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Abstract

Partial differential equations (PDEs) are instru-
mental for modeling dynamical systems in science
and engineering. The advent of neural networks
has initiated a significant shift in tackling these
complexities though challenges in accuracy per-
sist, especially for initial value problems. In this
paper, we introduce the Time-Evolving Natural
Gradient (TENG), generalizing time-dependent
variational principles and optimization-based time
integration, leveraging natural gradient optimiza-
tion to obtain high accuracy in neural-network-
based PDE solutions. Our comprehensive de-
velopment includes algorithms like TENG-Euler
and its high-order variants, such as TENG-Heun,
tailored for enhanced precision and efficiency.
TENG's effectiveness is further validated through
its performance, surpassing current leading meth-
ods and achieving machine precision in step-by-
step optimizations across a spectrum of PDEs,
including the heat equation, Allen-Cahn equation,
and Burgers’ equation.

1. Introduction

Partial differential equations (PDEs) hold profound signifi-
cance in both the theoretical and practical realms of mathe-
matics, science, and engineering. They are essential tools for
describing and understanding a multitude of phenomena that
exhibit variations across different dimensions and points in
time. The study and solution of PDEs have driven advance-
ments in numerical analysis and computational methods, as
many real-world problems modeled by PDEs are too com-
plex for analytical solutions. The long-pursued quest for
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Figure 1. TENG generalizes the existing TDVP and OBTI methods.
Within a single time step, TDVP projects the update direction Liig,
onto the tangent space of the neural network manifold T%,, Me at
time ¢, and evolves the parameters € according to this tangent space
projection. OBTI optimizes 6 to obtain an approximation to the
target function g, + AtL4g, on the manifold Me. Generalizing
these two methods, TENG defines the loss function directly in the
u-space and optimizes the loss function via repeated projections
to the tangent space Ty, Me.

an efficient and accurate numerical PDE solver continues
to be a central endeavor passionately pursued by research
communities.

In recent years, the introduction of machine learning (ML)
into the study of PDEs (Han et al., 2017; Yu et al., 2018;
Long et al., 2018; Carleo & Troyer, 2017; Raissi et al.,
2019; Li et al., 2020; Lu et al., 2019; Han et al., 2018; Sirig-
nano & Spiliopoulos, 2018; Chen et al., 2022; 2023b) has
marked a transformative shift in both fields, particularly
highlighted in the realms of computational mathematics and
data-driven discovery. Machine learning offers new pos-
sibilities for tackling the complexities inherent in PDEs,
which often pose significant challenges for traditional nu-
merical methods due to high dimensionality, nonlinearity,
or chaotic behavior. By leveraging neural networks’ ability
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to approximate complex functions, algorithms have been
developed to solve, simulate, and even discover PDEs from
data, circumventing the need for explicit formulations.

Partial differential equations with initial value problems, cru-
cial in describing the evolution of dynamical systems, repre-
sent a fundamental class within the realm of PDEs. Despite
the promising advancements made by machine learning
techniques in approximating the solutions to these complex
PDE:s, they frequently encounter difficulties in maintaining
high levels of accuracy, a challenge that becomes particu-
larly pronounced when navigating the intricate initial condi-
tions. This challenge largely originates from the cumulative
and propagative of errors in PDE solvers over time, ne-
cessitating precise solutions at each time step for accuracy.
Although various training strategies, both global-in-time
training (Miiller & Zeinhofer, 2023) and sequential-in-time
training (Chen et al., 2023a; Berman & Peherstorfer, 2023),
have been proposed to address this issue, it continues to
stand as a critical challenge in the field.

Contributions. In this paper, we introduce a highly accurate
and efficient approach for tackling the above challenge by in-
troducing Time-Evolving Natural Gradient (TENG). Our
key contributions are three-fold and highlighted as follows:

* Propose the TENG method which generalizes two fun-
damental approaches in the field, time-dependent vari-
ational principle (TDVP) and optimization-based time
integration (OBTI), and achieves highly accurate re-
sults by integrating natural gradient with sequential-in-
time optimization.

 Develop efficient algorithms with sparse update for the
realization of TENG, including the basic TENG-Euler
and the highly accurate higher-order versions, such as
TENG-Heun.

* Demonstrate that our approach obtains orders of magni-
tude better performances than state-of-the-art methods
such as OBTI, TDVP with sparse updates, and PINN
with energy natural gradient, and achieves machine
precision accuracy during per-step optimization on a
variety of PDEs, including the heat equation, Allen-
Cahn equation, and Burgers’ equation.

2. Related work

Machine Learning in PDEs. Machine learning has been
used to solve PDEs by using neural networks as function ap-
proximators to the solutions. In general, there are two types
of strategies, global-in-time optimization and sequential-in-
time optimization. Global-in-time optimization includes
the physics-informed neural network (PINN) (Raissi et al.,
2019; Wang & Perdikaris, 2023; Wang et al., 2021b; Sirig-
nano & Spiliopoulos, 2018; Wang et al., 2021a), which

optimizes the neural network representation over time and
space simultaneously, or deep Ritz method (Weinan et al.,
2021; Yu et al., 2018) when the variational form of the
PDE exists. In contrast, sequential-in-time optimization
(sometimes also called neural Galerkin method) only uses
the neural network to represent the solution at a particu-
lar time step and updates the neural network representa-
tion step-by-step in time. There are different approaches
to achieving such updates, including time-dependent vari-
ational principle (TDVP) (Dirac, 1930; Koch & Lubich,
2007; Carleo & Troyer, 2017; Du & Zaki, 2021; Berman
& Peherstorfer, 2023) and optimization-based time integra-
tion (OBTI) (Chen et al., 2023a; Kochkov & Clark, 2018;
Gutiérrez & Mendl, 2022; Luo et al., 2022; 2023; Sinibaldi
et al., 2023). Machine Learning has also been applied to
model PDEs based on data. Such data-driven approaches in-
clude neural ODE (Chen et al., 2018), graph neural network
methods (Pfaff et al., 2020; Sanchez-Gonzalez et al., 2020),
neural Fourier operator (Li et al., 2020), and DeepONet (Lu
etal., 2019).

Natural Gradient. The concept of natural gradients, first
introduced by Amari (Amari, 1998) has become a corner-
stone in the evolution of optimization techniques within ma-
chine learning. These methods modify the update direction
in gradient-based optimization as a second-order method,
typically involving using the Fisher matrix. Distinct from
traditional gradient methods due to its consideration of the
underlying data geometry, natural gradient descent leads
to faster and more effective convergence in various scenar-
ios. Natural gradient descent and its variants have found
widespread application in areas such as neural network op-
timization (Peters et al., 2003; Pascanu & Bengio, 2013;
Zhang et al., 2019), reinforcement learning (Peters et al.,
2003; Kakade, 2001), quantum optimization (Stokes et al.,
2020), and PINN training (Miiller & Zeinhofer, 2023).

