Vr represents a collection of body joints.

Initially, two challenges were identified for building the pro-
posed DMST-GRNN structure: 1) Fixed spatiotemporal graphs
cannot accommodate various human motions because of implicit
and action-related limits on bodies. 2) The links between space
and time could produce a vast, difficult graph to store and
interpret in real-time prediction. The first issue may be handled
using trainable multi-scale spatiotemporal graphs, which capture
flexible connections in both the spatial and temporal domains. In
this regard, the graph adjacency matrix at every scale is modified,
which best matches the implicit associations in movements. The
second issue may be solved by assuming that the spatiotemporal
graph is decomposable. The hybrid spatial-temporal graph was
converted into a spatial and temporal graph. The adjacency
matrix Ar is the Cartesian product of the temporal and spatial
graphs: Ar = Sr ⊗ Tr, where Ar is the Cartesian product of
Sr ∈ RJr∗Jr , and Tr ∈ RTr∗Tr are the adjacency matrices of
spatial and temporal graphs. In comparison, Tr indicates the
temporal dependencies across time at a joint, andSr displays the
spatial relationships between joints at a frame. Fig. 3 discussed
the single-scale & multi-scale spatial skeleton and single-scale
& multi-scale temporal skeleton.

B. Spatial-Temporal Graph Convolution

A spatiotemporal graph convolution obtains features from a
spatial-temporal network at a different scale. So a spatiotem-
poral graph A = S ⊗ T ∈ R(NJ)∗(NJ) at a single scale and
M ∈ R(NJ)∗D is a spatiotemporal matrix. Furthermore, (1)
represents spatiotemporal graph convolution (M ′), which is
being generated by convolving Graph filter (G) with input M ,
spatiotemporal graph A.

M ′ = G ∗A M = G ∗S⊗T M (1)

where,M= Spatiotemporal matrix,M ′ = Spatiotemporal graph
convolution,G=Graph filter fuse the inputM on the spatiotem-
poral graph A.

Fig. 4. MGCU: single-scale graph convolution blocks (SS-GCB) and cross-
scale fusion blocks(CS-FB).

Fig. 5. Architectural difference between (a) The proposed DMST-GRNN
model; (b) the existing MST-GNN model.

IV. DMST-GRNN FRAMEWORK

In this research, a novel dynamic multi-scale spatiotemporal
graph recurrent neural network (DMST-GRNN) was proposed
on the multi-scale spatiotemporal graph to estimate future 3D
postures through activity class [3]. Primarily, it consists of two
phases, an encoder and a decoder. Furthermore, the encoder
offers two components: single-scale graph convolution block
(SS-GCB) and cross-scale fusion block (CS-FB), as depicted
in Fig. 4. At the same time, Graph Gated Recurrent Unit Lite
(GGRU-L) serves as the decoder’s core part. The DMST-GRNN
is an encoder-decoder architecture in which the encoder captures
prominent history information, and the decoder is used to predict
future poses. The key component of the encoder is a multi-scale
graph computational unit (MGCU) [1] that estimates movement
characteristics passed to the multi-scale spatiotemporal graph.
Fig. 5 depicts the architectural differences that include the
number of MCGU units utilized (4 in DMST-GRNN and 6 in
MST-GNN) and the type of GRU used in the decoder (GGRU-L
in DMST-GRNN and GA-GRU in MST-GNN). So following
are the different modules involved in DMST-GRNN.
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Fig. 6. Encoder framework of DMST-GRNN model. In the encoder, 4 MGCU is used for extracting spatiotemporal features.

A. Encoder

The encoder attempts to give relevant motion states by extract-
ing semantics from observed motions. As Encode and decoder
work in sequence, the encoder’s output becomes an input for
a decoder. An Encoder is a combination of various MGCUs.
Each MGCU fuses the multi-scale graph creation feature with
a single-scale graph convolution block and cross-scale fusion
block. Fig. 6 discussed the complete architecture of the encoder
part of DMST-GRNN.

