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Abstract

In recent years, the expressive power of various neural architectures—including
graph neural networks (GNNs), transformers, and recurrent neural networks—has
been characterised using tools from logic and formal language theory. As the
capabilities of basic architectures are becoming well understood, increasing atten-
tion is turning to models that combine multiple architectural paradigms. Among
them particularly important, and challenging to analyse, are temporal extensions of
GNNs, which integrate both spatial (graph-structure) and temporal (evolution over
time) dimensions. In this paper, we initiate the study of logical characterisation
of temporal GNNs by connecting them to two-dimensional product logics. We
show that the expressive power of temporal GNNs depends on how graph and
temporal components are combined. In particular, temporal GNNs that apply static
GNNs recursively over time can capture all properties definable in the product
logic of (past) propositional temporal logic PTL and the modal logic K. In contrast,
architectures such as graph-and-time TGNNs and global TGNNs can only express
restricted fragments of this logic, where the interaction between temporal and
spatial operators is syntactically constrained. These provide us with the first results
on the logical expressiveness of temporal GNNs.

1 Introduction

Recent years have seen significant progress in understanding the expressive power of neural architec-
tures using tools from logic, formal language theory, and graph theory. Some of the most prominent
results concern Graph Neural Networks (GNNs), whose distinguishing power has been famously
characterised with the Weisfeiler-Leman isomorphism test [31, 46] and whose logical expressiveness
has been captured with modal and first-order logics [3, 17, 32, 5, 1]. These insights have revealed both
the limitations and strengths of GNNs, inspiring the development of more expressive variants such as
higher-order GNNs [31]. They have also opened the way for extracting logical rules from GNNs,
advancing explainability in graph-based learning [42, 43]. Consequently, the logical expressiveness
of GNNs has become a rapidly evolving research area.

As the capabilities of standard GNN architectures become relatively well understood, research interest
is shifting to more complex architectures, which combine multiple dimensions of structure. One
particularly prominent and challenging case is that of Temporal Graph Neural Networks (TGNNs)
[26, 40, 14], which can be seen as an extension of GNNs enabling to process temporal graphs,
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that is, graphs whose topology evolves over time. As a result, TGNN computations combine the
spatial (graph structure) with temporal (changes in time) dimensions. Considerable advancements
have been made in the design of various TGNN architectures [26] and their deployment across
diverse applications such as traffic forecasting, financial applications, and epidemiological contexts
[49, 33, 21]. However understanding expressive capabilities of TGNNs remains limited, with the
first steps only comparing some TGNN architectures [14, 8] or establishing relations with temporal
versions of the Weisfeiler-Leman test [41, 44]. To the best of our knowledge no connection of TGNNs
with logics has been established prior to this work.

Our contribution. In this work, we initiate the analysis of the logical expressiveness of TGNNs.
Our goal is to characterise the temporal graph properties that TGNNs can express using logical
languages. To achieve this, we propose a novel approach—analysing the logical expressiveness of
TGNNs using two-dimensional product logics. This is based on the key insight that the computations
of TGNNs, which process both the structural properties of static graphs and their evolution over time,
naturally correspond to combinations of modal and temporal properties.

Both modal and temporal logics have been extensively studied in the logic community for decades,
and more recent work has connected them to the expressiveness of neural architectures [3, 32, 4, 47].
Likewise, many-dimensional logics, especially products of modal and temporal logics, have a rich
theoretical foundation and well-established tools for analysing definability and complexity [24, 6, 28].
We are the first to apply product logics as a framework for analysing the expressive power of TGNNs.

At a technical level, we show that certain TGNN architectures are (in-)capable of expressing certain
combinations of modal-temporal properties. Our results are as follows:

• The class Trec[M̂] of TGNNs recursively applying standard static GNNs (from class M̂) over time,
can express all properties definable in the product logic PTLP,Y×K, which combines the seminal
(past) propositional temporal logic PTLP,Y and the modal logic K (Theorem 6).

• Analogous results hold if we replace M̂ and K with matching expressiveness GNNs and logics. In
particular, we show that such results hold for two specific pairs of static GNNs and logics, recently
studied in literature [32, 5] (Theorem 7).

• In contrast to recursive TGNNs, the class of time-and-graph TGNNs [14] does not allow us to
express all properties expressible in PTLP,Y×K (Theorem 8). We show, however, that time-and-
graph TGNNs can express all properties definable in a fragment of PTLP,Y×K, in which the
allowed interplay between temporal and modal operators is syntactically restricted (Theorem 9).

• The class of global TGNNs [44] also does not allow us to express all properties expressible in
PTLP,Y×K (Theorem 10). As in the previous case, we determine a fragment of PTLP,Y×K,
such that global TGNNs can express all properties definable in this fragment (Theorem 11). This
fragment, however, allows for different interactions between temporal and modal operators, than
the fragment from Theorem 8.

• We show how our results allow to determine relative expressive power of TGNN classes considered
in the paper (Corollary 12 and Theorem 13).

Beyond their theoretical significance, these results open the door to novel avenues in explainable
and trustworthy AI. Just as logical characterisations of static GNNs have enabled the extraction of
symbolic rules from neural models [42, 43], our analysis lays the foundation for extracting temporal
rules and dynamic specifications from TGNNs.

2 Related work

Temporal GNNs. There exists a plethora of TGNN models [26], differing on representation and
processing temporal graphs. There exist various classifications of TGNNs [26], but one of the main
distinction is between snapshot-based models, where a temporal graph is given as a sequence of its
timestamped snapshots [18, 38, 30, 48, 11], and event-based models, where a temporal graph is given
as a sequence of events modifying the graph structure [45, 35, 27]. In this paper we focus on the
snapshot-based TGNNs, but it is worth to observe that in many settings these two types of temporal
graph representation can be translated into each other. Initial work on the expressive power of TGNNs
has been conducted exploiting their relation to variants of the Weisfeiler-Leman isomorphism test

2



[41, 44] and by directly comparing expressiveness of particular TGNN architectures [14, 8]. However,
to the best of our knowledge, no work has yet studied the expressive power of TGNNs from the
perspective of logics.

Logical expressiveness of static GNNs. The seminal logical characterisation of (message-passing)
GNNs established that the properties expressible both by GNNs and first-order logic coincide with
those definable in graded modal logic [3]. Subsequent work moved beyond the assumption of first-
order expressibility, aiming to identify logics that capture the full expressive power of GNNs. This
line of research led to the introduction of logics such as the modal logic K# [32] and logics extended
with Presburger quantifiers [5]. More recent results have provided logical characterisations of further
GNN architectures using logics with quantised parameters [1, 37] or standard modal logics [12].
There are also results on the logical expressiveness of GNNs extended with global readouts [3, 20].

Product logics Multi-dimensional product logics [24, 29] offer a general framework for combining
multiple modal logics, each capturing distinct aspect of reasoning such as space, time, or knowledge.
In these systems, states are represented as tuples drawn from the component logics, and accessibility
relations are defined componentwise, enabling interaction between different modal dimensions. There
is a long-standing tradition of studying the complexity and axiomatisation of multi-dimensional
logics—a line of research that often proves to be highly challenging [24, 29]. Two-dimensional
product logics, in particular, have been extensively investigated due to their applicability in spatio-
temporal [6], temporal-epistemic [19], temporal-standpoint [15, 13], and temporal description logic
[2] settings. Of particular relevance to our work is the two-dimensional product logic PTL×K, which
combines propositional temporal logic (PTL) [34] with the modal logic K [23]. This logic, along
with its various extensions and variants, has been the subject of extensive study in the literature [24].

3 Notation

We will briefly describe basic notions, notation, and conventions used in the paper.

We use bold symbols, such as x and y, to represent vectors; we assume that they are given as column
vectors. In particular, we use 0 for vectors containing only 0s; their dimension will usually be clear
from context. We let xi be the ith element of x, and x ||y the concatenation of x and y, that is, a
vector obtained by stacking x onto y. We use {{· · ·}} to denote multisets, that is, sets with possibly
multiple occurrences of elements.

A (static, undirected, node-labelled) graph, G = (V,E, c), is a triple consisting of a finite set V of
nodes, a set E of undirected edges over V , and a labelling c : V → Rk of nodes with vectors in Rk.
If c : V → {0, 1}k, we call vector entries colours and say that the graph is coloured (with k colours).
A pointed graph is a pair (G, v) consisting of a graph and one of its nodes.