3. Problem Formulation and Challenges
3.1. Problem formulation

Given a spatial domain X C R¢ and temporal domain
T C R, let v be a function X x T — R that satisfies the
following initial value problem of a PDE

Ou(z,t)
ot
u(x,0) = up(x),

= Lu(z,t) for (z,t) € X xT and

ey

with appropriate boundary conditions. The sequential-in-
time optimization approach uses neural network to parame-
terize the solution of the PDE at a particular time step ¢t € T
as ig, () : © x X — R, where the parameters have an
explicitly time dependence 0; : T — R™» (with N, the
number of parameters) and evolves over time. To solve
the PDE, the neural network is first optimized to match the



TENG: Time-Evolving Natural Gradient for Solving PDEs With Deep Neural Nets Toward Machine Precision

initial condition g, () = ug(x), and then optimized in a
time-step-by-time-step fashion to update the parameters.

We contrasted this with the global-in-time optimization
method, such as PINN (Raissi et al., 2019), where the neu-
ral network is used to parameterize the solution for all time
lig(x, t) with a single set of parameters. In this context, a
loss function that gives rise to the global solution of the PDE
is used to optimize the parameters.

3.2. Time Dependent Variational Principle

Time-dependent variational principle (TDVP) is an existing
sequential-in-time method. It aims to derive an ODE in
the parameter 6-space based on the function u-space PDE
(Fig. 1). The most commonly used projection method is the
Dirac—Frenkel variational principle (Dirac, 1930), which de-
fines the ODE by solving the following least square problem
at each time step

2

00 = in || Lag(-) — > J).;0:0; 2

' gf(;geln?zg 0(1) = 25 70,4903 L2(x)’ @
where J(;) ; := Otg(x)/00; is the Jacobian.

Denoting the function space of u with ¢/, the manifold of
neural network parameterized functions iy with Mg, and
the tangent space to the manifold at %9, with TﬁetM@,
Eq. (2) gives the orthogonal projection of the evolution
direction J;u = Lu onto the tangent space T3, Me gener-
ated by the pushfoward of 9,0. The resulting ODE in the
f-space can then be evolved in discrete time steps using
numerical integrators such as the 4th-order Runge—Kutta
(RK4) method.

Limitations. The Dirac—Frenkel variational principle pro-
duces the orthogonal projection of the evolution onto the
tangent space 17, Me at iy, during each time step. For
nonzero time step sizes At, however, the result becomes
only an approximation to the optimal projection of the target
solution onto the manifold Mg. The evolution on Mg can
also deviate from the projected direction on 73, Me due
to nonzero time step sizes, which gives rise to the follow-
ing consequence: although Eq. (2) is reparameterization
invariant, its nonzero At version is not (see Appendix The-
orem A.l for detail). In addition, the least square problem
in Eq. (2) is often ill-conditioned and the solution could
be sensitive to the number of parameters, the number of
samples used, and the regularization method. Although
Ref. (Berman & Peherstorfer, 2023) proposed a sparse up-
date method, where a random subset of parameters are up-
dated at each time step, it is still hard to verify whether such
choice gives the best projection in practice. Meanwhile, the
solution of Eq. (2) after regularization could be different
from optimal.

3.3. Optimization-based Time Integration

Optimization-based time integration (OBTI) is an alterna-
tive sequential-in-time method. It directly discretizes the
PDE into time steps in the original function u-space; in each
time step, OBTI first finds the next-time-step target function
Utarget Dased on the current-time-step g,, and then opti-
mizes the next-time-step parameters 6;  A; by minimizing a
loss function

0ty A¢ = argmin L(ﬁm Utarget)~ 3

0coO

Depending on the discrete-time integration schemes used,
Utarget €an be different. The most commonly used in-
tegration scheme is the forward Euler’s method, where
Utarget = Up, + AtLUy, Some typical loss functions used
in OBTI methods include the L2-distance, the L!-distance,
and the KL-divergence.

Limitations. Although the optimal solution to Eq. (3) gives
the best approximation of Uarget in Mg, in practice, the op-
timization can be very difficult with a non-convex landscape.
Common optimizers such as Adam and BFGS (L-BFGS)
often require a significant number of iterations to obtain
an acceptable loss value. Since this optimization has to be
repeated over all time steps, the accumulation of error and
cost often results in poor performance. In addition, the inte-
gration scheme used in current implementations of OBTI is
often limited to the forward Euler’s method, which requires
small time steps and further amplifies the issue of error
accumulation and cost. We note that while higher-order
integration schemes have been explored in prior works, they
either involve applying £ multiple times on %y (Donatella
et al., 2023) or require differentiating through Ly with
respect to 6 (Luo et al., 2022; 2023), both of which requires
high-order differentiation, leading to stability issues and
further increase of the cost.

4. Time-Evolving Natural Gradient (TENG)
4.1. Generalization from TDVP and OBTI
We first make the following observation.

Observation: TDVP can be viewed as solving Eq. (3) with
the (squared) L?-distance as the loss function using a single
tangent space approximation at each time step.

Proof. At time t, the neural network manifold Mg can be
approximated at the point g, by its tangent space as
Oty
u = —260; + O(86?), 4
Up+4-56 u9+zj:89j i+ 0(66%) 4)

N . 2
Let L(u0+597 utarget) = ||u(9+59 - utarget”LQ (x) For
small 8%, Uarget = g + 0tLOg + O(61?). Keeping ev-
erything to first order, the loss function takes its minimum
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when

Dtg(-)
_ 70, 00; )]
! L2(x)

Dividing both sides by dt recovers the TDVP (Eq. (2)). O

00 = argmin (|6tLig () — Z

SR

Inspired by such observation, we introduce the time-
evolving natural gradient (TENG) method, which gener-
alizes TDVP and OBTI methods in the following way:

TENG solves Eq. (3) via a repeated tangent space approxi-
mation to the manifold for each time step.

TENG subroutine within each time step. The key idea of
TENG is shown in Fig. 1. During each time step, TENG
minimizes the loss function in multiple iterations (similar to
OBTI), and within each iteration, it updates the parameters
based on the function u-space gradient (of the loss function)
projected to the parameter 0-space (similar to TDVP). Here,
we reserve the phrase “time step” for physical time steps of
the PDE and “iteration” for optimization steps within each
physical time step.

The details of TENG iterations within a single time
step are shown in Subroutine TENG_stepper, where
an is the learning rate at the nth iteration, and the
least_square(Ji,) ;, Au(x)) should be interpreted as
solving the least square problem

Af = argmin (6)
AOERNP

Au() = 32, J).5A0]

2
L2(x)

Subroutine TENG_stepper

Input: 60;,;, Utarget
n < 0, 0 < Hinit
while n < Ny do oL )
L a@a Utarget
Au(z) —ana—ﬁg(x)
8&9 (:L‘)
09,
A0 < least_square(J(y), ;, Au(r))
0« 0+ A0
n+<n+1
end while
Output: 0

)i <

We note that when Subroutine TENG_stepper is per-
formed under certain approximations, it can be reduced
to TDVP or OBTI (see Appendix A for detail).

TENG resolves the limitations of both TDVP and OBTI.
As mentioned in Sec. 3.2, TDVP suffers from inaccurate
tangent space approximation for nonzero At. TENG does

not suffer from this issue because of the repeated use of tan-
gent space projections, which eventually minimizes Eq. (3)
on the manifold. This also gives the following theorem as a
direct consequence, which does not hold for TDVP.

