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ABSTRACT

Answering counterfactual queries has important applications such as explainabil-
ity, robustness, and fairness but is challenging when the causal variables are un-
observed and the observations are non-linear mixtures of these latent variables,
such as pixels in images. One approach is to recover the latent Structural Causal
Model (SCM), which may be infeasible in practice due to requiring strong as-
sumptions, e.g., linearity of the causal mechanisms or perfect atomic interven-
tions. Meanwhile, more practical ML-based approaches using naı̈ve domain trans-
lation models to generate counterfactual samples lack theoretical grounding and
may construct invalid counterfactuals. In this work, we strive to strike a balance
between practicality and theoretical guarantees by analyzing a specific type of
causal query called domain counterfactuals, which hypothesizes what a sample
would have looked like if it had been generated in a different domain (or envi-
ronment). We show that recovering the latent SCM is unnecessary for estimating
domain counterfactuals, thereby sidestepping some of the theoretic challenges. By
assuming invertibility and sparsity of intervention, we prove domain counterfac-
tual estimation error can be bounded by a data fit term and intervention sparsity
term. Building upon our theoretical results, we develop a theoretically grounded
practical algorithm that simplifies the modeling process to generative model esti-
mation under autoregressive and shared parameter constraints that enforce inter-
vention sparsity. Finally, we show an improvement in counterfactual estimation
over baseline methods through extensive simulated and image-based experiments.

1 INTRODUCTION

Causal reasoning and machine learning, two fields which historically evolved disconnected from
each other, have recently started to merge with several recent results leveraging the available causal
knowledge to develop better ML solutions (Kusner et al., 2017; Moraffah et al., 2020; Nemirovsky
et al., 2022; Calderon et al., 2022). One such setting is causal representation learning (Schölkopf
et al., 2021; Brehmer et al., 2022), which aims to take data from a complex observed space (e.g.,
images) and learn the latent causal factors that generate the data. A common scenario is when we
have access to diverse datasets from different domains, where from a causal perspective, each do-
main is generated via an unknown intervention on some domain-specific latent causal mechanisms.
With this in mind, we focus on a specific causal query called a domain counterfactual (DCF), which
hypothesizes: “What would this sample look like if it had been generated in a different domain (or
environment)?” For example, given a patient’s medical imaging from Hospital A, what would it
look like if it had been taken at Hospital B? Answering this DCF query could have applications in
fairness, explainability, and model robustness.

A naı̈ve ML approach to answering this query is to simply train generative models to map between
the two distributions without any causal assumptions or causal constraints (e.g., Kulinski and Inouye
(2023)); however, this lacks theoretic grounding and may produce invalid counterfactuals. One
common causal approach for answering such a counterfactual query would be a two-stage method
of first recovering the causal structure and then estimating the counterfactual examples (Kocaoglu
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Table 1: This table of related causal representation learning works, focuses mostly on works that
study learning a latent SCM, shows that most prior works in this area aim for identifiability of
the (latent) SCM, and thus require strong technical assumptions which may not hold in real-world
scenarios (e.g., perfect single-node interventions for each variable).

SCM type Observ.
Function Other Assumptions Observ. Function

Identifiability
Characterization of
Counterfactual Equiv.

Nasr-Esfahany et al. (2023) Invertible observed N/A 1) Access to ground-
truth DAG N/A

Single mechanism
counterfactuals under
specific contexts

Brehmer et al. (2022) Invertible latent Invertible

1) Atomic stochastic
hard interv

2) Training set is
counterfactuals pairs

Mixing and
elementwise

N/A -
Counterfactuals as input

Squires et al. (2023) Linear latent Linear 1) Atomic hard interv. Scaling No

Liu et al. (2022a) Linear latent Non-linear 1) Significant causal
weights variation Mixing and scaling No

Varici et al. (2023) Latent non-linear Linear 1) Atomic stochastic
hard interv. Mixing or scaling No

Khemakhem et al. (2021) Invertible observed
(implicit) Affine 1) Bivariate requirement

for identifiability Full (bivariate only) No

Ours Invertible latent Invertible 1) Access to domain labels No Domain counterfactual

et al., 2018; Sauer and Geiger, 2021; Nemirovsky et al., 2022). However, most of the existing
methods for causal structure learning either assume the causal variable to be observed (as opposed to
our setting where the causal variables are latent) or require restrictive assumptions for recovering the
latent causal structure, such as atomic interventions (Brehmer et al., 2022; Squires et al., 2023; Varici
et al., 2023), or access to counterfactual pairs (Brehmer et al., 2022), or assume model structures
like linearity or polynomial (Khemakhem et al., 2021; Squires et al., 2023), which often do not
hold in practice. A summary of existing works can be found in Table 1. In this paper, we strive
to balance practicality and theoretical guarantees by answering the question: “Can we theoretically
and practically estimate domain counterfactuals without the need to recover the ground-truth causal
structure?”

With weak assumptions about the true causal model and available data, we analyze invertible latent
causal models and show that it is possible to estimate domain counterfactuals both theoretically
and practically, where the estimation error depends on the intervention sparsity. We summarize our
contributions as follows:

C1 For a class of invertible latent domain causal models (ILD), we show that recovering the true
ILD model is unnecessary for estimating domain counterfactuals by proving a necessary and
sufficient characterization of domain counterfactual equivalence.

C2 We prove a bound on the domain counterfactual estimation error which decomposes into a
data fit term and intervention sparsity term. If the true intervention sparsity is small, this
bound suggests adding a sparsity constraint for DCF estimation.

C3 Towards practical implementation, we prove that any ILD model with intervention sparsity
k can be written in a canonical form where only the last k variables are intervened. This
significantly reduces the modeling search space from

(
m
k

)
causal structures to only one.

C4 In light of these theoretic results, we propose an algorithm for estimating domain counterfac-
tuals by searching over canonical ILD models while restricting intervention sparsity (inspired
by C2 and C3). We validate our algorithm on both simulated and image-based experiments 1.

Notation We denote function equality between two functions f : X → Y and f ′ : X → Y as
simply f = f ′, which more formally can be stated as ∀x ∈ X , f(x) = f ′(x). Similarly, f ̸= f ′

means that there exists x ∈ X , f(x) ̸= f ′(x). We use ◦ to denote function composition, e.g.,
g(f(x)) = g◦f(x) or simply h = g◦f . We use subscripts to denote particular indices (e.g., xj ∈ R
is the j-th value of the vector x and x<j ∈ Rj−1 is the subvector corresponding to the indices 1 to
j − 1). For function outputs, we use bracket notation to select a single item (e.g., [f(x)]j ∈ R refers
to the j-th output of f(x)) or subvector (e.g., [f(x)]≤j ∈ Rj refers to the subvector for indices 1
to j inclusive). Similarly, for (unbound) functions, let [f ]j : Rm → R refer to the scalar function
corresponding to the j-th output or [f ]≤j : Rm → Rj refer to the vector function corresponding to
first j outputs. For any positive integer m, we define [m] ≜ {1, . . . ,m}. We denote Nd as number
of domains in the ILD model.

1Code can be found in https://github.com/inouye-lab/ild-domain-counterfactuals.
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2 DOMAIN COUNTERFACTUALS WITH INVERTIBLE LATENT DOMAIN
CAUSAL MODELS

Given a set of domains (or environments), a domain counterfactual (DCF) asks the question: “What
would a sample from one domain look like if it had (counterfactually) been generated from a dif-
ferent domain?” Each domain represents different causal model on the same set of causal vari-
ables, i.e., they can be viewed as interventions of a baseline causal model. If we let D be an aux-
iliary indicator variable denoting the domain, a DCF can be formalized as the counterfactual query
p(XD=d′ |X = x, D = d), where x is the observed evidence, d is the original domain, and XD=d′

is the counterfactual random variable when forcing the domain to be d′. In this work, we aim to find
DCF for a class of invertible models (which we define in Section 2.1) and we will assume that the
causal variables are unobserved (i.e., latent). To compare, Causal Representation Learning (CRL)
has a similar latent causal model setup (Schölkopf et al., 2021). However, most CRL methods aim
for identifiability of the latent representations, which is unsurprisingly very challenging. In contrast,
we show that estimating DCFs is easier than estimating the latent causal representations and may
require fewer assumptions in Section 2.2.

2.1 ILD MODEL

We now define the causal model based primarily on the assumption of invertibility. First, we assume
that the observation function (or mixing function) shared between all domains is invertible (as in
Liu et al. (2022a); Zhang et al. (2023); von Kügelgen et al. (2023)). This means that the latent
causal variables are invertible functions of the observed variables. Second, we assume that the latent
SCMs for each domain are also invertible with univariate exogenous noise terms per causal variable.
We assume the standard Directed Acyclic Graph (DAG) constraint on the SCMs. For notational
simplicity, we will assume w.l.o.g. that the DAG is a complete graph (i.e., it includes all possible
edges), but some edges could represent a zero dependency which is functionally equivalent to the
edge being missing. Given the topological ordering respecting the complete DAG, we prove that an
invertible SCM can be written as a unique autoregressive invertible function that maps from all the
exogenous noises to the latent endogenous causal variables (See Appendix B.1). Note that the SCM
invertibility assumption excludes causal models where causal variables have multivariate exogenous
noise. Given all this, we now define our ILD model class that joins together the shared mixing
function and the latent SCMs for each domain.

Definition 1 (Invertible Latent Domain Causal Model). An invertible latent domain causal model
(ILD), denoted by (g,F), combines a shared invertible mixing function g : Z → X with a set of Nd

domain-specific latent SCMs F ≜ {fd : Rm → Z}Nd

d=1, where fd are invertible and autoregressive.
The exogenous noise is assumed to have a standard normal distribution, i.e., ϵ ∼ N (0, Im).

While we discuss the model in depth in Appendix A, we first briefly discuss why the autoregressive
and standard normal exogenous noise assumptions are not restrictive. For any model that violates the
topological ordering, an equivalent ILD model can be constructed by merging the original mixing
function with a variable permutation. Similarly, for any continuous exogenous distribution, we
can construct an equivalent Gaussian noise-based ILD model via merging the original SCM with
the Rosenblatt transform (Rosenblatt, 1952) and inverse element-wise normal CDF transformation.
Moreover, we prove in the appendix that for any observed domain distributions, there exists an ILD
model that could match these domain distributions. Therefore, these two assumptions are not critical
but will simplify theoretical analysis.

Given our definition, we note that interventions between two ILDs are implicitly defined by the
difference between two domain-specific causal models and the intervention set is denoted by
I(fd, fd′) ⊆ [m], which is the set of the intervened causal variables’ indices. In Appendix B.3
in the appendix, we prove that the standard notion of causal intervention is equivalent to checking
if the inverse subfunctions are equal, i.e., j ∈ I(fd, fd′) ⇔

[
f−1
d

]
j
̸=

[
f−1
d′

]
j
. We further define

the ILD intervention set as the union over all pairs of domains, i.e., I(F) ≜
⋃

fd,fd′∈F I(fd, fd′) =⋃
d≤Nd

I(f1, fd). These implicit ILD interventions could be a hard intervention (i.e., remove depen-
dence on parents) or a soft intervention (i.e., merely change the dependence structure with parents).
Because any intervened causal mechanism is invertible by our definition, ILD interventions must be
stochastic rather than do-style interventions, which would break the invertibility of the latent SCM.
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Finally, we define a notion of two ILD models being equivalent with respect to their observed distri-
butions based on the change of variables formula. This notion, which is a true equivalence relation
because the equation in (2) has the properties of reflexivity, symmetry, and transitivity by the proper-
ties of the equality of measures, will be important for defining an upper bound on DCF estimation in
Section 3.1 and for developing practical algorithms that minimize the divergence between the ILD
observed distribution and the training data in Section 3.3.
Definition 2 (Distribution Equivalence). Two ILDs (g,F) and (g′,F ′) are distributionally equiv-
alent, denoted by (g,F) ≃D (g′,F ′), if the induced domain distributions are equal, i.e.,

∀ d, pN
(
f−1
d ◦ g−1(x)

)
|Jf−1

d ◦g−1(x)| = pN

(
f ′−1

d ◦ g′−1
(x)

)
|Jf ′−1

d ◦g′−1(x)|.