In MGCU, concatenate the motion sample of each scale, i.e.
scale 1, scale 2 & scale 3, and extract spatiotemporal character-
istics using a cascade of Multi-scale graph convolutional units
(MGCUs). The multi-scale network of each MGCU is trained
individually. As a result, the topology of a graph may change
dynamically between MGCUs. The output characteristics are
weighted and summed to integrate the three scales for compre-
hensive semantics. Then broadcast the lower body components
to coincide with their spatially relevant joints since the number
of body components varies between sizes. The three scale’s
broadcast output includes Hs1, Hs2, Hs3 ∈ RT ′×J×Dh ; so the
summed feature is represented in (2).

H = Hs1 + λ(Hs2 +Hs3) (2)

where, λ = hyper-parameter to balance different scales. Equa-
tion (2) helps to find an average temporal pooling to remove
the time dimension of H and obtain H ∈ RJ×Dh , which joins
historical information as the initial state of the decoder.

The final architecture of the encoder combines the SS-GCBs
& CS-FB. The four MGCUs were included in the architecture
of the encoder. Extensive experiments were performed to decide

the optimal number of MGCUs (four), which has been discussed
in Section VI (Result and Experiments). The first two contain
the SS-GCBs & CS-FBs, while the last two MGCUs use only
the SS-GCB [4]. The encoder modules are as follows:

1) Single-Scale Graph Convolution Block (SS-GCB): It rep-
resents the graph convolution and temporal convolution. The
proposed model uses four cascaded SS-GCBs employed to
obtain spatiotemporal features. Each SS-GCB unit includes
a ReLU activation function, batch normalization layer, and
dropout operation. It is denoted as ReLU → BN → Dropout.

2) Cross-Scale Fusion Block (CS-FB): The study focused on
multi-scale features and their contribution. In this view, CS-
FB has been adopted to fuse multi-scale features. It is used to
minimise the dimension & feature vector of the body component
through temporal convolution. These feature vectors are passed
from the four multi-layer perceptrons (MLP) to learn feature
embedding for two body scales & then employ the softmax layer
to calculate edge weight in a corresponding cross-scale graph.

B. Decoder

Future postures are predicted successively by the decoder.
The decoder of the architecture includes three modules, i.e.
Multi-layer perceptron (MLP), graph-gated recurrent unit lite
(GGRU-L) and Difference operator (Diff). The core part of a
decoder is our proposed GGRU-L, which reproduces motion
state for sequential motions. MLP is used to learn features
from the encoder part, and the output is treated as the input for
GGRU-L. The difference operator is used to update hidden state
motion. Fig. 7 depicts the complete framework of the decoder
part of DMST-GRNN. Then use an output function (fpred()) to
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Fig. 7. Decoder framework of DMST-GRNN model. In the decoder, graph GRU-Lite is used to predict human motion.

produce future posture displacement. To forecast the next frame
and apply the displacement to the input posture. The decoder
works at frames t are mentioned in (3).

X̂(t+1) = X̂(t) + fpred

(
GGRU − L

(
diff2

(
X̂(t)

)
,H(t)

))
(3)

where, fpred(.) = output function, H(0) = Initial hidden state,
H(t) = Updated hidden state

1) Graph Gated Recurrent Unit Lite(GGRU-L): GGRU-L is
the main key component of the decoder used for future poses.
A GGRU-L’s prominent role is to modify hidden states using
a trainable graph as a guide. Using a trainable graph, the key
is to regularise the states to generate future postures [25]. Let
AH ∈ RJ×J = adjacent matrix of the built-in graph, which is
developed to create dynamic edges and is initially initialized
with the skeleton graph, and H0 ∈ RM×Dh = initial state of
GGRU-L At the time t > 0, GGRU-L takes input as the initial
hidden state H0, Hidden state at t H(t), and 3D skeleton-based
information input: I(t) ∈ RJ×d. Then, GGRU-L (I(t), H(t))
discussed in (4), (5), (6), and (7).

