
Published as a conference paper at ICLR 2024

HOW TO CAPTURE HIGHER-ORDER CORRELATIONS?
GENERALIZING MATRIX SOFTMAX ATTENTION TO
KRONECKER COMPUTATION

Josh Alman
Columbia University
New York, NY, USA
josh@cs.columbia.edu

Zhao Song
Adobe Research
Seattle, WA, USA
zsong@adobe.com

ABSTRACT

In the classical transformer attention scheme, we are given three n×d size matrices
Q,K, V (the query, key, and value tokens), and the goal is to compute a new n× d
size matrix D−1 exp(QK⊤)V where D = diag(exp(QK⊤)1n). Here, exp() is
applied entry-wise and 1n denotes a length-n vector whose entries are all ones.
Intuitively, attention computation captures pairwise information between words
in a sentence, but not higher-order information. Indeed, recent work Sanford et al.
(2023) has shown that attention units cannot solve simple problems about detecting
triples of connected words.
In this work, we study a generalization of attention which captures triple-wise
correlations. The generalization is based on computations involving tensors defined
by tuples of words. More formally, given five n×d size matrices Q,K1,K2, V1 and
V2 (generalized query, key, and value tokens), our new goal is to compute an n× d
size matrix D−1 exp(Q(K1 ⊘K2)

⊤)(V1 ⊘ V2) where D = diag(exp(Q(K1 ⊘
K2)

⊤)1n2) and K1 ⊘K2 ∈ Rn2×d denotes the column-wise Kronecker product
of K1 and K2. This generalization is indeed able to solve problems about detecting
triple-wise connections that were shown to be impossible for transformers.
The potential downside of this generalization is that it appears as though compu-
tations are even more difficult, since the straightforward algorithm requires cubic
time in n. However, we show that in the bounded-entry setting (which arises in
practice, and which is well-studied in both theory and practice), there is actually a
near-linear time algorithm. More precisely, we show that bounded entries are both
necessary and sufficient for quickly performing generalized computations:

• On the positive side, if all entries of the input matrices are bounded above
by o(3

√
log n) then we show how to approximate the “tensor-type” attention

matrix in n1+o(1) time.
• On the negative side, we show that if the entries of the input matrices may

be as large as Ω(3
√
log n), then there is no algorithm that runs faster than

n3−o(1) (assuming the Strong Exponential Time Hypothesis from fine-grained
complexity theory).

We also show that our construction, algorithms, and lower bounds naturally gener-
alize to higher-order tensors and correlations. Interestingly, the higher the order
of the tensors, the lower the bound on the entries needs to be for an efficient
algorithm. Our results thus yield a natural tradeoff between the boundedness of the
entries, and order of the tensor one may use for more expressive, efficient attention
computation.
Our constructions make use of a novel connection with a higher-order variant
on the kernel density estimation problem. They combine a number of technical
tools, including the polynomial method, algebraic geometry codes, and multiparty
Merlin-Arthur communication protocols.

1

Published as a conference paper at ICLR 2024

1 INTRODUCTION

Large language models, such as Transformer Vaswani et al. (2017), BERT Devlin et al. (2018), GPT-1
Radford et al. (2018), GPT-2 Radford et al. (2019), GPT-3 Brown et al. (2020), PaLM Chowdhery
et al. (2022), OPT Zhang et al. (2022), GPT-3.5, Bard, GPT-4 OpenAI (2023), Llama Touvron
et al. (2023a); Rozière et al. (2023), Llama 2 Touvron et al. (2023b) and its successors, have gained
immense importance and found a wide range of applications due to their ability to understand and
generate human-like text. These models are trained on massive amounts of text data, enabling them
to learn patterns, structures, and nuances of human language. They have applications in many areas,
including understanding natural language, content generation, improved human-computer interaction,
translation and multilingual communication, and rapid prototyping.

The fundamental computational structure at the core of LLMs is called an attention unit. When a
length-n input is given to the attention unit (like a sentence or paragraph of n words), we embed
it into three matrices Q,K, V (the query, key, and value token matrices) where each has n rows
and d columns. Here d is the feature dimension; one has d ≪ n in the long sentence regime.
Mathematically, the attention unit computes D−1 exp(QK⊤)V , where D = diag(exp(QK⊤)1n)
is a diagonal matrix, 1n denotes the length-n vector with all entries equal to 1, and exp is applied
entry-wise.

Intuitively, the attention unit is finding pairwise correlations between tokens in the input since it
computes inner products between pairs of tokens when computing QK⊤. However, if the input data
has correlated triples of tokens, it is not clear an attention unit can detect this.

A recent and exciting work Sanford et al. (2023) formalized this intuition. They defined a simple task
about learning correlations between triples of words, and showed that attention units are unable to
solve it. By contrast, they are able to solve the analogous problem of learning correlations between
pairs of words. Toward resolving this, Sanford et al. (2023) proposed a generalization of attention
computation:
Definition 1.1 (Tensor generalization of attention scheme). Given as input n × d matrices
Q,K1,K2, V1, V2, the goal is to construct another n× d matrix

D−1A(V1 ⊘ V2).

Here

• V1 ⊘ V2 ∈ Rn2×d denotes the column-wise Kronecker product of V1 and V2. Similarly
for K1 ⊘ K2 ∈ Rn2×d below. (The column-wise Kronecker product of matrices K1 ∈
Rn×d,K2 ∈ Rn×d is a matrix K := K1 ⊘ K2 ∈ Rn2×d defined as Ki1+(i2−1)n,j :=
(K1)i1,j · (K2)i2,j , ∀i1, i2 ∈ [n], j ∈ [d].)

• A ∈ Rn×n2

is the n× n2 matrix exp(Q(K1 ⊘K2)
⊤/d), where exp is applied entry-wise.

• D ∈ Rn×n is the n× n diagonal matrix diag(exp(Q(K1 ⊘K2)
⊤/d)1n2)

• 1n2 here denotes a length-n2 vector whose entries are all ones.

One may naturally view A as an n×n×n tensor, which is why we call this a ‘tensor generalization’;
this view will be important in our proofs below.

In this generalization, entries of the matrix A now correspond to triples of tokens, so one may hope
that this generalization can detect triple-wise correlations. And indeed, Sanford et al. (2023) show
that this is the case: the tensor generalization gets around their expressivity barrier and is able to
detect correlations among triples of tokens.

A fundamental question arises naturally: how quickly can generalized attention computations be
performed? The running time of attention computations is critically important, since it forms the time
bottleneck of LLM training and inference. By generalizing attention to make it more expressive, have
we also made it intractably slow?

To answer this question, we focus on an approximate version of the tensor attention computation
problem. In practical applications, it is sufficient to approximately perform these computations Child
et al. (2019); Kitaev et al. (2020); Wang et al. (2020); Choromanski et al. (2021); Daras et al. (2020);

2

Published as a conference paper at ICLR 2024

Katharopoulos et al. (2020); Chen et al. (2021; 2022); Qin et al. (2022); Zandieh et al. (2023); Liu
et al. (2023); Zhang et al. (2023); Kacham et al. (2023); Dao et al. (2022); Dao (2023), and this often
helps lead to faster algorithms.

Definition 1.2 (Approximate Tensor Attention Computation ATAttC(n, d,B, ϵa)). Let ϵa > 0,
B > 0 be parameters.Given five matrices Q,K1,K2, V1, V2 ∈ Rn×d that satisfy the following
bounded constraints,

• ∥Q∥∞ ≤ B, ∥K1∥∞ ≤ B, ∥K2∥∞ ≤ B, ∥V1∥∞ ≤ B, ∥V2∥∞ ≤ B

we want to generate a matrix T ∈ Rn×d which is able to entry-wisely approximate D−1AV , i.e.,

∥T −D−1A(V1 ⊘ V2)∥∞ ≤ ϵa

Here,

• the ℓ∞ norm for a matrix N ∈ Rn×d is written as ∥N∥∞ := maxi∈[n],j∈[d] |Ni,j |, and

• the other matrices are defined as in Definition 1.1 above.

We focus here on the natural setting with d = O(log n) (so that we are modeling long sequences)
and ϵa = 1/ poly(n) (so that one can combine the errors from attention computations over an entire
network).

In the case of (non-tensor) attention, the computational complexity of exact and approximate attention
computation is very well-understood. Keles et al. (2023) showed that the trivial O(n2) time algorithm
is essentially optimal for exact computation, assuming the Strong Exponential Time Hypothesis
(SETH). SETH Impagliazzo & Paturi (2001) is a popular conjecture from fine-grained complexity
which posits that one cannot substantially improve our current best algorithms for k-SAT; see the
survey Williams (2018) for more details. Since k-SAT algorithms are very well-studied, it is not
commonly believed that major improvements are possible, and so much of fine-grained complexity
theory is based on this assumption.

Alman & Song (2023) studied the approximate (non-tensor) attention problem and showed that its
complexity depends on the magnitude of the entries of the matrices Q,K: If they are smaller than
o(
√
log n), then there is a fast algorithm running in time n1+o(1); this near-linear time algorithm is

essentially as fast as one could hope for. On the other hand, if they are at least Ω(
√
log n), then there

is no algorithm substantially faster than the trivial O(n2) assuming SETH. This theoretical result
mirrors practical observations that bounded entries are essential for fast attention Zafrir et al. (2019);
Sun et al. (2019); Katharopoulos et al. (2020); Dettmers et al. (2022b); Xiao et al. (2023); Dettmers
et al. (2022a); Perez et al. (2023); Shen et al. (2023).

1.1 OUR RESULTS

Our main results tightly resolve the computational complexity of the tensor generalization of attention.
Generalizing the situation for (non-tensor) attention, we show that whether or not there is a fast
algorithm for AAttC depends on the parameter B, the magnitudes of the entries in the query, key,
and value matrices.

We first show a lower bound, that when B ≥ Ω(3
√
log n), it is impossible to design a truly subcubic-

time algorithm (assuming SETH). Note that the straigtforward algorithm for this problem runs in
cubic time, so our result shows that one cannot substantially improve on the straightforward algorithm
when the entries have magnitude at least Ω(3

√
log n).

Theorem 1.3 (Lower bound, informal version of Theorem B.2). Assuming SETH, for every q > 0,
there are constants C,Ca, Cb > 0 such that: there is no algorithm running in time O(n3−q) for the
problem ATAttC(n, d = C log n,B = Cb

3
√
log n, ϵa = n−Ca).

Our second result is a new algorithm, showing that when B < o(3
√
log n), then there is an almost

linear time algorithm for solving the problem.