2.2 ILD DOMAIN COUNTERFACTUALS

With our ILD model defined, we now formalize a DCF query for our ILD model. For that, we
remember the three steps for computing (domain) counterfactuals (Pearl, 2009, Chapter 1.4.4):
abduction, action, and prediction. The first step is to infer the exogenous noise from the evi-
dence. For ILD models, this simplifies to a deterministic function that inverts the mixing func-
tion and latent SCM, i.e., ϵ = f−1

d ◦ g−1(x). The second step and third steps are to perform
the target intervention and run the exogenous noise through the intervened mechanisms. For ILD,
this is simply applying the other domain’s causal model and the shared mixing function, i.e.,
xd→d′ = g ◦ fd′(ϵ). Combining these steps yields the simple form of a DCF for ILD models:
xd→d′ ≜ g ◦ fd′ ◦ f−1

d ◦ g−1(x), where fd, fd′ ∈ F . DCF for ILD models are deterministic coun-
terfactuals (de Lara et al., 2023) since they have a unique mapping, i.e., given the evidence x from
d, the counterfactual xd→d′ is deterministic. We now provide a notion that will define which ILDs
have the same DCFs (see Appendix B.4 for the equivalence relation proof).
Definition 3 (Domain Counterfactual Equivalence). Two ILDs (g,F) and (g′,F ′) are domain coun-
terfactually equivalent, denoted by (g,F) ≃C (g′,F ′), if all domain counterfactuals are equal, i.e.,
for all d, d′ : g ◦ fd′ ◦ f−1

d ◦ g−1 = g′ ◦ f ′
d′ ◦ f ′

d
−1 ◦ g′−1

.

While Definition 3 succinctly defines the equivalence classes of ILDs, it does not give much in-
sight into the structure of the equivalence classes. To fill this gap, we now present one of our main
theoretic results which characterizes a necessary and sufficient condition for being domain counter-
factually equivalent and relates proves that their intervention set size must be equal.
Theorem 1 (Characterization of Counterfactual Equivalence). Two ILDs are domain counterfactu-
ally equivalent, i.e., (g,F) ≃C (g′,F ′) if and only if:

∃h1, h2 ∈ FI s.t. g′ = g ◦ h−1
1 ∈ FI and f ′

d = h1 ◦ fd ◦ h2 ∈ FA ,∀d , (1)

and moreover, counterfactually equivalent models share the same intervention set size, i.e., if
(g,F) ≃C (g′,F ′), then |I(F)| = |I(F ′)|.

See Appendix B.5 for proofs. Importantly, Theorem 1 can be used to construct domain counter-
factually equivalent models and verify if two models are domain counterfactually equivalent (or
determine they are not equivalent). In fact, for any two invertible functions h1 and h2 that satisfy
the implicit autoregressive constraint, i.e., for all d, h1 ◦ fd ◦ h2 ∈ FA, we can construct a coun-
terfactually equivalent model—which can have arbitrarily different latent representations defined by
g′ = g ◦ h−1

1 since h1 can be an arbitrary invertible function. Ultimately, this result implies that to
estimate domain counterfactuals, we indeed do not require the recovery of the latent representations
or the full causal model.

3 ESTIMATING ILD DOMAIN COUNTERFACTUALS IN PRACTICE

While the previous section proved that recovering the latent causal representations is not neces-
sary for DCFs, this section seeks to design a practical method for estimating DCFs. Since we only
assume access to i.i.d. data from each domain, one natural idea is to fit an ILD model that is dis-
tributionally equivalent to the observed domain distributions. Yet, distribution equivalence is only a
distribution-level property while counterfactual equivalence is a point-wise property, i.e., the domain
distributions can match while the counterfactuals could be different. Indeed, we show in Theorem 2
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that even under the constraint of distribution equivalence, the counterfactual error can be very large.
To mitigate this issue, we choose a relatively weak assumption called the Sparse Mechanism Shift
(SMS) hypothesis (Schölkopf et al., 2021), which states that the differences between domain distri-
butions are caused by a small number of intervened variables. Given this assumption about the true
ILD model, it is natural to impose this intervention sparsity on the estimated ILD model. Therefore,
we now have two components to ILD estimation: a distribution equivalence term and a sparsity con-
straint which are based on the dataset and our assumption respectively. We first prove that both of
these components are important for DCF estimation by providing a bound on the counterfactual er-
ror (defined below). Then, we prove that the sparsity constraint can be enforced by only optimizing
over a canonical version of ILD models, which have all intervened variables last in a topological or-
dering. This greatly simplifies the practical optimization algorithm since only one sparsity structure
is needed than the potentially

(
m
k

)
different sparsity structures, where k is the sparsity level. Finally,

we bring all of this together to form a practical optimization objective with sparsity constraints.

3.1 DOMAIN COUNTERFACTUAL ERROR BOUND

In this section, we will prove a bound on counterfactual error that depends on both distribution
equivalence and intervention sparsity. Towards this end, let us first define a counterfactual pseudo-
metric between ILD models via RMSE (proof of pseudo-metric in Lemma 6 in the appendix).
Definition 4 (Counterfactual Pseudo-Metric for ILD Models). Given a joint distribution p(x, d),
the counterfactual pseudo metric between two ILDs (g,F) and (g′,F ′) is defined as the RMSE over
all counterfactuals, i.e.,

dC((g,F), (g′,F ′)) ≜
√

Ep(x,d)p(d′)[∥g ◦ fd′ ◦ fd−1 ◦ g−1(x)− g′ ◦ f ′
d′ ◦ fd′−1 ◦ g′−1(x)∥22] ,

where p(d′) = p(d) is the marginal distribution of the domain labels.

Given this pseudo-metric, we can now derive a bound on the counterfactual error between an esti-
mated ILD (ĝ, F̂) and the true ILD (g∗,F∗) defined as ε(ĝ, F̂) ≜ dC((ĝ, F̂), (g∗,F∗)).
Theorem 2 (Counterfactual Error Bound Decomposition). Given a max intervention sparsity k ≥ 0
and letting M(k) ≜ {(g,F) : (g,F) ≃D (g∗,F∗), |I(F)| ≤ max{k, |I(F∗)|}}, the counterfac-
tual error can be upper bounded as follows:

ε(ĝ, F̂) ≤ min
(g′,F ′)∈M(k)

dC((ĝ, F̂), (g′,F ′))︸ ︷︷ ︸
(A) Error due to lack of distribution equivalence

+ max
(g̃,F̃)∈M(k)

dC((g̃, F̃), (g∗,F∗))︸ ︷︷ ︸
(B) Worst-case error given distribution equivalence

. (2)

Furthermore, if we assume that the ILD mixing functions are Lipschitz continuous, we can bound
the worst-case error (B) as follows:

(B) ≤
[

max
(g̃,F̃)∈M(k)

k̃ L2
g̃ max
i∈[m]

E
[
[f̃d(ϵ)− f̃d′(ϵ)]2i

]
︸ ︷︷ ︸

Error depends on k since k̃ ≤ max{k, k∗}

+ k∗L2
g∗ max

i∈[m]
E
[
[f∗

d (ϵ)− f∗
d′(ϵ)]2i

]
︸ ︷︷ ︸

Error only depends on ground truth model

]1/2
,

where k̃ ≡ |I(F̃)| and k∗ ≡ |I(F∗)|, Lg is the Lipchitz constant of g, and the expectation is over
p(d, d′, ϵ) ≜ p(d)p(d′)p(ϵ).

Please check proof in Appendix B.6. The first term (A) corresponds to a data fit term and could be
reduced by minimizing the divergence between the ILD model and the observed distributions. If
the estimated ILD already matches the ground truth distribution, then this term would be zero. The
second term (B), however, does not involve the data distribution and cannot be explicitly reduced.
Yet, the bound on this second error term shows that it can be implicitly controlled by constraining
the target intervention sparsity k of the estimated model. Informally, the (B) term depends on the
intervention sparsity, Lipschitz constant, and a term that corresponds to the largest feature difference
between domain SCMs. This last term can be interpreted as the worst case single-feature difference
between latent counterfactuals. We do not claim this bound is tight, but rather simply aim to show
that the domain counterfactual error depends on the target intervention sparsity k such that reducing
k (as long as k ≥ k∗) can improve DCF estimation. Therefore, our error bound elucidates that both
data fit and intervention sparsity are needed for DCF estimation.
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3.2 CANONICAL ILD MODEL

While the last section showed that imposing intervention sparsity helps control the counterfactual
error, imposing this sparsity constraint can be challenging. In particular, the ground truth sparsity
pattern, i.e., which of k causal mechanisms are intervened, is unknown. A naı̈ve solution would be
to optimize an ILD model for all possible

(
m
k

)
sparsity patterns. In this section, we prove that we

only need to optimize one sparsity pattern without loss of generality. In particular, we can assume
that all intervened mechanisms are on the last k variables. We refer to such a model as a canonical
ILD model which we formalize next.
Definition 5 (Canonical Domain Counterfactual Model). An ILD (g,F) is a canonical domain coun-
terfactual model (canonical ILD), denoted by (g,F) ∈ C, if and only if the last variables are inter-
vened, i.e., (g,F) ∈ C ⇔ I(F) = {m− j : 0 ≤ j < |I(F)|}.

While this definition may seem quite restrictive, we prove that (perhaps surprisingly) any ILD can
be transformed to an equivalent canonical ILD.
Theorem 3 (Existence of Equivalent Canonical ILD). Given an ILD (g,F), there exists a canonical
ILD that is both counterfactually and distributionally equivalent to (g,F) while maintaining the
size of the intervention set, i.e., ∀(g,F),∃ (g′,F ′) ∈ C s.t. (g′,F ′) ≃C,D (g,F) and |I(F)| =
|I(F ′)| .

See Appendix B.7 for full proof and Example 1 in the appendix for a toy example. This result is
helpful for theoretic analysis and, more importantly, it has great practical significance as now we
can merely search over canonical ILD models.

3.3 PROPOSED ILD ESTIMATION ALGORITHM

Given the error bound in Theorem 2, the natural approach is to minimize the divergence between
the observed domain distributions (represented by the training data) and the model’s induced dis-
tributions while constraining to k interventions. From Theorem 3, we can simply optimize over
canonical ILD models without loss of generality. Therefore, we optimize the following constrained
objective given a target intervention size k:

min
g,F

Ep(x,d)[− log qg,F (x, d)] s.t. [fd]≤m−k = [fd′ ]≤m−k,∀d ̸= d′ . (3)

Concretely, the practical algorithm means training a normalizing flow for each domain while sharing
most (but not all) parameters and enforcing autoregressiveness for part of the model. The non-shared
domain-specific parameters correspond to the intervened variable(s). For higher dimensional data,
we also relax the strict invertibility constraint and implement this design using VAEs.

4 RELATED WORK

Causal Representation Learning Causal representation learning is a rapidly developing field that
aims to discover the underlying causal mechanisms that drive observed patterns in data and learn
representations of data that are causally informative (Schölkopf et al., 2021). This is in contrast to
traditional representation learning, which does not consider the causal relationships between vari-
ables. As this is a highly difficult task, most works make assumptions on the problem structure,
such as access to atomic interventions, the graph structure (e.g., pure children assumptions), or
model structure (e.g., linearity) (Yang et al., 2022; Huang et al., 2022; Xie et al., 2022; Squires
et al., 2023; Zhang et al., 2023; Sturma et al., 2023; Jiang and Aragam, 2023; Liu et al., 2022a).
Other works such as (Brehmer et al., 2022; Ahuja et al., 2022; Von Kügelgen et al., 2021) assume a
weakly-supervised setting where one can train on counterfactual pairs (x, x̃) during training. In our
work, we aim to maximize the practicality of our assumptions while still maintaining our theoretical
goal of equivalent domain counterfactuals (as seen in Table 1).