Theorem 4.1. The optimal solution of TENG is reparame-
terization invariant even with nonzero At .

Proof. TENG achieves its optimum when @ € Mg is clos-
est to Utarget at €ach time step. Since a reparameterization
does not change the manifold Mg and the loss is defined
in the function space, therefore, the optimal solution differs
by merely a relabeling of parameters at the same point in
Me. O

The global convergence of natural gradient has been studied
in certain non-linear neural network (Zhang et al., 2019).
Although achieving global optimal is not theoretically guar-
anteed in general, in practice, the loss function is usually
convex in the u-space, and dig is often close t0 Ugarger be-
cause of small time step sizes. The result is likely to be
close to global optimal. In practice, we observe the opti-
mization can result in loss values close to machine precision

(O(10714)).

In addition, while TDVP may require solving an ill-
conditioned least square equation and an inaccurate so-
lution directly affects the 6-space ODE, solving the least
square problem is only part of the optimization procedure
for TENG, which turns out to have a smaller side effect. An
inaccurate least square solution does not lead to an inac-
curate solution to Eq. (3), given sufficient iterations. The
resulting loss value of Eq. (3) also provides a concrete met-
ric for TENG on the accuracy during optimization.

As discussed in Sec. 3.3, the main challenge for the current
OBTI method lies in the difficulty of optimizing the time
integrating loss function (Eq. (3)). While the loss function
is a complicated non-convex function in the parameter -
space, it is usually convex in the u-space; therefore, it is
advantageous to perform gradient descent in u-space and
project the solution to -space. Furthermore, TENG can
also benefit from the reparametrization invariant property
described above. While an efficient higher-order time inte-
gration method is still lacking in the current OBTI method,
in this work we show how to incorporate higher-order meth-
ods into TENG.

TENG formulation over time steps. The most simple time
integration scheme is the forward Euler’s method, which
only keeps the lowest order Taylor expansion of the PDE.
When integrated in the TENG method, we set Uarget =
Ug, +AtLUg, and use Subroutine TENG_stepper to solve
for g, ,,. The full algorithm is summarized in Algo-
rithm TENG_Euler.
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Algorithm TENG_Euler: A 1st-order integration scheme

Input: 6,_o, At, T

t<+ 0

while ¢t < T do
Usarget (T) < U, () + AtLiyg, ()
01+ A1 < TENG_stepper (0, Utarget)
t<t+ At

end while

Output: 0;—r

Algorithm TENG_Heun: A 2nd-order integration scheme

Input: 0;—q, At, T

t+0

while ¢ < T do
utemp(x) — ﬂ‘gt (I) + Atﬁﬁgt (I)
Otemp < TENG_stepper (6, Utemp)

eargen(2) € 0, () + 5 (Lit (2) + Lo, ()
01+ At < TENG_stepper(Bremp, Usarget )
t+—t+ At

end while

Output: 0;—r

Beyond the first-order Euler’s method, Algorithm
TENG_Heun provides an example of applying second-order
integration method. In this method, an intermediate target
solution usemp 18 used, and a set of intermediate parameters
Otemp is trained. The intermediate parameters are used to
CONStIUCt Ugarget and Oy A Our method avoids terms like
L™y, or OL1g, /00 that often appear in existing OBTI
methods (Donatella et al., 2023; Luo et al., 2022; 2023),
reducing the cost and improving numerical stability.

Connection to natural gradient. We note that the algo-
rithm outlined in Subroutine TENG_stepper can be refor-
mulated using the conventional Hilbert natural gradient in
the form

AY=—a) G*l(e)i,jW(:ﬂ), ()
j J

with G(0) the Hilbert gram matrix (see Appendix A for
detail). However, solving least square equations is more
stable, with the added flexibility of choosing least square
solvers. Therefore, we use the formulation in Subrou-
tine TENG_stepper for practical implementation.

Alternatively, Subroutine TENG_stepper can also be
viewed as a generalized Gauss—Newton method. There-
fore, TENG can also be interpreted as the abbreviation of
time-evolving Newton—Gauss (also see Appendix A).

4.2. Complexity and Error Analysis

The computational complexity of TENG from ¢ = 0to T'
is O(CistsqNit T/ At), where Cigesq = O(NgNZ) (with N
the number of samples and N, the number of parameters)
is the cost of solving the least square equation in each itera-
tion, Ny is the number of iterations in each time step, and
T/ At is the number of physical time steps. In comparison,
the computational complexity of TDVP is O(Cy T/ At)
and the computational complexity of OBTIL is O(N/, T/ At).
Although the cost of TENG includes both Cigsq and Njg,
both of the terms can be significantly smaller than those in
TDVP and OBTI due to the following reasons.

In TDVP, the quality of the least square solution directly
corresponds to the accuracy; therefore the least square equa-
tion must be solved with high accuracy and thus require
high cost. Even with sparse update (Berman & Peherstor-
fer, 2023), one may not be able to use too few parameters;
otherwise, the update may be inaccurate. In contrast, the
least square equation can be solved approximately in TENG
without compromising accuracy. In this work, we design
a sparse update scheme for TENG. In each iteration, we
randomly sub-sample parameters and only solve the least
square equation within the space of these parameters, which
significantly helps reduce the cost.

OBTI, on the other hand, requires a large number of itera-
tions in every time step to minimize the loss function, due
to the difficulty of the non-convex optimization landscape.
In contrast, in our TENG method, the loss values decrease
to close to machine precision with only O(1) iterations (see
Sec. 5.2 and Appendix B for detail). In practice, we observe
that TENG is able to improve the accuracy by orders of
magnitude while keeping a similar computational cost to
TDVP and OBTI (also see Appendix B).

The error of TENG is in general determined by (i) the ex-
pressivity of the neural network (ii) the optimization al-
gorithm (iii) the time integration scheme. Based on the
universal approximation theorem, with a proper choice of
neural network, it is likely that the neural network is suf-
ficiently powerful to represent the underlying solution at
every time step; thus the error from (i) is small in general.
Our TENG algorithm is able to achieve loss values close
to machine precision at every time step; therefore the er-
ror from (ii) error is also small. Given sufficiently small
errors in (i) and (ii), factor (iii) dominates the convergence
property of TENG. At the same time, higher-order time-
integration schemes can be integrated with TENG, in which
case the error from (iii) follows the standard numerical anal-
ysis results for solving differential equations. From the
above perspectives, we further contrast TENG with other
algorithms. While TDVP does not have an optimization
error, the projection step already introduces some errors,
which can be severe for nonzero time step sizes and when
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the least square equation in Eq. (2) is low rank (Berman &
Peherstorfer, 2023). For OBTI, the error from (ii) can be
large, resulting in poor performances, in addition to the lack
of efficient higher-order time-integration schemes in prior
works.

TENG also permits error estimation based on the decompo-
sition of errors above. Below, we outline the error estima-
tion for TENG-Euler. Errors for TENG with higher-order
integration methods can be estimated analogously.