A temporal graph, TG = (G1, t1), . . . , (Gn, tn), is a finite sequence of pairs (Gi, ti), where
Gi = (Vi, Ei, ci) is a static graph such that V1 = · · · = Vn and ti ∈ R is a number, also called a
timestamp, such that t1 < · · · < tn. We call n the length of TG. We usually refer to the set of nodes
of TG as V . We call a temporal graph discrete, if ti = i for each timestamp ti. A timestamped
node is a pair (v, ti) of a node and a timestamp; a pointed temporal graph is a pair (TG, (v, ti)) of a
temporal graph and a timestamped node. Often, we will write (TG, v) instead of (TG, (v, tn)).

4 Message-passing GNNs and TGNNs

In this section, we briefly present the standard message-passing GNNs [16], referred to as message
passing neural networks (MPNNs) here, but also called aggregation-combine GNNs (AC-GNNs) [3].
Afterwards, we present three ways of extending them to the temporal setting, which gives rise to the
three classes of temporal GNNs we will study in this paper.

Definition 1. A message-passing GNN (MPNNs), M = (l1, . . . , lk), is a finite sequence of message-
passing layers of the form li = (combi, aggi), where combi are combination functions mapping
pairs of vectors to single vectors, and aggi are aggregation functions mapping multisets of vectors to
single vectors. An application of M to a graph G = (V,E, c) yields embeddings h(i)

v computed for
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all v ∈ V and i+ 1 ≤ k as follows:

h(0)
v = c(v), h(i+1)

v = combi+1(h(i)
v , aggi+1({{h(i)

u | {v, u} ∈ E}})).

For a pointed graph (G, v), we let M(G, v) = h
(k)
v be the final embedding computed for v.

Depending on the type of combination and aggregation functions we obtain various classes of
MPNNs, usually written as M. In particular, we use M̂ for the class of MPNNs whose combination
functions are realised by feedforward neural networks with truncated-ReLU max(0,min(1, x)) as
activation function and with aggregation given by the entrywise sum agg(S) =

∑
x∈S x. We

denote the class of these FNN by FNN[trReLU] (see Appendix A.1 for a formal definition). Another
class of MPNNs we consider is M̂msg which is similar to M̂, but aggregations are now given by
agg(S) =

∑
x∈S msg(x), where msg is a feedforward neural network from FNN[trReLU].

Next, we discuss three classes of TGNNs obtained by extending MPNNs in order to process temporal
graphs TG = (G1, t1), . . . , (Gn, tn). The first type, recursive TGNNs, starts processing TG by
applying an MPNN to the first static graph G1. It then extends G2 by concatenating node labels with
the embeddings computed by the MPNN. Next, it applies the same MPNN to the obtained static
graph. This process is applied recursively in n rounds, until all graphs G1, . . . , Gn are processed.
The formal definition of such models is given below.
Definition 2. Recursive TGNNs Trec[M], for a class M of MPNNs, are pairs T = (M, out), where
M ∈ M and out is an output function mapping vectors to binary values in {0, 1}. An application of
T = (M, out) to a temporal graph TG = (G1, t1), . . . , (Gn, tn) with Gj = (Vj , Ej , cj), yields the
following embeddings for all v ∈ V and j + 1 ≤ n:

h(0)
v (t1) = c1(v) ||0, h(0)

v (tj+1) = cj+1(v) ||h(k)
v (tj),

h(k)
v (tj) =M((Vj , Ej , [u 7→ h(0)

u (tj)]), v).

where k is the number of layers in M and [u 7→ h
(0)
u (tj)] is a labelling function mapping each

u ∈ Vj to the vector h(0)
u (tj),

We remark that we introduce the Trec architecture to represent approaches that directly leverage
existing MPNN architectures for temporal graphs [48] without employing a specialised architecture.

The second type, time-and-graph TGNNs, are studied in several papers [14, 8] and akin to several
models [25, 7, 39]. Such TGNNs perform computations by exploiting not only MPNNs, but also
cell functions (e.g. a gated recurrent unit [10]) mapping vectors to vectors. In particular, time-
and-graph TGNNs use two MPNNs (M1 and M2) and one cell function (Cell ). A temporal graph
TG = (G1, t1), . . . , (Gn, tn) is, again, processed from left to right in n steps. In each step j +1, the
TGNN applies M1 to Gj+1 and M2 to Gj+1 with node labels replaced by embeddings computed in
step j. This results in computing two vectors for each node, which are combined into a single vector
using Cell. After n steps of such processing, the TGNN terminates its computations.
Definition 3. Time-and-graph TGNNs TTandG[M, C], for a class M of MPNNs and a class C of
cell functions, are tuples T = (M1,M2,Cell , out), where M1,M2 ∈ M have the same number
of layers, Cell ∈ C, and out is an output function (as in Definition 2). An application of T =
(M1,M2,Cell , out) to a temporal graph TG = (G1, t1), . . . , (Gn, tn) with Gj = (Vj , Ej , cj),
yields the following embeddings for all v ∈ V and j + 1 ≤ n:

hv(t1) = Cell(M1(G1, v),M2((V1, E1, [u 7→ 0]), v)),

hv(tj+1) = Cell(M1(Gj+1, v),M2((Vj+1, Ej+1, [u 7→ hu(tj)]), v)),

where [u 7→ hu(tj)] is as described in Definition 2.

The third class, global TGNNs [44], is also realised by several TGNN models [35, 27]. Instead of
processing a temporal graph in each time point, global TGNNs exploit a temporal message-passing
mechanism. It allows messages to be passed among nodes from different time points. To capture
the time difference between nodes between which messages are passed, global TGNNs use time
functions ϕ : R → Rm.
Definition 4. Global TGNNs Tglob[M,Q, ◦], for a class M of MPNNs, a class Q of time functions,
and an operation ◦ combining two vectors of the same dimensionality, are tuples T = (M,ϕ, out)
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where M ∈ M ϕ ∈ Q, and out is an output function (as in Definition 2). An application of
T = (M,ϕ, out) to a temporal graph TG = (G1, t1), . . . , (Gn, tn) with Gj = (Vj , Ej , cj), yields
embeddings h(i+1)

v (tj) for all v ∈ V , i+ 1 ≤ k (for k the number of layers in M ), and j ≤ n:

h(0)
v (tj) = cj(v),

h(i+1)
v (tj) = combi+1(h(i)

v (tj), agg
i+1{{h(i)

u (th) ◦ ϕ(tj − th) | {v, u} ∈ Eh, h ≤ j}}).

In all TGNN models considered above, an output function out is used to determine the final classifi-
cation. Formally, for a TGNN T and a pointed temporal graph (TG, v), we let the output of T be
T (TG, v) = out(h

(k)
v (tn)). We will assume that out functions are realised by a single-layer FNN

from the class FNN[trReLU].

5 Logical Expressiveness via Product Logics

We will exploit two-dimensional-product logics as a tool for analysing the expressive power of
TGNNs. Specifically, we consider two-dimensional logics which are products of modal and temporal
logics, allowing combinations of structural and temporal properties to be expressed. Importantly, this
approach provides an opportunity to control the interaction between logical operators corresponding
to the two dimensions. By modifying allowed interactions in product logics we will obtain logics that
are suitable to analyse the expressive power of various classes of TGNNs.

Before introducing product logics, we specify the notion of the expressive power that we will consider
in this paper. It corresponds to the “logical expressiveness” also called “uniform expressiveness”,
which is broadly studied in the literature [3, 20, 32, 5, 12] and is defined as follows.
Definition 5. Let L be a logical language, whose formulas φ are evaluated at timestamped nodes
(v, tn) of temporal graphs TG = (G1, t1), . . . , (Gn, tn). We write TG, (v, tn) |= φ if φ holds at
(v, tn) in TG. A TGNN class T is at least as expressive as L, written L ≤ T , if for every formula φ
of L, there exists a model T ∈ T such that, for all (coloured) pointed temporal graphs (TG, (v, tn)):

TG, (v, tn) |= φ if and only if T (TG, v) = 1.

Informally, L ≤ T means that TGNNs from the class T are powerful enough to express all properties
that can be written as (arbitrarily long and complex) formulas of the logics L.