Counterfactual Generation A line of works focus on the identifiability of counterfactual queries
(Shpitser and Pearl, 2008; Shah et al., 2022). For example, given knowledge of the ground-truth
causal structure, Nasr-Esfahany et al. (2023) are able to recover the structural causal models up to
equivalence. However, they do not consider the latent causal setting and assume some prior knowl-
edge of underlying causal structures such as the backdoor criterion. There is a weaker form of
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counterfactual generation without explicit causal reasoning but instead using generative models Zhu
et al. (2017); Nemirovsky et al. (2022). These typically involve training a generative model with a
meaningful latent representation that can be intervened on to guide a counterfactual generation (Ilse
et al., 2020). As these works do not directly incorporate causal learning in their frameworks, we con-
sider them out of scope for this paper. Another branch of works estimate causal effect without trying
to learn the underlying causal structure, which typically assume all variables are observable(Louizos
et al., 2017). An expanded related work section is in Appendix F.

5 EXPERIMENTS

We have shown theoretically the benefit of our canonical ILD characterization and restriction of
intervention sparsity. In this section, we empirically test whether our theory could guide us to design
better models for producing domain counterfactuals while only having access to observational data
x and the corresponding domain label d. In our simulated experiment, under the scenario where all
of our modeling assumptions hold, we try to answer the following questions: (1) When we know
the ground truth sparsity, does sparse canonical ILD lead to better domain counterfactual generation
over naı̈ve ML approaches (dense models)? (2) What would happen if there is a mismatch of sparsity
between the dataset and modeling and what is a good model design strategy in practice? After this
simulated experiment, we perform experiments on image datasets to determine if sparse canonical
models are still advantageous in this more realistic setting. In this case, we assume the latent causal
model lies in a lower dimensional space than the observed space and thus we use autoencoders to
approximate an observation function that is invertible on a lower-dimensional manifold.

5.1 SIMULATED DATASET

Experiment Setup To extensively address our questions against diverse causal mechanism settings,
for each experiment, we generate 10 distinct ground truth ILDs. The ground truth latent SCM
f∗
d ∈ FIA takes the form f∗

d (ϵ) = F ∗
d ϵ + b∗d1I where F ∗

d = (I − L∗
d)

−1, L∗
d ∈ Rm×m is a

domain-specific lower triangular matrix that satisfies the sparsity constraint, b∗d ∈ R is a domain-
specific bias, 1I is an indicator vector where entries corresponding to the intervention set are 1, and
L∗
d and b∗d are randomly generated for each experiment. The observation function takes the form

g∗(x) = G∗ LeakyReLU (x) where G∗ ∈ Rm×m and the slope of LeakyReLU is 0.5. We use
maximum likelihood estimation to train two ILDs (like training of a normalizing flow): ILD-Can as
introduced in Section 3.2 and a baseline model, ILD-Dense, which has no sparsity restrictions on
its latent SCM. To evaluate the models, we compute the mean square error between the estimated
counterfactual and ground truth counterfactual. More details on datasets and models, and illustrating
figures of the models can be found in Appendix C.1.

Result To answer whether sparse canonical ILD provides any benefit in domain counterfactual gen-
eration, we first look at the simplest case where the latent causal structure of the dataset and our
model exactly match. In Figure 1a, we notice that when the grounth truth intervention set I∗ is
{5, 6} (i.e. the last two nodes), ILD-Can significantly outperforms ILD-Dense. Then we create a
few harder and more practical tasks where the intervention set size is still 2 but not constrained
to the last few nodes. Again, in Figure 1a, we observe that no matter which two nodes are inter-
vened on, ILD-Can performs much better than the naı̈ve ML approach ILD-Dense. This first checks
that restricting model structure to the specific canoncial form does not harm the optimization even
though the ground truth structure is different. Furthermore, it validates the benefit of our model
design for domain counterfactual generation. More results with different number of domains and
latent dimensions can be found in Appendix C.2, which all show that ILD-Can consistently perform
better than ILD-Dense. We also include an illustrating figure visualizing how ILD-Can achieves
lower counterfactual error. We then transition to the more practical scenario where the true sparsity
|I∗| is unknown. In Figure 1b, at first glance, we observe a trend of the decrease in counterfactaul
error as we decrease |I|. For the case where |I| ≥ |I∗| (i.e. when |I| = 2, 3, 4), this aligns with
our intuition that the smaller search space of ILD-Can leads to a higher chance of finding model
with low counterfactual error. For the case where |I| = 1, we notice that it performs better than the
canonical model that matches the true sparsity. Though it cannot reach distribution equivalence, the
reduction in worst-case error (see Theorem 2) seems to be enough to enable comparable or better
counterfactuals on average. We further check the performance of the data fitting and see a signif-
icant decrease in the fit of ILD-Can once |I| < |I∗|, which supports that the performance in data
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(a) With knowledge of |I∗| and |I∗| =
|I| = 2.

(b) Without knowledge of |I∗| and I∗ =
{5, 6}

Figure 1: Simulated experiment results (Nd = 3) averaged over 10 runs with different ground truth
SCMs and the error bar represents the standard error. (a) This shows ILD-Can is consistently better
than ILD-Dense regardless of intervened nodes in the dataset. (b) Here we test varying |I| while
holding I∗ fixed. The performance of ILD-Can approaches to that of ILD-Dense as we increase |I|.
An unexpected result is that ILD-Can performs best when |I| = 1 and that results from a worse data
fitting which is more carefully investigated in Appendix C.2.

fitting can be used as an indicator for whether we found the appropriate |I|. Additional results on
data fitting performance and experiments with different setups, including more complex g based on
normalizing flows and VAEs, can be found in Appendix C, and they all lead to the conclusion that
ILD-Can produces better counterfactuals than ILD-Dense even though we do not know |I∗|.

5.2 IMAGE-BASED COUNTERFACTUAL EXPERIMENTS

Here we seek to learn domain counterfactuals in the more realistic image regime. Following the
manifold hypothesis (Gorban and Tyukin, 2018; Schölkopf et al., 2021), we assume that the causal
interactions in this regime happen through lower-dimensional semantic latent factors as opposed
to high-dimensional pixel-level interactions. To allow for learning of the lower dimensional latent
space, we relax the invertibility constraint of our image-based ILD to only require pseudoinvertibility
and test our models in this practical setting.

High-dim ILD Modeling We modify the ILD models from Section 5.1 to fit a VAE (Kingma and
Welling, 2013) structure where the variational encoder, (g+,F+), first projects to the latent space
via g+ to produce the latent encoding z, which is then passed to two domain-specific latent causal
models f+

d,µ, f
+
d,σ which produce the parameters of posterior noise distribution. The decoder, (g,F),

follows the typical ILD structure: g ◦ fd, where, g and fd can be viewed as pseudoinverse of f+
d,µ

and g+. A detailed description and diagram of the models can be found in Figure 19, but informally,
these modified ILD models can be seen as training a VAE per domain with the restriction that each
VAE shares parameters for its initial encoder and final decoder layers (i.e. g is shared). As an
additional baseline, we compare against the naı̈ve setup, which we call ILD-Independent, where
each VAE has no shared parameters (i.e. a separate g is learned for each domain). These models
were trained using the β-VAE framework (Higgins et al., 2017). Further details can be found in the
Appendix D.4. After training, we can perform domain counterfactuals as described in Section 2.2.

Dataset We apply our methods to five image-based datasets: Rotated MNIST (RMNIST), Rotated
FashionMNIST (RFMNIST)(Xiao et al., 2017), Colored Rotated MNIST (CRMNIST), 3D Shapes
(Burgess and Kim, 2018) and Causal3DIdent (Von Kügelgen et al., 2021), which all have both
domain information (e.g.,, the rotation of the MNIST digit) and class information (e.g.,, the digit
number). For each dataset, we split the data into disjoint domains (e.g., each rotation in CRM-
NIST constitutes a different domain) and define class variables which are generated independently
of domains (e.g., digit class in CRMNIST), to evaluate our model’s capability of generating domain
counterfactuals. Specifically, for RMNIST, RFMNIST and 3D Shapes, all latent variables are in-
dependently generated, and for CRMNIST and Causal3DIdent, there is a more complicated causal
graph containing the domain, class and other latent variables. Further details on each dataset and
(assumed) ground-truth latent causal graphs could be found in Appendix D.1 and Appendix D.3.

Metrics Inspired by the work in Monteiro et al. (2023), we evaluate the image-based counterfac-
tuals with latent SCMs via the following metrics, where hdomain and hclass represents pretrained
domain classifier and class classifier respectively: (1) Effectiveness - whether the counterfactual
truly changes the domain defined as P(hdomain (x̂d→d′) = d′); (2) Preservation - whether the domain
counterfactual only changes domain-specific information defined as P(hclass (x̂d→d′) = y); (3) Com-
position - whether the counterfactual model is invertible defined as P(hclass (x̂d→d) = y); and (4)
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Table 2: Quantitative result for Composition (Comp.), Reversibility (Rev.), Preservation (Pre.),
and Effectiveness (Eff.), where higher is better. CRMNIST, 3D Shapes, Causal3DIdent are averaged
20, 5, 10 runs respectively. Best models are bold (within 1 standard deviation) and due to space
constraints, expanded tables with additional datasets and standard deviation are in Appendix D.5.

CRMNIST 3D Shapes Causal3DIdent
Comp. Rev. Eff. Pre. Comp. Rev. Eff. Pre. Comp. Rev. Eff. Pre.

ILD-Independent 87.24 59.88 94.65 60.39 99.79 32.56 94.97 32.49 88.15 51.43 91.05 51.94
ILD-Dense 88.18 62.29 92.72 59.60 99.76 32.60 80.92 32.64 83.59 49.17 92.17 48.83
ILD-Can 92.10 85.74 94.48 72.95 99.85 79.84 96.72 64.99 86.00 79.73 84.15 79.73

ILD-Relax-CanILD-Dense

!!

!!→#

!!→$

!!→%

!!→&

!! !" !# !! !" !#

(a) 3D Shapes (b) CausalIdent

Figure 2: Domain counterfactuals with 3D Shapes and CausalIdent. Expanded figures can be found
in Appendix D.5 (a) For 3D Shapes, only the object shape should change with domain counterfac-
tuals – the other latent factors such as the hue of object, floor, background, should not change. (b)
For CausalIdent, as the domain changes, the color of the background should change while holding
all else unchanged. ILD-Can clearly performs better than the baseline ILD-Dense in terms of pre-
serving non-domain features while changing domains for all datasets.

Reversibility - whether the counterfactual model is cycle-consistent defined as P(hclass (x̂d→d′→d) =
y). For example, in the case of CRMNIST, a model might be able to rotate the image but cannot
preserve the digit class during rotation, which would be high in effectiveness but low in preserva-
tion score. Details on the computation of these metrics and causal interpretations can be found in
Appendix D.2 and Appendix D.3 respectively.