Let €,(t) be the LP-error between the TENG-Euler solu-
tion and the exact solution at time ¢, £ (t) between the
exact solution and the solution evolved exactly according
to the Euler’s method, &) *(t) between the TENG-Euler
and the solution evolved exactly according to the Euler’s
method, r (-, t) the residual function after the TENG-Euler
optimization of the time step at ¢, and G := 1 + AtL.

Theorem 4.2. The error ¢,(t) is bounded by €EE(t) +
eTE(t), where EEE(t) is an order O(At) quantity, and

p
T _Hzt/ml (-,t—nAt)‘

Lr(x)

Proof. See Appendix Theorem A.2. [

5. Experiments
5.1. Equations and Setup

Heat equation. The first example we choose is the two-
dimensional isotropic heat equation

ou_, (P ot ©
ot ~ " \0a? " 913

with a diffusivity constant v = 1/10. The heat equation
describes the physical process of heat flow or particle diffu-
sion in space. Since it permits an analytical solution in the
frequency domain, the heat equation is an ideal test bed for
benchmarking (see Appendix D for details).

Allen—Cahn equation. We also consider Allen—Cahn equa-

tion , )
ou  (0°u  0u 3
(%—V(M+ax%)+u—u (9)

with a diffusivity constant v = 1/200, which is a reaction-
diffusion model that describes the process of phase sep-
aration. The Allen—Cahn equation is nonlinear and does
not permit analytical solutions in general. In addition, its
solution usually involves sharp boundaries and can be chal-
lenging to solve numerically. As a benchmark, we solve
it using a spectral method (Canuto et al., 2007) (see Ap-
pendix D for detail) and consider its solution to be a proxy
of the exact solution as the reference.

Burgers’ equation. We further benchmark our method on

the viscous Burgers’ equation

ou ?u  0%u ou ou 10

i (o am) o Garan) o
with a diffusivity (viscosity) constant ¥ = 1/100. In Ap-
pendix B, we also explore cases with smaller v. Burgers’
equation is a convection-diffusion equation that describes
phenomena in various areas, such as fluid mechanics, nonlin-
ear acoustics, gas dynamics, and traffic flow. This equation
can generate sharp gradients that propagate over time, es-
pecially for small v, which can be challenging to solve.
Similar to the Allen—Cahn equation, Burgers’ equation does
not have a general analytical solution either. Therefore,
we also use the spectral method (Canuto et al., 2007) solu-
tion as a proxy of the exact solution as the reference (see
Appendix D for detail).

PDE domain, boundary, and initial condition. For all
three equations, we first benchmark on two spatial dimen-
sions in the domain X’ = [0, 27) x [0,27) and T = [0, 4],
with periodic boundary condition and the following initial
condition

uo(x1,22) = 100 (exp (3 sin (x1) + sin (x2) )
~+exp ( 3sin (x1) + sin (x2) )
—exp (3 sin (x1) — sin (x2) )

— exp ( — 3sin (Z‘l) — sin ($2) )>
(1D

This initial condition is anisotropic, contains peaks and
valleys at four different locations, and consists of many
frequencies besides the lowest frequency, which can result
in challenging dynamics for various PDEs.

For the Heat equation, we in addition consider a challeng-
ing three-dimensional benchmark, where we again choose
periodic boundary conditions in the domain X' = [0, 27)3
and 7 = [0, 8]. The initial condition is chosen to be a com-
bination of sinusoidal terms in the following form so the
exact solution can be analytically calculated.

= Aooo
2

UO(«T17$2,$3)

3
Ak1k2k3 H COS (k’ll’z)
i=1
3

Bklkgkg H sin (]{zl‘l) s

i=1

M
E

+

>
2
I
—
>
[V
I
—
>
w
Il
—

+

M
E
M

>
Il

—
>~

=

1

Il
—

1 2 3

(12)
where the coefficients are randomly chosen (see Appendix C
for coefficients used in this work). In Appendix C, we
also explore the heat equation on a 2D disk X = D, =
{(z1,21) : 23 + 23 < 1}
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Figure 2. Benchmark of TENG, in terms of relative L2-error as a function of time, against various algorithms on two- and three-
dimensional heat equations, Allen—Cahn equation and Burgers’ equation. All sequential-in-time methods use the same time step size
At = 0.005 for heat and Allen—Cahn equations and At = 0.001 for Burgers’ equation.

For the Burgers’ equation, cases with unequal domains
and additional initial conditions are also explored in Ap-
pendix C.

Baselines. While TENG is sequential-in-time, our bench-
marks include both sequential-in-time (TDVP and OBTI)
and global-in-time (PINN) methods. For TDVP, we choose
the recently proposed sparse update method (Berman &
Peherstorfer, 2023), which has been shown to outperform
previous full update methods. In addition, we use the same
fourth-order Runge—Kautta integration scheme. For the OBTI
method, we choose the standard Euler’s integration scheme
with L(g, Utarget) = ||Utg — utargetHiQ(X) (the same loss
as TENG). Both Adam and L-BFGS optimizers are used as
benchmarks. For all sequential-in-time methods, we use the
same time step At = 5 x 1073 for the heat equation. For
Allen—Cahn equation and Burgers’ equation, we first com-
pare all sequential-in-time methods with At = 5 x 1073
and At = 1 x 1073 respectively, before analyzing the effect
of various At. In addition, All sequential-in-time methods
share the same neural network architecture and initial pa-
rameters at t = 0. For PINN, we test both BFGS and the
recently proposed ENGD optimizer. Since Ref. (Miiller &
Zeinhofer, 2023) did not provide the implementation for
Allen—Cahn equation and Burgers’ equation, we omit the
benchmark of ENGD optimizer for the two equations. We
use a network architecture similar to Ref. (Miiller & Zein-
hofer, 2023) (see Appendix E for detail).

Error metric. We consider the following two error metrics:

1. relative L2-error at each time step

”ﬁ(a t) - Ureference('y t)||L2(X)

e(t) = ) (13)

||ureference('7 t) ||L2(X)

2. global relative L2-error integrated over all time steps

Hﬁ(7 ) - ureference(', ')HLZ(XXT)
Eg =

;o (14)
H'U'reference('a ')||L2(X><T)

where Uyeference refers to the analytical solution for the heat
equation, and the spectral method solution for Allen—Cahn
and Burgers’ equation (see Appendix D for detail).

5.2. Results

Benchmark against other methods. We start the bench-
mark of our method against other methods described in
Sec. 5.1 in terms of both the relative L?-error (Eq. (13)) as
a function of time (Fig. 2) and the global relative L?-error
(Eq. (14)) integrated over all time (Table 1).

B 0.4
o

e 2% 4% [
-

= 0.4
.0 8% 4% S N
. 2% 5% 4% Y.
-5x 1076

" ¢
J —5x 107
T=0 T=1 T=2 T=3 T=4

Figure 3. Reference solution, TENG solution, and the difference
between them for Burgers’ equation. The reference solution is
generated using the spectral method, and the TENG solution shown
here uses the TENG-Heun method with A¢ = 0.001.