In order to study the expressive power of TGNNs, we will establish their relation to two-dimensional
product logics [24, 6, 28]. The first dimension will correspond to time and will allow us to capture
evolution of a graph in time. The second dimension will correspond to the spatial structure of
graphs and will allow us to express properties of the static graphs at fixed time points. The product
logics we consider here are combinations of the most prominent temporal and modal logics, namely
propositional temporal logic PTL [34] and the basic modal logic K [23].

Temporal logic PTLP,Y . We consider the past-time version PTLP,Y of PTL which contains only
P (“sometime in the past”) and Y (“yesterday”) as native temporal operators. PTLP,Y formulas are
built using propositions c1, . . . , ck which stand for colours that nodes of temporal graphs can take,
together with an unrestricted use of Boolean connectives ¬ for “not”, ∧ for “and”, → for “if ... then
...”, and ↔ for “ if and only if”. Formulas of the logic PTLP,Y can state, for example, that a node has
currently colour c1 and sometime in the past it had colour c2 in two consecutive timepoints. This is
written as c1 ∧ P(c2 ∧ Yc2).

Modal logic K. For the static part we use the basic modal logic K. Its formulas are similar to those
of PTLP,Y , but instead of the temporal operators P and Y it features a single modal operator ♢. The
intuitive reading of ♢φ is “φ holds at one of neighbours (via graph edges) of the current node”. Logic
K can express, for example, that a node has an outgoing path of three hops leading to a node of colour
c1 or a two-hop path to a node whose colour is c2 and not c3: ♢♢♢c1 ∨ ♢♢(c2 ∧ ¬c3).

Product logic PTLP,Y×K. The product of logics PTLP,Y and K allows us to write formulas with
any combination of operators from PTLP,Y and K. For example, φ = c1 ∧ (Pc2) ∧ ♢((¬c1 ∧ c2) ∧
Y (c1 ∧ ¬c2)) is satisfied at a vertex v in time point tn if v is coloured c1 at tn and at some past
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timestamp ti < tn, v was coloured with c2. Moreover, there is a neighbour of v that is currently
coloured with c2 but not c1 at tn, whereas in the preceding timestamp tn−1 it was coloured with c1
but not with c2. An example of a pointed temporal graph (TG, v) satisfying φ in tn = t4 is given
in Figure 1. From the technical perspective, the semantics of PTLP,Y×K is defined over Cartesian
products of models of PTLP,Y and K, which justifies the name “product logic”. A formal definition
of syntax and semantics of this product logic is given in Appendix A.2.

G1

t1 = 1

G2

t2 = 2

G3

t3 = 3

G4

t4 = 4

u

w

v

u

w

v

u

w

v

u

w

v

Figure 1: A temporal graph of length 4; colour c1 is denoted by a red filling (node u in G3 and node
v in G4) and colour c2 is denoted by a blue filling (node v in G1 and node u in G4)

We also consider variants of PTLP,Y×K obtained by replacing the modal logic K with other modal
logics known from the literature, or by syntactically restricting how temporal and modal operators
can co-occur in formulas. Such variants differentiate the expressive power of various TGNN models.

6 Logical expressiveness of recursive TGNNs

We provide expressive power results for recursive TGNNs by relating them with product logics. We
show that TGNNs from the class Trec[M̂] can express all properties definable in PTLP,Y×K.

Theorem 6. PTLP,Y×K ≤ Trec[M̂].

Proof sketch. For each formula φ ∈ PTLP,Y×K, we enumerate its subformulas φ1, . . . , φm,
φm+1, . . . , φn = φ in such a way that the m atomic ones come first, and if φi is a subformula
of φj , written as φi ∈ sub(φj), then i ≤ j. We construct a TGNN Tφ = (M, out) ∈ Trec[M̂] where
M consists of n−m+ 1 layers: one layer for each non-atomic subformula and a final shift layer.
At each time t and for each node u of the current temporal graph, Tφ computes the hidden state
h
(n−m)
u (t), which encodes (I) the current truth values of all subformulas φi in the first n dimensions,

(II) the truth values of all subformulas φi at t− 1 in dimensions n+ 1 to 2n, and (III) the disjunction
of truth values of subformulas φi over all earlier time points in dimensions 2n+ 1 to 3n. The final
shift layer (layer n−m+1) updates (III) using (II) without altering (I). Correctness follows by nested
induction over time and subformula structure, showing that for each i ≤ n, dimension i correctly
tracks satisfaction of φi, dimension n+ i tracks Yφi, and dimension 2n+ i tracks Pφi. The output
out simply reads the value for φ at the final time point. A full proof is given in Appendix B.1.

We provide two further analogous results obtained by replacing K and M̂ with pairs of logics and
MPNNs of matching expressiveness known from the literature. This suggests a general connection
between product logics and recursive TGNNs. First, K can be replaced with the logic K#, incor-
porating linear arithmetics, and M̂ with the class of MPNNs MK# of matching expressive power
[32]. Second, an analogous result is obtained when using the logic L-MP2, incorporating Presburger
Arithmetic, and the class OLtrReLU-GNN of MPNNs, for which matching expressiveness results
have been shown [5]. For the formal details of these logics, see Appendix A.3, and we remark that it
is evident that both strictly subsume PTLP,Y×K.

Theorem 7. PTLP,Y×K# ≤ Trec[MK# ] and PTLP,Y×(L-MP2) ≤ Trec[OLtrReLU-GNN].

Proof sketch. We apply similar inductive argument as used in Theorem 6. For each formula φ, we enu-
merate its subformulas φ1, . . . , φm1

, φm1+1, . . . , φmk
, φmk+1, . . . , φn = φ, so that all subformulas

of the form Yψ or Pψ occupy positions mi for i = 1, . . . , k. Each group of purely non-temporal
subformulas (situated between mi and mi+1, assuming that formulas φi with i ≤ mi are already
addressed) is captured inductively by stacks of MPNN layers whose existence is guaranteed by results
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(TG, v)

G1

t1 = 1

G2

t2 = 2

w1

u1

v

w2

u2

w1

u1

v

w2

u2

(TG′, v′)

G′
1

t1 = 1

G′
2

t2 = 2

w′
1

u′
1

v′

w′
2

u′
2

w′
1

u′
1

v′

w′
2

u′
2

Figure 2: Counterexample, used in Theorem 8; colour c1 is denoted by a red filling (node u1 in G2

and node u′1 in G′
2) and colour c2 is denoted by a blue filling (node u2 in G1 and node w′

2 in G′
1)

from literature [5, 32]. This necessitates that OLtrReLU-GNN and MK# are closed under arbitrary
but well-defined combinations of MPNN layers. Temporal subformulas Yψ and Pψ are handled by
simple dimension shifts, reading values stored at previous timepoints or across past histories, similar
to Theorem 6. Here, we use the same form of hidden states, divided into three blocks tracking the
current, previous, and past satisfaction of subformulas. Correctness follows by nested induction over
time and subformula structure: for non-temporal subformulas, correctness can be shown exploiting
results from literature [5, 32], while for temporal subformulas, it follows from the way in which the
temporal operators Y and P are addressed. The full proof is in Appendix B.2.

7 Logical expressiveness of time-and-graph and global TGNNs

Next, we focus on two variants of TGNNs that have been considered in the literature thus far, aiming
to unveil certain differences in their logical expressiveness.

First, we examine time-and-graph TGNNs [14], denoted by TTandG[M, C] and parametrised by a class
of MPNNs M and a class of cell functions C . These TGNNs differ from the previously discussed
classes Trec[M], not in the specific form of MPNNs used, but in how temporal information is pro-
cessed. In particular, TTandG appears less powerful at processing the combined information of a current
snapshot (Gi, ti) and the embedded information of the past snapshots (G1, t1), . . . , (Gi−1, ti−1).

Theorem 8. PTLP,Y×K ̸≤ TTandG[M, C], for all M and C.

Proof sketch. Consider the PTLP,Y×K formula φ = ♢(c1 ∧Y♢c2), satisfied by all pointed temporal
graphs (TG, (v, tn)) where n ≥ 2 and node v has a neighbour that is of colour c1 at timestamp tn
and which has a neighbour of colour c2 at timestamp tn−1. For example, see Figure 2, where (TG, v)
satisfies φ and (TG′, v′) does not. We can show that there exists no TGNN T = (M1,M2,Cell) ∈
TTandG[M, C] for any class of MPNNs M and cell functions C that captures φ. Intuitively, M1

handles the present label information and M2 the past information, but neither handles both. While
Cell can use outputs of M1 and M2, it has no access to the topology of the static graph. However,
to check whether φ is satisfied, this is necessary. This results in the fact that T either accepts both
(TG, v) and (TG′, v′) of Figure 2, or none. A formal proof of this is provided in Appendix B.3.

