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Abstract
With rapid advancements in machine learning,
first-order algorithms have emerged as the back-
bone of modern optimization techniques, owing
to their computational efficiency and low memory
requirements. Recently, the connection between
accelerated gradient methods and damped heavy-
ball motion, particularly within the framework of
Hamiltonian dynamics, has inspired the develop-
ment of innovative quantum algorithms for contin-
uous optimization. One such algorithm, Quantum
Hamiltonian Descent (QHD), leverages quantum
tunneling to escape saddle points and local min-
ima, facilitating the discovery of global solutions
in complex optimization landscapes. However,
QHD faces several challenges, including slower
convergence rates compared to classical gradient
methods and limited robustness in highly non-
convex problems due to the non-local nature of
quantum states. Furthermore, the original QHD
formulation primarily relies on function value in-
formation, which limits its effectiveness. Inspired
by insights from high-resolution differential equa-
tions that have elucidated the acceleration mech-
anisms in classical methods, we propose an en-
hancement to QHD by incorporating gradient in-
formation, leading to what we call gradient-based
QHD. Gradient-based QHD achieves faster con-
vergence and significantly increases the likelihood
of identifying global solutions. Numerical simu-
lations on challenging problem instances demon-
strate that gradient-based QHD outperforms exist-
ing quantum and classical methods by at least an
order of magnitude.
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1. Introduction
In modern machine learning, a central challenge lies in un-
constrained optimization, particularly the task of minimiz-
ing a continuous objective function without any constraints.
Mathematically, this problem is formulated as:

min
x∈Rd

f(x).

Efficiently solving such optimization problems is funda-
mental to a wide range of machine learning applications.
First-order optimization algorithms have emerged as the
cornerstone of this endeavor due to their computational effi-
ciency and low memory requirements. One of the simplest
yet most widely used first-order methods is the vanilla gra-
dient descent, which updates iteratively according to:

xk+1 = xk − s∇f(xk),

where s > 0 denotes the step size. This method, though
simple, serves as the foundation for many modern opti-
mization techniques. In the early 1980s, a groundbreaking
advancement was introduced by Nesterov (1983): the accel-
erated gradient method, now widely known as Nesterov’s
accelerated gradient descent method (NAG). This method
revolutionized first-order optimization by achieving a faster
convergence rate compared to vanilla gradient descent. The
iterative update rules for NAG are as follows:

xk = yk−1 − s∇f(yk−1),

yk = xk + k − 1
k + 2(xk − xk−1),

where s > 0 is the step size. The key innovation of NAG lies
in the introduction of momentum, which effectively reduces
oscillations in the optimization trajectory and speeds up
progress towards the optimal solution.

Recent advancements have shed light on the mechanisms un-
derlying the acceleration of NAG, thereby effectively bridg-
ing the gap between its discrete updates and the continuous
dynamics of damped heavy-ball motion. One pivotal contri-
bution in this area is the introduction of the low-resolution
ordinary differential equation (ODE) by Su et al. (2016),
which characterizes the continuous limit of NAG as:

Ẍ + 3
t
Ẋ +∇f(X) = 0,
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Figure 1. Numerical comparison of successful probability across iterations for both QHD and gradient-based QHD applied to the
Styblinski-Tang function. PPP k denotes the success probability at iteration k.

where the first derivative Ẋ represents velocity in classical
mechanics. By transforming this equation into its canonical
form, we obtain:Ẋ = V,

V̇ = −3
t
V̇ −∇f(X).

This canonical form establishes the foundation for a varia-
tional perspective on the acceleration phenomenon, which
is articulated through the Bregman Lagrangian,

L(X,V, t) = 1
2 t

3∥V ∥2 − t3f(X), (1)

as introduced by Wibisono et al. (2016). Furthermore, em-
ploying the Legendre transformation, we can convert this
Lagrangian into its Hamiltonian form:

H(X,P, t) = 1
2t3 ∥P∥

2 + t3f(X), (2)

which paves the way for extending the analysis from classi-
cal dynamics to quantum dynamics.

By transforming the classical momentum variable P to
the quantum momentum operator −i∇ within the Hamilto-
nian (2), Leng et al. (2023a) have pioneered a groundbreak-
ing algorithm, known as Quantum Hamiltonian Descent
(QHD), which defines the quantum dynamics through the
following Schrödinger equation as

i∂tΨ(t, x) = Ĥ(t)Ψ(t, x), (3)

where the time-dependent Hamiltonian is articulated as1:

Ĥ(t) = 1
2

∥∥∥t−3/2(−i∇)
∥∥∥2

+ t3f(x). (4)

1The original formulation of QHD allows a more general Hamil-
tonian: Ĥ(t) = eαt−γt (−∆/2) + eαt+βt+χt f(x), where the
Laplacian ∆ = ∇ · ∇, as given in Eq. (A.24) of (Leng et al.,
2023a). For simplicity, we specialize to the parameter choices
corresponding to the classical NAG, namely αt = − log(t) and
βt = γt = 2 log(t).

Let Ψ(t, x) : [0,∞) × Rd → C denote a quantum wave
function, whose squared modulus |Ψ(t, x)|2 represents the
probability distribution of a hypothetical quantum particle in
Rd at any time t ≥ 0. For sufficiently large evolution time t,
the probability distribution is expected to concentrate near
the low-energy configurations of the potential f , particularly
around its global minimum. Measuring the quantum state
in the computational basis at such times yields a random
vector X ∼ |Ψ(t, x)|2, which is likely to lie close to the
global minimizer of f , thereby approximately solving the
associated optimization problem.

As a quantum algorithm, QHD is implemented by simulat-
ing the time-dependent Hamiltonian (4), which relies only
on oracle access to the function values of f . Thus, QHD
can be viewed as a quantum zeroth-order method. A natural
extension of QHD is to develop its higher-order variants that
leverage additional information such as the gradient of f ,
and to analyze whether such extensions can enhance QHD’s
efficiency on various continuous optimization problems.

Inspired by the high-resolution ODE framework introduced
by Shi et al. (2022), where the Lyapunov function is con-
ceptualized as a form of energy or Hamiltonian involving
the interplay of kinetic energy and gradient, we propose a
novel time-dependent Hamiltonian as

Ĥ(t) =1
2

∥∥∥t−3/2(−i∇) + αt3/2∇f
∥∥∥2

+ β

2 ∥t
3/2∇f∥2 + (t3 + γt2)f(x). (5)

In this paper, we mainly investigate the Schrödinger equa-
tion (3) with the gradient-based Hamtiltonian (5), termed as
gradient-based QHD.

1.1. Warm-up: gradient-based QHD v.s. QHD

We provide a numerical example to illustrate the differ-
ences between gradient-based QHD and standard QHD,
both qualitatively and quantitatively. Figure 1 visualizes the
probability distribution across iterations for both QHD and
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gradient-based QHD, applied to the non-convex Styblinski-
Tang function, which features three local minima alongside
a global minimum.

(a) Function value (b) Success probability

Figure 2. Numerical performance comparison of various algo-
rithms on the Styblinski-Tang function.