Theorem 1.4 (Upper bound, informal version of Theorem E.3). There is an algorithm (Algorithm 1)
that solves ATAttC(n, d = O(log n), B = o(3

√
log n), ϵa = 1/ poly(n)) in time n1+o(1).

3

Published as a conference paper at ICLR 2024

Our Theorems 1.3 and 1.4 together show that the complexity of ATAttC has a very tight transition
at B = Θ(3

√
log n). When B < o(3

√
log n) is smaller than the threshold, the problem can be solved

essentially as quickly as one could hope for, in time n1+o(1). Meanwhile, when B ≥ Ω(3
√
log n)

is greater than the threshold, it is impossible to achieve a subcubic running time, no matter what
algorithmic techniques are used (assuming SETH).

It is exciting that, even for the more expressive tensor generalization of attention, there is a near-linear
time algorithm in the bounded entry regime. Interestingly, though, the bound must be smaller than
for regular attention: for regular attention to have a near-linear time algorithm, it is necessary and
sufficient that B <

√
log n, whereas for tensor-based attention, we show it is necessary and sufficient

that B < 3
√
log n.

More generally, for any positive integer k ≥ 2, we study a higher-order tensor generalization of
attention which can detect k-wise correlations. (Regular attention corresponds to k = 2 and ATAttC
corresponds to k = 3.) For this problem, we further generalize our results to show that there is a near-
linear time algorithm when the entries satisfy B < k

√
log n, and that the trivial O(nk) time essentially

cannot be beaten otherwise. This suggests an intriguing tradeoff between the boundedness of the
entries, and the expressiveness of attention we can perform quickly: Given vectors corresponding to
tokens for LLM training or inference, we let B be the largest magnitude of an entry, then we select
the largest k for which B < k

√
log n, and we can quickly perform k-th order attention computations

for our tokens, but not higher-order attention.

Definition 1.5 (k-th order generalization of Definition 1.1). Suppose we are given n× d matrices
Q,K1,K2, · · · ,Kk−1 and V1, V2, · · · , Vk−1, our target is to construct another n× d matrix

D−1A(V1 ⊘ V2 ⊘ · · · ⊘ Vk−1)

Here

• V1 ⊘ V2 ⊘ · · · ⊘ Vk−1 ∈ Rnk−1×d is the column-wise tensor product of V1, · · · , Vk−1

• A ∈ Rn×nk−1

is the n× nk−1 size matrix exp(Q(K1 ⊘K2 ⊘ · · · ⊘Kk−1)
⊤/d)

• D ∈ Rn×n is the n× n diagonal matrix diag(exp(Q(K1 ⊘K2 ⊘ · · · ⊘Kk−1)/d)1nk−1)

• 1nk−1 is the length-nk−1 vector whose entries are all ones.

Roadmap.

In Section 2, we provide a number of basic notations and definitions. In Section 3, we give a technique
overview, summarizing our proofs for both our upper bound result and our lower bound result. In
Section 4, we prove the key intermediate results for our lower bound result. Our upper bound result,
and the remainder of our lower bound result, are proved in the Appendix.

2 PRELIMINARY

Hadamard Product
Definition 2.1 (◦ Hadamard product). Given A,B ∈ Rn×d, we use C := A ◦ B to denote their
entry-wise product, i.e., the matrix C ∈ Rn×d given by Ci,j = Ai,jBi,j . We similarly define ◦ to
denote the entry-wise product of vectors or tensors. This is often called the Hadamard product in the
literature.

Tensor Operations Many of our proofs will involve manipulating tensors. Here we introduce three
different tensor operations we will frequently use.

Definition 2.2 (⊙ tensor computation). Given matrices A ∈ Rn×d, B ∈ Rn×d, C ∈ Rn×d,
we use T = A ⊙ B ⊙ C to denote an n × n × n tensor whose entries are given by Ti,j,l :=∑d

a=1 Ai,aBj,aCl,a, ∀i ∈ [n], j ∈ [n], l ∈ [n].

We note that a tensor T can be written in the form A⊙B ⊙C like this if and only if its tensor rank is
at most d.

4

Published as a conference paper at ICLR 2024

Definition 2.3 (⊗ Kronecker product). Given two matrices K1 ∈ Rn×d and K2 ∈ Rn×d, we define
K := K1 ⊗ K2 ∈ Rn2×d2

as follows Ki1+(i2−1)n,j1+(j2−1)d = (K1)i1,j1 · (K2)i2,j2 , ∀i1 ∈
[n], i2 ∈ [n], j1 ∈ [d], j2 ∈ [d].

In this work, we will primarily use the following column-wise version of the Kronecker product.

Definition 2.4 (⊘ column-wise Kronecker product). Given matrices K1 ∈ Rn×d,K2 ∈ Rn×d, we
define matrix K := K1 ⊘K2 ∈ Rn2×d as follows Ki1+(i2−1)n,j := (K1)i1,j · (K2)i2,j , ∀i1, i2 ∈
[n], j ∈ [d].

Matrix Multiplication Finally, our algorithm will make use of matrix multiplications. For positive
integers n,m, d, we write Tmat(n, d,m) to denote the time to multiply a given n× d matrix A and
a d ×m matrix B. The straightforward algorithm shows that Tmat(n, d,m) = O(ndm), and this
will suffice for our algorithms here; we will typically apply this when two of n,m, d are very small
compared to the third, and in this situation, more clever matrix multiplication algorithm do not yield
substantial speedups.

3 TECHNIQUE OVERVIEW

Generalizing prior work on the computational complexity of the attention problem to our tensor
generalization requires overcoming a number of technical challenges. Here we summarize our
approach, with an emphasis on differences with the prior work on (non-tensor) attention that we build
on Rubinstein (2018); Katharopoulos et al. (2020); Alman & Song (2023); Sanford et al. (2023).

3.1 ALGORITHM

Tool for the column-wise Kronecker product We begin by introducing a basic tool for manipulat-
ing computations involving the column-wise Kronecker product ⊘ (see details in Lemma C.3 below).
Define the following matrices.

• Given A1 ∈ Rn×d1 , A2 ∈ Rn×d1 , we define A := (A1 ⊘A2) ∈ Rn2×d1 .

• Given B1 ∈ Rn×d2 , B2 ∈ Rn×d2 , we define B := (B1 ⊘B2) ∈ Rn2×d2 .

• We define C ∈ Rd1×d2 as C := A⊤B, and similarly define C1 := A⊤
1 B1 and C2 := A⊤

2 B2.

Then, we prove that we have C1 ◦ C2 = C. Using this identity, C can be computed in time
O(Tmat(d1, n, d2)) given the matrices A1, A2, B1, B2.

Approximating D In order to perform generalized attention, we aim to compute the matrix
D = diag(exp(Q(K1 ⊘K2)

⊤/d)1n2). Notice that the intermediate matrix exp(Q(K1 ⊘K2)
⊤/d)

has n3 entries. We thus cannot compute it in subcubic time. We instead aim to use an implicit
representation of an approximation of this matrix which can be quickly manipulated.

Toward this goal, we find appropriate matrices U1, U2, U3 (which we discuss in more detail shortly)
and formulate D̃ = diag(U1(U2 ⊘ U3)

⊤1n2) such that D̃ ≈ D. Given the matrices U1, U2, U3, and
using the above tool for ⊘, we can compute D̃ quickly in O(nd) time.

Approximating A We can similarly approximate the attention matrix A = exp(Q(K1 ⊘K2)
⊤/d)

via Ã = U1(U2 ⊘ U3)
⊤ such that Ã ≈ A (in ℓ∞ norm). Again, in contrast to D̃, we cannot compute

the entries of Ã since it has n3 entries. We instead directly approximate A(V1 ⊘ V2) by computing
Ã(V1 ⊘ V2). This can again be done in O(Tmat(d, n, d)) = n1+o(1) time by using the above tool.

Finding approximating matrices U1, U2, U3 Thus, it remains to find matrices U1, U2, U3 which
appropriately approximate D and A as above. We show how to efficiently find such matrices as long
as the inputs Q,K1,K1, V1, V2 have bounded entries. The key idea is to use the polynomial method,
a key tool from prior work Aggarwal & Alman (2022); Alman & Song (2023) which allows one to
find low-rank representations of matrices.

5

Published as a conference paper at ICLR 2024

The method generally says that if M is a low-rank matrix, and p is a low-degree polynomial,
then p(M) (where p is applied entry-wise) also has relatively low rank. Furthermore, its low-rank
decomposition can be found efficiently given the decomposition of M . By applying this method
where p is an appropriate polynomial approximation of the exp function (see Aggarwal & Alman
(2022)), we get a low-rank approximation of exp(M).

This polynomial method approach was also taken in the prior work on (non-tensor) attention Alman
& Song (2023). Here we generalize it, showing that the same line of attack can be applied to low-rank
tensors. Viewing A interchangeably as both an n×n×n tensor and an n×n2 matrix allows us to take
advantage of this low-rank tensor approximation as well as the aforementioned matrix multiplication
algorithms, and U1, U2, U3 are ultimately the low-rank approximation expression for this tensor.
Notably, as the bound B on the entries increases, the degree of the polynomial to approximate exp
also increases, but the degree needs to be small enough to give a nontrivial algorithm. See details in
Lemma E.1.

3.2 HARDNESS

Gap-MaxIP Our hardness proof proceeds by introducing and considering a new intermediate
problem we call Gap−MaxIP (Definition 4.6), a promise version of the more common 3-Max IP
problem. In this problem, one is given as input 3n vectors a1, . . . , an, b1, . . . , bn, c1, . . . , cn ∈
{0, 1}d as well as a threshold t, and the goal is to distinguish between the cases

• ⟨ai, bj , ck⟩ ≤ t for all i, j, k ∈ [n], or

• ⟨ai, bj , ck⟩ ≥ 2t for some i, j, k ∈ [n].

(If neither is the case, we may give any output.) Here, ⟨ai, bj , ck⟩ denotes the 3-way inner product∑d
ℓ=1 ai[ℓ] · bj [ℓ] · ck[ℓ].

We first prove that Gap−MaxIP cannot be solved in truly subcubic time assuming SETH. We then
show that a truly subcubic time algorithm for our generalized ATAttC (Definition 1.2) problem with
large entries would yield one for Gap−MaxIP as well.

Previous work on (non-tensor) attention Alman & Song (2023) used as its intermediate problem
the approximate Hamming Nearest Neighbor problem. However, it is not obvious how to directly
generalize this to the tensor setting, since there is no way to define a ‘distance’ function for triples of
vectors which satisfies the needed properties to generalize the original proof. We instead investigate
the Gap−MaxIP problem, which can itself be seen as a generalization of an intermediate step in the
proof of hardness for approximate Hamming Nearest Neighbor Rubinstein (2018).