The natural next question is to identify a fragment of PTLP,Y×K whose formulas can be expressed
by time-and-graph TGNNs. Let F ⊂ FNN[trReLU] be the class of single layer FNNs with truncated-
ReLU activations. We let L1 be the fragment of PTLP,Y×K containing only formulas φ such that
for all ♢ψ ∈ sub(φ) there is either no Qχ ∈ sub(ψ) with Q ∈ {Y,P} or for all c ∈ sub(ψ) there is
Qχ ∈ sub(ψ) with Q ∈ {Y,P} such that c ∈ sub(χ). Hence, L1 restricts the allowed interaction of
operators in PTLP,Y×K. For example ♢Pc1 is a formula of L1, but ♢(Pc1 ∧ c2) is not.

Theorem 9. L1 ≤ TTandG[M̂,F ].

Proof sketch. We apply the inductive approach of Theorems 6 and 7 to formulas φ ∈ L1. We
construct time-and-graph TGNNs Tφ = (M1,M2,Cell , out) ∈ TTandG[M̂,F ] where the three
components partition the evaluations according to the syntactic form of the subformulas φi of φ. The
MPNN M1 captures all subformulas φi that do not include the temporal operators Y or P, meaning it
processes static properties of the current snapshot. Similarly, the MPNN M2 handles all subformulas
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where every atomic subformula is nested under a temporal operator, indicating that the formula
evaluation relies solely on the prior hidden states. The cell function Cell manages the remaining
subformulas, which must be Boolean subformulas (¬ψ1 or ψ1 ∧ ψ2) due to the definition of L1.
Correctness is established through a nested induction over time and subformula structure, as done
previously. The structure of L1 ensures that all subformulas are appropriately covered by the division
among M1, M2, and Cell . A full proof is provided in Appendix B.4.

We remark that some time-and-graph TGNNs considered in the literature [14] utilise a gated recurrent
unit (GRU) [9, 10] as their cell function. The class of TGNNs considered in Theorem 9 is a subset of
this broader class. There are also similar, time-then-graph TGNNs, considered in the literature [14].
They first process the temporal information of a temporal graph using a recurrent neural network
(RNN), followed by the application of an MPNN to capture the topology. It is shown that for each
time-and-graph TGNN, there exists an equivalent time-then-graph TGNN [14, Theorems 3.5 and
3.6]. Thus, our results from Theorem 9 transfer to time-then-graph TGNNs.

Next we consider global TGNNs, Tglob[M,Q, ◦], recently studied in the literature [44]. They are
parametrised by a class of MPNNs M, time functions from Q, and an operation ◦ combining label
and temporal information in the aggregation. Similarly to time-and-graph TGNNs, Tglob cannot
capture all properties definable in PTLP,Y×K.

Theorem 10. PTLP,Y×K ̸≤ Tglob[M,Q, ◦], for all M, Q, and ◦.

Proof sketch. Consider the PTLP,Y×K formula φ = Yc1, which is satisfied by all pointed temporal
graphs (TG, (v, tn)) where n ≥ 2 and the node v was of colour c1 at timestamp tn−1. Interestingly,
there is no Tglob[M,Q, ◦] for any M, Q, and ◦ that can express this property. The reason is as
follows: the notion of temporal neighbourhood utilised by global TGNNs does not give a node v
access to its own past information. It can only access past informations of neighbours. Since this
is the only form of temporal information used by such TGNNs, it excludes the ability to recognise
whether v itself was coloured c1 in the past. For the full proof, see Appendix B.5.

Next, we turn to identifying a fragment of PTLP,Y×K captured by Tglob. The architecture of
global TGNNs appears to necessitate a class of MPNN components that effectively utilise temporal
information. Specifically, we use MPNNs incorporating a learnable message function msg in their
aggregation. This enables global TGNNs to process messages based on temporal information prior to
aggregation. Thus, we use M̂msg (see Section 4 to recall the definition of such GNNs). Concerning ϕ
and ◦, meaning the operations by which temporal information is processed and then combined with
static neighbourhood information during aggregation, we employ time2vec [22] and concatenation ||
of vectors, akin to models such as TGAT or Temporal Graph Sum [35]. Let Qtime2vec be the class
of all time2vec functions (see Appendix A.3 for a formal definition). We let L2 be the fragment of
PTLP,Y×K, whose formulas φ are such that for all Qψ ∈ sub(φ) with Q ∈ {Y,P} we have ψ = ♢χ
for some formula χ. For example P♢c1 is a formula of L2, but Pc1 is not.

Theorem 11. L2 ≤ Tglob[M̂msg,Qtime2vec, || ].

Proof sketch. We use the inductive approach from Theorem 6, but now use a global TGNN Tφ =

(M,ϕ, out). For each subformula φi, a layer l(i) in M computes its semantics. Boolean subformulas
are handled as in previous results and temporal subformulas Yψ and Pψ are deferred, since their
semantics are captured indirectly through ♢ subformulas, as ensured by the definition of L2. The
key mechanism to do this is the interaction between ϕ and msg: for each Q♢ψ with Q ∈ {P,Y},
msg selectively passes information based on ϕ(t), enforcing that only the correct previous or past
timepoints contribute. If ψ is of the form Y♢χ or P♢χ, msg filters messages from exactly the
previous timepoint or from all earlier timepoints, respectively. Otherwise, msg restricts aggregation
to the current timepoint. Correctness follows by induction over time and subformula structure. A full
proof is provided in Appendix B.6.

While employing time2vec functions is motivated by common practice, it is not essential for achieving
the previous result. In fact, it suffices to have a function ϕ capable of mapping the values 0, −1, and
t, where t ≤ −2, to distinct values. Similarly, || is not strictly necessary. The same result can be
achieved, with a slightly adapted construction, using entrywise multiplication or addition as ◦.
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Figure 3: An overview of our expressive power results

Now, combining the previous results, namely Theorems 6 to 11, and the insight that ♢(c1 ∧ Y♢c2) ∈
L2 and Yc1 ∈ L1 we immediately get the following inexpressiveness results. Let T1 and T2 be two
classes of TGNNs. We let T1 ≤ T2 if for all T ∈ T1 there is T ′ ∈ T2 such that for all discrete, pointed
temporal graphs (TG, v) we have that T (TG, v) = 1 if and only if T ′(TG, v) = 1. Accordingly, we
define T1 ̸≤ T2 if T1 ≤ T2 does not hold, and we define T1 ̸≡ T2 if T1 ̸≤ T2 or T2 ̸≤ T1.

Corollary 12. Trec[M̂] ̸≤ TTandG[M̂,F ], Trec[M̂] ̸≤ Tglob[M̂msg,Qtime2vec, || ], and
TTandG[M̂,F ] ̸≡ Tglob[M̂msg,Qtime2vec, || ].

To complement the picture of expressiveness relationships obtained so far, we establish the following
relationship between time-and-graph and recursive TGNNs; recall that F ⊆ FNN[trReLU] is the
class of single layer FNNs with truncated-ReLU activations.

Theorem 13. TTandG[M̂,F ] ≤ Trec[M̂ ].

Proof. Let T ∈ TTandG[M̂,F ] with T = (M1,M2,Cell , out), where each Mi is of input dimen-
sionality mi and output dimensionality ni, and Cell is of input dimensionality n1 + n2 and output
dimensionality n3. The construction of the witness T ′ ∈ Trec[M̂ ] is straightforward: T ′ is given by
(M3, out), whereM3 is given by Cell ◦M1||M2, which represents the MPNN of input dimensionality
m1 +m2 and output dimensionality n3 simulating M1 on the first m1 input dimensions, M2 on the
last m2 input dimensions, and then applies a message-passing layer, where the combination function
ignores input from agg and uses Cell otherwise.

Figure 3 summarises the expressive results we have established in the paper.