Furthermore, Figure 2 demonstrates the numerical perfor-
mance involving function values and success probability.
While QHD does not depict an obvious advantage against
stochastic gradient descent with momentum (SGDM) (Shi,
2024; Shi et al., 2023) and NAG, gradient-based QHD
demonstrates a much more concentrated solution distri-
bution as the iterations progress, leading to an improved
global convergence. These findings motivate us to conduct
a detailed investigation into gradient-based QHD and its
potential in continuous optimization.

1.2. Overview of contributions

Our contributions are listed as follows:

• We propose gradient-based QHD for continuous opti-
mization problems. With a novel Lyapunov function
approach involving quantum operators, we provide a
convergence analysis of gradient-based QHD in contin-
uous time. In particular, we establish the convergence
rate of gradient-based QHD in both function values
(Theorem 1) and gradient norms (Theorem 4).

• We develop a quantum algorithm that simulates
discrete-time gradient-based QHD to solve optimiza-
tion problems (Algorithm 1). With a gate complexity
linear in problem dimension d, this quantum algorithm
is readily scalable to handle large-scale problems in
practice.

• In addition to the theoretical analysis, we conduct
a numerical study to evaluate the performance of
gradient-based QHD in both convex and non-convex
optimization. Our results show that gradient-based
QHD achieves an enhanced performance compared to
standard QHD and other prominent classical optimiza-
tion algorithms. In some cases, gradient-based QHD

yields solutions that are an order of magnitude better
than those obtained by other methods.

Organization. This work is structured as follows. First,
we survey related classical and quantum optimization al-
gorithms in Section 2. Next, we formulate gradient-based
QHD in Section 3, with several continuous-time conver-
gence results established in Section 4. In the subsequent Sec-
tion 5, we show that gradient-based QHD can be efficiently
implemented using a quantum computer. Finally, in Sec-
tion 6, we present the numerical experiments comparing
gradient-based QHD with several other quantum and clas-
sical optimization algorithms. We conclude this paper in
Section 7.

2. Related work
NAG-related algorithms and ODEs. There has been a
long history of analyzing NAG-related optimization algo-
rithms (Giselsson & Boyd, 2014; O’donoghue & Candes,
2015). Su et al. (2016) sheds new light on the understanding
and design of NAG using an ODE perspective. In (Be-
tancourt et al., 2018; Wibisono et al., 2016; Wilson et al.,
2021), a Lagrangian (or Hamiltonian) framework is used
to describe a larger class of ODEs that provides a unified
perspective for the acceleration phenomenon in first-order
optimization. Notably, accelerated gradient descent has
been investigated in non-Euclidean settings, including mir-
ror descent (Krichene et al., 2015; Lin et al., 2019) and more
generally, Riemannian manifolds (Ahn & Sra, 2020; Han
et al., 2023; Kong & Tao, 2024; Siegel, 2019).

Quantum algorithms for unconstrained optimization.
Using quantum computers to accelerate bottleneck steps
in classical optimization algorithms has shown promise in
achieving quantum advantage (Kerenidis & Prakash, 2020;
Liu et al., 2024; Rebentrost et al., 2019). However, their
practical performance requires further investigation due to
the non-trivial overhead involved in extracting classical in-
formation from quantum states (Yuen, 2023). Motivated by
the interplay between NAG and ODEs, another line of re-
search proposes leveraging quantum Hamiltonian dynamics
as an algorithmic surrogate for addressing unconstrained
optimization problems (Leng et al., 2023a; Liu et al., 2023;
Zhang et al., 2021), with recent extensions to open quantum
systems (Chen et al., 2023), constrained optimization (Au-
gustino et al., 2023), and discrete optimization (Cheng et al.,
2024). This approach is particularly effective for highly
non-convex problems (Leng et al., 2023b) and well-suited
for hardware implementation (Kushnir et al., 2024; Leng
et al., 2024). More discussions are available in Appendix B.
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3. Gradient-based Hamiltonian dynamics
3.1. Classical Hamiltonian flows with gradient

Inspired by the Bregman Lagrangian (Wibisono et al., 2016)
and the high-resolution ODE framework (Shi et al., 2022),
we propose to study the following Lagrangian function:

L(t,X, Ẋ) = t3

2 |Ẋ|
2 − αt3Ẋ⊤∇f(X)

− βt3

2 |∇f(X)|2 − (t3 + γt2)f(X),
(6)

where α, β, γ ∈ R are real-valued parameters that will be
specified later. Compared with the standard Bregman La-
grangian (1), our new Lagrangian function explicitly incor-
porates the gradient∇f into the Lagrangian. This design is
motivated by the convergence analysis in the high-resolution
ODE, where the Lyapunov function can be interpreted as a
generalized energy functional that includes gradient infor-
mation. More details are provided in Appendix A.2.

By applying the Legendre transformation, we obtain the
Hamiltonian function associated with (6):

H(t,X, P ) = sup
Y

(
P⊤Y − L(t,X, Y )

)
= 1

2∥t
−3/2P + αt3/2∇f∥2

+ βt3

2 ∥∇f(X)∥2 + (t3 + γt2)f(X).

(7)

Thus, we derive the Hamiltonian dynamics:

Ẋ = ∂H

∂P
= 1

2t3P (t) + α∇f(X(t)), (8)

Ṗ = −∂H
∂X

=−∇2f(X)
(
αP + (α2 + β)t3∇f(X)

)
− (t3 + γt2)∇f(X).

(9)

Connection with high-resolution ODEs. It is worth not-
ing that while our Lagrangian function shares certain simi-
larities with high-resolution ODEs, they are not equivalent.
By substituting (9) into (8), and choosing

β/α =
√
s, γ − 3α = 3

√
s/2, (10)

we can transform the Hamiltonian dynamics to a second-
order ODE:

Ẍ(t) + 3
t
Ẋ(t) +

√
s∇2f(X(t))Ẋ

+
(

1 + 3
√
s

2t

)
∇f(X(t)) =

√
s

2t3∇
2f(X(t))P.

(11)

Formally, the left-hand side corresponds to the high-
resolution ODE derived by Shi et al. (2022) (for details,

see Appendix A). The right-hand side of (11) is asymptoti-
cally vanishing as the momentum P eventually decays to 0.2

Therefore, we expect the Hamiltonian dynamics to exhibit
long-term behavior similar to that of high-resolution ODEs;
however, we leave a detailed analysis for future research.

Due to its distinctive properties, the proposed Lagrangian
function is of independent theoretical interest. In this work,
we deliberately do not restrict the parameters α, β, and γ to
the specific values associated with the high-resolution ODE
case (10). This flexibility allows us to explore a broader
class of dynamical systems, potentially leading to novel
insights and improved algorithms for continuous optimiza-
tion.

3.2. Canonical quantization

We introduce canonical quantization, a standard procedure
that maps a classical Hamiltonian function to a quantum
Hamiltonian operator. The Hamiltonian operator serves as
an infinitesimal generator of a quantum evolution, which
will be the core of our quantum optimization algorithms.

