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Abstract

Soil physics is complex, and mechanistic models have traditionally used simplify-
ing assumptions to represent complex processes, but these assumptions can bias
predictions. However, the increasing availability of high-quality data offers an
opportunity to both improve the predictive power of existing models and gain new
fundamental physics insights. Here, we propose a hybrid soil physics framework
that combines analytical formulations with flexible, data-driven components to
learn uncertain parts directly from data. A key enabler is end-to-end differentiabil-
ity via automatic differentiation, which allows the entire model, including physical
and neural components, to be optimized jointly by minimizing a downstream loss
function. We apply this approach to the challenge of partitioning the soil water
retention curve (SWRC) into capillary and adsorbed water components. The hybrid
model, trained on 483 undisturbed soils from Central Europe, produces smooth and
physically consistent SWRC curves and automatically discovers the capillary and
adsorptive branches of the curve. Notably, the model reveals a distinctly nonlinear
transition between capillary and adsorbed domains, challenging the linear assump-
tions invoked in previous studies. The methodology introduced here provides a
blueprint for learning other soil processes where high-quality datasets are available
but mechanistic understanding is incomplete.

1 Introduction

Soils control how water moves, is stored, and becomes available to plants, yet the physics describing
these processes is only partially understood. Mechanistic soil models derive equations from physical
laws but inevitably simplify complex components, for example, by assuming oversimplified pore
geometries or fixed functional forms for soil pore space distribution. While such assumptions make
problems tractable, they also bias predictions [1–3].

We propose differentiable hybrid modeling as an alternative approach for modeling soil physical
processes. Hybrid methods embed neural networks within physical models so that the unknown or
poorly understood components of a system can be learned directly from data while the well-established
physical laws remain explicitly enforced [4–6]. This combination improves the interpretability and
consistency of traditional formulations while enabling discovery of processes that are otherwise
inaccessible through purely mechanistic or purely empirical approaches.

We demonstrate this framework on the soil water retention curve (SWRC), which describes how
much water a soil holds at different suctions. The SWRC is governed by capillarity and adsorption
mechanisms, and separating their contributions is a long-standing challenge in soil physics. Existing
models rely on prior assumptions about soil pore geometry and functional forms to describe these
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components and their transition, but such assumptions strongly affect the partitioning, often producing
divergent results even for the same soil [7–10].

Here, we develop a hybrid model that learns the shape of the SWRC and discovers capillary and
adsorbed water content components from basic soil properties and data without assuming specific
shapes for soil pores or their distribution. The hybrid model couples analytical models for the
well-understood parts of the process with constrained neural networks for learning the complex
parts. By end-to-end training with automatic differentiation, the model learns the wet end, the capil-
lary–adsorbed transition, and soil-specific parameters. The final SWRC model remains continuous,
differentiable, and physically consistent, making it suitable for modeling soil water dynamics.

2 Methods

2.1 Proposed hybrid model

Capillary water refers to liquid water filling the spaces between soil particles, held by surface tension
and the contact angle of water with solid surfaces, which leads to the formation of curved liquid–vapor
interfaces (menisci). The adsorbed film water component refers specifically to liquid water retained
in thin films by adsorptive forces. The total water content can be expressed as the sum of capillary
(θc) and adsorbed film (θa) components:

θ = θc + θa (1)

All terms in Eq. (1) are functions of soil suction (i.e., pF ). The SWRC at the dry end (i.e., high suc-
tions) becomes linear in pF–θ space, which can be described analytically by the Campbell–Shiozawa
model (denoted as θcmp in Eq. (2)) [11]. In the lower range of pF values, where capillary water
begins to contribute, the expression for θcmp no longer holds. To account for this, we introduce a
transition function, denoted as f , that modifies θcmp in this mixed region. This function is treated as
an unknown to be learned from data, and it is expressed as a function of capillary saturation, defined
as Sc = θc/θs, where θs is the saturated water content. Replacing the Campbell–Shiozawa model
and the transition function into Eq. (1) yields:

θ = θc + f(Sc)θcmp = θc + f(Sc)

(
1− pF

pFdry

)
θo (2)

where θo and pFdry are fitting parameters of Campbell–Shiozawa model. The parameter pFdry
corresponds to the soil suction at oven dryness, where the soil is assumed to reach zero water content.

2.2 Neural networks for learning unknown components

In conventional models, a certain set of rigid assumptions is used to simplify Eq. (2). For instance, the
transition function, f(Sc), is assumed as a linearly decreasing function and the capillary component,
θc, is replaced with a fixed-form sigmoidal parametric function. To avoid these limitations, we replace
θc with a dedicated neural network, NNc, which learns the capillary water content as a function of soil
basic properties (i.e., sand, silt, clay, organic carbon, bulk density) and pF . Similarly, we replace the
transition function, f(Sc), with a neural network that takes in Sc and outputs a scaler that modifies
θcmp for lower suctions. The soil specific constants, θs, θo, pFdry are likewise replaced with neural
networks (NNs,NNo,NNdry) that learn these model parameters from soil basic properties.