Hardness of Gap−MaxIP Fine-grained complexity results for approximation problems like
Gap−MaxIP have previously been shown using a distributed probabilistically checkable proof
framework Abboud et al. (2017); Rubinstein (2018), which we also use here.

We begin by generalizing the approach of Rubinstein (2018) using Merlin-Arthur (MA) communica-
tion protocols (Babai (1985); Goldwasser & Sipser (1986); Arora & Barak (2009)). We construct a
four party communication protocol for the disjointness problem: Alice, Bob and Charlie are each
given subsets of a universe, and want to determine whether there is an element in all three of their
sets. In an MA protocol, Merlin first sends an advice string to the three players to convince them
their sets are disjoint. Alice, Bob and Charlie may then flip private random coins and communicate to
come to an answer. (See details in Theorem 4.5).

Generalizing known three-party protocols for disjointness Aaronson & Wigderson (2009); Rubinstein
(2018), our protocol is algebraic in nature, and critically makes use of algebraic geometry codes from
coding theory Shum (2000); Shum et al. (2001).

We then use this protocol to reduce from SAT to Gap−MaxIP. A standard reduction Williams (2005)
shows that SAT reduces to the 3OV problem, which is a computational version of the three player
disjointness problem. We can convert inputs to this problem into vectors by corresponding entries
of the vectors to possible transcripts of the communication protocol. The gap in inner products will
arise naturally from the correctness guarantees of the protocol. See reduction details in Theorem 4.7
and its proofs.

6

Published as a conference paper at ICLR 2024

Reducing from Gap−MaxIP to ATAttC Finally, we reduce the Gap−MaxIP (Definition 4.6)
problem to our ATAttC (Definition 1.2) problem. The key idea is that, by defining the matrices
Q,K1,K2, V1, V2 of generalized attention in terms of the inputs to Gap−MaxIP, we can make
large entries of the attention matrix A correspond to the triples with largest inner product. (See
Lemma B.1 below for an illustration.) Some manipulation similar to prior work Alman & Song
(2023) allows us to detect large entries from the output of ATAttC. This approach has been used for
the fine-grained hardness of many attention and kernel density estimation problems Backurs et al.
(2018); Katharopoulos et al. (2020); Alman et al. (2020); Aggarwal & Alman (2022); Alman & Song
(2023). See details in Lemma B.1 and its proofs.

4 HARDNESS

In this section, we begin the formal proof of our hardness result. We begin by introducing the
fine-grained hypotheses we will use.
Hypothesis 4.1 (Strong Exponential Time Hypothesis (SETH), Impagliazzo & Paturi (2001)). For
every ϵ > 0 there exists an integer k ≥ 3 such that CNF − SAT on formulas with clauses size at
most k (the so called k-SAT problem) and n variables cannot be solved in O(2(1−ϵ)n) time even by
a randomized algorithm.
Definition 4.2 (3OV). Given three sets A,B,C ⊂ {0, 1}d where |A| = |B| = |C| = n, the goal is
to find a tuple (i1, i2, i3) ∈ [n]× [n]× [n] such that ⟨ai1 , bi2 , ci3⟩ = 0.
Conjecture 4.3 (Orthogonal Vectors Conjecture (3OVC) Williams (2005); Abboud et al. (2014)).
For every ϵ > 0, there is a c ≥ 1 such that 3OV cannot be solved in n3−ϵ time on instances with
d = c log n.

It is known that SETH implies 3OVC; see, e.g., Williams (2005).

4.1 ALGEBRAIC GEOMETRY CODES FROM PREVIOUS WORK

We state a important tool from the field of algebraic geometry codes. For more background on
algebraic geometry codes, we refer the reader to Goppa (1981); Tsfasman et al. (1982); Shum (2000);
Shum et al. (2001); Sudan (2013).
Theorem 4.4 (Shum et al. (2001); see also Rubinstein (2018)). There is a constant q0 ∈ N such that,
for every prime q ≥ q0, there are two systematic code families C := {Cn} and C′ := {C ′

n} whose
codewords are given by functions w : Rn → Fq2 for some appropriate subsetRn ⊂ FO(logn)

q2 . The
codes C, C′ satisfy four key properties:

• Systematicity. There exists a subset Sn ⊂ Rn of cardinality |Sn| = Θ(n), such that for any
assignment x : Sn → Fq2 , there exists a codeword w ∈ C such that w|Sn

= x

• 3-way Polynomial Closure. C and C′ are linear codes. For each w1, w2, w3 ∈ C, there exists
w′ ∈ C′ such that for each i ∈ Rn, w′(i) = w1(i) · w2(i) · w3(i)

• Efficiency. Both codes can be encoded in poly(n) time and checked in poly(n) time.

• Parameters. Both codes have relative rate at least 0.01 and relative distance at least 0.01.

4.2 A FOUR PARTY MA COMMUNICATION PROTOCOL

Prior work (Rubinstein (2018)) constructed a protocol for three party communication, which includes
Merlin, Alice and Bob. Here we modify this protocol for four parties.
Theorem 4.5. For any T ∈ [2,m]. There is a MA-communication protocol for Set Disjointness over
universe [m]. This protocol is computationally efficient.

In particular, the details of protocol are

• Merlin sends Alice O(m log T
T) bits

• Alice, Bob, Charlie toss O(logm) coins

7

Published as a conference paper at ICLR 2024

• Charlie sends Alice O(T log T) bits

• Bob sends Alice O(T log T) bits

• Alice returns Accept or Reject

If the three sets do not have any element in common, Alice always accepts. Otherwise, she accepts
with probability at most 1/2.

Proof. We assume that T divides m, i.e., there is some positive integer r such that m = Tr.
Otherwise, increase m to the nest multiple of T ; this at most doubles m. We partition the universe
into T disjoint sets of size r: [m] = U1 ∪ · · · ∪ UT . Let α, β, γ ⊆ [m] denote the inputs of Alice,
Bob, and Charlie. Our goal is to determine whether there is an element in the intersection α ∩ β ∩ γ.

For each t ∈ [T], we define the t-th parts of the three sets: αt := α∩U t, βt := β∩U t, γt := γ∩U t.
We will next encode these parts using an algebraic geometry code. Let q be a prime greater than T ,
and let C be an algebraic geometry code over the field Fq2 , and let C ′ be its associated code for the
polynomial closure property. Let ρC , δC be the rate and distance of the code; recall these are at least
a positive constant. Let nC = m

T ·ρC
= O(m/T) be the length of the codewords of C.

For each t ∈ [T], we write C(αt), C(βt), C(γt) to denote the encodings of αt, βt and γt. Thus,
their entry-wise product µt (i.e., µt

i := C(αt)i · C(βt)i · C(γt)i) is a codeword in the second code
C ′. Furthermore, since C ′ is a linear code, the entry-wise sum of the µt’s (µi =

∑T
t=1 µ

t
i) is also a

codeword of C’.

C is a systematic code, so we may assume that for each i ∈ [n/T], the entries C(αt)i, C(βt)i, C(γt)i
are from {0, 1} and represent membership in the set. Similarly, µt

i ∈ {0, 1}, and the sets are disjoint
if and only if µt

i = 0 for all i ∈ [m/T] and t ∈ [T], or equivalently, µi = 0 for all i ∈ [m/T].

Now the protocol proceeds as follows:

• Step 1. Merlin sends Alice µ̂, which is supposed to be the encoding of µ

• Step 2. Charlie, Bob and Alice pick a random i∗ ∈ [nC]

• Step 3. Charlie sends Alice C(γt)i∗ for all t ∈ [T]

• Step 4. Bob sends Alice C(βt)i∗ for all t ∈ [T]

• Step 5. Alice accepts iff all of the following hold:

– µ̂ is a codeword in C ′ , µ̂i∗ =
∑T

t=1 C(αt)i∗ · C(βt)i∗ · C(γt)i∗ and µ̂i = 0 for all
i ∈ [m/T]

First, we observe that Merlin’s message length is nc · log T = O((log T) ·m/T) , and both Bob and
Charlie’s message lengths are T · O(log T), as desired. To see correctness, note that if Alice ever
accepts given Merlin’s message µ̂, then µ̂ must in particular be a codeword of C ′. If Alice accepts
with probability greater than 1− δC′ (where δC′ is a positive constant) then µ̂ is also equal to the true
µ by definition of δC′ . This means µi = 0,∀i ∈ [m/T], so the sets are disjoint.

4.3 SHOWING 3-MAX-IP IS HARD

We define the appropriate gap 3-MAX-IP problem, which we use as our intermediate hard problem.
Definition 4.6 (Gap approximate maximum inner product search (Gap−MaxIP(n, d, t, ϵ))). Suppose
the following conditions hold

• We use t > 0 to represent a threshold parameter.

• We use ϵ to represent an accuracy parameter.

• Suppose n, d denote two positive integers.

8

Published as a conference paper at ICLR 2024

• Given three sets of points,A = {a1, · · · , an}, B = {b1, · · · , bn}, C = {c1, · · · , cn} ⊂
{0, 1}d

For every index i ∈ [n], we need to distinguish the following two cases

• Case 1. There exists a pair (j1, j2) ∈ [n]× [n] such that ⟨ai, bj1 , cj2⟩ ≥ t.

• Case 2. For all pairs (j1, j2) ∈ [n]× [n] we have ⟨ai, bj1 , cj2⟩ ≤ (1− ϵ) · t.

Implicit in previous work (Rubinstein (2018)) is a proof that the analogue of Gap−MaxIP with two
sets of points is hard. Here we generalize this to three sets.
Theorem 4.7. Unless SETH and OVC are false, the following holds: for every δ > 0 there
are constants α1 > α2 > 0 such that for integer n, solving Gap−MaxIP(n, d = α1 log n, t =
α2 log n, ϵ = 1/2) requires time Ω(n3−δ).

Proof. We reduce from 3OV to Gap−MaxIP. Let δOV = δ/2. Our reduction takes as input an
instance (AOV, BOV, COV) of orthogonal vectors over {0, 1}m. These sets have sizes |AOV| =
|BOV| = |COV| = 2m/c for a constant c depending on δOV from Definition 4.2 and Conjecture 4.3,
and 3OVC posits there is no algorithm solving this problem in time O((2m/c)3−δOV).

For a constant k > 0 to be determined, pick ϵ > 0 to be a constant such that kc log2 log(1/ϵ)
log(1/ϵ) < δ/2.

We use the protocol of Theorem 4.5, instantiated with parameter T = T (ϵ) = O(log(1/ϵ)
log log(1/ϵ)).