8 Conclusion

We have initiated the study of the expressive capabilities of TGNNs using logical languages, which is
motivated by successful logical characterisation of static GNNs. As we have showed, product logics
combining temporal and modal logics, are particularly well-suited to achieve this goal. In particular,
we have studied three classes of TGNNs: recursive, time-and-graph, and global TGNNs. We have
showed that recursive TGNNs can express all properties definable in the product logic PTLP,Y×K,
combining the standard temporal and modal logics. Moreover we have obtained analogous results
by relating variants of PTLP,Y×K to recursive TGNNs that exploit specific classes of MPNNs. In
contrast, neither time-and-graph or global TGNNs can express all properties definable in PTLP,Y×K.
The reason is that PTLP,Y×K allows for arbitrary interaction between logical operators expressing
temporal and spatial properties. By restricting the form of these interaction, we have obtained
fragments of PTLP,Y×K which can be captured by time-and-graph or global TGNNs, respectively.

Our results provide new insights into the expressive power of TGNNs and show that TGNN architec-
tures significantly differ on the spatio-temporal properties they can capture. Better understanding
of TGNN capabilities is crucial for choosing appropriate models for a downstream task and help in
developing more powerful architectures. Since this is the first work on the logical expressiveness
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of TGNNs, it has a number of interesting next steps that can be performed in future. Among others,
we plan to investigate tight expressive bounds, and for a larger amount of TGNN architectures.
Furthermore, we plan to transfer results known from research on product logics to TGNNs, including
computational complexity analysis and finite model theory.

Limitations. The results established here are of a strictly formal nature. Our expressive results
focus on showing which classes of TGNNs can express (i.e. detect) temporal graph properties
expressible in particular logics. Hence our results do not aim to show which properties can be learnt
in practice, but to show fundamental relations between expressiveness of TGNNs and product logics.
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A Omitted definitions

In this section, we provide full formal definitions of concepts that were introduced informally in the
main part of the paper.

A.1 Feedforward neural networks

We present a formal definition of the classical feedforward neural network (FNN) model.

Definition 14. An FNN node v is a function from Rm to R, where m ∈ N is the input dimension,
computing

v(x1, . . . , xn) = σ(b+

n∑
i=1

wixi),

where wi ∈ Q are the weights, b ∈ Q is the bias, and σ : R → R is the activation function. An
FNN layer ℓ is a tuple consisting of some number n ∈ N FNN nodes (v1, . . . , vn), all having the
same input dimensionality m. Then, ℓ computes the function from Rm to Rn, where n is the output
dimension, given by

ℓ(x1, . . . , xm) = (v1(x1, . . . , xm), . . . , vn(x1, . . . , xm)).

Finally, a feedforward neural network (FNN) N is a tuple of some k ∈ N FNN layers (ℓ1, . . . , ℓk),
where the input dimension of ℓi+1 is equal to the output dimension of ℓi for all i < k. Then, N
computes the function from Rm1 to Rnk , where m1 is the input dimensionality of nodes in layer l1
and nk is the number of nodes in layer lk, given by

N(x1, . . . , xm1
) = ℓk(· · · ℓ1(x1, . . . , xm1

) · · · ).

Given this definition, we denote by FNN[trReLU] the class of all FNN where all nodes exclusively
use trReLU(x) = max(0,min(x, 1)) as the activation function.

A.2 The product logic PTLP,Y×K

In the following, we define one of the key logics we consider, namely PTLP,Y×K.

Definition 15. We define the logic PTLP,Y×K given by all formulae φ defined by the grammar:

φ ::= cj | ¬φ | φ ∧ φ | ♢φ | Yφ | Pφ

where 0 ≤ j < k for some set of k colours. Let (TG, v) be a coloured, pointed temporal graph.
Since the temporal operators in this logic are oblivious of the exact timestamps in TG we assume
that TG is discrete. We say that (TG, v) satisfies formula φ, written (TG, (v, tn)) |= φ, if given:

TG, (v, ti) |= cj iff (cti(v))j = 1,

TG, (v, ti) |= ¬φ iff TG, (v, ti) ̸|= φ,

TG, (v, ti) |= φ1 ∧ φ2 iff TG, (v, ti) |= φ1 and TG, (v, ti) |= φ2,

TG, (v, ti) |= ♢φ iff there is u ∈ V s.t. {v, u} ∈ Ei and TG, (u, ti) |= φ,

TG, (v, ti) |= Yφ iff t ̸= 0 and TG, (v, ti − 1) |= φ,

TG, (v, ti) |= Pφ iff there is tj < ti such that TG, (v, tj) |= φ.

A.3 The product logics PTLP,Y×(L-MP2) and PTLP,Y×K#.

We give formal definitions of the logics PTLP,Y×(L-MP2) and PTLP,Y×K# based on the modal
logics presented in [5] and [32]. These follow the same line as the definition of PTLP,Y×K given in
Definition 15.

Definition 16. Formulae of PTLP,Y×(L-MP2) are defined by the grammar:

φ ::= ⊤ | ci |
k∑

i=1

ai ·#φ ≤ b | ¬φ | φ ∧ φ | Yφ | Pφ
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where ci ranges over propositional variables in a finite set C of colours, and ai, b ∈ Q. Let (TG, v)
be a coloured, pointed temporal graph. Since the temporal operators in this logic are oblivious of
the exact timestamps in TG we assume that TG is discrete. We say that (TG, v) satisfies formula φ,
written (TG, (v, tn)) |= φ, if given:

TG, (v, ti) |= ⊤ iff true,
TG, (v, ti) |= cj iff (cti(v))j = 1,

TG, (v, ti) |=
k∑

i=1

ai ·#φi ≤ b iff
k∑

i=1

ai · |{u ∈ V | {v, u} ∈ Et and TG, (v, ti) |= φi}| ≤ b,

TG, (v, ti) |= ¬φ iff TG, (v, ti) ̸|= φ,

TG, (v, ti) |= φ1 ∧ φ2 iff TG, (v, ti) |= φ1 and TG, (v, ti) |= φ2,

TG, (v, ti) |= Yφ iff ti ̸= 0 and TG, (v, ti − 1) |= φ, and

TG, (v, ti) |= Pφ iff there is t′ < ti such that TG, (v, t′) |= φ.

Although it does not affect any of our results, we note that [5] consider MPNNs operating on directed
graphs, whereas our focus is on static graphs with undirected edges. Consequently, there is a technical
difference in the definition of the semantics of the

∑k
i=1 ai ·#φi ≤ b quantifier compared to [5].

Definition 17. Formulae of PTLP,Y×K# are defined by the grammar:

φ ::= c |
k∑

i=1

ai · 1φ +

k′∑
i=1

bi ·#φ ≤ d | ¬φ | φ ∧ φ | Yφ | Pφ

where c ranges over propositional variables in a finite set C of colours, and ai, bi, d ∈ Z.

Let (TG, v) be a coloured, pointed temporal graph. Since the temporal operators in this logic are
oblivious of the exact timestamps in TG we assume that TG is discrete. We say that (TG, v) satisfies
formula φ, written (TG, (v, tn)) |= φ, if given:

TG, (v, ti) |= cj iff (cti(v))j = 1,

TG, (v, ti) |= ¬φ iff TG, (v, ti) ̸|= φ,

TG, (v, ti) |= φ1 ∧ φ2 iff TG, (v, ti) |= φ1 and TG, (v, ti) |= φ2,

TG, (v, ti) |= Yφ iff ti ̸= 0 and TG, (v, ti − 1) |= φ,

TG, (v, ti) |= Pφ iff there is t′ < ti such that TG, (v, t′) |= φ, and

TG, (v, ti) |=
k∑

i=1

ai · 1φi +

k′∑
i=1

bi ·#φ′
i ≤ d iff

k∑
i=1

ai ·
{
1 if TG, (v, ti) |= φi

0 otherwise,
+

k′∑
i=1

bi · |{u ∈ V | {v, u} ∈ Et and TG, (v, ti) |= φ′
i}| ≤ d,

We note here that we utilised a normal form of K# (refer to Theorem 1 in [32]) to simplify the
definition of PTLP,Y×K#. As the authors point out, it is straightforward to observe that each formula
of the original K# syntax can be efficiently transformed into this normal form.

The time function time2vec

In the following, we define time2vec functions [22].
Definition 18. We define ϕ(ti − tl) = t2v(ti − tl) as

t2v(t)j =

{
wjt+ bj if j = 0,

σ(wjt+ bj) otherwise,

where wj , bj ∈ Q and σ is some periodic activation function.