2.3 Universally accepted physical constraints

We impose a few universally accepted physical constraints on the hybrid ansatz and its interior
networks:

1) The capillary component, θc, is negligible for pF > 5. 2) Total water content remains constant for
pF < −0.3. 3) To ensure convergence to the Campbell–Shiozawa model at the dry end, the transition
function, f(Sc), is hard-constrained to satisfy the condition f(Sc = 0) = 1 by reparametrizing this
function as: f(Sc) = 1 + Sc · g(Sc), where g(Sc) is a learnable function and is approximated with
a neural network, NNa. 4) The capillary component, θc, and θo of the Campbell–Shiozawa model
must remain below the saturated water content, θs. The highest suction at zero water content, pFdry,
is constrained to the experimentally observed range of [6.2, 7.6].
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Figure 1: Schematic of the differentiable hybrid model. BD and OC refer to bulk density and organic
carbon, respectively. The interior neural networks have no labeled data and are inferred implicitly
during end-to-end training.

These constraints are implemented by adding penalizing terms to the loss function, as well as by using
specific activation functions in the output layer of different neural networks to limit soil constants to
their specified range. All neural networks for estimation of unknown components for soil constants
have two hidden layers each with 4 units, except NNa which was designed slightly more flexible with
16 hidden units in each layer. We used sigmoid activation functions in the output layer of NNc, NNs,
NNdry, and NNo. To avoid overfitting, early stopping with a patience of 10 epochs was applied.

2.4 Training with automatic differentiation

The hybrid model developed in this study involves several interconnected neural networks, each
containing trainable parameters (Fig. 1). These networks are coupled through a physics-informed
ansatz in Eq. (2) that takes in basic soil properties and outputs total water content, θ. For model
training, we need the gradients of the loss function with respect to all trainable parameters in
each network. We leverage automatic differentiation (AD) [12]. AD automatically constructs a
computational graph during the model’s forward pass and traces the sequence of mathematical
operations from inputs to outputs. During backpropagation, reverse-mode AD traverses this graph
from the output layer back to the inputs, systematically applying the chain rule to compute exact
gradients with respect to every trainable parameter.

3 Results

We trained the model on SWRC data measured from 483 undisturbed soils in Central Europe,
covering a wide range of soil textures and organic carbon contents [13]. The training data consist
of water content versus soil suction (pF ) without explicit data for the intermediate neural networks.
Figure 2 shows the predicted SWRC for six soil samples representing different texture classes. Unlike
parametric PTFs, which rely on predefined analytical forms for the SWRC, our hybrid model learns
the curve shape directly from the data. Once trained, we predict the entire continuous SWRC by
fixing physical properties for each soil sample and varying the pF over a specified range.

The discovered shapes of the SWRCs are smooth, differentiable, and therefore suitable for simulation
of soil water flow (i.e., Richardson–Richards equation). These curves exhibit a sigmoidal shape
in the wet range and transition to a linear form at lower water contents, consistent with the Camp-
bell–Shiozawa model behavior assumed at the dry end. Notably, the transition between the neural
network–predicted region and the analytically modeled region governed by the Campbell–Shiozawa
model is seamless, with no noticeable discontinuities or abrupt changes.

The discovered partitioning of capillary and adsorbed film components of the SWRC for the soil are
obtained by plotting the first and second terms on the right-hand side of Eq. (2). This data-driven
partitioning aligns remarkably well with the physics-based models in the literature that were developed
by incorporating detailed interfacial physics within an angular pore geometry [7]. Specifically, the
capillary component dominates under saturated conditions for all soils. As pF increases (more
suction in soil), pores of varying sizes begin to drain, and this process starts with larger pores. As
drainage progresses, water films begin to form along the surfaces of the partially emptied pores. With
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Figure 2: Predicted soil water retention curves for six soil samples with different texture classes.
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Figure 3: Learned transition function, f(Sc), versus commonly assumed linear model in literature

further increase of pF , smaller pores also undergo drainage, leading to a gradual decrease in the
capillary component and a concurrent increase in the contribution of the film component. The water
content at the crossover between the capillary and adsorbed components increases for finer textured
soils due to the increase in surface area (Fig. 2). Furthermore, the learned transition function, f(Sc),
exhibits a distinctly nonlinear behavior, deviating from the commonly assumed linear transition used
in previous studies [8, 14] (Fig. 3). Validation of newly discovered soil water retention patterns
beyond the training data remains a topic for future research.

4 Conclusion

We proposed a differentiable hybrid model for the soil water retention curve (SWRC) that couples
an analytical expression for the dry end with neural networks that learn the unknown components,
such as the capillary domain and the transition between regions. The model learns both the overall
curve shape and the capillary–adsorbed water partitioning from data, guided by a set of universally
accepted physical constraints. Its outputs are in good agreement with predictions from physically
based models, yet the approach offers greater flexibility owing to its hybrid nature. Beyond soil water
retention, this differentiable framework can be extended to a wide range of soil science problems
where process understanding is incomplete but high-quality measurements are available.
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