A classical-mechanical system is described by a Hamil-
tonian function H(X,P, t). In contrast, a quantum-
mechanical system is governed by a quantum Hamiltonian
operator Ĥ : L2(Rd) → L2(Rd). The canonical quanti-
zation procedure allows us to translate a known classical
Hamiltonian function to a corresponding quantum Hamilto-
nian by the mapping:

xj 7→ x̂j , pj 7→ p̂j := −i ∂
∂xj

. (12)

Here, xj and pj are the position and momentum variables
describing a classical object living in a d-dimensional space
Rd, respectively, with the dimension indices i ∈ [d]. Corre-
spondingly, x̂j and p̂j are the quantum position and momen-
tum operators acting on wave functions ψ(x) ∈ L2(Rd):

(x̂jψ)(x) = xjψ(x), (p̂jψ)(x) = −i ∂
∂xj

ψ(x).

Using this dictionary, we obtain the quantum Hamiltonian
operator corresponding to the Hamiltonian function (7):

Ĥ(t) = 1
2

d∑
j=1

A2
j + β

2 t
3∥∇f∥2 + (t3 + γt2)f, (13)

where for j = 1, . . . , d, the operator Aj is defined by

Aj = t−3/2p̂j + αt3/2v̂j , v̂jψ := ∂f

∂xj
ψ. (14)

with v̂j a multiplicative operator acting on a wave function
ψ. Due to the non-commutativity of quantum operators, the

2Details are available in Section 4.
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square of the operator Aj is expressed as

A2
j = t−3p̂2

j + α{p̂j , v̂j}+ α2t3v̂2
j ,

where {A,B} := AB +BA denotes the anti-commutator
of operators.

Given a quantum Hamiltonian operator Ĥ(t), the quantum
evolution generated by the Hamiltonian operator is governed
by the Schrödinger equation:

i∂tΨ(t, x) = Ĥ(t)Ψ(t, x), (15)

for time 0 < T0 ≤ t ≤ T , subject to an initial condi-
tion Ψ(T0, x) = Ψ0(x). The quantum wave function Ψ(t)
is complex-valued, and its modulus squared |Ψ(t)|2 corre-
sponds to a probability density that characterizes the distri-
bution of the quantum particle in the real space Rd.

Connection with the original QHD. In Leng et al.
(2023a), the Hamiltonian was derived from the Bregman
Lagrangian via Feymann’s path integral technique. Our
derivation relying on canonical quantization takes a differ-
ent yet complementary approach. The resulting Hamiltonian
operator Ĥ(t) naturally encompasses the original QHD as a
special case by choosing the parameters α = β = γ = 0.

4. Convergence analysis
In this section, we focus on the convergence results of the
newly derived quantum dynamics. Throughout this section,
we assume f(x∗) = 0 and x∗ = 0. This can always be
achieved by considering the translated objective function
f(x)← f(x+ x∗)− f(x∗).

4.1. Case 1: convergence to global minimum

First, we consider a simple case where no gradient norm
appears in the Hamiltonian (13), i.e., β = 0. In this case, we
can prove that the dynamics converge to the global minimum
of f .

Theorem 1. Let β = 0 and γ ≥ max(3α, 0) for any α ∈ R.
For any 1/α ≥ T0 > 0, we denote Ψ(t, x) as the solution
to the PDE (15) for t ≥ T0. Let Xt be a random variable
distributed according to the probability density |Ψ(t, x)|2.
Then, for a convex and continuously differentiable f , we
have

E[f(Xt)] ≤
K0 + D0

t2 + ωt
, ω = γ − 3α ≥ 0,

where K0 = T−4
0 ⟨Ψ(T0)|(−∆)|Ψ(T0)⟩ and

D0 = E
[
∥∇f(XT0)∥2 + 4∥XT0∥2 + (T 2

0 + ωT0)f(XT0)
]
.

In other words, E[f(Xt)] ≤ O(t−2).

Remark 1. K0 represents the initial kinetic energy
(rescaled by T−4

0 ). Its value is independent of f and typi-
cally does not depend on the dimension d, e.g., when the
initial state Ψ0 is a standard Gaussian wave. In general, D0
can scale linearly in d due to the presence of ∥∇f∥2.

The convergence rate is proved by constructing a Lyapunov
function E(t) that is non-increasing in time. The Lyapunov
function is defined by

E(t) = ⟨Ô(t)⟩t := ⟨Ψ(t)|Ô(t)|Ψ(t)⟩,

Ô(t) = 1
2

d∑
j=1

(
t−2p̂j + αtv̂j + 2x̂j

)2 +
(
t2 + ωt

)
f.

Here, ω = γ − 3α ≥ 0 because γ ≥ max(3α, 0).

Lemma 2. Let β = 0 and γ ≥ max(3α, 0). For any t > 0,
we have Ė(t) ≤ 0.

In Lemma 2, we prove that the function E(t) is non-
increasing in time, as a result,

t2⟨f⟩t ≤ E(t) ≤ E(T0) =⇒ ⟨f⟩t ≤
E(T0)
t2

.

Moreover, we note that

E(T0) ≤ ⟨Ψ(t)
∣∣∣∣ 1
T 4

0
(−∆) + α2T 2

0 ∥∇f∥2 + 4∥x∥2
∣∣∣∣Ψ(t)⟩

+ (T 2
0 + ωT0)⟨Ψ(t)|f |Ψ(t)⟩,

which proves Theorem 1.

The details of Lemma 2 is presented in Appendix C.2. The
technical proof heavily relies on the commutation relations
between various non-commuting quantum operators that
appeared in the Lyapunov function. We summarize the com-
mon commutation relations used in this work in Lemma 3,
which might be of independent interest in future work.

Lemma 3 (Commutation relations). Let Aj , pj , and xj be
the same as above. For any 1 ≤ j, k ≤ d, we have the
following identities:

1. i[A2
j , f ] = t−3{pj , vj}+ 2αv2

j ,

2. i[f, {Aj , xj}] = −2t−3/2xjvj ,

3. i[A2
j , x

2
k] =

{
2
t3 {pj , xj}+ 4αxjvj (j = k)
0 (j ̸= k)

,

4. i[A2
j , {Ak, xk}] =

{
4

t3/2A
2
j (j = k)

0 (j ̸= k)
,

5. i[v2
j , {Ak, xk}] = −4t−3/2

(
∂2f

∂xjxk

)
xkvj .

For the proof, please refer to Appendix C.1.
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4.2. Case 2: convergence to first-order stationary point

We denote the function G(x) as the square of the gradient
norm of f , i.e.,

G(x) := ∇f(x)⊤∇f(x) =
d∑

j=1

∣∣∣∣∂f(x)
∂xj

∣∣∣∣2 . (16)

Theorem 4. Let γ ≥ max(3α, 0) and β > 0. For any
min(1/α,

√
2/β) ≥ T0 > 0, we denote Ψ(t, x) as the

solution to the PDE (15). Let Xt be a random variable
distributed according to the probability density |Ψ(t, x)|2.
Then, for a convex and continuously differentiable f such
that its gradient norm satisfies the following identity:

G(x)−∇G(x)⊤x ≤ 0, (17)

we have

E[∥∇f(Xt)∥2] ≤ 2 (K0 + D ′
0)

βt2
,

where K0 is the same as in Theorem 1 and

D ′
0 = E

[
2∥∇f(XT0)∥2 + 4∥XT0∥2 + (T 2

0 + ωT0)f(XT0)
]
,

where ω = γ − 3α. In other words, E[∥∇f(Xt)∥2] ≤
O(t−2).