Suppose that T ′ = 2O((log T)·T) is representing the number of different possible messages sent by
Bob and Charlie in the protocol. Let us choose T so that T ′ = O(1/ϵ). For each vector γ ∈ COV,
we construct a new vector c̃γ ∈ {0, 1}(T ′)2×m by setting c̃γiB ,iC ,j := 1 iff Charlie send message
iC ∈ [T ′] on input γ′ and randomness j ∈ [m]. (The value is independent of iB .)

For each vector β ∈ BOV, we construct a new vector b̃β ∈ {0, 1}(T ′)2×m by setting b̃βiB ,iC ,j := 1 iff
Bob sends message iB ∈ [T ′] on input β′ and randomness j ∈ [m]. (The value is independent of iC .)

For each Merlin-message µ ∈ {0, 1}O((log T)·m/T) and vector α ∈ AOV, we construct a new vector
ãµ,α ∈ {0, 1}(T ′)2×m as follows: ãµ,αiB ,iC ,j := 1 iff Alice accepts on

• input α,

• message µ from Merlin,

• message iB from Bob, message iC from Charlie, and randomness j.

Notice also that the inner product of three vectors ⟨ãµ,α, b̃β , c̃γ⟩ is exactly proportional to the
probability that Alice, Bob and Charlie accept on inputs α, β, γ and message µ from Merlin.

In particular, if α, β and γ are not orthogonal (i.e., ⟨α, β, γ⟩ > 0), then the inner product is at most
⟨ãµ,α, b̃β , c̃γ⟩ ≤ m/2. Otherwise, there exists a µ that Merlin could send to make the players accept,
meaning that ⟨ãµ,α, b̃β , c̃γ⟩ = m.

In particular, these can be distinguished by an algorithm for

Gap−MaxIP(n = 2m/c · 2O(m log2 log 1/ϵ/ log 1/ϵ), d = 2(T ′)2m, t = m, ϵ = 1/2),

which must therefore be as hard as solving the original instance of 3OV. By 3OVC, this means it
requires time

(|AOV|+ |BOV|+ |COV|)3−δOV = (2m/c)3−δOV = n3/2m(δOV/c−O(
log2 log(1/ϵ)

log(1/ϵ)
)) ≤ n3−δ

where the last step follows from choosing k large enough in the definition of ϵ.

At the end, we notice that the vectors we construct have dimension 2(T ′)2 ·m = O(m) = O(log n)
as desired.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENTS

The authors would like to thank Yichuan Deng, Yeqi Gao, Junze Yin, Lichen Zhang, Ruizhe Zhang,
Tianyi Zhou for helpful discussions of attention literature.

REFERENCES

Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory. ACM
Transactions on Computation Theory (TOCT), 1(1):1–54, 2009.

Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster alignment
of sequences. In Automata, Languages, and Programming: 41st International Colloquium, ICALP
2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I 41, pp. 39–51. Springer, 2014.

Amir Abboud, Aviad Rubinstein, and Ryan Williams. Distributed pcp theorems for hardness of
approximation in p. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 25–36. IEEE, 2017.

Amol Aggarwal and Josh Alman. Optimal-degree polynomial approximations for exponentials and
gaussian kernel density estimation. In 37th Computational Complexity Conference (CCC 2022).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

Thomas D Ahle, Michael Kapralov, Jakob BT Knudsen, Rasmus Pagh, Ameya Velingker, David P
Woodruff, and Amir Zandieh. Oblivious sketching of high-degree polynomial kernels. In Pro-
ceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
141–160. SIAM, 2020.

Josh Alman and Zhao Song. Fast attention requires bounded entries. In NeurIPS. arXiv preprint
arXiv:2302.13214, 2023.

Josh Alman, Timothy Chu, Aaron Schild, and Zhao Song. Algorithms and hardness for linear algebra
on geometric graphs. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science
(FOCS), pp. 541–552. IEEE, 2020.

Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

László Babai. Trading group theory for randomness. In Proceedings of the seventeenth annual ACM
symposium on Theory of computing, pp. 421–429, 1985.

Arturs Backurs, Moses Charikar, Piotr Indyk, and Paris Siminelakis. Efficient density evaluation
for smooth kernels. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 615–626. IEEE, 2018.

Aditya Bhaskara, Moses Charikar, Ankur Moitra, and Aravindan Vijayaraghavan. Smoothed analysis
of tensor decompositions. In Proceedings of the forty-sixth annual ACM symposium on Theory of
computing (STOC), pp. 594–603, 2014.

Aditya Bhaskara, Aidao Chen, Aidan Perreault, and Aravindan Vijayaraghavan. Smoothed analysis
for tensor methods in unsupervised learning. Mathematical Programming, pp. 1–51, 2020.

Jan van den Brand, Zhao Song, and Tianyi Zhou. Algorithm and hardness for dynamic attention
maintenance in large language models. arXiv e-prints, pp. arXiv–2304, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems (NeurIPS), 33:1877–1901,
2020.

Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain: Unifying
sparse and low-rank attention. Advances in Neural Information Processing Systems (NeurIPS), 34:
17413–17426, 2021.

10

Published as a conference paper at ICLR 2024

Beidi Chen, Tri Dao, Kaizhao Liang, Jiaming Yang, Zhao Song, Atri Rudra, and Christopher Re.
Pixelated butterfly: Simple and efficient sparse training for neural network models. In International
Conference on Learning Representations (ICLR), 2022.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. In ICLR. arXiv preprint arXiv:2009.14794, 2021.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Giannis Daras, Nikita Kitaev, Augustus Odena, and Alexandros G Dimakis. Smyrf-efficient attention
using asymmetric clustering. Advances in Neural Information Processing Systems (NeurIPS), 33:
6476–6489, 2020.

Yichuan Deng, Zhao Song, and Junze Yin. Faster robust tensor power method for arbitrary order.
arXiv preprint arXiv:2306.00406, 2023.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix
multiplication for transformers at scale. arXiv preprint arXiv:2208.07339, 2022a.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35:
30318–30332, 2022b.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Huaian Diao, Zhao Song, Wen Sun, and David Woodruff. Sketching for kronecker product regression
and p-splines. In International Conference on Artificial Intelligence and Statistics, pp. 1299–1308.
PMLR, 2018.

Huaian Diao, Rajesh Jayaram, Zhao Song, Wen Sun, and David Woodruff. Optimal sketching
for kronecker product regression and low rank approximation. Advances in neural information
processing systems, 32, 2019.

Yeqi Gao, Zhao Song, Weixin Wang, and Junze Yin. A fast optimization view: Reformulating single
layer attention in llm based on tensor and svm trick, and solving it in matrix multiplication time.
arXiv preprint arXiv:2309.07418, 2023a.

Yeqi Gao, Zhao Song, and Xin Yang. Differentially private attention computation. arXiv preprint
arXiv:2305.04701, 2023b.

Yeqi Gao, Zhao Song, and Junze Yin. Gradientcoin: A peer-to-peer decentralized large language
models. arXiv preprint arXiv:2308.10502, 2023c.

Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive proof systems.
In Proceedings of the eighteenth annual ACM symposium on Theory of computing, pp. 59–68,
1986.

Valerii Denisovich Goppa. Codes on algebraic curves. In Doklady Akademii Nauk, volume 259:6, pp.
1289–1290. Russian Academy of Sciences, 1981.

11

Published as a conference paper at ICLR 2024

Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal of Computer and
System Sciences, 62(2):367–375, 2001.

Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong. Polysketchformer: Fast transformers via
sketches for polynomial kernels. arXiv preprint arXiv:2310.01655, 2023.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International Conference on Machine
Learning (ICLR), pp. 5156–5165. PMLR, 2020.

Feyza Duman Keles, Pruthuvi Mahesakya Wijewardena, and Chinmay Hegde. On the computational
complexity of self-attention. In International Conference on Algorithmic Learning Theory, pp.
597–619. PMLR, 2023.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhuang Yuan, Zhao Song, Anshumali Shrivastava,
Yuandong Tian Ce Zhang, Christopher Re, and Beidi Chen. Deja vu: Contextual sparsity for
efficient llms at inference time. In ICML, 2023.

OpenAI. Gpt-4 technical report. https://arxiv.org/pdf/2303.08774.pdf, 2023.

Sergio P. Perez, Yan Zhang, James Briggs, Charlie Blake, Josh Levy-Kramer, Paul Balanca, Carlo
Lushi, Stephen Barlow, and Andrew Fitzgibbon. Training and inference of large language models
using 8-bit floating point. https://arxiv.org/pdf/2309.17224.pdf, 2023.

Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yunshen Wei, Baohong Lv, Junjie Yan, Lingpeng
Kong, and Yiran Zhong. cosformer: Rethinking softmax in attention. In ICLR. arXiv preprint
arXiv:2202.08791, 2022.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. ., 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Aviad Rubinstein. Hardness of approximate nearest neighbor search. In Proceedings of the 50th
annual ACM SIGACT symposium on theory of computing, pp. 1260–1268, 2018.

Clayton Sanford, Daniel Hsu, and Matus Telgarsky. Representational strengths and limitations of
transformers. arXiv preprint arXiv:2306.02896, 2023.

Haihao Shen, Naveen Mellempudi, Xin He, Qun Gao, Chang Wang, and Mengni Wang. Efficient
post-training quantization with fp8 formats. arxiv preprint https://arxiv.org/pdf/2309.14592.pdf,
2023.

Kenneth W Shum, Ilia Aleshnikov, P Vijay Kumar, Henning Stichtenoth, and Vinay Deolalikar.
A low-complexity algorithm for the construction of algebraic-geometric codes better than the
gilbert-varshamov bound. IEEE Transactions on Information Theory, 47(6):2225–2241, 2001.

Kenneth Wing-Ki Shum. A low-complexity construction of algebraic geometric codes better than the
Gilbert-Varshamov bound. University of Southern California, 2000.

Zhao Song, David P Woodruff, and Peilin Zhong. Relative error tensor low rank approximation. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2772–
2789. SIAM, 2019.

Zhao Song, David Woodruff, Zheng Yu, and Lichen Zhang. Fast sketching of polynomial kernels of
polynomial degree. In International Conference on Machine Learning, pp. 9812–9823. PMLR,
2021a.

12

Published as a conference paper at ICLR 2024

Zhao Song, Lichen Zhang, and Ruizhe Zhang. Training multi-layer over-parametrized neural network
in subquadratic time. arXiv preprint arXiv:2112.07628, 2021b.

Zhao Song, Xin Yang, Yuanyuan Yang, and Lichen Zhang. Sketching meets differential privacy: fast
algorithm for dynamic kronecker projection maintenance. In International Conference on Machine
Learning (ICML), pp. 32418–32462. PMLR, 2023a.