Result Due to space constraints, we put all results with RMNIST and RFMNIST in Appendix D.5.
In Figure 2 we can see examples of domain counterfactuals for both ILD-Dense and ILD-Can. We
note that no latent information other than the domain label was seen during training, thus suggesting
the intervention sparsity is what allowed the canonical models to preserve important non-domain-
specific information such as class information when generating domain counterfactuals. In Table 2,
we include quantitative results using our metrics, which shows ILD-Can having significantly better
reversibility and preservation while maintaining similar levels of counterfactual effectiveness and
composition than the non-sparse counterparts. In Appendix D.5, we further investigate our model’s
sensitivity to the choice of sparsity by tracking how each metric change w.r.t. |I|. We observe that
reversibility and preservation tends to decrease while effectiveness tends to increase as we increase
|I|, which aligns with our findings here as ILD-Dense is equivalent to making I contain all latent
nodes. In summary, our results here indicate our theory-inspired model design leads to better domain
counterfactual generation in the practical pseudo-invertible setting.

6 CONCLUSION

In this paper, we show that estimating domain counterfactuals given only i.i.d. data from each
domain is feasible without recovering the latent causal structure. We theoretically analyzed the
DCF problem for a particular invertible causal model class and proved a bound on estimation error
that depends on both a data fit term and an intervention sparsity term. Inspired by these results,
we implemented a practical likelihood-based algorithm under intervention sparsity constraints that
demonstrated better DCF estimation than baselines across experimental conditions. We discuss the
limitations of our methods in Appendix E. We hope our findings can inspire simpler causal queries
that are useful yet practically feasible to estimate and begin bridging the gap between causality and
machine learning.
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boim, David Blei, and Bernhard Schölkopf. Nonparametric identifiability of causal representa-
tions from unknown interventions. In Thirty-seventh Conference on Neural Information Process-
ing Systems, 2023. URL https://openreview.net/forum?id=V87gZeSOL4.

Pengzhou Wu and Kenji Fukumizu. Causal mosaic: Cause-Effect inference via nonlinear ICA and
ensemble method. January 2020.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Feng Xie, Biwei Huang, Zhengming Chen, Yangbo He, Zhi Geng, and Kun Zhang. Identification
of linear non-gaussian latent hierarchical structure. In Kamalika Chaudhuri, Stefanie Jegelka,
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A DISCUSSION OF INVERTIBLE LATENT DOMAIN CAUSAL MODEL

This section gives further discussion and details about our ILD model and serves as an expanded
version of Section 2. We first remind the reader of the definition of an SCM using our notation.
Definition 6 (Structural Causal Model). A structural causal model (SCM) considers m endogenous
(causal) variables zj and m exogenous noises ϵj , j ∈ [m], where each variable is a deterministic
function of its parents and independent exogenous noise. Formally, each endogenous variable has
form zj ≜ f(ϵj , zPaj ), for all j ∈ [m].

Note that the SCM is a set of equations for each endogenous variables, where the exogenous noises
could be multivariate and even infinite dimensional.

A.1 INVERTIBLE SCM AS A GLOBAL INVERTIBLE AUTOREGRESSIVE FUNCTION

For theoretic analysis, our main SCM assumption is that the exogenous variables can be uniquely
recovered from the endogenous variables, i.e., the SCM is invertible. This invertibility assump-
tion will mean that domain counterfactuals are unique rather than being distributions over possible
counterfactuals.
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Definition 7 (Invertible SCM). We say that an SCM is invertible if the exogenous noise values can
be uniquely recovered from the endogenous random variables, i.e., there is a one-to-one mapping
between exogenous variables and endogenous variables.

This invertibility assumption implies that the exogenous noises must be scalars2 unlike standard
SCMs, which can have multivariate exogenous noise variables.

We will now prove that all the SCM mechanisms can be represented by an vector to vector invertible
autoregressive function (up to a relabeling), denoted as f ∈ FIA, and we call this the SCM global
function. We first define an autoregressive function below.
Definition 8 (Autoregressive Function). A function f : Rm → Rm is autoregressive, denoted
by f ∈ FA, if for all i, the i-th output can be written as a function of its corresponding input
predecessors, i.e.,

f ∈ FA ⇔ ∀ j,∃ f (j) s.t. [f(ϵ)]j ≜ f (j)(ϵ≤j), where ϵ ∈ Rm. (4)

Given this definition, we can now state our proposition that an invertible SCM can be represented
by a single global invertible autoregressive function.

Proposition 1 (SCM Global Function Representation). An invertible SCM {f̃ (j)}mj=1 that is topo-
logically ordered, i.e., the parents have smaller index than the children, can be uniquely represented
by an autoregressive invertible function f ∈ FIA and vice versa.

See Appendix B.1 for proof. From here on, we will simply use f ∈ FIA to represent a invertible
SCM.

While invertible SCMs do not subsume generic SCMs, we note that for any observed distribution of
endogenous variables, there exist an invertible SCM that matches the observed distribution formal-
ized as follows.
Proposition 2 (Existence of Invertible SCM for Any Distribution). Given any observed continu-
ous distribution, there exists an invertible SCM with continuous exogenous noise whose observed
distribution matches the given observed distribution.

The full proof is in Appendix B.2. This means that invertible SCMs can model any continuous
distribution, but they are not as general as generic SCMs. In practice, invertibility can be relaxed
using pseudo-invertible or approximately invertible functions, as seen with a VAE in Section 5.2.
We assume the exogenous noise distribution is standard Gaussian, which is made mostly for conve-
nience and can be made without loss of generality due to the invertible Rosenblatt transformation
(Rosenblatt, 1952; Melchers and Beck, 2018, Chapter B).

A.2 INTERVENTIONS FOR INVERTIBLE SCMS

If two SCMs are defined on the same space, then they could be regarded as soft interventions of
each other, i.e., one SCM can be viewed as the observational SCM and the other as the intervened
SCM, or vice versa. Thus, using the standard notion of intervention in which the causal mechanism
is different, we can define the intervention set between two invertible SCMs in a symmetric way.
Definition 9 (Intervention Set). The intervention set between f, f ′ ∈ FIA defined on the same sam-
ple space is the indices of the intervened variables of the corresponding unique SCMs derived from
Proposition 1 represented by the equivalent individual SCM mechanisms f̃ (j) and f̃ ′(j) respectively,
i.e.,

I(f, f ′) ≜ I
(
{f̃ (j)}mj=1, {f̃ ′(j)}mj=1

)
≜

{
j : f̃ (j) ̸= f̃ ′(j)} . (5)

In the following, we show how to determine the intervention set using the SCM global functions f
and f ′ directly instead of having to convert to the corresponding individual SCM mechanisms as in

2The proof is simple by contradiction. Suppose one mechanism had non-scalar exogenous noise. If the
random variables are not perfectly dependent, then it would be impossible to recover more than one exogenous
noise variable from a single endogenous noise variable and the parents. If the random variables were determin-
istic functions of each other (i.e., perfectly dependent), then the exogenous noise variables could be collapsed
into a single exogenous noise without loss of generality.
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the definition above. This will aid in the theoretic analysis and simplifies the analysis of intervention
sparsity. See Appendix B.3 for proof.

Proposition 3 (Intervention set characterized by SCM global function). The intervention set be-
tween two SCM f, f ′ ∈ FIA is equivalent to the set of variables where the inverse sub functions are
different, i.e., I(f, f ′) =

{
j :

[
f−1

]
j
̸=

[
f ′−1

]
j

}
.

A.3 INVERTIBLE LATENT DOMAIN CAUSAL MODEL (ILD)

In this section, we propose the invertible latent domain causal model to capture multiple latent SCMs
that are emerged through intervention. The data generated by one SCM forms a domain.

Definition 1 (Invertible Latent Domain Causal Model). An invertible latent domain causal model
(ILD), denoted by (g,F), combines a shared invertible mixing function g : Z → X with a set of Nd

domain-specific latent SCMs F ≜ {fd : Rm → Z}Nd

d=1, where fd are invertible and autoregressive.
The exogenous noise is assumed to have a standard normal distribution, i.e., ϵ ∼ N (0, Im).

ILD induces the following data generating process: for the d-th domain, z = fd(ϵ) and x = g(z).
Because fd and g are invertible, we can write the observed distribution using the change of variables
formula as: pd(x) = pN

(
f−1
d ◦ g−1(x)

)
|Jf−1

d ◦g−1(x)|. We now note that assuming a topological
ordering of the latent variables does not restrict the ILD model class.

Remark 1. The latent SCMs in ILD can be assumed to be topologically ordered without loss of
generality.

Because the latent variables are all unobserved, the labeling is arbitrary, thus we could relabel them
in a way that preserves topological order and add a permutation to the observation function g. Es-
sentially, given a non-autoregressive ILD, we could convert to an equivalent autoregressive ILD.

We now remember the distribution equivalence between two ILDs. The distributional equivalence
defines a true equivalence relation because the equation in (2) has the properties of reflexivity, sym-
metry, and transitivity by the properties of the equality of measure.

Definition 2 (Distribution Equivalence). Two ILDs (g,F) and (g′,F ′) are distributionally equiv-
alent, denoted by (g,F) ≃D (g′,F ′), if the induced domain distributions are equal, i.e.,

∀ d, pN
(
f−1
d ◦ g−1(x)

)
|Jf−1

d ◦g−1(x)| = pN

(
f ′−1

d ◦ g′−1
(x)

)
|Jf ′−1

d ◦g′−1(x)|.

B PROOFS AND AUXILIARY RESULTS

In this section, we prove propositions in Appendix A about the ILD model and the other results in
the main paper. Before proving Proposition 2, we first introduce another lemma that is useful later
in proving Proposition 1.

Lemma 1 (Invertible Upper Subfunctions). The upper subfunctions of f ∈ FI ∩ FA are also
invertible, i.e., f̄j(ϵ≤j) ≜ [f(ϵ≤j , ·)]≤j is an invertible function of ϵ≤j .

Proof. We will prove this by induction on k where j = m − k. For k = 0, it is trivial because
f̄≤m ≡ f ∈ FI . We will prove the inductive step by contradiction. Suppose f̄≤m−k is not invertible.
This would mean it is not injective and/or not surjective.

If f̄j is not injective, then ∃ ϵ≤j ̸= ϵ′≤j such that f̄≤j(ϵ≤j) = f̄≤j(ϵ
′
≤j). We would then have for

some ϵ>j (e.g., all zeros):

f̄≤j+1(ϵ≤j , ϵj+1)

= [f̄≤j(ϵ≤j), [f(ϵ≤j , ϵ>j)]j+1]
⊤

= [f̄≤j(ϵ
′
≤j), [f(ϵ≤j , ϵ>j)]j+1]

⊤

= f̄≤j+1(ϵ
′
≤j , ϵj+1) , (6)

but this would contradict the fact that f̄≤j+1 is invertible by the inductive hypothesis.
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If f̄≤j is not surjective, then ∃ x≤j such that ∀ϵ≤j , f̄≤j(ϵ≤j) ̸= x≤j . We would then have that
∀ϵ≤j , ϵ>j

f̄j+1(ϵ≤j , ϵj+1) = [f̄j(ϵ≤j), [f(ϵ>j)]j+1]
⊤ ̸= [x≤j , xj+1]

⊤ . (7)
but this would contradict the fact inductive hypothesis that f̄j+1 is surjective. Therefore, f̄j must be
invertible for all j ∈ [m].

B.1 PROOF OF PROPOSITION 1

Proposition 1 (SCM Global Function Representation). An invertible SCM {f̃ (j)}mj=1 that is topo-
logically ordered, i.e., the parents have smaller index than the children, can be uniquely represented
by an autoregressive invertible function f ∈ FIA and vice versa.