r(t) = σ
(
rhid

(
AHH(t)WH

))
(4)

u(t) = σ
(
uhid

(
AHH(t)WH

))
(5)

c(t) = tanh
(
r(t) � chid

(
AHH(t)WH

))
(6)

H(t+1) = u(t) �H(t) +
(
1− u(t)

)
� c(t) (7)

where, rhid(.), uhid(.), chid(.) = trainable linear mapping, WH

= trainable weight, r(t) = reset gate, u(t) = update gate,
H(t+1)= updated candidate hidden state.

Each GGRU-L cell creates the state for the next frame by
applying a graph convolution to the hidden state for information
propagation. The GGRU-L & MLP produced output functions
are combined in the decoder’s final architecture. It helps to
predict future postures and estimate the motion between two
consecutive frames.

V. DATASET USED

Extensive tests are performed on two large datasets, i.e.,
Human 3.6M [5], [6], CMU Mocap [7], [8], to validate our
DMST-GRNN model for human activity prediction. The results
of the experiments demonstrate that DMST-GRNN outperforms
most existing techniques for short and long-term human motion
prediction [1]. So following is the description of the dataset:

A. Human 3.6m (H3.6M)

In the H3.6M dataset, seven participants conduct fifteen dif-
ferent activities. Each subject has 32 joints and utilizes those
with non-zero values after transforming the joint locations into
exponential maps (20 joints remain). Downsample all sequences
by two along the time axis. The model training was done on six
individuals and evaluated on a particular video from the fifth
subject, following the next paradigms [5], [6].

B. CMU Motion Capture (CMU Mocap)

The five general action classes in CMU Mocap are human
interaction, environment interaction, locomotion, physical activ-
ities & sports, and situations & scenarios. Each action has thirty-
eight joints and preserves twenty-six joints. The eight actions
selected by this dataset are “basketball”, “basketball signal”,
“directing traffic”, “jumping”, “running”, “soccer”, “walking”,
and “washing windows” to preserve consistency [7], [8].

VI. RESULT & EXPERIMENT

Extensive experiments were carried out to validate the model
using two state-of-the-art datasets, i.e., Human3.6m and CMU
Mocap. Furthermore, two sorts of videos (short-term and long-
term motion) were used to test the learning capability of the
model. The following sections have discussed the underlying
protocol of the experiment setup.

A. Short-Term & Long-Term Motion Prediction

In the light of existing literature, videos of lengths up to 400
milliseconds and 1000 milliseconds have been referenced as
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TABLE I
MEAN ANGLE ERRORS (MAE) OF STATE-OF-THE-ART METHODS FOR SHORT-TERM & LONG-TERM MOTION PREDICTION ON 15 ACTIONS OF H3.6M

short-term and long-term. There are 15 and 8 activities from
the Human 3.6M and CMU Mocap datasets, respectively, used
for short-term motion prediction. Similarly, the same protocol
setup was employed for long-term motion prediction (15 and 8
activities from Human 3.6M and CMU Mocap dataset). How-
ever, the model was also validated with videos of other different
milliseconds, such as 80 ms, 160 ms, and 320 ms, that are treated
as short-term.

Tables I and IV represent the mean angle error (MAE) for
various state-of-the-art methods on the 15 and 8 activities of the
Human3.6M and CMU Mocap, respectively. Table III depicts the
standard deviation error for the 15 activities of DMST-GRNN
on a human 3.6m dataset. Furthermore, Tables II and V show
the Average MAE with different video lengths (80 ms, 160 ms,
320 ms, 400 ms, 1000 ms) on Human3.6M and CMU Mocap re-
spectively. The proposed model has been evaluated with various
spatial and temporal scale values, and it has been discovered
that it performs best with scales I, II, and III. The underlying

TABLE II
AVERAGE MEAN ANGLE ERRORS (MAE) OF STATE-OF-THE-ART METHODS

FOR SHORT-TERM & LONG-TERM MOTION PREDICTION ON 15 ACTIONS OF

H3.6M

setup and result of the validation are explained in the following
section with Tables VI and VII.