Zhao Song, Mingquan Ye, Junze Yin, and Lichen Zhang. A nearly-optimal bound for fast regression
with ℓ∞ guarantee. In ICML, 2023b.

Zhao Song, Mingquan Ye, and Lichen Zhang. Streaming semidefinite programs: O(
√
n) passes,

small space and fast runtime. arXiv preprint arXiv:2309.05135, 2023c.

Madhu Sudan. Lecture notes 8 of madhu sudan’s class, and scribed by josh alman. In Essential
coding theory. http://people.seas.harvard.edu/ madhusudan/MIT/ST13/scribe/lect08.pdf, 2013.

Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang Wang, Swagath Venkataramani, Vijayalak-
shmi Viji Srinivasan, Xiaodong Cui, Wei Zhang, and Kailash Gopalakrishnan. Hybrid 8-bit floating
point (hfp8) training and inference for deep neural networks. Advances in neural information
processing systems, 32, 2019.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Michael A Tsfasman, SG Vlădutx, and Th Zink. Modular curves, shimura curves, and goppa codes,
better than varshamov-gilbert bound. Mathematische Nachrichten, 109(1):21–28, 1982.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems (NeurIPS), 30, 2017.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications. Theoretical
Computer Science, 348(2-3):357–365, 2005.

Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity. In
Proceedings of the international congress of mathematicians: Rio de janeiro 2018, pp. 3447–3487.
World Scientific, 2018.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Greg Yang. Wide feedforward or recurrent neural networks of any architecture are gaussian processes.
Advances in Neural Information Processing Systems, 32, 2019.

Greg Yang. Tensor programs ii: Neural tangent kernel for any architecture. arXiv preprint
arXiv:2006.14548, 2020a.

Greg Yang. Tensor programs iii: Neural matrix laws. arXiv preprint arXiv:2009.10685, 2020b.

Greg Yang and Edward J Hu. Tensor programs iv: Feature learning in infinite-width neural networks.
In International Conference on Machine Learning, pp. 11727–11737. PMLR, 2021.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. Q8bert: Quantized 8bit bert. In 2019
Fifth Workshop on Energy Efficient Machine Learning and Cognitive Computing-NeurIPS Edition
(EMC2-NIPS), pp. 36–39. IEEE, 2019.

13

Published as a conference paper at ICLR 2024

Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers via
kernel density estimation. In ICML. arXiv preprint arXiv:2302.02451, 2023.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, Zhangyang Wang, and Beidi Chen. H2O : Heavy-
hitter oracle for efficient generative inference of large language models. In NeurIPS. arXiv preprint
arXiv:2306.14048, 2023.

14

Published as a conference paper at ICLR 2024

APPENDIX

Roadmap.

In Section A, we provide the definitions of several notations. In Section C, we provide the running
time proofs for our upper bound result. In Section D, we provide the error analysis for our upper
bound result. In Section E, we combine everything together, and also present our algorithm. In
Section B. we show how to reduce our problem to Gap−MaxIP.

A PRELIMINARY

We write R to denote the real numbers, and write Rn×d to denote the set of n× d matrices whose
entries are real numbers.

For any positive integer n, we write [n] to denote {1, 2, · · · , n}.
For a matrix A ∈ Rn×d and indices i ∈ [n], j ∈ [d], we write Ai,j to denote the entry of A in the i-th
row and j-th column.

We use 1n to denote a length-n vector whose entries are all ones.

For a vector w ∈ Rn, we use diag(w) ∈ Rn×n denote a diagonal matrix with (diag(w))i,i = wi; all
the other (off-diagonal) entries of the matrix are zero.

If D ∈ Rn×n is a diagonal matrix, we write D−1 ∈ Rn×n for its inverse, which is the diagonal
matrix whose i-th entry on the diagonal is 1/Di,i, and whose off-diagonal entries are all zero.

For a matrix A ∈ Rn×d, we use A⊤ ∈ Rd×n to denote its transpose.

For a vector x ∈ Rn, we use exp(x) ∈ Rn to denote the entry-wise exponential of x, i.e., the length-n
vector with exp(x)i = exp(xi) for all i ∈ [n].

For a matrix X ∈ Rn×n, we similarly use exp(X) ∈ Rn×n to denote the matrix with exp(X)i,j =
exp(Xi,j).

For any matrix A ∈ Rn×d, we define ∥A∥F := (
∑n

i=1

∑d
j=1 A

2
i,j)

1/2 to be the Frobenius norm of
A.

For a vector a, b ∈ Rn, we write ⟨a, b⟩ to denote their inner product,
∑n

i=1 aibi.

For a matrix A ∈ Rn×d, we write ∥A∥∞ to denote its ℓ∞ norm, i.e., ∥A∥∞ := maxi∈[n],j∈[d] |Ai,j |.

For a tensor T ∈ Rn×n×n, we similarly write ∥T∥∞ to denote the ℓ∞ norm of that tensor T , i.e.,
∥T∥∞ := maxi∈[n],j∈[n],l∈[n] |Ti,j,l|.
Definition A.1 (k-wise inner product). For k vectors a1, . . . , ak ∈ Rd, we define

⟨a1, . . . , ak⟩ :=
d∑

ℓ=1

k∏
i=1

ai,ℓ.

Definition A.2 (3-MAX-IP). Given three sets A,B,C ⊆ {0, 1}d of vectors where |A| = |B| =
|C| = n, the goal is to compute

max
a∈A,b∈B,c∈C

⟨a, b, c⟩

B HARDNESS: FROM MaxIP TO OUR PROBLEM

In Section B.1, we show how to reduce our problem to Gap−MaxIP. In Section B.2, we present our
main lower bound (hardness) result.

B.1 REDUCTION

We now generalize the hardness proof of Alman & Song (2023) to the tensor attention case.

15

Published as a conference paper at ICLR 2024

Lemma B.1. For every constant Cγ ∈ (0, 0.1), every ϵ > 0, and every C > C0 > 0, there
exist constants Ca > 0 and Cb > 0 and such that, if ATAttC (Definition D.1) for parameters
(2n, d = 2C log n,B = Cb

3
√
log n, ϵa = n−Ca) can be solved in time T , then Gap−MaxIP(n, d =

C log n, t = C0 log n, ϵ) (Definition 4.6) can be solved in time O(T + n3−Cγ).

Proof. We give an algorithm for Gap−MaxIP(n, d = C log n, t = C0 log n, ϵ) (Definition 4.6). Let
a1, · · · , an, b1, · · · , bn, c1, · · · , cn ∈ {0, 1}d denote the inputs to this problem. Using them, we will
construct appropriate inputs to the ATAttC problem so that its output will help us to detect triples
with large inner product.

Let β > 0 and d̃ ≥ d be parameters to be determined (in Eq. (5) and Eq. (2) below). Define τ > 0 by
τ := exp(β/2). (1)

We pick these parameters so that τ will be an upper bound on entries of the attention matrix, namely

τ ≥ max
i∈[n],j1∈[n],j2∈[n]

exp(β⟨ai, bj1 , cj2⟩/d̃).

We will use an algorithm for the ATAttC(ñ, d̃, B, ϵa) problem with parameters:

ñ := 2n, d̃ := 2d, (2)

B := Cb
3
√
log n, where Cb :=

√
40C/(C0ϵ), (3)

ϵa := n−Ca , where Ca := 2 + C2
b (1− C0/C). (4)

Furthermore, set
β := B3. (5)

We define the query and key matrices, Q ∈ Rñ×d̃ and K1,K2 ∈ Rñ×d̃ as

Q := 3
√

β ·



a⊤1 1⊤
d

a⊤2 1⊤
d

...
...

a⊤n 1⊤
d

0⊤
d 1⊤

d

0⊤
d 1⊤

d
...

...
0⊤
d 1⊤

d


, K1 := 3

√
β ·



b⊤1 0⊤
d

b⊤2 0⊤
d

...
...

b⊤n 0⊤
d

0⊤
d 1⊤

d

0⊤
d 1⊤

d
...

...
0⊤
d 1⊤

d


, and K2 := 3

√
β ·



c⊤1 0⊤
d

c⊤2 0⊤
d

...
...

c⊤n 0⊤
d

0⊤
d 1⊤

d

0⊤
d 1⊤

d
...

...
0⊤
d 1⊤

d


.

Since each entry of Q and K1, K2 is either 3
√
β or 0, it follows that

∥Q∥∞ ≤ 3
√
β = B

∥K1∥∞ ≤ 3
√
β = B

∥K2∥∞ ≤ 3
√
β = B

∥QK⊤/d̃∥∞ ≤
β · d̃
d̃

= β = B3.

In terms of these matrices Q ∈ Rñ×d̃ and K = K1 ⊘K2 ∈ Rñ2×d̃, the attention matrix

A := exp(QK⊤/d̃) ∈ Rñ×ñ2

is naturally partitioned into eight submatrices

A =

[
A1 A2 A3 A4

A5 A6 A7 A8

]
where each Ai (∀i ∈ [8]) is a matrix of size n × n2, defined as follows. For each j0 ∈ [n], j1 ∈
[n], j2 ∈ [n],

16

Published as a conference paper at ICLR 2024

• The (j0, j1 + (j2 − 1)n)-th entry of A1 is

– exp(β(⟨aj0 , bj1 , cj2⟩+ ⟨1d,0d,0d⟩)/d̃) = exp(β⟨aj0 , bj1 , cj2⟩/d̃)

• The (j0, j1 + (j2 − 1)n)-th entry of A2 is

– exp(β(⟨aj0 , bj1 ,0d⟩+ ⟨aj0 ,0d,1d⟩)/d̃) = exp(0) = 1

• The (j0, j1 + (j2 − 1)n)-th entry of A3 is

– exp(β(⟨aj0 ,0d, cj2⟩+ ⟨aj0 ,1d,0d⟩)/d̃) = exp(0) = 1

• The (j0, j1 + (j2 − 1)n)-th entry of A4 is

– exp(β(⟨aj0 ,0d,0d⟩+ ⟨1d,1d,1d⟩)/d̃) = exp(βd/d̃) = τ

• The (j0, j1 + (j2 − 1)n)-th entry of A5 is 1

– exp(β(⟨0d, bj1 , cj2⟩+ ⟨1d,0d,0d⟩)/d̃) = exp(0) = 1

• The (j0, j1 + (j2 − 1)n)-th entry of A6 is 1

– exp(β(⟨0d, bj1 ,0d⟩+ ⟨aj0 ,0d,1d⟩)/d̃) = exp(0) = 1

• The (j0, j1 + (j2 − 1)n)-th entry of A7 is 1

– exp(β(⟨0d,0d, cj2⟩+ ⟨aj0 ,1d,0d⟩)/d̃) = exp(0) = 1

• The (j0, j1 + (j2 − 1)n)-th entry of A8 is

– exp(β(⟨0d,0d,0d⟩+ ⟨1d,1d,1d⟩)/d̃) = exp(βd/d̃) = τ

For each (i, j1, j2) ∈ [n]× [n]× [n], we know that

Ai,j1+(j2−1)n = exp(β · ⟨ai, bj1 , cj2⟩/d̃)

≤ exp(β · ∥ai∥∞ · ∥bj1∥∞ · ∥cj2∥∞ · d/d̃)
≤ exp(β/2)

= τ. (6)

Here we used the fact that d < d̃ (see Eq. (2)), and the last step uses the definition of τ (see Eq. (1)).