Remark 2. A sufficient condition for the identity (17) is
that G(x) is convex. In this case, the global minimizer of
G(x) must be x∗ and (17) holds. However, this does not
always require the objective function f to be convex. For
example, consider f(x) =

√
x for x > 0. While f is a

concave function, G(x) = (f ′)2 = 1
4x is a convex function

for x > 0.

Similarly, the proof of Theorem 4 exploits a Lyapunov func-
tion approach. We define

F(t) = ⟨Ĵ(t)⟩t := ⟨Ψ(t)|Ĵ(t)|Ψ(t)⟩,

Ĵ(t) = 1
2

d∑
j=1

(
t−2p̂j + αtv̂j + 2x̂j

)2 + β

2 t
2G+ (t2 + ωt)f,

with ω = γ − 3α ≥ 0. Due to the positivity of (t−2pj +
αtvj + 2xj)2 and f , we have

⟨∥∇f∥2⟩t ≤
2
βt2
F(t) ≤ 2

βt2
F(0),

where the last step follows from Lemma 5. This proves The-
orem 4.

Lemma 5. Let γ > 0 and α ≥ max(β, 0). If (17) holds,
we have Ḟ(t) ≤ 0 for any t > 0.

The proof is left in Appendix C.3.

5. Quantum algorithms and complexity
analysis

In this section, we study the time discretization of gradient-
based QHD, which facilitates the simulation of the quantum
dynamics in a (fault-tolerant) quantum computer.

5.1. Time discretization of the quantum Hamiltonian
dynamics

Recall that the gradient-based QHD dynamics are governed
by the differential equation (15). Let U(t) be the time-
evolution operator that maps an initial state |Ψ0⟩ to the
solution state |Ψ(t)⟩ at time t ∈ [0, T ], i.e.,

U(t)Ψ(0) = Ψ(t) ∀t ∈ [0, T ].

Formally, the time-evolution operator can be obtained by
a sequence of infinitesimal time evolution of the quantum
Hamiltonian Ĥ(t):

U(t) = lim
K→∞

e−ihĤ(tK)e−ihĤ(tK−1) . . . e−ihĤ(t1),

whereK is a positive integer, h = t/K and tk = kh for 1 ≤
k ≤ N . Note that the gradient-based QHD Hamiltonian can
be decomposed in the form Ĥ(tk) = Hk,1 +Hk,2 +Hk,3,
where

Hk,1 = − 1
2t3k

∆, Hk,2 = α

2 {−i∇,∇f},

Hk,3 =
(
α2 + β

)
2 t3∥∇f∥2 + (t3 + γt2)f.

Therefore, we can further decompose a short-time evolution
step using the product formula (i.e., operator splitting):

e−ihĤ(tk) ≈ e−ihHk,1e−ihHk,2e−ihHk,3 . (18)

Since all the Hamiltonians Hk,1, Hk,2, and Hk,3 can be
efficiently simulated using a quantum computer, we obtain
a quantum algorithm that implements gradient-based QHD
to solve large-scale optimization problems, as summarized
in Algorithm 1.

On the choice of step size h. It is shown in Childs et al.
(2021) that the product formula will introduce a “simulation
error” such that∥∥∥e−ihĤ(tk) − e−ihHk,1e−ihHk,2e−ihHk,3

∥∥∥
≤ h2

2
∑

1≤i̸=j≤3
∥[Hk,i, Hk,j ]∥ .

A formal calculation shows that the commutator norm scales
as O(t3k), which suggests h ∼ t

−3/2
k may be needed to

control the simulation error in each time step. However, in
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Algorithm 1 Gradient-based QHD with fixed step size

Classical Input: Hamiltonian parameters α, β, γ, step
size h, number of iterations K.
Quantum Input: an initial guess state |Ψ0⟩
Output: a classical point ξ ∈ Rd.

Initialize the quantum register to |Ψ0⟩.
for k = 1 to K do

Determine tk = kh.
Implement a quantum circuit Uk as described in (18).
Compute |Ψk⟩ = Uk |Ψk−1⟩.

end for
Measure the final quantum state |ΨK⟩ with the position
observable x̂ to obtain a sample point ξ ∈ Rd.

the numerical experiments, we observe that a much larger
step size h can still result in the convergence of the discrete-
time gradient-based QHD. This observation aligns with our
experience with the NAG method, where convergence is
achieved with a step size proportional to 1/L, irrespective
of the continuous-time dynamics. As a result, we treat the
step size h as an independent parameter in the complexity
analysis. A complete understanding of the convergence of
the discrete-time algorithm, however, is left for future study.

Remark 3. Quantum simulations of time-dependent Hamil-
tonians constitute an active research area, with a growing
body of literature addressing this topic (e.g., (An et al.,
2021; 2022; Berry et al., 2020; Childs et al., 2022; Mizuta
et al., 2024)). These developments pave the way for more
advanced implementations of gradient-based QHD, poten-
tially offering improved asymptotic complexity. A detailed
exploration of such implementations is left for future work.

5.2. Complexity analysis

Now, we analyze the computational cost of Algorithm 1. In
our analysis, we assume the quantum computer has access
to the function f and its gradient via the following quantum
circuits:

Of : |x⟩ |z⟩ 7→ |x⟩ |f(x) + z⟩ ,
O∇f : |x⟩ |z⟩ 7→ |x⟩ |∇f(x) + z⟩ .

The quantum circuits Of and O∇f are often called quan-
tum zeroth- and first-order oracles. They can be efficiently
constructed by quantum arithmetic circuits when the expres-
sions of f and ∇f are known.

Remark 4. The requirement for a quantum first-order oracle
O∇f can potentially be eliminated by leveraging Jordan’s
algorithm (Jordan, 2005), which estimates gradients using
only a zeroth-order oracle Of . However, without astrong
smoothness assumptions on the objective function f , the
query complexity of obtaining an ϵ-approximate gradient

typically scales as O(
√
d/ϵ) (Gilyén et al., 2019a). In this

work, we focus on the convergence properties of gradient-
based QHD, leaving the incorporation of quantum gradient
estimation techniques for future research.

A crucial step in Algorithm 1 is to implement the quan-
tum unitary operator Uk based on the operator splitting
formula (18). We note that the sub-Hamiltonians Hk,1 and
Hk,3 are fast-forwardable, and the operatorHk,2 can be sim-
ulated by invoking Quantum Singular Value Transformation
(QSVT). Combining these technical results together, we end
up with the overall complexity of the quantum algorithm, as
summarized in Theorem 6.

Theorem 6. Let f be L-Lipschitz and |Ψ0⟩ be a sufficiently
smooth function. Then, we can implement Algorithm 1 for
K iterations using O(K) queries to the quantum zeroth-
order oracle Of and Õ (αdhKL) queries to the quantum
first-order oracle O∇f and its inverses.3

The details proof of Theorem 6, including the efficient sim-
ulation of Hk,2 via QSVT, is presented in Appendix D.

6. Numerical experiments
In this section, we conduct extensive numerical experiments
to evaluate the performance of gradient-based QHD and
compare it with other prominent optimization algorithms.