UExact

UTenG

UTENG — UExact

In all cases, our TENG-Heun method achieves results or-
ders of magnitude better compared to other methods. Upon
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Method

Global Relative L2-Error |

Heat (2D) Heat (3D) Allen—Cahn Burgers’

TENG-Euler (Ours) | 3.006 x 107*  8.664 x 104 1.249 x 10~% 3.598 x 10~+4
TENG-Heun (Ours) | 1.588 x 107¢ 1.139 x 10~° 6.187 x 10~% 2.643 x 106

TDVP-RK4 3.279 x 107%  3.841 x 1073 1.258 x 1073  2.437 x 10~3
OBTI-Adam 1.391 x 1072 - 4.966 x 1072 1.696 x 10~!
OBTI-LBFGS 6.586 x 1073 8.743 x 1072  4.180 x 1072  1.047 x 10!
PINN-ENGD 1.403 x 10~°  2.846 x 1073 - -

PINN-BFGS 1.150 x 10=% 1389 x 1072 5540 x 1072  6.538 x 1072

Table 1. Benchmark of TENG, in terms of global relative L?-error,

against various algorithms on the heat equation, Allen—Cahn equation

and Burgers’ equation. The best result in each column is marked in boldface and the second best result is marked in italic font. Here, the

same At as in Fig. 2 is used.

closer inspection, our TENG method with Euler’s integra-
tion scheme is already comparable to or better than the
TDVP method with the RK4 integration scheme. In addi-
tion, TENG-Euler is significantly better than OBTI with
both Adam and L-BFGS optimizers, both of which use the
same integration scheme. In Fig. 3, We show the difference
between TENG-Heun and the reference solution by plotting
the function evolution over time. It can be seen that our
method traces closely with the reference solution with a
tiny deviation on the order of O(10~°). In Appendix B, we
show additional details of runtime, and the relation between
runtime and performance.

Convergence speed and machine precision accuracy. We
further demonstrate the convergence of TENG-Euler in
Fig. 4 compared to OBTI-Adam and OBTI-LBFGS. In a sin-
gle time step, TENG achieves a training loss value (with the
squared L? distance as the loss function) close to machine
precision O(10~14) with only a few iterations, while OBTI
can only get to O(10~7) loss after a few hundred iterations.
We also plot the final loss of each time step optimization
and show that TENG stably reaches the machine precision
for all time, which is seven orders of magnitude better than
OBTI. Our results have shown the high accuracy of TENG
compared to the existing approaches (see Appendix B for
additional results). Since the final loss values are near ma-
chine precision for all time steps, we believe the main error
source of TENG-Euler comes from the Euler’s expansion,
instead of the neural network approximation. This is further
verified later during time integration scheme comparisons.

Compare time integration schemes. We further exam-
ine the effects of time integration schemes on TENG and
compare our TENG-Euler and TENG-Heun methods with
different time step sizes.

In Fig. 5, we show the global relative L?-error (defined in
Eq. (14)) as a function of time step size At. It can be seen
from the figure that while TENG-Euler already achieves a
global relative L2-error of O(10~%) for small At, using a

—&— TENG-Euler (Ours) OBTI-Adam OBTI-LBFGS
1074 A 104 A
o 2
g 107+ S 105 4
©
2 10-¢ 1 C 108 1
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© 10721 8 10720 4
: 10-12 4 V512
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I c
~ 10714 4 = 10-14
10716 L— T T T 10716 4 T T T T
7 50 150 300 0 1 2 3 4
Iteration Time

Figure 4. Training loss during the time step at 7' = 1 and final
training losses for all time steps for the TENG-Euler method and
the two OBTI methods for Allen—-Cahn equation.
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Figure 5. Comparison of different time integration schemes of
TENG with respect to the time step sizes on Allen—Cahn equation
and Burgers’ equation, using global relative L2-error as a metric.

higher order integration scheme significantly reduces the
error to O(107%). In addition, TENG-Heun can maintain
the low error even at relatively large At, signifying the ad-
vantage of our implementation of higher-order integration
schemes. We note that, for small time step sizes, the accumu-
lation of per-step error dominates, while for large time step
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sizes, the discretization error from the integration scheme
dominates, resulting in the TENG-Heun with the smallest
At not as good as larger At. In addition, the curves for
TENG-Euler and TENG-Heun have different slopes. Both
phenomena are consistent with numerical analysis results
for traditional PDE solvers. Additional explorations with
TENG-RK4 method can be found in Appendix B.

6. Discussion and Conclusion

We introduce Time-Evolving Natural Gradient, a novel ap-
proach that generalizes time-dependent variational princi-
ples and optimization-based time integration, resulting in
a highly accurate and efficient PDE solver utilizing natu-
ral gradient. TENG, encompassing algorithms like TENG-
Euler and advanced variants such as TENG-Heun, signifi-
cantly outperforms existing state-of-the-art methods in ac-
curacy, achieving machine precision in solving a range of
PDE:s. For future work, it would be interesting to explore
the application of TENG in more diverse and complex real-
world scenarios, particularly in areas where traditional PDE
solutions are currently unfeasible. While this work is fo-
cused on two- and three-dimensional (spatial) scalar-valued
PDEs with periodic boundary conditions, the same method
can be considered for generalizing to vector-valued PDE
in other numbers of dimensions, and other boundary con-
ditions, such as the Dirichlet boundary condition or the
Neumann boundary condition. It will also be important to
develop TENG for broader classes of PDEs besides initial
value problems with applications to nonlinear and multi-
scale physics PDEs in various domains. Advancing TENG’s
integration with cutting-edge machine learning architectures
and optimizing its performance for large-scale computa-
tional tasks will be a vital area of research for computational
science and engineering.
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A. Additional Theoretical Results

Theorem A.1. TDVP is not reparameterization invariant with At.

Proof. We will construct an explicit counter-example. For simplicity, consider a zero-dimensional PDE (an ODE) 0;u = u,
whose solution is u = ug exp(t). Let ip = 0 and 0, = exp ¢, which are just reparameterizations of each other. In the
parameter space, the two ODEs read 0,60 = 0 and 0;¢ = 1. Let both of them evolve for a discrete time step At from ¢ = 0,
we have Oa; = 0y + Aty and par = Po + At. Plugging back into the functions, Gg,, = g, + Atlg, and O = g, exp(At)
It is evidential that the two parameterizations give different solutions. O

TENG can be reduced to TDVP under certain assumptions. For simplicity, we will be focusing on the first-order Euler’s
method. Consider Subroutine TENG_stepper. Let the loss function L(tg, , Usarget) = ||Tg, — utargetHQLQ( X and N;, = 1.
For simplicity, let Uarget = Ug, + AtLig, be the first-order Euler expansion. Then,

oL
Otg,

() = 2(hg, (x) — Utarges (z)) = 2AtL Ay, . (A.1)
Choosing o = 1/2, we have Au = AtLiig,. Then, the least square equation becomes

Af = arg min
ABERNP

2
AtLig,(-) — Zj J(.)ﬁjA@j (A2)

L2(x)’

which is the same as the TDVP algorithm with nonzero time step sizes.