We first note that because of topologically ordering, we can write the causal mechanisms {f̃ (j)}mj=1

using different notation w.l.o.g. as: zj = f̂ (j)(ϵj , z<j) ≜ f̃ (j)(ϵj , zzPaj
) with f̂ (j)(·, ·) :

R × Rj−1 → R. The topological ordering ensures that the parents are earlier indices, i.e.,
Paj ⊆ {1, 2, · · · , j − 1}, so that this rewriting is possible w.l.o.g. Given this new notation, the
unique representation is given by:

f(ϵ) =

[
f̂ (1)(ϵ1), f̂

(2)(ϵ2, f̂
(1)(ϵ1)︸ ︷︷ ︸

recover z1

), f̂ (3)(ϵ3, f̂
(1)(ϵ1), f̃

(2)(ϵ2, f̂
(1)(ϵ1))︸ ︷︷ ︸

recover z<3

), · · ·
]⊤

, (8)

where for all j,
f̂ (j)(ϵj , z<j) = [f([f−1(z<j , ·)]<j︸ ︷︷ ︸

recover ϵ<j from z<j

, ϵj , ·)]j . (9)

Proof. We first prove one direction. Given an invertible SCM defined by it’s causal mechanisms
{f̂ (j)(ϵj , z<j)}mj=1, the observed variables are given recursively as:

zj = f̂ (j)(ϵj , z<j) . (10)
We now define the corresponding f as in the lemma:

f(ϵ) ≜

[
f̂ (1)(ϵ1), f̂

(2)(ϵ2, f̂
(1)(ϵ1)︸ ︷︷ ︸

recover z1

), f̂ (3)(ϵ3, f̂
(1)(ϵ1), f̃

(2)(ϵ2, f̂
(1)(ϵ1))︸ ︷︷ ︸

recover z<3

), · · ·
]⊤

. (11)

We need to prove that the observed variables are equivalent to the given SCM. Formally, we will
prove by induction on j ∈ [m] the hypothesis that [f(ϵ)]j = f̂ (j)(ϵj , z<j) = zj , ∀ϵ ∈ Rm. The
base case is trivial from the definition in (11), i.e., ∀ϵ ∈ Rm, [f(ϵ)]j = f̂ (1)(ϵ1) = zj . For the
inductive step, we have the following:

[f(ϵ)]j+1 = f̂ (j+1)(ϵj+1, f̂
(1)(ϵ1)︸ ︷︷ ︸
z1

, f̂ (2)(ϵ2, f̂
(1)(ϵ1))︸ ︷︷ ︸

z2

, · · · ) = f̂ (j+1)(ϵj+1, z<j+1) = zj+1 (12)

where the first equals is by (11), the second is by the inductive hypothesis, and the last is by definition
of the SCM.

Now we prove the other direction. Given an invertible autoregressive function f ∈ FI ∩ FA, we
define the following recursive set of mechanism functions:

∀j, zj ≡ f̂ (j)(ϵj , z<j) ≜ [f([f−1(z<j , ·)]<j , ϵj , ·)]j . (13)
Again, we will prove that these functional forms are equivalent via induction on j for the hypothesis
that f̂ (j)(ϵj , z<j) = [f(ϵ)]j = zj . The base case is trivial based on (13):

f̂ (1)(ϵ1) = [f([f−1(z<1, ·)]<1, ϵ1, ·)]1 = [f(ϵ1, ·)]1 = z1 (14)

For the inductive step, we use the definition of f̄<j and its inverse from Lemma 1 and derive the
final result:
f̂ (j+1)(ϵj+1, z<j+1) = [f([f−1(z<j , ·)]<j , ϵj , ·)]j = [f(f̄−1

<j (z<j), ϵj , ·)]j = [f(ϵ<j , ϵj , ·)]j = zj .

(15)
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B.2 PROOF OF PROPOSITION 2

Proposition 2 (Existence of Invertible SCM for Any Distribution). Given any observed continu-
ous distribution, there exists an invertible SCM with continuous exogenous noise whose observed
distribution matches the given observed distribution.

The proof leverages the invertible Rosenblatt transformation (Rosenblatt, 1952; Melchers and Beck,
2018, Chapter B) that can transform any distribution to the uniform distribution or vice versa using
its inverse. Given an ordering of a set of random variables, i.e., X = [X1, X2, · · · , Xm]⊤, the
Rosenblatt transformation is defined as follows:

u1 := F1(x1)

u2 := F2(x2|x1)

u3 := F3(x3|x1, x2)

...
um := Fm(xm|x1, x2, · · · , xm−1) ,

(16)

where Fj(xj |x<j) is the conditional CDF of Xj given X<j = x<j , i.e., the CDF corresponding to
the distribution p(Xj = xj |X<j = x<j). It’s inverse can be written as follows:

x1 = F−1
1 (u1)

x2 = F−1
2 (u2|F−1

1 (u1))

x3 = F−1
3 (u3|F−1

1 (u1), F
−1
2 (u2|x1 = F−1

1 (u1))

...

xm = F−1
m (um|x1 = F−1

1 (u1)), x2 = F−1
2 (u2|x1 = F−1

1 (u1)), · · · , xm−1 = . . . ) ,

(17)

where F−1
j (uj |x<j) is the conditional inverse CDF corresponding to the conditional CDF

Fj(xj |x<j).

Let Fp(x) denote the Rosenblatt transformation for distribution p, and let F−1
p (u) denote its inverse

as defined above. Assuming the random variables are continuous, the Rosenblatt transformation
transforms the samples from any distribution to samples from the Uniform distribution (i.e., the
push-forward of the Rosenblatt transformation is the uniform distribution and the push-forward of a
uniform distribution through the inverse Rosenblatt is the distribution p).

Proof. Given any continuous target distribution p, we can construct an invertible SCM whose ob-
served distribution is p. Specifically, if we let q denote the exogenous noise distribution, then the
following invertible and autoregressive function f—which defines an invertible SCM via Proposi-
tion 1—can be used to match the SCM distribution to p:

f(ϵ) = Fp ◦ F−1
q (ϵ) , (18)

where F−1
q maps to the uniform distribution and then Fp maps to the target distribution per the

properties of the Rosenblatt transformation. The function is invertible since both functions are in-
vertible. Additionally, both functions are autoregressive and thus the composition is autoregressive.
Therefore, f represents a valid invertible SCM whose observed distribution is p.

B.3 PROOF OF PROPOSITION 3

Proposition 3 (Intervention set characterized by SCM global function). The intervention set be-
tween two SCM f, f ′ ∈ FIA is equivalent to the set of variables where the inverse sub functions are
different, i.e., I(f, f ′) =

{
j :

[
f−1

]
j
̸=

[
f ′−1

]
j

}
.

Proof. Step 1: Prove
{
j :

[
f−1

]
j
̸=

[
f ′−1

]
j

}
⊆ I

(
f̃ , f̃ ′

)
.
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For all j ∈
{
j :

[
f−1

]
j
̸=

[
f ′−1

]
j

}
, there exists some z, such that[
f−1(z)

]
j
̸=

[
f ′−1(z)

]
j
, (19)

given that f, f ′ are auto-regressive function, we conclude there exists some (z<j , zj) such that

ϵj = [f−1(z<j , zj , ·)]j ̸= [f ′−1(z<j , zj , ·)]j = ϵ′j . (20)

we have, for ϵj , ϵ′j and such z<j there holds

f̂ (j)(ϵj , z<j)
(20)
= zj

(20)
= f̂ ′(j)(ϵ′j , z<j)

= [f ′([f ′−1(z<j , ·)]<j , ϵ
′
j , ·)]j

(a)
̸= [f ′([f ′−1(z<j , ·)]<j , ϵj , ·)]j
= f̂ ′(j)(ϵj , z<j). (21)

where (a) comes from the f ′ ∈ FI . Thus it implies j ∈ I
(
f̃ , f̃ ′

)
.

Step 2: Prove I
(
f̃ , f̃ ′

)
⊆

{
j :

[
f−1

]
j
̸=

[
f ′−1

]
j

}
.

For all j ∈ I
(
f̃ , f̃ ′

)
, there exists some (ϵj , z<j), such that

zj ≜ f̂ (j)(ϵj , z<j) ̸= f̂ ′(j)(ϵj , z<j) ≜ z′j , (22)
Define

z≤j ≜ [z<j , zj ] and z′
≤j ≜ [z<j , z

′
j ], (23)

then we have
[f−1(z≤j , ·)]j = ϵj = [f ′−1(z′

≤j , ·)]j , (24)

given that f, f ′ ∈ FI , we conclude,
[f−1(z≤j , ·)]j ̸= [f ′−1(z≤j , ·)]j , (25)

which implies j ∈
{
j :

[
f−1

]
j
̸=

[
f ′−1

]
j

}
.

B.4 PROOF OF LEMMA 2

Lemma 2 (Equivalence relation of counterfactual equivalence). Domain counterfactually equiva-
lent, denoted by (g,F) ≃C (g′,F ′) is an equivalence relation, i.e., the relation satisfies reflexivity,
symmetry, and transitivity.

Proof. We only need to prove that it satisfies reflexivity, symmetry, and transitivity.

1. Reflexivity - Letting g′ = g and F ′ = F in the definition, it is trivial to see that ∀d, d′

g ◦ fd′ ◦ f−1
d ◦ g−1 = g ◦ fd′ ◦ f−1

d ◦ g−1 ,

and thus (g,F) ≃C (g′,F ′).

2. Symmetry - Similarly, it is trivial to see that ∀d, d′,
g ◦ fd′ ◦ f−1

d ◦ g−1 = g′ ◦ f ′
d′ ◦ f ′

d
−1 ◦ g′−1

⇐⇒ g′ ◦ f ′
d′ ◦ f ′

d
−1 ◦ g′−1

= g ◦ fd′ ◦ f−1
d ◦ g−1 ,

and thus (g,F) ≃C (g′,F ′) ⇔ (g′,F ′) ≃C (g,F).

3. Transitivity - For (g,F), (g′,F ′) and (g′′,F ′′), we can derive the transitive property by
applying the property twice to the first two and the last two pairs ∀d, d′:

g ◦ fd′ ◦ f−1
d ◦ g−1 = g′ ◦ f ′

d′ ◦ f ′
d
−1 ◦ g′−1

= g′′ ◦ f ′′
d′ ◦ f ′′

d
−1 ◦ g′′−1

,

which means that (g,F) ≃C (g′′,F ′′).
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B.5 PROOF OF THEOREM 1

Theorem 1 (Characterization of Counterfactual Equivalence). Two ILDs are domain counterfactu-
ally equivalent, i.e., (g,F) ≃C (g′,F ′) if and only if:

∃h1, h2 ∈ FI s.t. g′ = g ◦ h−1
1 ∈ FI and f ′

d = h1 ◦ fd ◦ h2 ∈ FA ,∀d , (1)

and moreover, counterfactually equivalent models share the same intervention set size, i.e., if
(g,F) ≃C (g′,F ′), then |I(F)| = |I(F ′)|.

Theorem 1 contains two parts. The first part characterizes the domain counterfactual equivalence
model with two invertible functions. The second part proves that all counterfactual equivalent mod-
els share the same intervention set size.

B.5.1 PROOF OF THE REPRESENTATION OF DCF EQUIVALENCE

The proof of the domain counterfactual equivalence representation. relies heavily on one the fol-
lowing two lemmas that provides a necessary and sufficient condition for the composition of two
invertible functions to be equal.
Lemma 3 (Invertible Composition Equivalence). For two pairs of invertible functions (f1, f2) and
(f ′

1, f
′
2), the following two conditions are equivalent:

1. The compositions are equal:

f1 ◦ f2 = f ′
1 ◦ f ′

2 .