6.1. Experiment setup and implementation details

Let f : Rd → R be an objective function with gradient
∇f(x). Given an optimization algorithm initialized with
a random sample drawn from a fixed distribution ρ0, the
algorithm’s output after k iterations can be represented by a
random variable Xk ∈ Rd. We denote E[f(Xk)] as the ex-
pectation value of the objective function and E[∥∇f(Xk)∥2]
as expected gradient norm at iteration k. To assess the algo-
rithm’s performance, we define the success probability after
k iterations as

Pk := P[f(Xk)− f(x∗) ≤ δ].

where δ > 0 is a pre-defined error threshold. For all the
subsequent experiments, we set δ = 1.

We remark that the iteration steps in gradient-based QHD (as
shown in Algorithm 1) are more intricate than those in clas-
sical methods such as SGDM and NAG. As demonstrated
in the proof of Lemma 9, the query and gate complexity per
iteration of gradient-based QHD scales as Õ(d). In contrast,
each iteration of SGDM/NAG involves only a single query
to∇f , with a time complexity of O(d). Therefore, in terms

3Here, the Õ notation suppresses poly-logarithmic factors in
the error parameter ϵ. The parameter ϵ > 0 represents the error
budget in the Hamiltonian simulation, as detailed in Lemma 9.
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of overall runtime, gradient-based QHD remains asymptoti-
cally comparable to NAG, which justifies our comparison
based on the iteration count.

To evaluate the classical methods such as SGDM and NAG,
we estimate the expectation values and success probabilities
using a sample of 1000 independent runs. Each run begins
with a uniformly random initial guess and proceeds for k
iterations. For the quantum methods, since the probability
density function can be explicitly derived from the quantum
state vector, expectation values and success probabilities are
computed via numerical integration.

The numerical simulations of the quantum algorithms, in-
cluding QHD and gradient-based QHD, are performed on
a MacBook equipped with an M4 chip. Additional de-
tails on the numerical methods employed are provided Ap-
pendix E.1.

6.2. Convex optimization

To evaluate performance, we conduct a numerical com-
parison of gradient-based QHD against three baseline al-
gorithms, including SGDM, NAG, and QHD, for convex
optimization. The test function used is

f(x, y) = (x+ y)4

256 + (x− y)4

128 , (19)

which is a convex yet non-strongly convex function, with
a singular Hessian at its unique minimum (0, 0). Notably,
the gradient of this function does not satisfy the Lipschitz
continuity condition. This flat geometry presents signifi-
cant challenges for classical methods that rely heavily on
curvature information, making it a suitable benchmark for
comparative evaluation. All methods are executed with a
fixed step size h = 0.2.4 For the quantum variants, the
initial evolution time is set to t0 = 1. The parameters of
gradient-based QHD are configured as α = −0.1, β = 0,
and γ = 5.

The performance of these optimization algorithms is visu-
alized in Figure 3, where two key metrics are employed to
access convergence: the average function values E[f(Xk)]
(depicted in the left subplot) and the average gradient norm
E[∥∇f(Xk)∥2] (depicted in the right subplot). Both quan-
tities are tracked over iterations 1 ≤ k ≤ 25. The results
reveal distinct convergence behaviors. While the (classi-
cal) QHD exhibits a slower convergence rate compared to
NAG, the gradient-based QHD stands out by achieving a
remarkably faster convergence rate, outperforming all other
algorithms. This superior performance highlights the ef-
fectiveness of incorporating gradient-based techniques into
QHD, particularly for challenging optimization landscapes.

4We have tested various step sizes (h ∈ [0.05, 0.5]) for
gradient-based QHD and observed similar convergence behavior.
To maintain consistency, we fix h = 0.2 in all comparisons.

(a) Function value (b) Gradient norm
Figure 3. Numerical comparison of various optimization algo-
rithms on the convex objective function (19), including function
values and success probability.

6.3. Non-convex optimization

More details on these test problems are available in Ap-
pendix E.2.

We now turn our attention to the numerical comparison
of gradient-based QHD against three baseline algorithms,
including SGDM, NAG, and QHD, in non-convex optimiza-
tion settings. Non-convexity introduces significant chal-
lenges for classical first-order methods, as local gradient
information alone is often insufficient to distinguish the
global minimum from other spurious local optima.

To illustrate these challenges, we evaluate a variety of non-
convex optimization problem instances characterized by
diverse landscape features:

(i) Michalewicz function (Figure 4): This function fea-
tures a flat plateau and a unique global minimum hid-
den within a sharp valley, posing a difficult search
problem.

(ii) Cube-Wave function (Figure 5): With over ten local
minima (four of which are global minima) concentrated
within the cube [−2, 2]2, this function exemplifies a
rugged landscape.

(iii) Rastrigin function (Figure 6): This function presents
a highly oscillatory landscape with a global minimum
at the origin, making it notoriously challenging for
optimization algorithms.

Due to these intricate characteristics, all three problems are
recognized as particularly difficult for classical first-order
methods. Additional details about these test functions are
provided in Appendix E.2.

For the two quantum algorithms, the evolution time starts
from t0 = 0. In gradient-based QHD, the parameters are set
to α = −0.05, β = 0, and γ = 5.

Despite the diversity of non-convex test problems, gradient-
based QHD consistently delivers robust and favorable per-
formance. Compared to both QHD and the classical algo-
rithms, it achieves a significantly faster convergence rate

8
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Figure 4. Numerical comparison of various optimization algo-
rithms on the Michalewicz function, including function values
and success probability.

Figure 5. Numerical comparison of various optimization algo-
rithms on the Cube-Wave function, including function values and
success probability.

and yields notably lower terminal objective function values.
In the Cube-Wave function, for instance, the final objective
value obtained by gradient-based QHD is nearly an order
of magnitude lower than that of QHD and two orders of
magnitude lower than those achieved by SGDM and NAG.

Further numerical analysis highlights that gradient-based
QHD attains a higher success probability across all problem
instances, indicating that its final states are tightly concen-
trated around the global minimizer. In summary, by leverag-
ing gradient information within the quantum Hamiltonian

Figure 6. Numerical comparison of various optimization algo-
rithms on the Rastrigin function, including function values and
success probability.

framework, gradient-based QHD demonstrates enhanced
global convergence properties, outperforming QHD and
classical optimization methods.

7. Conclusion and Future Work
In this paper, we propose gradient-based QHD for continu-
ous optimization problems without constraints. We prove
the convergence of the gradient-based QHD dynamics in
both function values and gradient norms via a Lyapunov
function approach. We also discuss an efficient implemen-
tation of discrete-time gradient-based QHD using a fault-
tolerant quantum computer. Our numerical results show
that gradient-based QHD achieves improved convergence
with a higher chance of identifying the global minimum in
a sophisticated optimization landscape.

Our theoretical analysis has primarily focused on the conver-
gence of gradient-based QHD in continuous time, while the
long-term behavior of the discrete-time algorithm deserves
further investigation. The numerical experiments are limited
to 2D problems due to the exponential growth of compu-
tational overhead. Developing new numerical techniques
could help evaluate the advantages of quantum Hamiltonian-
based algorithms for high-dimensional optimization.