TENG can be reduced to OBTI under certain assumptions. Let N;; > 0. As mentioned in the main paper, approximate
methods can be used to solve the least square equation in Subroutine TENG_stepper. Here, let its solution be approximated
by a single gradient descent, which gives rise to

dag(z) OL oL

) - _y— A.
09, aag(a’)d“” “90,° (A3)

A§; = /J(z)’jAu(x)dx =—a

which reduces to the regular gradient descent in the #-space with many iterations.

Hilbert natural gradient formulation of Subroutine TENG_stepper. Consider the least square equation

Af = argmin
AQERNP

Aul) = X3, 71,506

2
: Ad
o) (A4)

It’s solution is given by the normal equation J* JA# = JT Au where we use the matrix notation and omit the indices. The
solution to the normal equation is given by A = (J7.J)~1JT Au. Notice that

dag(z) OL oL
T = . = — _— = -0 —
(J" Au); /J(m)JAu(x)dx_ 20, Dig (x)d aaaj. (A.5)
In addition, R R
(JTT)i, = Dio(x) Oito ) . G (0), (A.6)

00, 00,

where G(#) is the Hilbert gram matrix (Miiller & Zeinhofer, 2023). Therefore, Eq. (A.4) can be written as the Hilbert
natural gradient descent

A= —a GO 8”“3;;“@”(@. (A7)
J

We note that while these two formulations are mathematically equivalent, the least square formulation has a few practical

advantages. First, it allows for more stable numerical solvers. In general, the Hilbert gram matrix has a condition number

twice as large as the original Jacobian matrix. If the original least square equation is ill-conditioned, Eq. (A.7) is even worse.

In addition, when the least square equation is underdetermined, solving the original least square problem gives the minimum

norm solution, whereas Eq. (A.7) has to be solved with pseudo-inverse, which can be numerically unstable in practice.

12
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Generalized Gauss—Newton formulation of Subroutine TENG_stepper. Let the loss function be the squared L2-
distance. Define r(z) := () — Usarget (). The derivative of loss in function space is given by

oL .
—(x) = 2(to(x) — Utarget (x)) = 2r(z). (A.8)
a’u,g
In matrix notation, the iteration above becomes
AO = —a(JVT) 1T (A.9)

When o = 1/2, this reduces to one iteration of the Gauss—Newton method. Therefore, Subroutine TENG_stepper can
also be viewed as a generalized Gauss—Newton method.

Theorem A.2. The error &,(t) is bounded by e5® (t) + 17 (t), where 52(t) is an order O(At) quantity, and e} *(t) =
HZ” St grr(t—nAt)

n=0

Lr(X)

Proof. Denote D(-,t) = u(-,t) — dg(-,t) = (u(-,t) — uP(-, 1)) + (WP(-,t) — dg(-,t)) = DFE(-,t) + DTE(. 1),
where u(-,t) is the exact solution, u™%(-,t) is the solution from Euler method, g(-,t) is the TENG-Euler solu-
tion at time ¢. By definition, £,(t) = [|D(-,)]l o) fu(-,t)—uEu(~7t)||Lp(X) = |’DEEF-,t)‘fL?(X) = cFE(1),
and ||u®(-,t) — u("t)Hsz(X) = ||DTE(~,t)||Lp(X) = eTP(t). It follows by the triangular inequality that ,(¢) <

e " (t) 4+, (t). Since the Buler method is a first-order method, £} (¢) has an error of order O(At).

Denote the optimization error in time ¢ as (-, ), such that dig (-, t +At) — Giig (-, t) = (-, t). It follows that u®" (-, t + At) —
DTE( t+At)—G(uF(-,t)—=DTE(-,t)) = r(-,t), which implies that DT (- t+At) = GDTE (. t)—r(-, ) due to the can-
cellation of u®“(-, ) — Gu""(-, t) from the exact Euler method. By induction, &} *(t) = Hzt/m*l G™r(-,t — nAt) H

n=0 Lp (X)

O

B. Additional Experimental Results

In this section, we show additional benchmark results. In Fig. B.1, we show the training losses of TENG and OBTI methods
during the time steps at 7" = 0.8, 1.6, 2.4, 3.2, 4.0 for Allen—Cahn equation. For Euler’s integration scheme, we compare
our TENG-Euler method with both OBTI-Adam and OBTI-LBFGS algorithms and find that our algorithm consistently
achieves loss values orders of orders of magnitudes better than OBTI, with only 7 iterations. For TENG-Heun method, each
time step requires training a set of intermediate parameters. Therefore, each figure includes two curves. As shown in the
figure, all stages converge to machine precision within a small number of iterations.

In Fig. B.2 B.3 and B.4, we show the density plots for the two-dimensional heat equation, Burgers’ equation and Allen—Cahn
equation. In each figure, we plot the reference solution (see Appendix D for details on obtaining the reference solution),
the TENG-Heun solution, the TDVP-RK4 solution, the OBTI-LBFGS solution and the PINN-BFGS solution, and their
difference to the reference solution. In all cases, the TENG-Heun solution closely tracks the reference solution, with a
maximum error of order O(10~°), whereas solutions generated by other methods can have relatively larger solutions.

In Fig. B.5, we plot the global relative L2-error of PINN during training. We show both PINN-ENGD and PINN-BFGS for
the heat equation, and PINN-BFGS for Allen—Cahn equation and Burgers’ equation. We observe that while PINN-ENGD
converges very quickly on the heat equation, PINN-BFGS eventually surpases PINN-ENGD. In addition, Allen—Cahn
equation and Burgers’ equation appear to be significantly more challenging for PINN, where it finds difficulty optimizing
the error to below O(1072).

In Fig. B.6, we further explore the advantage of higher-order integration schemes. In particular, we plot the relative L2-error
as a function of time for TENG-Euler, TENG-Heun, and TENG-RK4. For the heat equation, TENG-RK4 fails to significantly
surpass TENG-Heun, which could be attributed to the error accumulation under small At in this case. For the other two
equations, we explore larger At and find that TENG-RK4 is able to achieve small errors, while TENG-Heun’s performance
starts to deteriorate.

In Table. B.1, we report the runtime for the runs in Fig. 2. Our TENG methods significantly improve the simulation accuracy
with a similar runtime to other algorithms. We note that TENG-Heun is roughly twice as costly as TENG-Euler due to the

13
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Figure B.1. Training loss during many time steps for TENG-Euler, TENG-Heun, and the two OBTI methods for Allen—Cahn equation
with a time step size At = 0.005. TENG-Heun method requires two training stages, one for ftemp, and the other for ;4 A+. Therefore,
each figure contains two curves.
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Figure B.2. Exact, TENG, TDVP, OBTI, and PINN solutions and their differences from the reference solution for the two-dimensional
heat equation. The reference solution is generated using the analytical solution, the TENG solution shown here uses the TENG-Heun
method, the OBTI shown here uses the OBTI-LBFGS method, and the PINN shown here uses the PINN-BFGS method. The error of our
TENG method is orders of magnitude smaller than other methods.

two-stage training process in each time step. In addition, all sequential-in-time methods use significantly more time on
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Burgers' Equation
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Figure B.3. Exact, TENG, TDVP, OBTI and PINN solutions and their differences from the reference solution for Burgers’ equation. The
reference solution is generated using the spectral method, the TENG solution shown here uses the TENG-Heun method, the OBTI shown

here uses the OBTI-LBFGS method, and the PINN shown here uses the PINN-BFGS method. The error of our TENG method is orders of
magnitude smaller than other methods.
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orders of magnitude smaller than other methods.
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Figure B.5. Global relative L?-error for PINN as a function of training iterations for the two-dimensional heat equation, Allen—Cahn
equation, and Burgers’ equation.
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Figure B.6. Relative L?-error as a function of time for the two-dimensional heat equation (At = 0.005), Allen—Cahn equation (At =
0.01), and Burgers’ equation (At = 0.01) for various integration methods.