Correspondingly, we denote the class of all such functions by Qtime2vec.
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B Omitted proofs

In this section, we provide all the formal proofs for the results presented in this work. This includes
comprehensive proofs for the results of the paper that were merely outlined in the main section.

B.1 Proof of Theorem 6

Theorem 6. PTLP,Y×K ≤ Trec[M̂].

Proof. Let φ be a formula of PTLP,Y×K as defined in Definition 5 with m atomic subformulas. Let

φ1, . . . , φm, φm+1, . . . , φn

be an enumeration of the subformulas of φ such that all atomic formulas are the φ1, . . . , φm, and
φi ∈ sub(φj) implies i ≤ j. In particular, we have φn = φ.

We begin by describing how the TGNN Tφ is constructed. We have Tφ = (M, out), where the
MPNN M = (l1, . . . , ln−m+1) and the layer l(i) with i ≤ n −m is given by (comb(i),

∑
) with

comb(i)(x,y) = trReLU(Cx+Ay + b), and where
∑

denotes entrywise sum as aggregation. The
exact form of the 3n × 3n matrices C, A, and the n-dimensional vector b depends on φm+i as
follows:

• if φm+i = ¬φj , we have Cm+i,j = −1, and bm+i = 1,

• if φm+i = φj1 ∧ φj2 , we have Cm+i,j1 = Cm+i,j2 = 1, and bm+i = −1,

• if φm+i = ♢φj , we have Am+i,j = 1,

• if φm+i = Yφj , we have Cm+i,n+j = 1,

• if φm+i = Pφj , we have Cm+i,2n+j = 1, and

for all j ≤ m we have Cj,j = 1. All other entries of C, A, and b are zero. This implies that all
layers li with i ≤ n−m use the same parameters. The layer ln−m+1 = (combn−m+1,

∑
) is given

by combn−m+1(x,y) = trReLU(C ′x + A′y + 0), where A′ is the 2n × 3n all-zero matrix, 0 is
the 2n-dimensional all-zero vector, and C ′ is the 2n × 3n matrix with C ′

j,j = 1, C ′
n+j,n+j = 1,

and C ′
n+j,2n+j = 1 for all j ≤ n. All other entries are zero. The output function is given by

out(x1, . . . , x2n) = trReLU(xn). It is straightforward to see that Tφ ∈ Trec[M].

Let (TG, v) be a pointed temporal graph where TG is of length k and V is its set of nodes. Regarding
correctness, we prove the following statement: for all nodes u ∈ V , all timepoints ti with i ≤ k of
TG and subformulas φj with j ≤ n of φ we have that

a) TG, (u, ti) |= φj if and only if h(min(0,j−m))
u (ti)j = 1,

b) TG, (u, ti − 1) |= φj if and only if h(min(0,j−m))
u (ti)n+j = 1, and

c) TG, (u, ti′) |= φj for some i′ < i if and only if h(min(0,j−m))
u (ti)2n+j = 1.

We prove this statement via strong induction on i and j.

Case: timestamp t1. First, let i = 1 and j ∈ {1, . . . ,m}, and fix some u ∈ V . The assumption
j ∈ {1, . . . ,m} implies that φj is an atomic formula. Then, statement (a) is directly implied by
the form of h(0)u (t1), including the colours of node u. Similarly, we have that statements (b) and
(c) are given as Tφ initialises the dimensions n to 3n of h(0)u (t1) with 0, which is correct as we are
considering the first timestamp of TG. Next, assume that the statement holds for i = 1, j, and all
u ∈ V . Consider the case of j + 1, fix some u ∈ V , and focus on statement (a). The Boolean
cases φj+1 = ¬φl1 and φj+1 = φl1 ∧ φl2 are a straightforward implication of the form of matrix
C, vector b, as well as the activation function trReLU, and the fact that statement (a) holds for all
l1, l2 ≤ j. Similarly, the case ♢φl1 is implied by the form of matrix A, the activation function
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trReLU, and that statement (a) holds for all l1 ≤ j and all w ∈ V , including the neighbours of u. In
the case of φj+1 = Yφl1 or φj+1 = Pφl1 , we rely on the fact that i = 1, which means that these are
necessarily false. By the hypothesis, this is implied by (b) and (c) for all l1 ≤ j as matrix C utilises
the corresponding dimensions n + l1 and 2n + l1, respectively, which are all 0. The fact that we
consider i = 1 and that all dimenstions l > n are 0 also immediately implies statements (b) and (c).

Case: timestamp ti with i > 1. Next, assume that statements (a) to (c) hold for i, all j ≤ n, and all
u ∈ V , and consider the case i+ 1. Once again, the argument for statement (a) with j ∈ {1, . . . ,m}
is directly implied by the fact that Tφ stores the colours of each node u in the respective dimension.
Before addressing (b) and (c) for these j, consider the following two observations:

1. TGNN Tφ ensures for all timestamps ti, j ≤ n, and u ∈ V that h
(0)
u (ti+1)n+j =

h
(n−m)
u (ti)j , and it ensures that h(0)

u (ti+1)2n+j = 1 if and only if h(n−m)
u (ti′)j for some

i′ ≤ i.

2. TGNN Tφ ensures for all timestamps ti, u ∈ V that h(0)
u (ti)j = hl

u(ti)j holds for all
j ∈ {n+ 1, . . . , 3n} and l ≤ n−m, and it ensures that h(j)

u (ti)j = hl
u(ti)j holds for all

j ≤ n and j ≤ l ≤ n−m.

Informally, the first observation implies that dimensions n+1 to 2n store the previous state of a node,
and 2n+1 to 3n store the disjunction over all previous states of a node, where 1 is interpreted as true
and 0 as false. This is achieved by the way we built layer ln−m+1. The second observation simply
states that, within a single timepoint ti, the TGNN Tφ does not alter dimensions n+ 1 to 3n within
layers l1 to ln−m and that if the semantics of φj are computed in the j-th layer, they are preserved
in subsequent layers. Now, consider statements (b) and (c) for i + 1, j ∈ {1, . . . ,m} and some
fixed u ∈ V . Here, the first observation and induction hypothesis directly imply these statements.
Therefore, keep u ∈ V fixed and consider j+1, while assuming that (a) to (c) hold for all j′ ≤ j. The
Boolean and modal cases are argued exactly as before. Thus, consider φj+1 = Yφl for some l ≤ j.
Using the first and second observations, we know that the semantics of φl at timepoint ti are stored
in h

(j+1)
u (ti+1)n+l, which is utilised by Tφ to compute the semantics of Yφl. Given the induction

hypothesis, this is correct. Similarly, the case φj+1 = Pφl is implied by the two observations and
the induction hypothesis, which state that h(j+1)

u (ti+1)2n+l stores a 1 if φl was true at any timepoint
before ti+1 and 0 otherwise. Given this, the correctness is immediate.

Finally, the correctness of the theorem is given by statement (a) for tk and φn = φ in combination
with observation that out uses the n-th dimension of hn−m+1

v (tk) to compute the overall output.

B.2 Proof of Theorem 7

For a formal definition of the logics PTLP,Y×(L-MP2) and PTLP,Y×K#, we refer to the corre-
sponding subsection of Appendix A.3.

The key results we rely on are Theorem 26 of [5] and Theorem 1 of [32]. However, we need a stronger
form of these results that includes the capturing of the semantics of each subformula with a MPNN.
Definition 19. Let φ be an inductively built formula interpreted over pointed static graphs, and letM
be an MPNN. We say that M inductively captures φ if there exists an enumeration of all subformulas
φ1, . . . , φm of φ, where φi ∈ sub(φj) implies i ≤ j, such that for all pointed graphs (G, v) and
formulas φi there is layer ji of M such that

• if (G, v) |= φi, then hl(v)i = 1 for all l ≥ ji, and

• if (G, v) ̸|= φi, then hl(v)i = 0 for all l ≥ ji,

where hl(v) represents the state of v computed by the ji-th layer of M . Furthermore, we require that
ji−1 ≤ ji for all i ∈ {1, . . . ,m}. We extend the notion of inductive capture to a logic L over pointed
static graphs and a class of MPNNs M in the obvious way and denote it by L ⊴ M.

Given this understanding, a close examination of the arguments employed in [5] and [32] directly
implies the inductive capture of the logics L-MP2 and K# by the respective classes of MPNNs.
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Lemma 1. Let L-MP2 and K# be the logics introduced in [5] and [32] and OLtrReLU-MPNN
and MK# the respective classes of MPNNs. We have that L-MP2 ⊴ OLtrReLU-MPNN and
K# ⊴ MK# .