2. There exists an intermediate invertible function h s.t.

f ′
1 = f1 ◦ h−1, f ′

2 = h ◦ f2 . (26)

Proof of Lemma 3. For notational simplicity in this proof, we will let g ≜ f1, f ≜ f2, g′ ≜ f ′
1 and

f ′ ≜ f ′
2—note that g and f are just arbitrary invertible functions in this proof. Furthermore, without

loss of generality, we will prove for the property ∃h : g′ = g ◦ h, f ′ = h−1 ◦ f which is equivalent
to ∃h : g′ = g ◦ h−1, f ′ = h ◦ f . Thus, in the new notation, we are seeking to prove:

g ◦ f = g′ ◦ f ′ ⇔ ∃h : g′ = g ◦ h, f ′ = h−1 ◦ f (27)

If ∃h : g′ = g ◦ h, f ′ = h−1 ◦ f , then it is easy to show that g ◦ f = g′ ◦ f ′:

g′ ◦ f ′ = g ◦ h ◦ h−1 ◦ f = g ◦ f . (28)

For the other direction, we will prove by contradiction. First, using Lemma 4, we can first rewrite
g′ and f ′ using the two uniquely determined invertible functions h1 and h2:

g′ = g ◦ h1 (29)

f ′ = h2 ◦ f. (30)

Now, suppose that g ◦ f = g′ ◦ f ′ but ∄h such that g′ = g ◦h, f ′ = h−1 ◦ f . By the first assumption
and the facts above, we can derive the following:

g ◦ f = g′ ◦ f ′ = g ◦ h1 ◦ h2 ◦ f (31)
⇔ f = h1 ◦ h2 ◦ f (32)

⇔ h−1
1 ◦ f = h2 ◦ f (33)

From the second assumption, i.e., ∄h : g′ = g ◦ h, f ′ = h−1 ◦ f , we have the following:

∀h s.t. g′ = g ◦ h, it holds that f ′ ̸= h−1 ◦ f (34)

⇒ f ′ ̸= h−1
1 ◦ f (35)

⇔ h2 ◦ f ̸= h−1
1 ◦ f (36)

⇔ h2 ̸= h−1
1 (37)
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⇔ h−1
2 ̸= h1 , (38)

where (34) is by assumption, (35) follows from (29) because h1 is one particular h, (36) is by our
rewrite of f ′ in (30), (37) is by the invertibility of f , and (38) is by invertibility of h1 and h2. Thus,
there exists ỹ, such that h−1

1 (ỹ) ̸= h2(ỹ). Let us choose x̃ ≜ f−1(ỹ) for the ỹ that satisfies the
condition. For this x̃, we then know that:

h−1
1 ◦ f(x̃) = h−1

1 (ỹ) ̸= h2(ỹ) = h2 ◦ f(x̃) (39)

⇔ h−1
1 ◦ f ̸= h2 ◦ f . (40)

But this leads to a direct contradiction of (33). Therefore, if g◦f = g′◦f ′, then ∃h : g′ = g◦h, f ′ =
h−1 ◦ f .

Lemma 4 (Invertible function rewrite). Given any two invertible functions f : X → Y and
f ′ : X → Y , f ′ can be decomposed into the composition of f and another invertible function.
Specifically, f ′ can be decomposed in the following two ways:

f ′ ≡ f ◦ hX (41)

f ′ ≡ hY ◦ f , (42)

where hX ≜ f−1 ◦ f ′ : X → X and hY ≜ f ′ ◦ f−1 : Y → Y are both invertible functions.

Proof of Lemma 4. The proof is straightforward. We first note that hX and hY are invertible because
they are compositions of invertible functions. Then, we have that:

f ◦ hX = f ◦ f−1 ◦ f ′ = f ′ (43)

hY ◦ f = f ′ ◦ f−1 ◦ f = f ′ . (44)

Proof of Theorem 1: Part 1. The basic idea is to use repeated application of Lemma 3 under the
constraint that h1 and h2 must be shared across for all d and g and g−1 must be inverses of each
other.

For one direction as in Lemma 3, if (1) holds, it is nearly trivial to prove the equation in (3) holds,
i.e., for all d, d′:

g′ ◦ f ′
d′ ◦ f ′

d
−1 ◦ g′−1

= (g ◦ h−1
1 ) ◦ (h1 ◦ fd′ ◦ h2) ◦ (h−1

2 ◦ f−1
d ◦ h−1

1 ) ◦ (h1 ◦ g−1)

= g ◦ fd′ ◦ f−1
d ◦ g−1 .

To prove the other direction, let us define the following functions for a specific (d, d′) (we will
treat the case of all (d, d′) afterwards): f1 ≜ g−1, f2 ≜ f−1

d , f3 ≜ fd′ , and f4 ≜ g and similarly
f ′
1, f

′
2, f

′
3, and f ′

4 for the other side. Given these definitions, we can write the property as:

f4 ◦ f3 ◦ f2 ◦ f1 = f ′
4 ◦ f ′

3 ◦ f ′
2 ◦ f ′

1 .

By recursively applying Lemma 3 for each of the three function compositions, we arrive at the
following fact:

∃h1, h2, h3, s.t.


f ′
1 = h1 ◦ f1 and f ′

4 ◦ f ′
3 ◦ f ′

2 = f4 ◦ f3 ◦ f2 ◦ h−1
1

f ′
2 = h2 ◦ f2 ◦ h−1

1 and f ′
4 ◦ f ′

3 = f4 ◦ f3 ◦ h−1
2

f ′
3 = h3 ◦ f3 ◦ h−1

2 and f ′
4 = f4 ◦ h−1

3

By using the definitions of f1, f2, etc., we can now derive the following:

g′ = g ◦ h−1
3

f ′
d′ = h3 ◦ fd′ ◦ h−1

2

f ′
d
−1

= h2 ◦ f−1
d ◦ h−1

1

g′
−1

= h1 ◦ g−1 .
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We can connect the first and the last equality to derive that h3 = h1:

g′
−1

= h1 ◦ g−1

⇔ g′ = g ◦ h−1
1 = g ◦ h−1

3

⇔ h−1
1 = h−1

3

⇔ h1 = h3 .

Thus, there are only two free functions. Specifically, for any fixed pair of (d, d′) there exist h1,d,d′(≡
h3,d,d′) and h2,d,d′ such that

g′ = g ◦ h−1
1,d,d′ , f

′
d = h1,d,d′ ◦ fd ◦ h−1

2,d,d′ , and f ′
d′ = h1,d,d′ ◦ fd′ ◦ h−1

2,d,d′ .

Finally, we tackle the case of all (d, d′) by assuming that there could be unique functions h1,d,d′ and
h2,d,d′ for all pairs of (d, d′) and show that they are in fact equal. Because the condition holds for all
(d, d′), we know that for any particular (d, d′) and (d′′, d), we have the following two things based
on the proof above:

g′ ◦ f ′
d′ ◦ f ′

d
−1 ◦ g′−1

= g ◦ fd′ ◦ f−1
d ◦ g−1

⇔ ∃h1,d,d′ , h2,d,d′ s.t.


g′ = g ◦ h−1

1,d,d′

f ′
d = h1,d,d′ ◦ fd ◦ h−1

2,d,d′

f ′
d′ = h1,d,d′ ◦ fd′ ◦ h−1

2,d,d′

g′ ◦ f ′
d ◦ f ′

d′′
−1 ◦ g′−1

= g ◦ fd ◦ f−1
d′′ ◦ g−1

⇔ ∃h1,d′′,d, h2,d′′,d s.t.


g′ = g ◦ h−1

1,d′′,d

f ′
d′′ = h1,d′′,d ◦ fd′′ ◦ h−1

2,d′′,d

f ′
d = h1,d′′,d ◦ fd ◦ h−1

2,d′′,d

.

By equating the RHS for the g′ equations, we can thus derive that:
g ◦ h−1

1,d,d′ = g ◦ h−1
1,d′′,d

⇔ h1,d,d′ = h1,d′′,d .

Using this fact and similarly by equating the RHS for the f ′
d equations, we can derive:

f ′
d = h1,d,d′ ◦ fd ◦ h−1

2,d,d′ = h1,d′′,d ◦ fd ◦ h−1
2,d′′,d = h1,d,d′ ◦ fd ◦ h−1

2,d′′,d

⇔ h−1
2,d,d′ = h−1

2,d′′,d

⇔ h2,d,d′ = h2,d′′,d .

By applying these facts to all possible triples of (d, d′, d′′), we can conclude that ∀d, d′, h1,d,d′ = h1,
h2,d,d′ = h2, i.e., these intermediate functions must be independent of d and d′. Finally, we can
adjust notation so that ∀d, f ′

d = h̃1 ◦ fd ◦ h̃2 and g′ = g ◦ h̃−1
1 , where h̃1 ≜ h1 and h̃2 ≜ h−1

2 , which
matches the result in the theorem.

B.5.2 PROOF OF THE SHARING INTERVENTION SET SIZE BETWEEN DCF EQUIVALENCE
MODELS

Now we aim to prove the second part of Theorem 1, which states that all DCF equivalence models
share the same intervention set size. The proof requires the concept of canonical form, please refer
Definition 5 for the definition of canonical form and Theorem 3 for the existence of a special kind of
canonical form we refer as Idendity Canonical, where all the un-internvend nodes are independent
standard Gaussian.

For two ILDS (g,F) ≃C,D (g′,F ′), we apply Theorem 3 to get Identity Canonical form
(gC ,FC) ≃C,D (g,F) and similarly (g′C ,F ′

C) ≃C,D (g′,F ′). Then we use the following Propo-
sition 4, we show they must have the same intervention set size. Lastly, notice that the DCF equiv-
alence is a equivalence relation Lemma 2, we can show all the DCF equivalence models share the
same intervention set size.

Before proving Proposition 4, we first introduce a lemma that will be used in the main proof.
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Lemma 5. If f : Rm → Rm ∈ FIA, then [f(x)]k must be a non-constant function of xk.

Proof. We prove this by contradiction. Suppose k is the first index that [f(x)]k = f̃(x1, . . . , xk−1).
Since k is the smallest index, [f(x)]<k is uniquely determined by [x]≤k, The remaining m − k
dimension outputs could not be bijective to m− k + 1 inputs.

Proposition 4 (Identity Canonical ILD Shares Intervention Sparsity). Given an ILD (g,F), and
g, fd ∈ F , for all d ∈ m are continuous, then all Identity Canonical ILDs that are distributionally
and counterfactually equivalent to (g,F) have the same intervention set, i.e.,

I(F) = I(F ′), ∀ (g′,F ′) ∈
{
(g̃, F̃) ∈ C : (g̃, F̃) ≃D (g,F), (g̃, F̃) ≃C (g,F)

}
. (45)

Proof of Proposition 4. In the proof, we denote F as a non constant function without specifying the
expression.

Step 1: Characterization of counterfactual equivalence for Identity Canonical forms. Theo-
rem 1 states that there exists h1, h2 ∈ FI , such that for all d,

f ′
d = h1 ◦ fd ◦ h2. (46)

Furthermore, by the definition of Identity Canonical form, we have

f ′
1 = Id, f1 = Id. (47)

Plugging this into (46), we have
Id = h1 ◦ Id ◦ h2.

Thus,
h−1
1 = h2 ≜ h.

Plugging this into (46), for all d, we have

f ′−1
d = h−1 ◦ f−1

d ◦ h. (48)

Step 2: Counterfactual equivalence between Identity Canonical forms maintain the interven-
tion set. The goal of this step is to prove that h is a bridge satisfying the following property: for
any i /∈ I(f ′

1, f
′
d), for all x, there exists an unique j, such that [h−1(x)]i only depends on xj . In

addition, we can prove such j satisfies j /∈ I(f1, fd).

We start with writing the i-th output of f ′−1
d (x) as the following

[f ′−1
d (x)]i

(48)
= [h−1(f−1

d (h(x)))]i (49)

= [h−1
(
[f−1

d (h(x))]1, [f
−1
d (h(x))]2, . . . , [f

−1
d (h(x))]m

)
]i (50)

(a)
=

[
h−1

(
f̃−1
d,1 ([h(x)]1), f̃

−1
d,2 ([h(x)]1, [h(x)]2), . . . , f̃

−1
d,m([h(x)]1, . . . [h(x)]m)

)]
i
,

(51)

where in step (a), we used autoregresiveness of f−1
d , and f̃−1

d,k is defined as a function from Rk to R.
According to Lemma 5, f̃−1

d,k(x) is a non-constant function of xk.