Burgers’ equation, due to the reduced time step At. While the result of PINN could benefit from a longer training process
for the Burgers’ equation, we believe it is unlikely as shown in the training dynamics in Fig. B.5. In Fig. B.7, we plot the
global relative L2-error as a function of runtime, with various choices of hyperparameters listed in Appendix E. The figure
shows that TENG achieves significantly lower error compared to other methods, even for low runtimes. (The five points
with the highest errors for TENG all use the Euler integration scheme, where the dominant error is the Euler discretization
error.) We note that all experiments are performed on a single NVIDIA V100 GPU with 32GB memory. In all cases, the
32GB memory is sufficient for our benchmarks.

Method Runtime (Hours)

Heat Allen—-Cahn Burgers’
TENG-Euler (Ours) | 2.5 2.5 12.7
TENG-Heun (Ours) | 4.1 4.2 20.9
TDVP-RK4 4.6 4.4 21.1
OBTI-Adam 3.0 3.2 19.6
OBTI-LBFGS 4.4 4.1 22.1
PINN-ENGD 1.1 - -
PINN-BFGS 2.0 2.9 3.6

Table B.1. Runtime for various algorithms for the two-dimensional heat equation, Allen—-Cahn equation, and Burgers’ equation.

16



TENG: Time-Evolving Natural Gradient for Solving PDEs With Deep Neural Nets Toward Machine Precision

i 1072 5 A

g ° A Ada

0 ® e o o

~ 1073 % oo o o

2 °

8 104 ®

&

x ® TENG(Ours) o

g 10-5 o @® TDVP ° :

8 OBTI ° 8 o
A PINN ‘.. e o
103 104 10°

Runtime (Second)

Figure B.7. Global relative L?-error as a function of runtime for various algorithms under various hyperparameters.

C. Additional Initial Conditions and Benchmarks

As mentioned in the main paper, for the three-dimensional heat equation, we consider a initial condition in the form

2 2 2 3 3
UO(l‘l, o, 1‘3) = AOOO + Z Z Z (Aklksz H COS (szIZ) + Bk1k2k3 H sin (k‘ﬂ?») . (C]O)
i=1 1=1

ki=1ko=1ks=1

Here, we choose the following coefficients: Aggg = 0.043 with the rest of Ay, x,x,’s and A, , %, s shown in Table C.2.

A k=1 k=2
Rikeks TR =T ke =2 | ko =1 ko=2

ks =1 | 0047 -0.021 | 0.034 -0.02

ks =2 | -0.021 -0.041 | 0.024 0

B ky =1 kL =2
Rikeks T =1 k=2 | ko =1 ko=2

ks =1 | -0.075 -0.056 | -0.027 -0.008

ks =2 | 0074 -0.007 | 0.032 0

Table C.2. Ay, koks’s and By, ok, s for the initial condition of three-dimensional heat equation.
In addition, we consider an example of the heat equation defined on a two-dimensional disk with Dirichlet boundary

condition. Here, the boundary condition is enforced via an additional loss term in Eq. (3), and the initial condition is shown
below.

1 1 1 1
UO(T, 9) = Z <Z()1(T', 9) — ZZOQ(T, 9) + T6Z03(7‘, 0) — 674204(“ 9)

(C.11D
1 1 1
+Z11(T7 0) - 5212(7‘7 9) + ZZ13(T7 9) - §Z14(7’, 0) + Za1 (T7 9) + Z31(T7 0) + Zy (Tv 0)) 5
where r and 6 is the polar coordinate variables and Z,,,, represent the disk harmonics defined as
Zmn(r,0) = I (Anm1) cos(mb) (C.12)

with J,,, the mth Bessel function and A,,,, the nth zero of the mth Bessel function. We note that while the analytical solution
is solved in the polar coordinates, all neural network based methods solve the equation and benchmark in the original
Cartesian coordinates.

For Burgers’ equation, we, in addition, consider benchmarks that include a case with smaller v = 3/1000 with the original
domain, boundary, and initial conditions, and a case with v = 1/100 but with nonequal domain X = [0, 2) x [0, 27) with
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periodic boundary condition, and 7~ = [0, 4], and the following initial condition.

1 2
uo(x1,T2) = 5 &XP (cos (mxy —2) +sin (xg — 1))7. (C.13)
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Figure C.8. Relative L>-error as a function of time for additional benchmarks. For all sequential-in-time methods, we choose time step
size At = 0.005 for the heat equation and At = 0.001 for Burgers’ equation.

In Fig. C.8, we show the additional benchmarks for the aforementioned examples. Here, TENG refers to the TENG-Heun
method, OBTI refers to the OBTI-LBFGS method, and PINN refers to the PINN-BFGS method. We note that for the heat
equation on a disk with Dirichlet boundary condition, an additional boundary term is included in the loss function defined in
Eq. (3) for TENG and OBTI method. (PINN can also incorporate this boundary term analogously.) However, it is unclear
how to enforce the boundary condition in TDVP without redesigning the neural network architecture; therefore, we choose
to not enforce the boundary condition for TDVP, which could be the reason why TDVP performs particularly badly on the
heat equation on a disk.

D. Details on Obtaining Reference Solutions

Heat equation. As mentioned in the main paper, the heat equation permits an analytical solution in terms of Fourier series.
For example, we show the two-dimensional case below.

u(xy, o, t) = Z exp (fu (k% + k%) t) to(k1, ka) exp (ik1x1 + ikoxa) , (D.14)
k1,ka

where we omit the terms 27/ P because in our case P = 2. For the two-dimensional case, evaluating the analytical solution
is not practical since it is difficult to express our initial condition in Fourier series analytically,

ﬂo(kl, k‘g) = Z UO(xl,l‘g) exp (—ikll‘l — ikgxg) (DIS)

1,22

not to mention calculating an infinite sum of frequencies. Therefore, we choose to evaluate the initial condition on a
2048 x 2048 = 4194304 grid. Then, we use the discrete Fourier transform to calculate the initial condition in the Fourier
space, before truncating the maximum frequency 48. (The summation contains around (2 - 48)2 a2 9000 terms in total). For
the three-dimensional case and the case where the domain is a disk, since the initial condition is already defined in terms of
sinusoidal functions (or Bessel functions), the solution is analytically calculated.