We also know that for each (i, j1, j2) ∈ [n]× [n]× [n],

Ai,j1+(j2−1)n ≥ 0 (7)

since it is the exponential of an entry of QK⊤/d̃.

By combining our expression for A with Eq. (6) and Eq. (7), we see that

n2τ ≤ (A1ñ2)i ≤ 4n2τ, ∀i ∈ [ñ].

Since Di,i = (A1ñ)i, it follows that

n2τ ≤ Di,i ≤ 4n2τ, ∀i ∈ [ñ].

Choose the vector v ∈ Rñ2

(recall that ñ2 = 4n2) defined as

v =

1n2

0n2

0n2

0n2

 .

17

Published as a conference paper at ICLR 2024

We define t̃ as

t̃ :=
1

3
exp(0.25βt/d)/(4n2τ). (8)

We can see that t̃ ≥ ϵa as follows:

t̃ =
1

12n2
exp(0.25βt/d− β/2)

=
1

12n2
exp(−0.5β + 0.25βt/d)

=
1

12n2
exp(−0.5β + 0.25βC0/C)

=
1

12
exp(−0.5β + 0.25βC0/C − 2 log n)

=
1

12
exp(−0.5C2

b log n+ 0.25C2
b (C0/C) log n− 2 log n)

≥ n−Ca

= ϵa.

Here, the last two steps follow from Eq. (4).

We now use an algorithm for ATAttC(ñ, d̃, B, ϵa), with the value matrix V with one row v and the
rest 0. Since t̃ ≥ ϵa, the result is a vector u ∈ Rñ such that, for all i ∈ [ñ],

|ui − (D−1Av)i| < t̃.

Recall that for each i ∈ [n] we need to distinguish between two cases: either there is a pair
(j1, j2) ∈ [n] such that ⟨ai, bj1 , cj2⟩ ≥ t, or else for all pairs (j1, j2) ∈ [n] the inner product
⟨ai, bj1 , cj2⟩ ≤ (1− ϵa)t. We will distinguish between these cases by checking whether ui is greater
than a threshold value t̃0 := 2t̃. We next consider the two cases to see why this is.

Case 1.

For a given i ∈ [n], if there are (j1, j2) ∈ [n]× [n] such that ⟨ai, bj1 , bj2⟩ ≥ t, then

β⟨ai, bj1 , cj2⟩/d̃ = 0.5 · β⟨ai, bj1 , cj2⟩/d
≥ 0.25 · βt/d,

where the 1st step follows from 2d = d̃ (see Eq. (2)). This means as desired that

ui ≥ exp(0.25βt/d)/(4n2τ)− t̃

= 3t̃− t̃

= 2t̃

= t̃0.

Case 2.

For a given i ∈ [n], if for all (j1, j2) ∈ [n]× [n] we have ⟨ai, bj1 , cj2⟩ < t(1− ϵ), then

β⟨ai, bj1 , cj2⟩/d̃ ≤ 0.25β · (1− ϵ)t/d.

Hence, as desired,

ui < (n2 · exp(0.25β(1− ϵ)t/d)))/(n2τ) + t̃

= exp(0.25βt/d)/(4n2τ) · (4n2/ exp(0.25βϵt/d)) + t̃

= 3t̃ · (4n2/ exp(0.25βϵt/d)) + t̃ by definiton of t̃, see Eq. (8)

≤ 3t̃ · 1
4
+ t̃

18

Published as a conference paper at ICLR 2024

= 2t̃

= t̃0.

Here, the 4th step follows because, by our choice of β and t, we have
exp(0.25βϵt/d) = exp((0.25βϵC0 log n)/d)

= exp(0.25βϵC0/C)

= exp(10 log n)

> 16n2, (9)

where we used that t = C0 log n (by Lemma statement), that d = C log n, that β = B3 (Eq. (5)) and
the choice of B (Eq. (3)).

B.2 MAIN HARDNESS RESULT

We can finally conclude our main lower bound.
Theorem B.2 (Lower bound, formal version of Theorem 1.3). Assuming SETH, for every q > 0,
there are constants C,Ca, Cb > 0 such that: there is no algorithm running in time O(n3−q) for the
problem AAttC(n, d = C log n,B = Cb

3
√
log n, ϵa = n−Ca).

Proof. Follows from combining Theorem 4.5, Theorem 4.7, and Lemma B.1.

C UPPER BOUND: RUNNING TIME

In Section C.1, we review the standard “matrix” attention computation problem. In Section C.2, we
define the “tensor” attention computation problem. In Section C.3, we provide an efficient tool for
implementing tensor related computations. In Section C.4, we provide several tools for rearranging
tensor computations that we will use in our algorithm.

C.1 CLASSICAL ATTENTION COMPUTATION

We first review the attention computation definition in Vaswani et al. (2017); Devlin et al. (2018);
Radford et al. (2018; 2019); Brown et al. (2020); OpenAI (2023); Zandieh et al. (2023); Alman &
Song (2023); Brand et al. (2023); Gao et al. (2023b;c;a),
Definition C.1. Suppose there are three n× d size matrices Q,K, V ∈ Rn×d, our plan is to generate
the n× d matrix Att(Q,K, V) defined by

Att(Q︸︷︷︸
n×d

, K︸︷︷︸
n×d

, V︸︷︷︸
n×d

)

︸ ︷︷ ︸
n×d

:= D−1︸︷︷︸
n×n

A︸︷︷︸
n×n

V︸︷︷︸
n×d︸ ︷︷ ︸

n×d

where A ∈ Rn×n and diagonal matrix D ∈ Rn×n are defined as

A︸︷︷︸
n×n

:= exp(Q︸︷︷︸
n×d

K⊤︸︷︷︸
d×n

/d)

︸ ︷︷ ︸
n×n

, and D︸︷︷︸
n×n

:= diag(A︸︷︷︸
n×n

1n︸︷︷︸
n×1

)

︸ ︷︷ ︸
n×n

C.2 TENSOR ATTENTION COMPUTATION

Given two n × d matrices, there are two standard variants on their Kronecker product one may
consider: The standard Kronecker product (denoted ⊗) is a new n2 × d2 matrix, whereas the
column-wise Kronecker product (denoted ⊘) is a new n2 × d matrix. For more literature on tensor
computations and their applications in learning algorithms, we refer the readers to Bhaskara et al.
(2014); Song et al. (2019); Diao et al. (2018; 2019); Yang (2019; 2020a;b); Bhaskara et al. (2020);
Ahle et al. (2020); Song et al. (2021a;b); Yang & Hu (2021); Song et al. (2023a;b;c); Deng et al.
(2023).

Next, we generalize the matrix attention computation (in Alman & Song (2023)) into tensor attention
computation as follows:

19

Published as a conference paper at ICLR 2024

Definition C.2 (TensorAtt). Given matrices Q,K1,K2 ∈ Rn×d and matrices V1, V2 ∈ Rn×d, the
goal of tensor attention computation is to compute

TensorAtt(Q,K1,K2, V1, V2)︸ ︷︷ ︸
n×d

:= D−1︸︷︷︸
n×n

A︸︷︷︸
n×n2

V︸︷︷︸
n2×d︸ ︷︷ ︸

n×d

where

• A ∈ Rn×n2

is defined as A := Q︸︷︷︸
n×d

(K1︸︷︷︸
n×d

⊘ K2︸︷︷︸
n×d

)⊤

• D ∈ Rn×n is defined as D := diag(A︸︷︷︸
n×n2

· 1n2︸︷︷︸
n2×1

)

• V ∈ Rn2×d is defined as V := V1︸︷︷︸
n×d

⊘ V2︸︷︷︸
n×d

C.3 EFFICIENT COLUMN-WISE KRONECKER COMPUTATION

We prove an important tool which will be used in analyze the running time of our algorithm.
Lemma C.3. If the following condition holds

• Let ⊘ be defined as Definition 2.4.

• Given A1 ∈ Rn×d1 , A2 ∈ Rn×d1 , we define A := (A1 ⊘A2) ∈ Rn2×d1 .

• Given B1 ∈ Rn×d2 , B2 ∈ Rn×d2 , we define B := (B1 ⊘B2) ∈ Rn2×d2 .

• We define C ∈ Rd1×d2 as C := A⊤B

• We define C1 := A⊤
1 B1, C2 := A⊤

2 B2

Then, we have

• Part 1. C1 ◦ C2 = C

• Part 2. Given as input A1, A2, B1, B2, we can compute C in Tmat(d1, n, d2) time.

Proof. For each i ∈ [n], let a⊤1,i denote the i-th row of A1 ∈ Rn×d1 .

For each i ∈ [n], let a⊤2,i denote the i-th row of A2 ∈ Rn×d1 .

For each i ∈ [n], let b⊤1,i denote the i-th row of B1.

For each i ∈ [n], let b⊤2,i denote the i-th row of B2.

For each i ∈ [d], let A∗,i ∈ Rn2

denote the i-th column of matrix A ∈ Rn2×d1

Recall that C1 ∈ Rd1×d2 and C2 ∈ Rd1×d2 ,

C1 := A⊤
1 B1, C2 := A⊤

2 B2

Thus, we see that

(C1)k1,k2
=

n∑
i=1

a1,i,k1
b1,i,k2

(C2)k1,k2
=

n∑
j=1

a2,j,k1
b2,j,k2

20

Published as a conference paper at ICLR 2024

Then, we can write C ∈ Rd1×d2 as

C︸︷︷︸
d1×d2

= A⊤︸︷︷︸
d1×n2

B︸︷︷︸
n2×d2

=

n2∑
i=1

A∗,i︸︷︷︸
d1×1

B⊤
∗,i︸︷︷︸

1×d2

=

n∑
i=1

n∑
j=1

A∗,i+(j−1)n︸ ︷︷ ︸
d1×1

B⊤
∗,i+(j−1)n︸ ︷︷ ︸

1×d2

=

n∑
i=1

n∑
j=1

(a1,i ◦ a2,j)︸ ︷︷ ︸
d1×1

· (b1,i ◦ b2,j)⊤︸ ︷︷ ︸
1×d2

(10)

where the first step follows from definition of C ∈ Rd×d, the second step follows from the matrix
can written as the summation of n2 rank-1 matrices, the third step follows from changing the index,
the forth step follows from A∗,i+(j−1)n︸ ︷︷ ︸

d1×1

= a1,i︸︷︷︸
d1×1

◦ a2,j︸︷︷︸
d1×1

.