Software and Data
The source code of the experiments is avail-
able at https://github.com/jiaqileng/
Gradient-Based-QHD.
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A. Review of accelerated gradient descent
A.1. Accelerated gradient descent as differential equations

Accelerated gradient descent methods are fundamental in both theory and practice. Nesterov (Nesterov, 1983) proposed the
first accelerated gradient method that has the following update rules (where s > 0 is the step size):

xk = yk−1 − s∇f(yk−1), (20a)

yk = xk + k − 1
k + 2(xk − xk−1), (20b)

It is known that Nesterov’s gradient descent achieves the optimal convergence rate among all gradient-based methods.

On the other hand, there has been a long-lasting research attempting to relate gradient-based optimization algorithms with
differential equations. A seminal work by Su et al. (Shi et al., 2022) proposed a second-order differential equation to capture
the acceleration phenomenon in Nesterov’s algorithm. For sufficiently small step size s, the continuous-time limit of (20) is
given by the following ordinary differential equation,

Ẍ + 3
t
Ẋ +∇f(X) = 0, (21)

for t > 0, with initial conditions X(0) = x0 and Ẋ(0) = 0. The convergence rate of the ODE is O(t−2), which matches
that of the discrete-time algorithm (20).

The ODE framework of accelerated gradient descent was later generalized via a variational formulation of the underlying
dynamics. Wibisono, Wilson, and Jordan (Wibisono et al., 2016) proposed to consider the Bregman Lagrangian,

L(X,V, t) = eαt+γt

(
1
2

∣∣∣e−αtV
∣∣∣2 − eβtf(X)

)
, (22)

where t ≥ 0 is the time, X ∈ Rd is the state vector, and V ∈ Rd is the velocity.5 Given the Lagrangian function L(X,V, t),
we can consider the following variational problem:

min
Xt

J(Xt) =
∫ ∞

0
L(X, Ẋt, t)dt, (23)

where J(Xt) is a functional defined on smooth curves {Xt : t ∈ [0,∞)}. From the calculus of variations, a curve that
minimizes the functional J(Xt) necessarily satisfies the Euler-Lagrange equation:

d

dt

(
∂L
∂V

(Xt, Ẋt, t)
)

= ∂L
∂X

(Xt, Ẋt, t). (24)

Specifically, if we choose αt = − log(t), βt = γt = 2 log(t), the resulting Euler-Langrage equation is exactly the
continuous-time limit of Nesterov’s accelerated gradient descent (21). It is also shown that, if αt, βt, and γt satisfies the
following ideal scaling conditions,

β̇t ≤ eαt , γ̇t = eαt , (25)

the solutions to the Euler-Lagrange equation satisfy

f(Xt)− f(x∗) ≤ O(e−βt), (26)

which gives a convergence rate of the dynamical system in continuous time.

5Here, we give a simplified version of the Bregman Lagrangian in which the Bregman divergence is given by the standard Euclidean
distance; for details, see (Wibisono et al., 2016).
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A.2. Understanding acceleration via high-resolution ODEs

While the continuous-time formulations of accelerated gradient descent provide a more transparent perspective on the
acceleration phenomenon and allow us to introduce the rich toolbox from ODE theory, they offer little understanding of
different accelerated gradient descent algorithms with the same continuous-time limit. For example, Polyak’s heavy-ball
method and NAG have the same continuous-time limit, however, they exhibit strikingly different behaviors in practice: the
heavy-ball method generally only achieves local acceleration, while NAG is an acceleration method applicable to all initial
values of the iterate (Lessard et al., 2016).

The difference between the two algorithms lies in a gradient correction step that only exists in NAG. Inspired by the
dimensional-analysis strategies in fluid mechanics, Shi et al. (2022) developed a high-resolution ODE framework to reflect
the gradient correction effect in different algorithms with the same low-resolution continuous-time limit. The high-resolution
ODEs for NAG are as follows.

Ẍ(t) + 3
t
Ẋ(t) +

√
s∇2f(X(t))Ẋ(t) +

(
1 + 3

√
s

2t

)
∇f(X(t)) = 0, (27)

for t ≥ 3
√
s/2, with X(3

√
s/2) = x0, Ẋ(3

√
s/2) = −

√
s∇f(x0).

In contrast, the high-resolution ODE for the heavy-ball method does not have the higher-order correction term√
s∇2f(X(t))Ẋ(t), which explains how the gradient correction step improves the overall convergence performance

of NAG over the heavy-ball method. The high-resolution ODE framework also motivates the design of a new family of
accelerated gradient descent algorithms that maintain the convergence rate of NAG.

To prove the convergence of the high-resolution ODEs, Shi et al. (2022) employs the following Lyapunov function (see Shi
et al. (2022, Eq. (4.36))):

E(t) = t

(
t+
√
s

2

)
(f(X)− f(x∗)) + 1

2∥tẊ + 2(X − x∗) + t
√
s∇f(X)∥2. (28)

Let X(t) be the solution to (27), it is proven in Shi et al. (2022, Lemma 5) that for all t ≥ 3
√
s/2

dE(t)
dt ≤ −

[√
st2 +

(
1
L

+ s

2

)
t+
√
s

2L

]
∥∇f(X)∥2 < 0. (29)

As a direct consequence, for any t ≥ 3
√
s/2, we have

f(X(t))− f(x∗) ≤ (4 + 3sL)∥x0 − x∗∥2

t(2t+
√
s)

. (30)

B. Two paradigms of quantum optimization
Based on how the solution is encoded in a quantum state, there are two major paradigms in designing quantum algorithms
for continuous optimization problems. In this section, we briefly discuss the two paradigms and compare their respective
pros and cons.

Solution vector as a quantum state. The first paradigm uses amplitude encoding, where an n-dimensional vector v is
encoded into a q-qubit state with q = ⌈log2(n)⌉:

|v⟩ = 1
∥v∥

n∑
j=1

vj |j⟩ ,

where {|j⟩}2q−1
j is the set of computational basis. This approach encompasses a vast majority of works in quantum

optimization, including (Kerenidis & Prakash, 2020; Liu et al., 2024; Rebentrost et al., 2019). In this encoding scheme,
the solution vector can be represented using O(log(n)) qubits and it allows us to exploit the rich quantum numerical
linear algebra toolbox to accelerate existing classical algorithms. Nevertheless, the downside is that the recovery of the
classical vector v from its amplitude-encoded state |v⟩, a task known as quantum state tomography, would inevitably incur
a Θ(n/ϵ) overhead due to the Heisenberg limit, where ϵ is the readout precision (Yuen, 2023). Therefore, the quantum state
tomography can nullify the potential exponential quantum speedup in the computation.
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Superposition of all possible solutions. Another paradigm uses basis encoding, where an n-dimensional vector v
corresponds to a unique computational basis |bv⟩. To see how this works, we assume that each element in the real-valued
vector v is represented by a fixed-point number vj with bit length q. Therefore, we can uniquely enumerate all possible
solutions (corresponding to all possible fixed-point numbers) in the n-dimensional space using (2q)n computational basis, or
equivalently, nq qubits. This encoding scheme is similar to how modern computers store an array with fixed/floating-point
arrays. Nevertheless, the difference is that quantum computers can produce a superposition of basis states, i.e.,

|Ψ⟩ =
∑

x

√
ρ(x) |x⟩ ,

where ρ is a probability distribution over the whole space. In this case, measuring the quantum state |Ψ⟩ is equivalent
to sampling a point from the distribution ρ. Solving an optimization problem amounts to preparing an approximation of
the Dirac-delta distribution at the minimizer x∗, i.e., the state |x∗⟩. Compared to the first paradigm, there are two major
advantages of this approach: First, there is no obvious fundamental limitation on extracting information from the quantum
register, as we can prepare a Dirac-delta-like state for which the probability of obtaining a fixed solution can be arbitrarily
close to 1. Second, the superposition of solutions |Ψ⟩ is a natural quantum wave function, so we can design a solution
path by exploiting the toolbox of continuous-space quantum mechanics, which is historically less explored in the quantum
computation literature. The drawback, however, is that we will not have exponentially improved space/qubit complexity
to represent the solution. The first approach in principle only uses O(log2(n)) qubits to represent a solution vector, while
representing the superposition state |Ψ⟩ requires O(n) qubits for an n-dimensional vector.