Proof. Both results, namely Theorem 26 from [5] and Theorem 1 from [32], are constructive in
nature: for each formula φ the authors construct an MPNN Mφ that captures its semantics. Moreover,
these constructions are inductive, meaning that all subformulas of φ are enumerated and the MPNN
Mφ is built such that it captures the semantics of the i-th subformula with its i-th layer and preserves
it in subsequent layers. This establishes that these results in fact imply inductive capturing.

Now, we are set to prove that both PTLP,Y×(L-MP2) and PTLP,Y×K# are captured by the respec-
tive classes of TGNNs.

Theorem 7. PTLP,Y×K# ≤ Trec[MK# ] and PTLP,Y×(L-MP2) ≤ Trec[OLtrReLU-GNN].

Proof. First, we address the statement that PTLP,Y×(L-MP2) ≤ Trec[OLtrReLU-GNN]. Let φ ∈
PTLP,Y×(L-MP2) with k different subformulas of the form Yψ or Pψ. Let

φ1, . . . , φm1 , φm1+1, . . . , φm2 , φm2+1, . . . , φmk
, φmk+1, . . . , φn

be an enumeration of the subformulas of φ such that φi ∈ sub(φj) implies i ≤ j, φi ̸= Yψ
and φi ̸= Pψ if i /∈ {m1, . . . ,mk}, and we have φn = φ. Furthermore, we assume for each set
Si = {φmi+1, . . . , φmi+1−1} with m0 = 1 that the enumeration is such that Lemma 1 applies to
each formula of Si, where we interpret potential occurrence of φj with j ≤ mi as some fresh atomic
formula.

Let Tφ = (M, out), where out(x1, . . . , x2n) = trReLU(xn) and M is constructed as follows. The
initial layers are constructed to capture the semantics of the formulas φ1 to φm1−1 in dimensions 1
to m1 − 1. The existence of such message-passing layers is guaranteed by the existence of MPNNs
capturing the formulas of S0 = {φ1, . . . , φm1−1}, as indicated by Lemma 1. Furthermore, these
message-passing layers are built with input and output dimensionality of 3n, where dimensions m1

to 3n are mapped by the identity function within the range [0, 1]. The argument that these can be in-
terconnected in M to form a well-formed MPNNs is given by the fact that the class OLtrReLU-GNN
encompasses allows for arbitrary single-layer FNN with truncated-ReLU activations as combinations.
Next, consider φm1

which is either Yφi or Pφi for some i ≤ m1. In the case of Yφi, we add a
layer that maps dimension n+ i to dimension m1, and in the case of Pφi, we add a layer that maps
dimension 2n+ i to dimension m1. Again, this is feasible due to the fact that OLtrReLU-MPNN
includes arbitrary single-layer FNN with truncated-ReLU activations as combinations. Subformulas
φm1+1 to φm2−1 are handled like φ1 to φm1−1 using the stack of MPNNs implied by Lemma 1 for
S1 = {φm1+1, . . . , φm2−1}, combined accordingly. Then, φm2

is addressed like φm1
and so forth.

Finally, we add a layer l that computes the exact same function as ln−m+1 in the proof of Theorem 6,
which ensures that previous and past semantics are preserved. Given this construction, we have that
Tφ ∈ Trec[OLtrReLU-MPNN].

The correctness argument follows the exact same line of reasoning as that in Theorem 6, namely,
arguing inductively over the timepoints i of a temporal graph and subformulae φj . However, because
we have not explicitly constructed Tφ, we utilize the following arguments. For non-temporal
subformulae φj , we rely on the fact that Lemma 1 applies to OLtrReLU-MPNN, which means that
φj is captured after the respective layer. Note that this includes the observation that the assumptions
we made for Si in order to apply Lemma 1 makes no difference in the overall computation of M .
Otherwise, we use precisely the same arguments.

Finally, for the case of PTLP,Y×K# ≤ Trec[PTLP,Y×K#], we note that Lemma 1 is applicable
to both K# and MK# . Moreover, the properties regarding the combination of MPNN layers we
needed above are also given for MK# . Therefore, the argumentation presented above is equivalently
applicable.

B.3 Proof of Theorem 8

Theorem 8. PTLP,Y×K ̸≤ TTandG[M, C], for all M and C.
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Proof. Let φ ∈ PTLP,Y×K be the formula φ = ♢(c1 ∧ Y♢c2). We prove that there is no TGNN
T ∈ TTandG[M, C] for any class of MPNNs M and functions C such that for all pointed temporal
graphs (TG, v) we have that (TG, v) |= φ if and only if T (TG, v) = 1.

We consider the two pointed temporal graphs (TG, v) and (TG′, v′) fully specified in form of Fig-
ure 2. It can be easily verified that (TG, v) |= φ and (TG′, v′) ̸|= φ. Let T ∈ TTandG[M̂, C] be some
TGNN. It is straightforward to see that for M1 of T , we have that (a) M1(G1, v) = M1(G

′
1, v

′),
M1(G1, u1) = M1(G

′
1, w

′
1), M1(G1, u2) = M1(G

′
1, w

′
2), M1(G1, w1) = M1(G

′
1, u

′
1), and

M1(G1, w2) = M1(G
′
1, u

′
2). This follows from the fact that M1 is a function and the input of

the aggregation is mutliset without any ordering. Similarly, this implies (b)M1(G2, x) =M1(G
′
2, x

′)
for x ∈ {v, u1, u2, w1, w2}. Also, we have that M2 outputs the same vector for each pair of nodes x
and x′ at timestamp t1, due to the fact that all labels are assumed to be 0 and E1 = E′

1. Thus, the
equalities of (a) are preserved by the application of Cell in the first timestamp t1.

Now, using (a), the same kind of argument gives that M2 outputs the same vector for v and v′ at
timestamp t2. Then, combining this with (b), we find that the function Cell receives identical inputs
in the cases of (TG, v) and (TG′, v′) at timestamp t2, leading to the conclusion that either both are
accepted or both are rejected by T . Thus, T does not accept the exact same set of pointed temporal
graphs as φ.

B.4 Proof of Theorem 9

Theorem 9. L1 ≤ TTandG[M̂,F ].

Proof. The proof follows a similar line of reasoning as our previous results, notably the arguments
presented in the proof of Theorem 6. Let φ be a formula of the fragment L1 , and let φ1, . . . , φn

where φi ∈ sub(φj) implies i ≤ j. Specifically, we have φn = φ.

Let Tφ = (M1,M2,Cell , out), where out(x1, . . . , x2n) = trReLU(xn). The components M1, M2,
and Cell are constructed as outlined below. M1 and M2 consist of layers l(i)1 and l(i)2 , respectively. In
the case ofM1 we include a layer l(0)1 that maps vector x ∈ {0, 1}m to x ||0 ∈ {0, 1}m×{0}n−m and
in the case of M2 we include a layer l(0)2 that maps vector x ∈ {0, 1}2n to 0 ||x ∈ {0}n × {0, 1}2n.
Each layer l(i)j with j ∈ {1, 2} is represented by (comb

(i)
j ,

∑
), where

∑
means entrywise sum

as aggregation and comb
(i)
j (x,y) = trReLU(Cjx+ Ajy + bj), where C1, A1 ∈ {0, 1}n×n, b1 ∈

{0, 1}n and C2, A2 ∈ {0, 1}3n×3n, b2 ∈ {0, 1}3n. The function Cell is represented by an FNN
NCell of input dimensionality 3n and output dimensionality 2n. The entries of Cj , Aj , bj with
j ∈ {1, 2}, and the exact form of NCell are determined by the enumeration of the subformulas φi.
We distinguish three cases, depending on the nature of φi.

Firstly, let φi be such that there is no subformula Qψ ∈ sub(φi) with Q ∈ {Y,P}. In this case, we
set the parameters of C1, A1, and b1 based on φi as shown in the proof of Theorem 6. Informally,
this means the semantics of φi are checked by M1.

Secondly, consider φi where for every subformula c ∈ sub(φi), there exists Qψ ∈ sub(φi) with
Q ∈ {Y,P} such that c ∈ sub(ψ). We configure the parameters C2, A2, and b2 based on φi

following the procedure described in the proof of Theorem 6. However, for φi = Yφj , we use input
dimension n+ j, and for φi = Pφj , we use 2n+ j. We also add a final layer to M2, which maps
vectors x1 ||x2 ||x3, where xj ∈ {0, 1}n, to x1 ||x3.