Step 2.1: We show i and j must be one-to-one mapping of h. We proof this by contradiction.

Suppose h−1 maps more than one index to i-th index, w.l.o.g, we could assume j1 and j2. That is,
[h−1(u)]i depends on uj1 and uj2 . Take u = f−1

d (h(x)), then we have

[f ′−1
d (x)]i = F

(
f̃−1
d,j1

([h(x)]1, . . . [h(x)]j1), f̃
−1
d,j2

([h(x)]1, . . . [h(x)]j2)
)

(52)

Due to that f−1
d ∈ FIA, from Lemma 5, we have

f̃−1
d,j1

([h(x)]1, . . . [h(x)]j1) = F ([h(x)]j1 , ·) (53)

f̃−1
d,j2

([h(x)]1, . . . [h(x)]j2) = F ([h(x)]j2 , ·). (54)
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Plug (53), (54) into (52), we have

[f ′−1
d (x)]i = F ([h(x)]j1 , [h(x)]j2 , ·) (55)

Given that h ∈ FIA, we conclude ([h(x)]j1 , [h(x)]j2) depend at least two distinct indices. That is,
there exists i1, i2 such that

([h(x)]j1 , [h(x)]j2) = F (xi1 , xi2). (56)

That implies [f ′−1
d (x)]i is a nontrivial function of (xi1 , xi2). This leads to the contradiction that

i /∈ I(f ′
1, f

′
d), where for all x, there holds

[f ′−1
d (x)]i = xi (57)

Step 2.2: We show such j is not in the intervention set between f1 and fd. We prove this by
contradiction as well.

Step 2.1 implies

[f ′−1
d (x)]i = F

(
f̃−1
d,j ([h(x)]1, . . . [h(x)]j)

)
= F ′([h(x)]j , ·), (58)

Suppose j ∈ I(f1, fd), then f−1
d ([h(x)]j) Recall that f−1

d ∈ FA,

then [f−1
d (h(x))]j must be a non-constant function of [h(x)]j and [h(x)]j′ for some j′ < j, i.e.,

[f−1
d (h(x))]j = f̃−1

d,j ([h(x)]1, . . . , [h(x)]j) = F ([h(x)]j′ , [h(x)]j , ·). (59)

Similarly, we know that [h(x)]j′ and [h(x)]j must be nontrivial functions of xi3 and xi4 , which
i3 ̸= i4. However, we know [f ′−1

d (x)]i is a function of xi exclusively, which leads to contradiction.
This shows that the number of non-intervened node in f ′

d must not be greater than that in fd, i.e.,

I(f ′
1, f

′
d) ≥ I(f1, fd), ∀d. (60)

We further notice that the symmetric relationship between fd and f ′
d, we could also have

I(f ′
1, f

′
d) ≤ I(f1, fd), ∀d. (61)

Union among on d, we have
I(f ′) = I(f). (62)

B.6 PROOF OF THEOREM 2

Lemma 6 (Counterfactual Pseudo-Metric for ILD Model is a pseudo-metric).

Proof. It is trivial to check that it is always positive, symmetric, and equal to 0 if (g,F) = (ḡ, F̄).
Finally, because RMSE satisfies the triangle inequality (Chai and Draxler, 2014), Definition 4 also
satisfies the triangle inequality.

Theorem 2 (Counterfactual Error Bound Decomposition). Given a max intervention sparsity k ≥ 0
and letting M(k) ≜ {(g,F) : (g,F) ≃D (g∗,F∗), |I(F)| ≤ max{k, |I(F∗)|}}, the counterfac-
tual error can be upper bounded as follows:

ε(ĝ, F̂) ≤ min
(g′,F ′)∈M(k)

dC((ĝ, F̂), (g′,F ′))︸ ︷︷ ︸
(A) Error due to lack of distribution equivalence

+ max
(g̃,F̃)∈M(k)

dC((g̃, F̃), (g∗,F∗))︸ ︷︷ ︸
(B) Worst-case error given distribution equivalence

. (2)

Furthermore, if we assume that the ILD mixing functions are Lipschitz continuous, we can bound
the worst-case error (B) as follows:

(B) ≤
[

max
(g̃,F̃)∈M(k)

k̃ L2
g̃ max
i∈[m]

E
[
[f̃d(ϵ)− f̃d′(ϵ)]2i

]
︸ ︷︷ ︸

Error depends on k since k̃ ≤ max{k, k∗}

+ k∗L2
g∗ max

i∈[m]
E
[
[f∗

d (ϵ)− f∗
d′(ϵ)]2i

]
︸ ︷︷ ︸

Error only depends on ground truth model

]1/2
,

where k̃ ≡ |I(F̃)| and k∗ ≡ |I(F∗)|, Lg is the Lipchitz constant of g, and the expectation is over
p(d, d′, ϵ) ≜ p(d)p(d′)p(ϵ).
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Proof of Theorem 2. We will prove this theorem when both (ĝ, f̂) and (g∗,F∗) are both canonical
forms (See Definition 5). According Theorem 3, any two ILD’s counterfactual error are equivalent
two their equivalent canonical models, thus this bound holds for all pairs of ILD models.

(2) is by the triangle inequality for any intervening (g̃, F̃) and in this case we choose to minimize
the bound over all possible distributionally equivalent models with a bounded sparsity—we know
that at least the true ILD satisfies this, and thus there is at least one feasible solution. (2) is by the
fact that choosing the ILD model with the worst counterfactual error is larger than the error incurred
by (g̃, F̃), under the same constraints—again, by construction, (g̃, F̃) satisfies the constraints in the
maximization problem and thus at least one ILD model is feasible.

Now we prove the worst-case counterfactual misspecification error bound.

max
(g̃,F̃)∈M(k)

d2C((g̃, F̃), (g∗,F∗))

= max
(g̃,F̃)∈M(k)

Ep(d′)Ep(x,d)

[∥∥∥g̃ ◦ f̃d′ ◦ f̃−1
d ◦ g̃−1(x)− g∗ ◦ f∗

d′ ◦ f∗−1
d ◦ g∗−1(x)

∥∥∥2
2

]
(Definition)

= max
(g̃,F̃)∈M(k)

Ep(d′)Ep(x,d)

[∥∥∥g̃ ◦ f̃d′ ◦ f̃−1
d ◦ g̃−1(x)− x+ x− g∗ ◦ f∗

d′ ◦ f∗−1
d ◦ g∗−1(x)

∥∥∥2
2

]
(Inflation)

= max
(g̃,F̃)∈M(k)

Ep(d′)Ep(x,d)

[ ∥∥∥g̃ ◦ f̃d′ ◦ f̃−1
d ◦ g̃−1(x)− g̃ ◦ f̃d ◦ f̃−1

d ◦ g̃−1(x)

+ g∗ ◦ f∗
d ◦ f∗−1

d ◦ g∗−1(x)− g∗ ◦ f∗
d′ ◦ f∗−1

d ◦ g∗−1(x)
∥∥2
2

]
(Invertibility of ILD)

≤ max
(g̃,F̃)∈M(k)

2Ep(d′)Ep(x,d)

[∥∥∥g̃ ◦ f̃d′ ◦ f̃−1
d ◦ g̃−1(x)− g̃ ◦ f̃d ◦ f̃−1

d ◦ g̃−1(x)
∥∥∥2
2

]
+ 2Ep(d′)Ep(x,d)

[∥∥g∗ ◦ f∗
d ◦ f∗−1

d ◦ g∗−1(x)− g∗ ◦ f∗
d′ ◦ f∗−1

d ◦ g∗−1(x)
∥∥2
2

]
(AM-QM Inequality)

≜ max
(g̃,F̃)∈M(k)

2Ep(d)Ep(d′)Ep(ϵ)

[∥∥∥g̃ ◦ f̃d′(ϵ)− g̃ ◦ f̃d(ϵ)
∥∥∥2
2

]
+ 2Ep(d)Ep(d′)Ep(ϵ′)

[
∥g∗ ◦ f∗

d′(ϵ′)− g∗ ◦ f∗
d (ϵ

′)∥22
]

then we aim to bound the both term related to worse-case ILD term and ground-truth ILD term.
Lemma 7. If g is Lipschitz continuous with constant Lg and k = |I(F)|, then the following holds:

Ep(d)p(d′)p(ϵ)[∥g ◦ fd′(ϵ)− g ◦ fd(ϵ)∥22] ≤ L2
g · k · max

i∈[m]
Ep(d)p(d′)p(ϵ)

[
[fd(ϵ)− fd′(ϵ)]2i

]
(63)

Proof.

Ep(d)p(d′)p(ϵ)[∥g ◦ fd′(ϵ)− g ◦ fd(ϵ)∥22] (64)

≤ L2
gEp(d)p(d′)p(ϵ)[∥fd′(ϵ)− fd(ϵ)∥22] (Lipschitz)

= L2
gEp(z,d)p(d′)[∥fd′(f−1

d (z))− z∥22] (65)

= L2
gd

2
C((Id,F), (Id, Id)) (Interpretation as counterfactual error)

= L2
gEp(z,d)p(d′)[

m∑
i=1

[fd′(f−1
d (z))− z]2i ] (66)

= L2
gEp(z,d)p(d′)[

k−1∑
i=0

[fd′(f−1
d (z))− z]2m−i] (Canonical form)
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= L2
g

k−1∑
i=0

[Ep(z,d)p(d′)[fd′(f−1
d (z))− z]2m−i] (67)

≤ L2
g · k ·max

i:i<k
Ep(z,d)p(d′)[fd′(f−1

d (z))− z]2m−i (68)

= L2
g · k · max

i∈[m]
Ep(z,d)p(d′)[fd′(f−1

d (z))− z]2i (69)

= L2
g · k · max

i∈[m]
Ep(z,d)p(d′)[z − fd′(f−1

d (z))]2i (rearrange)

= L2
g · k · max

i∈[m]
Ep(d)p(d′)p(ϵ)

[
[fd(ϵ)− fd′(ϵ)]2i

]
(change back to ϵ)

where the distribution for dC in this case is the one induced by F .

B.7 PROOF OF THEOREM 3

The proof of Theorem 3 relies on the Swapping Lemma (Lemma 9), and before proving the swap-
ping lemma, we first introduce a lemma which will be used in the swapping lemma to show that if
one domain in an ILD is identity, then we could check intervention set using fd instead of f−1

d .

Lemma 8. For an ILD with f1 = Id, I(fd, f1) =
{
j : [fd]j ̸= [f1]j

}
.

Proof of Lemma 8. Suppose f−1
d (x) = x′ where x′

j ̸= xj , then fd(x
′) = x becasue that fd is

bijective. Then
[fd(x

′)]j = xj ̸= x′
j = f1(x

′).

For any j /∈ I(F), for any x = fd(x
′), we have x′

j = [f−1
d (x)]j = [f−1

1 (x)]j = xj ⇒ xj = x′
j ,

thus
xj = [fd(x

′)]j = [fd(x
′)]j = x′

j .

Lemma 9 (Swapping Lemma). Given that the first canonical counterfactual property is satisfied,
i.e., f1 = Id, denote f ′ as SCM constructed by f ′ = h1 ◦f ◦h2(x), where h1 = h2 denote swapping
the j-th feature with j′-th feature. Then there exists g′ such that

(g,F) ≃C (g′,F ′), f ′
1 = Id, I(F ′) = (I(F) \ {j}) ∪ {j′}.

if the following conditions hold

j ∈ I(F) and ∀ j̃ : j < j̃ ≤ j′, j̃ ̸∈ I(F).