C. Technical details of convergence analysis
C.1. Commutation relations in gradient-based QHD

This section proves the commutation relations in Lemma 3.

Lemma 7. Let g : Rd → R be a smooth function. We have

i[p̂2
j , g] = {p̂j , ∂jg}.

Proof. Let φ be a test function. Note that

(p̂2
jg)(φ) = − ∂2

∂x2
j

(gφ) = − (∂jjgφ+ 2∂jg∂jφ+ g∂jjφ) , (gp̂2
j )(φ) = g

(
− ∂2

∂x2
j

φ

)
= −g∂jjφ.

Therefore,

i[p̂2
j , g]φ = −i (∂jjgφ+ 2∂jg∂jφ) .

Meanwhile, we find that

{p̂j , ∂jg}φ = (−i∂j)(∂jgφ) + ∂jg (−i∂jφ) = −i (∂jjgφ+ 2∂jg∂jφ) ,

which concludes the proof.

Lemma 8. Let g : Rd → R, h : Rd → R be two smooth functions. We have

i[{p̂j , h}, g] = 2h(∂jg).

Proof. Let φ be a test function. Direct calculation shows that

i[{p̂j , h}, g]φ = i [(pjh+ hpj) (gφ)− g (pjh+ hpj)φ]
= i [pj(hgφ) + h(pjg)φ− gpj(hφ)− gh(pjφ)]
= 2ih(pjg)φ = 2h(∂jg)φ,

which implies i[{p̂j , h}, g] = 2h(∂jg). This operator is again a multiplicative operator that commutes with both g and
h.
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Now, we are ready to prove Lemma 3.

Proof. 1. Recall that

Aj = t−3/2pj + αt3/2vj , vj = ∂f

∂xj
, A2

j = t−3p2
j + α{pj , vj}+ α2t3v2

j .

Therefore,

i[A2
j , f ] = i[t−3p2

j + α{pj , vj}, f ] = t−3{pj , vj}+ 2αv2
j .

The last identity invokes Lemma 7 and Lemma 8.

2. Since the vj part in Aj commutates with x and f , we can drop it from the commutator:

i[f, {Aj , xj}] = i[f, {t−3/2pj , xj}] = −it−3/2[{pj , xj}, f ] = −t−3/2xjvj ,

where we use Lemma 8 in the last step.

3. By dropping the v2
j part in A2

j , we get

i[A2
j , x

2
k] = i[t−3p2

j + α{pj , vj}, x2
k] = t−3i[p2

j , x
2
k] + α[{pj , vj}, x2

k].

By Lemma 7 and Lemma 8, we obtain the following:

i[A2
j , x

2
k] =

{
0 (j ̸= k)
2t−3{pj , xj}+ 4αxjvj (j = k).

4. It can be readily verified that [Aj , Ak] = 0 and [Aj , xk] = 0 for any j ̸= k. Therefore, if j ̸= k, we will have

i[A2
j , {Ak, xk}] = 0.

When j = k, we first observe that

i[Aj , xj ] = i[t−3/2pj , xj ] = t−3/2i[pj , xj ] = t−3/2

due to the canonical commutation relation i[pj , xj ] = 1. By leveraging the commutation relation between Aj and xj ,

i[A2
j , {Aj , xj}] = i

(
A3

jxj +A2
jxjAj −AjxjA

2
j − xjA

3
j

)
= i
(
A2

j (xjAj − it−3/2) +A2
jxjAj −AjxjA

2
j − (Ajxj + it−3/2)A2

j

)
= i
(

2Aj(xjAj − it−3/2)Aj − 2AjxjA
2
j − 2it−3/2

)
= 4t−3/2A2

j .

5. This commutation relation is a direct consequence of Lemma 8. By dropping the vk part in Ak, we have

i[v2
j , {Ak, xk}] = −it−3/2[{pj , xk}, v2

j ] = −4t−3/2xkvj(∂kvj) = −4t−3/2
(

∂2f

∂xjxk

)
xkvj .
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C.2. Proof of Lemma 2

Proof. By the definition of the Lyapunov function, we have

d
dtE(t) = ⟨∂tÔ(t) + i[Ĥ(t), Ô(t)]⟩t, (31)

where [A,B] := AB−BA denotes the commutator of operators. In the following calculation, we omit the hat over quantum
operators to simplify the notation.

First, we calculate the ∂tO(t) part. Direct calculations yield that

∂tO(t) =
d∑

j=1

(
− 2
t5
p2

j + α2tv2
j + 2αxjvj −

α

2t2 {pj , vj} −
2
t3
{pj , xj}

)
+ (2t+ ω)f. (32)

As for the commutator part, it is worth noting that

O(t) = 1
2

d∑
j=1

(t−1/2Aj + 2x̂j)2 +
(
t2 + ωt

)
f

= 1
t
H(t) +

d∑
j=1

(
2x2

j + 1
t1/2 {Aj , xj}

)
− 3αtf.

(33)

Therefore, we have

i[H(t), O(t)] = i

H(t),
d∑

j=1

(
2x2

j + {Aj , xj}
t2

)
− 3αtf

 (34)

Invoking the commutation relations 1-4 in Lemma 3 to simplify (34) and combining it with (32), we obtain the following
identity:

∂tO + i[H,O] = (2t+ ω)(f(x)− x⊤∇f(x))− 2ωf(x). (35)

Since f is convex, we have f(x)−x⊤∇f(x) ≤ 0 for any x ∈ Rd. Since ω = γ−3α ≥ 0, it follows that ∂tO+ i[H,O] ≤ 0
and f(x) ≥ 0 for all x ∈ Rd, which implies that

d
dtE(t) = ⟨∂tÔ(t) + i[Ĥ(t), Ô(t)]⟩t ≤ 0.

C.3. Proof of Lemma 5

Proof. Similar to the proof of Lemma 2, we have

d
dtF(t) = ⟨∂tĴ(t) + i[Ĥ(t), Ĵ(t)]⟩t. (36)

Direct calculation shows that

∂tĴ(t) + i[Ĥ(t), Ĵ(t)] = I1 + I2(t), (37)

where
I1(t) = −2ωx⊤∇f(x) + 2t(f(x)− x⊤∇f(x)) ≤ 0, (38)

I2(t) = βt

 d∑
j=1

v2
j

+ β

2 t
5/2

d∑
j,k=1

[v2
j , {Ak, xk}]

= βt

 d∑
j=1

v2
j − 2

d∑
j,k=1

(
∂2f

∂xjxk

)
xkvj


= βt

(
G(x)− x⊤∇G(x)

)
≤ 0.