These experimental results favour the proposed DMST-
GRNN model. It performs exceptionally well on both datasets
compared to other state-of-the-art approaches. The Human3.6
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TABLE III
STANDARD DEVIATION ANGLE ERRORS OF DMST-GRNN FOR SHORT-TERM &

LONG-TERM MOTION PREDICTION ON 15 ACTIONS OF H3.6M

Fig. 8. Walking motion prediction on the short & long-term video with H3.6M.

Fig. 9. Smoking motion prediction on the short & long-term video with
H3.6M.

million dataset improved performance by 11.95% at 400 ms
and 7.74% at 1000 ms, a higher increase in performance (avg
MAE) than the best available method [1] discussed in Table II.
Similarly, the CMU Mocap dataset yields 3% at 400 ms and
6% at 1000 ms using an average MAE, and the best available
method [1] is discussed in Table V.

B. Motion Prediction Visualization

Figs. 8 and 9 show future poses for “walking” and “smok-
ing” motion respectively, on short-term and long-term videos
of H3.6M. It clearly visualizes that the DMST-GRNN model
forecast is substantially better than others. This visualization
result was constructed based on the MAE with the H3.6M
dataset. Figs. 8 and 9 illustrate some red boxes over human
poses in baseline methods that indicate a slightly high deviation
from the ground truth of human poses. These deviations were

discovered during prediction using the MAE values for different
video lengths on the H3.6M dataset.

C. Effect of Multiple Scales on Spatial & Temporal Graphs

Spatial graphs are classified into scales like 20, 10, 5, 3, 2 to
validate multi-scale graph representation. The Average MAE is
depicted in Table VI based on various spatial scales. The DMST-
GRNN model offers the best results with 20, 10, 5 nodes. For
example, spatial scales use 20,10,5 vertices means the 20, 10,
5 nodes (key points) are extracted from the human body for
generating spatial scale features.

Similarly, temporal graphs are classified into scales like 1, 1/2,
1/3, 1/4, 1/5 to validate multi-scale graph representation. The
Average MAE is depicted in Table VII with different temporal
scales. The DMST-GRNN model offers the best results with
1, 1/2, 1/3 length size. For example, temporal scales use 1,
1/2, 1/3 times of lengths of the original video for the temporal
scale features. It is worth noting that spatial and temporal scale
features must pass together in the model. In this regard, the best
results have been observed with three scales (I, II, III) for both
temporal and spatial, as depicted in Tables VI and VII.

D. Effect of the MGCU’s Count

The MGCU unit is an integral part of the proposed framework
and plays an essential role in overall performance. The proposed
framework has offered four MGCUs, as presented in Section IV
and Fig. 6. The study has included an extensive experiment
with various combinations of MGCU units, and results are
summarized in Table VIII. It is very much evident a better
performance with four M-GCU units.

The study conducted experiments on encoders with varying
numbers of MGCU units and found that using four units yielded
the best performance for accurate human motion prediction.
Employing fewer units resulted in underutilising features, while
employing more units led to overfitting. It is important to note
that these findings are domain-specific and may not be general-
izable to other applications.

E. Perfomance With Prediction Loss

The DMST-GRNN evaluated on prediction loss, which states
the error for the model’s current state over different iterations.
Fig. 10 depicts the prediction loss of short-term & long-term
motion prediction of the H3.6M and CMU Mocap.