Thirdly, formulas φi that do not belong to the first or second category are handled by NCell of
input dimensionality 3n and output dimensionality 2n. The definition of the fragment L1 ensures
that φi = ¬ψ or φi = ψ1 ∧ ψ2. We refer to works such as [36], which demonstrate how to
construct single-layer FNNs to check Boolean conditions. Besides processing these φi, the FNN
NCell maps input xi corresponding to φi of the first category by using the identity (simply realised
by trReLU(x)) to output yi and input xn+i corresponding to φi from the second category are mapped
identically to output yi as well. Additionally, for each j ≤ n, we add a component that computes
trReLU(xj + xn+j + x2n+j) as the n+ jth output, ensuring that all Pψ subformulas are correctly
processed.
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Regarding correctness, the argument follows the same inductive approach as in Theorem 6. To
avoid repetition, we provide a high-level outline here. Concerning the MPNN M1, it is immediately
implied by the construction of Theorem 6 that it functions as expected, meaning that it correctly
captures the semantics of φi of the first category. This is due to the fact that it is only utilised to
check formulas devoid of temporal operators. For M2, consider that at the initial timestamp t1, its
inputs are pointed graphs ((V1, E1, [u 7→ 0]), v), where all labels of G1 are replaced by 0. Since M2

is only used to verify formulas concerning past timepoints, the base case is correct. Otherwise, the
inputs for M2 are ((Vi, Ei, [u 7→ hu(ti−1)]), v), where hu(ti−1) denotes the output of Cell for node
u at the previous timestamp. Here, our construction ensures that hu(ti−1) = hY

u (ti−1) ||hP
u(ti−1),

where hY
u (ti−1) ∈ {0, 1}n contains the semantics of each subformula φi at timestamp ti−1 and

hP
u(ti−1) ∈ {0, 1}n contains semantics of each subformulaφi, disjunctively combined over all tj with
j ≤ i−1. Due to the way L1 is defined, these are the necessary informations to compute the semantics
of φi of the second category at timepoint ti. Finally,NCell uses the outputs ofM1 andM2 to compute
the semantics of the remaining subformulas. Due to the way the fragment L1 is defined, these can not
be of the form ♢ψ, whichNCell could not handle, orQψ withQ ∈ {Y,P}, which are already handled
byM2. This leaves only Boolean formulas. Otherwise,NCell ensures consistency and, thus, produces
the output hu(ti) ||hP

u(ti), where hu(ti) ∈ {0, 1}n contains the semantics of all subformulas of φ
at timepoint ti and hP

u(ti) ∈ {0, 1}n contains semantics of all subformulas, disjunctively combined
over all tj with j ≤ i. Finally, the output function out(x1, . . . , x2n) = trReLU(xn) ensures that Tφ
outputs the semantics of φn = φ.

B.5 Proof of Theorem 10

(TG, v)

G1

t1 = 1

G2

t2 = 2

v v

(TG′, v′)

G′
1

t1 = 1

G′
2

t2 = 2

v′ v′

Figure 4: Pointed temporal graphs (TG, v) and (TG′, v′), both including two snapshots, used as an
counterexample in the proof of Theorem 10. Here, colour c1 is denoted by a red filling (applies for
node v in G1, G2 and node v′ in G′

2).

Theorem 10. PTLP,Y×K ̸≤ Tglob[M,Q, ◦], for all M, Q, and ◦.

Proof. Let φ = Yc1. It is evident that φ is satisfied by all pointed temporal graphs (TG, v) of length
n ≥ 2 such that v was of colour c1 at timestamp t1.

Consider the two pointed temporal graphs (TG, v) and (TG′, v′), as specified by Figure 4. It is
clear that (TG, v) |= φ and (TG′, v′) ̸|= φ. Now, let T ∈ Tglob[M,Q, ◦] for some M, Q, and ◦.
The argument is simple: We have h0v(t2) = h

(0)
v′ (t2) in the respective computation of T (TG, v) and

T (TG′, v′), and the input to agg is the empty set in both cases, meaning that its output is 0 in both
cases. Thus, as T either accepts both or none of the temporal graphs (TG, v) and (TG′, v′), meaning
that it does not accept the exact set of temporal graphs that satisfy φ.

B.6 Proof of Theorem 11

In the following result, we utilise time2vec functions [22] in the constructed TGNN. A formal
definition can be found in Appendix A. We remark that in the following result we exclusively utilise
the 0-th element of t2v functions ϕ, indicating that the result is independent of the exact form of
activation σ used in these functions.

Theorem 11. L2 ≤ Tglob[M̂msg,Qtime2vec, || ].
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Proof. Let φ ∈ L2 and let
φ1, . . . , φm, φm+1, . . . , φn

be an enumeration of the subformulas of φ such that all atomic formulas are the φ1, . . . , φm, and
φi ∈ sub(φj) implies i ≤ j. In particular, we consider an enumeration such that φn = φ.

The global (in time) TGNN Tφ = (M,ϕ, out) ∈ Tglob[M̂msg,Qtime2vec, || ], where ϕ is some t2v
function with w0 = 1, b0 = 0, meaning the 0-th element is the identity, and out(x1, . . . , x2n) =

trReLU(xn). We note that M ∈ M̂msg which means that aggregation is given by
∑

msg(x), where
msg is realised by some one layer FNN Nmsg with truncated-ReLU activation. The MPNN M is
build such that for each φi there is a layer l(i) in the same manner as done in Theorem 6. However,
each layer has input dimension n and output dimension n, which stands in contrast to previous
constructions. This is due to the fact that, the semantics at previous or past timestamps are respected
via aggregation. This works as follows.

Assume that φi is Boolean. Then, it is handled in layer l(i) exactly as shown in the proof of Theorem 6.
In the case of φi = Qψ withQ ∈ {Y,P}, due to the way L2 is defined, these subformulas must occur
in form of Q♢χ. For modal subformulas ♢, we therefore distinguish three cases, namely that Y♢φj ,
P♢φj , or something else. In the case that Y♢φj , we build msg, represented by Nmsg, such that it
maps dimension j identically if ϕ(t)0 = −1; otherwise, it maps dimension j to 0. In the case P♢φj ,
we build Nmsg such that it maps dimension j identically if ϕ(t)0 ≤ −1; otherwise, it maps dimension
j to 0. In the third case, we build Nmsg such that it maps dimension j identically if ϕ(t)0 = 0;
otherwise, it maps dimension j to 0. We remark that this involves simple FNN constructions as done
in other studies such as [36]. Informally, the way we construct Nmsg is to filter the correct temporal
information. Otherwise, ♢ψ is handled as seen in Theorem 6.

Correctness is again shown via induction over time and subformulae. The key insight here is that,
while we do not directly evaluate formulas of the form Qψ with Q ∈ {Y,P}, the definition of L2

ensures that such formulas are of the form Q♢ψ. Regarding Q♢ψ, the interactions between ϕ and
msg ensure that only the information from the previous (in the case of Q = Y) or all previous (in the
case of Q = P) timepoints is considered in the aggregation. Other than this, the arguments are the
same as in Theorem 6.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction are covered by our core
results. The detailed results are outlined in the “Our contribution.” subsection of the
introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: See Section 8 as well as remarks in the pre- or posttext of specific results
and definitions. This especially includes the fact that all models and logics are defined
rigorously.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: For each result, we included a proof sketch in the main body and a full proof
in the appendix. Furthermore, we defined each model and framework rigorously.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification:
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Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.

24



• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
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Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

26

paperswithcode.com/datasets


Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

27

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related work
	Notation
	Message-passing GNNs and TGNNs
	Logical Expressiveness via Product Logics
	Logical expressiveness of recursive TGNNs
	Logical expressiveness of time-and-graph and global TGNNs
	Conclusion
	Omitted definitions
	Feedforward neural networks
	The product logic PTLP,YK
	The product logics PTLP,Y(L-MP2) and PTLP,YK#.

	Omitted proofs
	Proof of Theorem 6
	Proof of Theorem 7
	Proof of Theorem 8
	Proof of Theorem 9
	Proof of Theorem 10
	Proof of Theorem 11