(39)
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The second equation uses commutation relation 5 in Lemma 3, and the last inequality is deduced from the convexity of
G(x). Combining (38) and (39), we prove the lemma.

D. Technical details of complexity analysis
Lemma 9. Assume that f : Rd → R is a L-Lipschitz function. For sufficiently smooth wave function |Φ⟩, we can prepare a
quantum state |Ψ⟩ such that

∥Ψ− e−ihHk,2Φ∥ ≤ ϵ

using
Õ (αdhL)

queries to the first-order oracle O∇f . Here, the Õ(·) notation suppressed poly-logarithmic terms in 1/ϵ.

Proof. Recall that

Hk,2 = α

2 {−i∇,∇f} = α

2

d∑
j=1
{pj , vj}.

Note that this operator is independent of time and thus of k. To simulate the Hamiltonian Hk,2, we need to perform spatial
discretization for the operators pj and vj . The standard approach is to consider a d-dimensional regular mesh with N grid
points on each dimension, e.g., (An et al., 2022; Childs et al., 2022). The momentum operators can be implemented by
applying Quantum Fourier Transform 2 times (with overall gate complexity dpoly log(N)), as discussed in (Li et al., 2023).
The discretized Hamiltonian operator takes the following form:

H̃k,2 = α

2

d∑
j=1

(P̃j Ṽj + ṼjP̃j), (40)

where ∥P̃j∥ ≤ O(N), and ∥Ṽj∥ ≤ L, with L the Lipschitz constant of f . By using O(1) queries to the first-order oracle
O∇f , we can implement a block-encoding of the matrix H̃k,2 with a normalization factor a ≤ O(αdNL), and an additional
O(d) ancilla qubits Gilyén et al. (2019b, Lemma 29,30). With the block-encoded operator Hk,2, we can perform optimal
Hamiltonian simulation by QSVT Gilyén et al. (2019b, Corollary 32). The total number of queries to the block-encoding is

O (ah+ log(1/ϵ)) ,

with an additional O(d(ah + log(1/ϵ))) elementary gates. Given that the input wave function Φ is sufficiently smooth,
the discretization number N can be chosen as N = poly log(1/ϵ) since the spatial discretization can be regarded as a
pseudo-spectral method. It turns out that the overall query complexity of the Hamiltonian simulation reads Õ (dαhL),
where the Õ(·) notation suppresses poly-logarithmic terms in 1/ϵ.

Now, we are ready to prove Theorem 6.

Proof. In Algorithm 1, each iteration requires the implementation of the quantum circuit

Uk = e−ihHk,1e−ihHk,2e−ihHk,3 .

Note that Hk,1 = −∆/(2t3k) and the Laplacian operator ∆ can be diagonalized by Fourier transform, so we can implement
e−ihHk,1 using O(d log2(N)) elementary gates. The Hamiltonian Hk,3 is a multiplicative operator with two commuting
terms, i.e.,

e−ihHk,3 = e−ih(α2+β)t3
k∥∇f∥2/2e−ih(t3

k+γt2)f .

Since the functions f and ∥∇f∥2 are multiplicative operators and reduce to diagonal matrices after spatial discretization.
Therefore, the Hamiltonian Hk,3 is fast-forwardable and can be implemented using O(1) uses of the zeroth- and first-order
oracle of f , respectively. Finally, by Lemma 9, the Hamiltonian Hk,2 can be simulated using Õ(αdhL) queries to the
first-order oracle O∇f . By iterating these steps for K times, we can implement the quantum algorithm using O(K) queries
to the zeroth-order oracle Of and Õ(αdhKL) queries to the first-order oracle O∇f .
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E. Details of numerical experiments
E.1. Numerical implementations of optimization algorithms

In the numerical experiments, we test four optimization algorithms: Stochastic Gradient Descent with momentum (SGDM),
Nesterov’s accelerated gradient descent (NAG), Quantum Hamiltonian Descent (QHD), and Gradient-based QHD. Our
Python implementation of the numerical algorithms can be found in the supplementary materials.

SGDM. The iterative update rules for SGDM are as follows:

vk = ηkvk−1 − (1− ηk)skgk,

xk = xk + vk,

where 1 ≤ k ≤ K is the iteration number, ηk is the momentum coefficient, sk is the step size, gk is an unbiased gradient
estimator at xk. We use

ηk = 0.5 + 0.4k
K

, sk = s0

k
.

with s0 = 0.01, v0 = 0, and a uniformly random initial guess x0. The gradient estimator gk is obtained by adding a unit
Gaussian random noise to the exact gradient∇f(xk).

NAG. The update rules of NAG are as follows:

xk = yk−1 − s∇f(yk−1),

yk = xk + k − 1
k + 2(xk − xk−1),

for 1 ≤ k ≤ K. We choose y0 = 0 and a uniformly random initial guess x0. The step size is chosen as s = 0.01.

QHD and gradient-based QHD. Both QHD and gradient-based QHD are simulated following Algorithm 1. Note that
QHD is a special case of gradient-based QHD with α = β = γ = 0. The simulation is performed in a mesh grid with
N = 128 grid points per dimension, with the momentum and kinetic operators implemented using FFT, as discussed
in Appendix D. The step size varies with the test problems: We use h = 0.01 for the Styblinski-Tang and Michalewicz
function, h = 0.02 for the Cube-Wave function, and h = 0.005 for the Rastrigin function.

E.2. Non-convex test problems

The test problems used in this paper are defined as follows:

1. Styblinski-Tang function:
f(x, y) = 0.2×

(
x4 − 16x2 + 5x+ y4 − 16y + 5y

)
,

where we introduce a normalization factor of 0.2 for a better illustration. This function has a unique global minimizer
at (x∗, y∗) = (−2.9,−2.9), with the minimal function value f(x∗, y∗) ≈ −31.33. The numerical algorithms are
implemented over the square region {−5 ≤ x, y ≤ 5}.

2. Michalewicz function:
f(x, y) = − sin(x) sin

(
x2/π

)20 − sin(y) sin
(
2y2/π

)20
.

This function has a unique global minimizer at (x∗, y∗) = (2.2, 1.57), with the minimal function value f(x∗, y∗) ≈
−1.8. The numerical algorithms are implemented over a square region {0 ≤ x, y ≤ π}.

3. Cube-Wave function:
f(x, y) = cos(πx)2 + 0.25x4 + cos(πy)2 + 0.25y4.

This function has 4 global minima, namely, (x∗, y∗) = (±0.5,±0.5). The minimal function value is f(x∗) ≈ 0.03.
The numerical algorithms are implemented over a square region {−2 ≤ x, y ≤ 2}.
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4. Rastrigin function:
f(x, y) = x2 − 10 cos(2πx) + y2 − 10 cos(2πy) + 20.

This function has a unique global minimizer at (x∗, y∗) = (0, 0), with the minimal function value f(x∗, y∗) = 0. The
numerical algorithms are implemented over a square region {−3 ≤ x, y ≤ 3}.
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