From the above, we can calculate that the entry of C in location k1, k2 is

Ck1,k2
=

n∑
i=1

n∑
j=1

(a1,i ◦ a2,j)k1
· (b1,i ◦ b2,j)⊤k2

=

n∑
i=1

n∑
j=1

a1,i,k1
a2,j,k1

b1,i,k2
b2,j,k2

= (

n∑
i=1

a1,i,k1
b1,i,k2

) · (
n∑

j=1

a2,j,k1
b2,j,k2

)

= (C1)k1,k2
· (C2)k1,k2

where the first step follows from Eq. (10), the second step follows from simple algebra, the third step
follows from separating the summation over i and the summation over j, and the last step follows
from definition of matrices C1 and C2.

Thus, we can conclude

C = C1 ◦ C2.

The algorithm will first compute C1 and C2, whic takes Tmat(d1, n, d2) time. Then it calculates
C1 ◦ C2, which takes O(d1d2) time.

C.4 SIMPLE EQUIVALENT TOOLS FOR TENSOR NOTATIONS

We define a standard tensor notation, for example see Song et al. (2019).
Definition C.4 ((·, ·, ·) tensor operator). Given a tensor T ∈ Rn1×n2×n3 , let X ∈ Rn1×d1 , Y ∈
Rn2×d2 , Z ∈ Rn3×d3 .

We define T (X,Y, Z) ∈ Rd1×d2×d3 as follows

T (X,Y, Z)i,j,l =

n1∑
a=1

n2∑
b=1

n3∑
c=1

Ta,b,cXa,iYb,jZc,l, ∀a ∈ [d1], b ∈ [d2], c ∈ [d3].

Next, we present several equivalence results for tensors.
Lemma C.5. If the following conditions hold

• Let ⊘ be defined as Definition 2.4.

21

Published as a conference paper at ICLR 2024

• Let ⊙ be defined as Definition 2.2.

• Let (·, ·, ·) operator be defined as Definition C.4.

• Let ◦ be defined as Definition 2.1.

• Let Q,K1,K2, V1, V2 ∈ Rn×d

• Let A ∈ Rn×n2

be Q(K1 ⊘K2)
⊤.

• Let A ∈ Rn×n×n be Q⊙K1 ⊙K2.

Then, we have

• Part 1. Ai,j1+(j2−1)n = Ai,j1,j2 for i ∈ [n], j1 ∈ [n], j2 ∈ [n] (This means A can be viewed
as the tensor version of A)

• Part 2. A1n2 = A(I,1n,1n) = Q⊙ (1⊤
nK1)⊙ (1⊤

nK2)

• Part 3. A(V1 ⊘ V2) = Q(K1 ⊘K2)
⊤(V1 ⊘ V2) = Q((K⊤

1 V1) ◦ (K⊤
2 V2))

Proof. Proof of Part 1.

Directly follows from definition of A and A.

Proof of Part 2.

Follows from tensor notations in Definition 2.2 and Definition C.4.

Proof of Part 3.

Directly follows from applying Part 1 of Lemma C.3 here.

D UPPER BOUND: ERROR ANALYSIS

In Section D.1, we provide the definition of approximate tensor attention computation. In Section D.2,
we state a polynomial approximation tool from previous work. In Section D.3, we show a bound
on the entries of the attention matrix. In Section D.4, we provide a low-rank decomposition for the
tensor version of the attention matrix. Finally, in Section D.5, we compute the error propagation from
A to D, then in Section D.6, we analyze the error propagation from A and D to the attention matrix.

D.1 APPROXIMATE TENSOR ATTENTION COMPUTATION

Definition D.1 (A tensor generalization of standard attention computation, restatement of Defini-
tion 1.2). Let ϵa > 0, B > 0 be parameters. Given five matrices Q,K1,K2, V1, V2 ∈ Rn×d such
that

• ∥Q∥∞ ≤ B, ∥K1∥∞ ≤ B, ∥K2∥∞ ≤ B, ∥V1∥∞ ≤ B, ∥V2∥∞ ≤ B

Our goal is to find a matrix T ∈ Rn×d which can entry-wisely approximate D−1AV , in particular, it
means the following ℓ∞ norm guarantee,

∥T −D−1AV ∥∞ ≤ ϵa

Here,

• A := exp(Q(K1 ⊘ K2)
⊤) ∈ Rn×n2

(We remark that we can also view matrix A as the
flattening of an n× n× n tensor)

• V := V1 ⊘ V2 ∈ Rn2×d

• D = diag(A1n2) ∈ Rn×n is an n× n size positive diagonal matrix.

Notice that the straightforward algorithm for this problem will spend at least Ω(n3) time to write the
matrix A (we can also think of A as an tensor that has size n× n× n).

22

Published as a conference paper at ICLR 2024

D.2 AN ERROR CONTROL TOOL FROM PREVIOUS WORK

We state a tool from previous work.

Corollary D.2 (Corollary 2.2 in Alman & Song (2023)). Suppose the following conditions hold

• Let B > 1.

• Let ϵ ∈ (0, 0.1).

• Let g := Θ(max{ log(1/ϵ)
log(log(1/ϵ)/B) , B}).

There is a polynomial P : R→ R of degree-g such that for all x ∈ [−B,B], we have

(1− ϵ) · exp(x) < P (x) < (1 + ϵ) · exp(x).

D.3 TENSOR Q⊙K1 ⊙K2 HAS BOUNDED ENTRIES

Lemma D.3 (Bounded entry). Suppose the following conditions hold

• Suppose B ≥ 1

• Assume matrices Q,K1,K2 ∈ Rn×d have ∥Q∥∞ ≤ B, ∥K1∥∞ ≤ B, ∥K2∥∞ ≤ B.

• Let ⊙ operation be defined as Definition 2.2.

Then, we have

∥Q⊙K1 ⊙K2/d∥∞ ≤ B3.

Proof. For every index triple (i, j1, j2) ∈ [n]× [n]× [n], we are able to prove

|(QK⊤)i,j1,j2 | = |
d∑

l=1

Qi,l(K1)j1,l(K2)j2,l|

≤ d · ∥Q∥∞ · ∥K1∥∞ · ∥K2∥∞
≤ d ·B3,

where the 2nd step is because triangle inequality, the 3rd step is using ℓ∞ norm bound on Q,K1,K2.

Now, we complete the proofs.

D.4 TENSOR LOW-RANK APPROXIMATION

In the following definition, we view the n× n2 size matrix as an n× n× n size attention matrix.

Definition D.4. Assume the following parameters regime,

• We use r ≥ 1 to denote a positive integer.

• We use ϵ ∈ (0, 0.1) to represent an accuracy parameter.

• Suppose there is a 3rd order tensor A ∈ Rn×n×n
≥0

We say 3rd order tensor Ã ∈ Rn×n×n
≥0 is an (ϵ, r)-approximation of tensor A if

• Ã = U1 ⊙ U2 ⊙ U3 for some matrices U1, U2, U3 ∈ Rn×r (i.e., Ã has rank at most r), and

• |Ãi,j1,j2 −Ai,j1,j2 | ≤ ϵ · Ai,j1,j2 for all (i, j1, j2) ∈ [n]× [n]× [n].

23

Published as a conference paper at ICLR 2024

D.5 FROM A TO D

In this section and the next, we generalize the proof of Alman & Song (2023) for error propagation
from the matrix setting to the tensor setting. The proofs are nearly identical.

Lemma D.5. Let A ∈ Rn×n2

be a matrix with positive entries, and ϵA ∈ (0, 0.1) be any parameter.
Let Ã ∈ Rn×n2

be an approximation to A, meaning for all (i, l) ∈ [n]× [n2], we have

|Ãi,l −Ai,l| ≤ ϵA ·Ai,l.

We consider two diagonal matrices D, D̃ ∈ Rn×n which can be formally written as D := diag(A1n2)

and D̃ := diag(Ã1n2).

Then, for every index i ∈ [n], the following bound holds

|D̃i,i −Di,i| ≤ ϵA ·Di,i.

Proof. We calculate that

|D̃i,i −Di,i| = |
n2∑
l=1

Ãi,l −
∑
j=1

Ai,l|

≤
n2∑
l=1

|Ãi,l −Ai,l|

≤
n2∑
l=1

ϵAAi,l

= ϵA ·Di,i.

where the second step follows from triangle inequality.

This completes the proof.

D.6 FROM A,D TO TENSOR ATTENTION

The goal of this section is to prove Lemma D.6.

Lemma D.6. Suppose the following conditions are true

• Let ϵA, ϵD ∈ (0, 0.1)

• Let B > 1 be a bounded parameter,

• We use V = (V1 ⊘ V2) ∈ Rn2×d to represent a matrix with ∥V ∥∞ ≤ B2.

• Let A ∈ Rn×n2

>0 be a positive matrix,

• and let Ã ∈ Rn×n2

be a matrix such that, for every tuple (i, l) ∈ [n]× [n2] we have

|Ãi,l −Ai,l| ≤ ϵA ·Ai,l.

• Suppose D, D̃ ∈ Rn×n are diagonal matrices with positive diagonal entries, and such that
for every index i ∈ [n], we have

|D̃i,i −Di,i| ≤ ϵD ·Di,i.

Then, we have

∥D̃−1ÃV −D−1AV ∥∞ ≤ (ϵA + ϵD) ·B2.

24

Published as a conference paper at ICLR 2024

Proof. By the triangle inequality, we know

∥D̃−1ÃV −D−1AV ∥∞ ≤ ∥D̃−1ÃV −D−1ÃV ∥∞ + ∥D−1ÃV −D−1AV ∥∞. (11)

We bound each of these two terms to get our desired result.