Allen—Cahn equation. Different from the heat equation, Allen—Cahn equation generally does not permit analytical solutions.
Therefore, we solve it using the spectral method and consider the solution as a proxy for the exact solution as the reference.
Here, the basis functions of the spectral method are chosen to be the same Fourier plane waves, so the solution in real space
can be written as
’U,(.’Iﬁl, To, t) = Z fb(kh ko, t) exp (ikl,’L‘l + ikzl’g) . (D.16)
k1,k2
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When switching from real space to Fourier space, we have

)
ki and wv — o d, (D.17)
&vj

where o means convolution. Therefore, the PDE can be rewritten in the Fourier space as

o
8—1‘ = —u(k2 + k)i + @ — fiodiod. (D.18)
Here, we choose a maximum frequency cut-off of 128. (Notice that the maximum number of frequencies encountered is
(3-2-128)% ~ 600000 when calculating the double convolution.) The initial condition is calculated analogous to the case
of the heat equation, via a discrete Fourier transform on the 2048 x 2048 = 4194304 grid. Then, Eq. (D.18) is solved using
the fourth-order Runge—Kutta integration scheme with a time step At = 2 x 1074,

Burgers’ equation. Analogous to Allen—Cahn equation, Burger’s equation does not have a general analytical solution either,
except in the case of v = 0. Therefore, we use the same spectral method used to solve Allen—Cahn equation. Notice that the
term udu/dx; = u?/dx;. Therefore, Burgers’ equation in the Fourier space reads

o )
T (k2 + k) — < (kg + ko) o . (D.19)
ot 2

Here, we choose a maximum frequency cut-off of 192 (with a maximum of around (2 - 2 - 192)? ~ 600000 terms when
calculating the convolution.) The initial condition is calculated in the same way as the heat and Allen—Cahn equation, and
Eq. (D.19) is solved using the fourth-order Runge—Kutta integration scheme with a time step At = 1 x 1074,

Accuracy of the solutions. In each case, we carefully verify that the number of grid points, the maximum frequency, and
the At are sufficient to obtain a solution that is accurate to near numerical precision, by varying them over multiple values
and observing that the solution converges. We note that the case for Burgers’ equation with v = 0.003 is challenging for the
spectral method and the solution may not converge yet, which means the errors we report could be larger than the actual
values.

E. Details of Neural Network Architectures and Optimization

All the algorithms used in this work are implemented in JAX and use double precision. Our code is posted on GitHub at
https://github.com/pde-sim/teng.

Neural network architectures. We choose the same architecture for all sequential-in-time methods, which allows a fair
comparison. Our neural network architecture is loosely based on Ref. (Berman & Peherstorfer, 2023) which consists of
multiple feedforward layers with tanh activation function as

@(x) = Wy, tanh (- - - tanh (W; periodic_embed(x) + by) - - - ) + by, (E.20)

where the periodic embedding function is defined as
periodic_embed(x) = concatenate ([Zg a; cos (x1 + ¢;) + ¢j, 32 aj cos (z2 + ¢;) + ch (E.21)
to explicitly enforce the periodic boundary condition in the neural network. Here, all W, b, a, and c are trainable parameters.

Here, we choose n; = 7 layers and dj, = 40 hidden dimensions (periodic embedding vector with size 20 for each z;).

For PINN, we adopt the same architecture from Ref. (Miiller & Zeinhofer, 2023) with the addition of periodic embedding.
In addition, we increase the hidden dimension to 64 compared to Ref. (Miiller & Zeinhofer, 2023) for better expressivity.

In the case of the heat equation on a 2D disk, we simply remove the periodic embedding layer.

Optimization methods. For TENG, we randomly sub-sample trainable parameters when solving the least square problems.
This can be viewed as a regularization method when the original least square problem is ill-conditioned and can significantly
reduce the computational cost. During each time step, we randomly sub-sample 1536 parameters in the first iteration and
sub-sample 1024 parameters in the subsequent iterations. In TENG-Euler, the neural network is optimized for 7 iterations in
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each time step; in TENG-Heun, the neural network is optimized for 7 iterations to obtain ¢cmp,, followed by 5 iterations for
0+ a¢. We reduce the number of iterations in the second stage because ¢cmy, already gives a good initialization for 6;4 ;.

For TDVP, we use the sparse update method proposed by Ref. (Berman & Peherstorfer, 2023), which is also a random
sub-sample of parameters for each TDVP step, and has been shown to significantly improve the result compared to a
full update of a smaller neural network. Here, we randomly sub-sample 2560 parameters at each time step so that the
computational cost of TDVP at each time step roughly matches that of TENG (over the training iterations within each time

step).

For OBTI, we compare our method with both the Adam optimizer and the L-BFGS optimizer. Within each time step, the
neural network is optimized for 300 iterations when using the Adam optimizer, and 150 iterations when using the L-BFGS
optimizer. The Adam optimizer uses an initial learning rate of 1 x 1075 and an exponential scheduler that decays the
learning rate by 1/2 by the end of the 300 iterations.

For all sequential-in-time methods, we need to train the initial parameters to match the initial conditions. Here we use the
same initial parameters for a fair comparison. The initial parameters are trained by first minimizing the loss function

~ 2
Bue 8u0

2 ~
8”0 8u0
9o omr H (E.22)

dry  Oxy

L(iig, ) = |liig — uol72x) + H

L2(X) L2(Xx)

using natural gradient descent, where we use the least square formulation as mentioned in the main paper and (approximately)
solve the least square problem using CGLS method, until the loss value decays below 1 x 10~7. Then, we switch the loss
function to

L(iig, uo) = || — |72 () (E.23)

and use the random sub-sample version of the natural gradient descent, with 1536 parameters updated for each iteration
until the loss value decays to near machine precision (1 x 10~14). The L2?-norm in both stages are integrated on a 2D grid
of 1024 points in each dimension (around 1000000 points in total).

For PINN, both the initial condition and the time evolution are optimized simultaneously; therefore, it does not use the
initial parameters mentioned above. In addition, all the time steps of PINN are optimized simultaneously, instead of step by
step. For the optimization, we test the BFGS optimizer, and the recently proposed ENGD optimizer (Berman & Peherstorfer,
2023). We note that the ENGD optimizer requires custom implementation for individual PDEs. Since Ref. (Berman
& Peherstorfer, 2023) did not provide the implementation for Allen—Cahn equation and Burgers’ equation, we omit the
benchmark of ENGD optimizer for the two equations. We train the neural network for 100000 iterations when using the
BFGS optimizer, and 4000 iterations when using the ENGD optimizer.

For Fig B.7, the results include various hyperperameters. For all sequential-in-time methods, we include different time step
sizes At = 0.0016, 0.0032, 0.005, 0.01 and 0.02. For TENG, we include TENG-Euler, TENG-Heun, and TENG-RK4 with
different numbers of iterations (within each time step) ranging from 2 to 20 and different numbers of randomly subselected
parameters for solving least squares (within each iteration) ranging from 384 to 2048; for TDVP, we include different
numbers of randomly subselected parameters for solving least square projections ranging from 384 to 2560 (where we reach
the memory limit of V100 GPU); for OBTI, we include both OBTI-Adam and OBTI-LBFGS with different numbers of
iterations (within each time step) ranging from 150 to 300; and for PINN, we use the BFGS optimizer, and include results of
different number of iterations (globally) and different neural network sizes.
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