The DMST-GRNN model utilizes four MGCU units in the
encoder, maintaining performance while reducing parameters in
the decoder, resulting in lower computational requirements. The
computational complexity can be quantitatively measured using
Giga floating-point operations (GFLOPs) [26], which several
factors into account, such as input size and model implementa-
tion details. The DMST-GRNN model’s GFLOPs value is 236.7,
indicating its computational efficiency.

It is worth mentioning that the GGRU-L employed in the
decoder, as discussed in Section IV, is responsible for improved
performance. Because it transmits fewer parameters but is more
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TABLE IV
MEAN ANGLE ERRORS (MAE) OF STATE-OF-THE-ART METHODS FOR SHORT-TERM & LONG-TERM MOTION PREDICTION ON 8 ACTIONS OF CMU MOCAP

TABLE V
AVERAGE MEAN ANGLE ERRORS (MAE) OF STATE-OF-THE-ART METHODS

FOR SHORT-TERM & LONG-TERM MOTION PREDICTION ON 8 ACTIONS OF

CMU MOCAP

TABLE VI
AVERAGE MEAN ANGLE ERRORS OF DMST-GRNN MODEL AT VARIOUS

SPATIAL SCALES FOR SHORT-TERM & LONG-TERM MOTION PREDICTION ON

H3.6M DATASET

TABLE VII
AVERAGE MEAN ANGLE ERRORS OF DMST-GRNN MODEL AT VARIOUS

TEMPORAL SCALES FOR SHORT-TERM & LONG-TERM MOTION PREDICTION ON

H3.6M DATASET

TABLE VIII
AVERAGE MEAN ANGLE ERRORS OF DMST-GRNN MODEL WITH DIFFERENT

NUMBERS OF MGCUS FOR SHORT-TERM & LONG-TERM MOTION PREDICTION

Fig. 10. Prediction Loss in short-term & long-term motion prediction on
H3.6M dataset and CMU Mocap.

concrete, robust, and precise to MLP, further, it is helpful in the
training to optimize results on the complex function used in the
DMST-GRNN model.

VII. CONCLUSION AND FUTURE WORK

Dynamic multi-scale spatiotemporal graph recurrent neural
network (DMST-GRNN) is an encoder-decoder architecture
that describes the human body and is further employed to
predict human motion based on 3D skeletons. This architecture
was proposed with four multi-scale graph computational units
(MGCU) in the encoder to obtain features & graph GRU lite
(GGRU-L) in the decoder to estimate poses. In light of the
findings, the suggested model performs better than most of
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the existing short and long-term prediction techniques. Two
cutting-edge datasets, Human3.6m and CMU Mocap, were used
to validate the DMST-GRNN model with various evaluation
metrics like Mean Angle Error (MAE), Average MAE, and Pre-
diction Loss. The DMST-GRNN model outperforms the current
best available baseline on the Human3.6m datasets by 11.95%
and 7.74%, in terms of average mean angle errors for short-
and long-term motion prediction, respectively. Similar results
were observed with CMU Mocap datasets. This work may help
in many promising areas like generating realistic animations of
human motion, anticipating a user’s intentions with the machine,
controlling the motion of robotic systems, predicting the motion
of sports person, and predicting imbalance motion in the context
of the medical field and generate realistic animations in movies
& videos.

The DMST-GRNN model relies on large annotated datasets
for effective training and may struggle to generalise to unfamiliar
human motion scenarios due to limited underutilized data. Ad-
ditionally, the quality of automatically extracted features plays
a crucial role in the model’s performance, but incorporating
hand-crafted or domain-specific features could enhance its ca-
pabilities.

It is worth to suggest to employ additional evaluation metrics
such as the percentage of correct keypoint (PCKh), mean per
joint positional error (MPJPE), and loss functions like cross-
entropy loss and objective loss for robust evaluation of human
pose. Furthermore, semantic segmentation techniques can also
extract human poses and may help in human motion prediction.
To make the DMST-GRNN model quick and memory-efficient,
the attention-based transformer technique and hierarchical tem-
poral memory idea can be applied.
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