First of all, for every index pair (i, j) ∈ [n]× [d],

|(D̃−1ÃV −D−1ÃV)i,j | = |
n2∑
l=1

(D̃−1
i,i −D−1

i,i) · Ãi,l · Vl,j |

≤
n2∑
l=1

|(D̃−1
i,i −D−1

i,i) · Ãi,l| · ∥V ∥∞

=

n2∑
l=1

|Di,i − D̃i,i

Di,iD̃i,i

Ãi,l| · ∥V ∥∞

≤ ϵD ·
n2∑
l=1

|D̃−1
i,i Ãi,l| · ∥V ∥∞

= ϵD · |
n2∑
l=1

D̃−1
i,i Ãi,l| · ∥V ∥∞

= ϵD · ∥V ∥∞
≤ ϵD ·B2. (12)

Here the 2nd step uses the triangle inequality, the 4th step follows from the assumption that |(Di,i −
D̃i,i)/Di,i| ≤ ϵD, the 5th step follows because D̃−1

i and Ãi,l are positive numbers, and the final step
follows by ℓ∞ norm of V is bounded by B2.

Second, for every (i, j) ∈ [n]× [d],

|(D−1ÃV −D−1AV)i,j | = |
n2∑
l=1

D−1
i,i (Ãi,l −Ai,l) · Vl,j |

≤
n2∑
l=1

|D−1
i,i | · |(Ãi,l −Ai,l)| · ∥V ∥∞

=

n2∑
l=1

D−1
i,i · |(Ãi,l −Ai,l)| · ∥V ∥∞

≤
n2∑
l=1

D−1
i,i · ϵAAi,l ·B2

= ϵA ·B2. (13)

Here, again, the 2nd step uses the triangle inequality, the 3rd step follows because D−1
i,i is positive,

the 4th step follows from the assumption that |Ãi,l −Ai,l| ≤ ϵA ·Ai,l and the final step follows by
definition of Di,i.

The Lemma conclusion then becomes true by substituting Eq. (12) and Eq. (13) into Eq. (11).

E UPPER BOUND: PUTTING IT ALL TOGETHER

In Section E.1, we provide a low-rank decomposition for approximating the original attention tensor.
In Section E.2, we calculate the running time of constructing that low-rank decomposition. In
Section E.3, we put everything together, and prove our main upper bound theorem.

25

Published as a conference paper at ICLR 2024

E.1 DECOMPOSING INTO U1, U2 AND U3

The goal of this section is to prove Lemma E.1.
Lemma E.1. If the following conditions hold

• We use M := X ⊙Y ⊙Z ∈ Rn×n×n to represent a tensor that is constructed by X,Y, Z ∈
Rn×d.

• Let P (x) denote a degree-g single-variable polynomial. We apply P (M) entry-wisely, i.e,
P (M)i,j,l = P (Mi,j,l).

• Let r be rank parameter that is r :=
(
3(g+d)

3g

)
.

There is an algorithm running in time O(nrg) which, given as input X,Y, Z, constructs matrices
U1, U2, U3 ∈ Rn×r such that P (M) = U1 ⊙ U2 ⊙ U3.

Proof. Expand P as a sum of monomials as

P (x) =

d∑
i=0

ci · xi.

Consider the function K : Rd × Rd × Rd → R defined by, for u, v, w ∈ Rd,

K(u, v, w) := P (⟨u, v, w⟩).

We define set V and provide names for variables in set V in the following sense,

V := {u1, · · · , ud, v1, · · · , vd, w1, · · · , wd}.

Thus, function K can be viewed a degree-3g polynomial in the 3d entries in V of the vectors u, v, w.

We count the number of its monomials.

We define set F as

F :=

{
f : V → {0, 1, 2, · · · , 3g} |

∑
v∈V

f(v) ≤ 3g

}
.

Let us count the size of set F

|F| =
(
3d+ 3g

3g

)
.

There exists coefficients {ct}t∈F ∈ R such that

K(u, v, w) =
∑
t∈F

ct ·
∏
β∈V

vt(β).

We define partitions of V :

Vu := {u1, · · · , ud}, Vv := {v1, · · · , vd}, Vw := {w1, · · · , wd}.

We define ϕu : Rd → R|F| by, for any t ∈ F ,

ϕu(u1, · · · , ud)t = ct ·
∏

ui∈Vu

u
t(ui)
i .

Similarly, we define ϕv : Rd → R|F| by, for any t ∈ F ,

ϕv(v1, · · · , vd)t =
∏

vi∈Vv

v
t(vi)
i .

26

Published as a conference paper at ICLR 2024

and we define ϕw : Rd → R|F| by, for any t ∈ F ,

ϕw(w1, · · · , wd)t =
∏

wi∈Vw

w
t(wi)
i .

Here, we can view K function as

K(u, v, w) = ⟨ϕu(u), ϕv(v), ϕw(w)⟩.

For every index i ∈ [n], suppose Xi ∈ Rd is the i-th row of X , assume Yi ∈ Rd is the i-th row of Y ,
and let Zi ∈ Rd denote the i-th row of Z.

Therefore, we should construct three matrices U1, U2 and U3 as the following way, for each i ∈ [n]

• the i-th row of the matrix U1 ∈ Rn×|F| is the vector ϕu(xi),

• the i-th row of the matrix U2 ∈ Rn×|F| is the vector ϕv(yi),

• the i-th row of the matrix U3 ∈ Rn×|F| is the vector ϕw(zi).

These n× r matrices can be constructed in time O(nrg) in the straightforward way, since each entry
depends on g variables.

Algorithm 1 Our Polynomial Method Tensor Attention Algorithm

1: procedure POLYTENSORATTENTION(Q ∈ Rn×d,K1 ∈ Rn×d,K2 ∈ Rn×d, V1 ∈ Rn×d, V2 ∈
Rn×d, n ∈ N+, d ∈ N+, B > 0, ϵ ∈ (0, 0.1)) ▷ Theorem 1.4

2: ▷ n can be viewed as the length of the sentence
3: ▷ d can be viewed as the feature of dimension
4: ▷ ϵ is the accuracy output
5: ▷ max{∥Q∥∞, ∥K1∥∞, ∥K2∥∞, ∥V1∥∞, ∥V2∥∞} ≤ B

6: g ← O(max{ log(1/ϵ)
log(log(1/ϵ)/B3) , B

3})
7: r ←

(
3(g+d)

3d

)
8: /*Step 1*/
9: Construct U1, U2, U3 ∈ Rn×r via Lemma E.2 ▷ O(nrg) time

10: /*Step 2*/
11: w̃ ← U1︸︷︷︸

n×r

·((U2 ⊘ U3)
⊤︸ ︷︷ ︸

r×n2

(1n ⊘ 1n)︸ ︷︷ ︸
n2×1

) ▷ O(nr) time

12: /*Step 3*/
13: D̃−1 = diag(w̃−1) ▷ O(n) time
14: /*Step 4*/
15: Compute (U2 ⊘ U3)

⊤(V1 ⊘ V2) ∈ Rr×d ▷ Takes Tmat(r, n, d) time
16: /*Step 5*/
17: Compute U1 · ((U2 ⊘ U3)

⊤(V1 ⊘ V2)) ▷ Tmat(n, r, d) time
18: /*Step 6*/
19: T ← D̃−1 · (U1 · ((U2 ⊘ U3)

⊤(V1 ⊘ V2))) ▷ O(nd) time
20: return T ▷ T ∈ Rn×d

21: end procedure

E.2 TIME FOR CONSTRUCTING U1, U2, U3

Lemma E.2. Suppose five matrices Q,K1,K2, V1, V2 ∈ Rn×d satisfy

• ∥Q∥∞ ≤ B,

• ∥K1∥∞ ≤ B, ∥K2∥∞ ≤ B,

• ∥V1∥∞ ≤ B, and ∥V2∥∞ ≤ B.

27

Published as a conference paper at ICLR 2024

We define tensor A := exp(Q⊙K1 ⊙K2/d) ∈ Rn×n×n.

For bounded number B > 0 and accuracy parameter ϵ ∈ (0, 1), there are positive integers g and r

• the condition for g:

g = O
(
max

{ log(1/ϵ)

log(log(1/ϵ)/B3)
, B3

})
,

• the condition for r:

r ≤
(
3(g + d)

3g

)
such that:

There is a third order tensor Ã ∈ Rn×n×n that

• Ã is an (ϵ, r)-approximation (Definition D.4) of A ∈ Rn×n×n

• Let U1, U2 and U3 ∈ Rn×r be the matrices defining Ã, i.e., Ã = U1 ⊙ U2 ⊙ U3

• it takes O(nr) time to construct U1, U2 and U3.

Proof. We define M := Q⊙K1 ⊙K2/d ∈ Rn×n×n. Using Lemma D.3, we can show that
∥M∥∞ ≤ B3.

Recall that the definition of (ϵ, r)-approximation can be found in Definition D.4.

Next, we will apply Corollary D.2 (with replacing B by B3), there is a degree-g polynomial
P : R→ R such that the tensor Ã = P (M) is an (ϵ, r)-approximation to tensor A. Here we apply P
to M entrywisely.

We can then compute U1, U2, and U3 using Lemma E.1, which gives the bound

r ≤
(
3(g + d)

3g

)
.

Therefore, we finish the proof.

E.3 MAIN ALGORITHMIC RESULT

We present our main algorithmic result as follows:
Theorem E.3 (Upper bound, formal version of Theorem 1.4). There is an algorithm (Algorithm 1)
that solves ATAttC(n, d = O(log n), B = o(3

√
log n), ϵa = 1/ poly(n)) in time n1+o(1).

Proof. Proof of Running Time.

• Using Lemma E.2, we know that Step 1 (in Algorithm 1) can be implemented in O(nrg)
time

• Using Lemma C.3, we know that Step 2 (in Algorithm 1) can be implemented in O(nr)
time

• Step 3 can implemented in O(n) in a straightforward way.

• To compute Step 4 efficiently, we need to use Lemma C.3 again.

• Computing Step 5 is just standard matrix multiplication

• Step 6 is just rescaling the n× d matrix

Proof of Correctness.

We combine Corollary D.2, Lemma D.5, Lemma D.6, and simple algebra.

28

	Introduction
	Our Results

	Preliminary
	Technique Overview
	Algorithm
	Hardness

	Hardness
	Algebraic Geometry Codes from previous work
	A Four Party MA Communication Protocol
	Showing is hard

	Preliminary
	Hardness: From to Our Problem
	Reduction
	Main Hardness Result

	Upper Bound: Running Time
	Classical Attention computation
	Tensor Attention Computation
	Efficient Column-wise Kronecker Computation
	Simple Equivalent Tools for Tensor Notations

	Upper Bound: Error Analysis
	Approximate Tensor Attention Computation
	An Error Control Tool From Previous Work
	Tensor Has Bounded Entries
	Tensor Low-Rank Approximation
	From to
	From to Tensor Attention

	Upper Bound: Putting It All Together
	Decomposing into and
	Time for Constructing
	Main Algorithmic Result