Proof of Lemma 9. First, note that because j′ is not intervened, then we can derive that it’s corre-
sponding conditional function is independent of all but the j′-th value:

[fd]j′ = [f1]j′ (70)
⇔ fd,j′(x≤j′) = f1,j′(x≤j′) = xj′ . (71)

For the new model, we choose the invertible functions as swapping the j-th and j′-th feature values,
i.e.,

h1(x) ≜ [x1, x2, · · · , xj−1, xj′ , xj+1, · · · , xj′−1, xj , xj′+1, · · · , xm]T (72)

and similarly for h2, i.e., h2 ≜ h1. Because h1 and h2 are invertible, we know that the new model
will be in the same counterfactual equivalence class by Theorem 1. Construct g′ ≜ g ◦ h−1

1 , and
then for all d,

f ′
d(x) =h1 ◦ fd ◦ h2(x)

=h1 ◦ fd([x1, x2, · · · , xj−1, xj′ , xj+1, · · · , xj′−1, xj , xj′+1, · · · , xm]T ])

=h1 ◦ fd([y1, y2, · · · , yj−1, yj , yj+1, · · · , yj′−1, yj′ , yj′+1, · · · , ym]T ])

=h1 ◦ [fd,i(y≤i)]
m
i=1
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=

[
fd,1(y1), · · · , fd,j−1(y≤j−1), fd,j′(y≤j′), fd,j+1(y≤j+1), · · · ,

fd,j′−1(y≤j′−1), fd,j(y≤j), fd,j′+1(y≤j′+1), · · · , fd,m(y≤m)

]
,

where we define y ≜ h−1
2 (x).

We now need to check that the first canonical counterfactual property still holds.

f ′
1 = h1 ◦ f1 ◦ h2 = h1 ◦ Id ◦ h2 = h1 ◦ h2 = Id , (73)

where the last equals is because swap operations are self-invertible.

We move to check that the autoregressive property still holds for other domain SCMs.

1) For the j-th feature, we have that:

[f ′
d(x)]j = fd,j′(y≤j′) = fd,j′(x1, · · · , xj−1, xj′ , xj+1, · · · , xj′−1, xj) = xj

where the last equals is because the fd,j′(y≤j′) = yj′ = xj . This clearly satisfies the autoregressive
property as [f ′

d]j only depends on xj .

2) For the j′-th feature, we have that:

[f ′
d(x)]j′ = fd,j(y≤j) = fd,j′(x1, · · · , xj−1, xj′)

where again this satisfies the autoregressive property because all input indices are less than j′ be-
cause j < j′. Now we handle the cases for other variables. If j̃ < j, then we have the following:

[f ′
d]j̃ = [h1 ◦ fd ◦ h2]j̃ = [fd ◦ h2]j̃ = fd,j̃([h2(x)]≤j̃) = fd,j̃(x1, . . . , xj̃) (74)

3) Similarly if j < j̃ < j′:

[f ′
d]j̃ = fd,j̃(x1, . . . , xj−1, xj′ , xj+1, · · · , xj̃) = xj̃ , (75)

where we use the fact that there are no intervening nodes in between j and j′.

4) Finally, for j̃ > j′, we have:

[f ′
d]j̃ = fd,j̃(x1, · · · , xj−1, xj′ , xj+1, · · · , xj′−1, xj , xj′+1, · · · , xj̃) , (76)

which is still autoregressive because j̃ > j′ and j̃ > j. Thus, the new f ′
d is autoregressive and is

thus a valid model.

It remains to prove that I(F ′) = (I(F) \ {j}) ∪ {j′}.

1) When k < j, we have for all d,

[f ′
d]k = fd,k(y≤k) = fd,k(x≤k) = [fd]k ,

then for all k ∈ I(F), there exists d0, such that

[f ′
d0

−1
]k = [f ′

d0
]k ̸= [f1]k = [f ′

1
−1

]k.

Thus, k ∈ I(F ′).

If k /∈ I(F) , we have for all d,

[f ′
d
−1

]k = [f ′
d]k = [f1]k = [f ′

1
−1

]k.

Thus k /∈ I(F ′).

2) When j ≤ k < j′, we have ∀d, [f ′
d(x)]k = xk ⇒ [f ′

d
−1

(x)]k = xk. Thus we have ∀d,
[f ′

d
−1

]k = [f ′
1
−1

]k, which means for all j ≤ k < j′, k /∈ I(F ′).

3) When k = j′, we have ∀d, [f ′
d]j′ = fd,j(x1, · · · , xj−1, xj′). Furthermore, since, j ∈ I(F), we

have ∃ d0, [fd0 ]j ̸= [f1]j by Lemma 8. Thus [f ′
d0
]j′ = [fd0 ]j ̸= [f1]j = [f ′

1]j′ ⇒ j′ ∈ I(F ′) also
by Lemma 8.

4) When k > j′, if k ∈ I(F),∃ d1, d2, [fd1
]k ̸= [fd2

]k, Chaining with (76), we have [f ′
d1
]k ̸=

[f ′
d2
]k. Thus, k ∈ I(F ′) by Lemma 8. Similarly, if k /∈ I(F), then k /∈ I(F ′)

To summarize, I(F ′) = (I(F) \ {j}) ∪ {j′}.
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Built upon swapping Lemma, we move to our main result on the existence of equivalent Canonical
ILD.
Theorem 3 (Existence of Equivalent Canonical ILD). Given an ILD (g,F), there exists a canonical
ILD that is both counterfactually and distributionally equivalent to (g,F) while maintaining the
size of the intervention set, i.e., ∀(g,F),∃ (g′,F ′) ∈ C s.t. (g′,F ′) ≃C,D (g,F) and |I(F)| =
|I(F ′)| .

Proof of Theorem 3. At high level the proof is organized in the following three steps.

(Step 1) we use Theorem 1 to construct an equivalent counterfactual (g(0),F (0)) ≃C (g,F) by
choosing two invertible functions h1 = f−1

1 and h2 = Id. In this way, Theorem 1 implies

f
(0)
1 = h1 ◦ f1 ◦ h2 = f−1

1 ◦ f1 ◦ Id = Id

∀d > 1, f
(0)
d = h1 ◦ fd ◦ h2 = f−1

1 ◦ fd ◦ Id = f−1
1 ◦ fd, and g(0) = g ◦ h−1

1 = g ◦ f1 .

Equipped with (g(0),F (0)), we can show that part I of Definition 5 is satisfied, i.e., f (0)
1 = Id.

Choosing h2 = Id, we could prove this operation could guarantee the distribution equivalence.

(Step 2) we can further construct a series of equivalent counterfactuals iteratively applying Lemma 9
to gradually satisfy part II of Definition 5. Specifically, in this step, we recursively construct, for all
iteration k ∈ {1, 2, . . . , klast},

F (k) ≜ hj(k)↔j′(k) ◦ F (k−1) ◦ hj(k)↔j′(k),

and

g(k) ≜ g(k−1) ◦ h−1
j(k)↔j′(k) = g(k−1) ◦ hj(k)↔j′(k) ,

where hj(k)↔j′(k) denotes swapping the j(k)-th and j′(k)-th feature values, i.e.,

hj↔j′(x) ≜ [x1, x2, · · · , xj−1, xj′ , xj+1, · · · , xj′−1, xj , xj′+1, · · · , xm]T , (77)

and further define

j′(k) ≜ max
{
j, j /∈ I

(
F (k)

)}
, and j(k) ≜ max

{
j < j′(k), j ∈ I

(
F (k)

)}
. (78)

In high level, at each iteration, we seek the largest index j′(k) which does not lies in the previous
intervention set I

(
F (k)

)
, and swap it with the largest index j(k) which is smaller than j′(k). We

terminate at k when
{
j < j′(k), j ∈ I

(
F (k)

)}
= ∅.

By the definition of j′(k), j(k) in (78), we can show that

1) for each swap step k, there holds

j(k) ∈ I
(
F (k)

)
, and ∀ j̃ : j(k) < j̃ ≤ j′(k), j̃ ̸∈ I

(
F (k)

)
, (79)

which implies Lemma 9 can be applied to ensure the counterfactual equivalence at each step.

2) When meeting the stopping criterion at step klast, i.e.,{
j < j′(klast), j ∈ I

(
F (klast−1)

)}
= ∅, (80)

there holds
∀j ∈ I

(
F (klast−1)

)
, j > m−

∣∣∣I (
F (klast−1)

)∣∣∣ ,
i.e.,

(
g(k

last−1),F (klast−1)
)

is in canonical form. Chaining 1) and 2), we conclude

∃ (g′,F ′) ≜
(
gk

last−1,Fklast−1
)
∈ C s.t. (g′,F ′) ≃C (g,F).

Note that g(k) ◦ f (k)
d = g(k−1) ◦ f (k−1)

d ◦ hj(k)↔j′(k), and linear operator hj(k)↔j′(k) is orthogonal,
then iteratively, we conclude (g′,F ′) ≃D (g,F).
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To prove 1), observe in (78), j(k) is the largest index in the intervention set which is smaller than
j′(k). This simply implies (79).
To prove 2), suppose when meeting the stopping criterion at step klast, there holds

∃ j ∈ I
(
F (klast−1)

)
such that j ≤ m−

∣∣∣I (
F (klast−1)

)∣∣∣ . (81)

It implies that

∃ ĵ /∈ I
(
F (klast−1)

)
and ĵ ∈

{
m−

∣∣∣I (
F (klast−1)

)∣∣∣+ 1, . . . ,m
}
.

Then we can choose j′(k) = ĵ, implying j ∈
{
j < j′(k), j ∈ I

(
F (klast−1)

)}
̸= ∅, contradict to

(80).

(Step 3) We use the same techinique as in Step 1, where instead we choose h1 = f1 and h2 = Id.
This concludes the proof of part I in Theorem 3.

It remains to prove that the construction of f (0) in the step 1 does not change the intervention set.

1) For any j /∈ I(F), for any pairs d, d′, we have
[
f−1
d

]
j
=

[
f−1
d′

]
j
, based on the construction of

f (0), we have [
f
(0)
d

−1]
j
= [f−1

d ◦ f1]j = [f−1
d′ ◦ f1]j =

[
f
(0)
d′

−1]
j

(82)

thus, I(f (0)
d , f

(0)
d′ ) ⊆ I(fd, f ′

d).

2) For any j ∈ I(F), there exists d, d′ and z, such that [fd−1(z)]j ̸= [fd′
−1(z)]j . Note that f1 is a

bijective function, there exists z′ such that z = f1(z
′), we have

[f−1
d (z)]j ̸= [f−1

d′ (z)]j

⇔
[
f−1
d (f1(z

′))
]
j
̸=

[
f−1
d′ (f1(z

′)
]
j

⇔
[
f
(0)
d

−1
(z′)

]
j
̸=

[
f
(0)
d′

−1
(z′)

]
j

⇔ j ∈ I
(
f
(0)
d , f

(0)
d′

)
thus I

(
f
(0)
d , f

(0)
d′

)
⊃ I(fd, fd′). Combining 1) and 2), we have I

(
f
(0)
d , f

(0)
d′

)
= I(fd, fd′). This

show that the construction of step 1 and step 3 do not change the intervention set, combining the fact
in step 1, we iteratively used swapping Lemma 9, and swapping Lemma 9 does not change the inter-
vention set size, i.e., I(F ′) = (I(F) \ {j})∪{j′}, we conclude that

∣∣∣I (
f
(0)
d , f

(0)
d′

)
| = |I(fd, fd′)

∣∣∣
This completes the proof.

To help understanding, we design a simple linear ILD model to demonstrate the theorem construc-
tion procedure.
Example 1. Suppose we have a 4-dimensional ILD model (g,F) containing 2 domains, where

f1 ≜

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 , f2 ≜

1 0 0 0
2 2 0 0
1 1 1 0
1 1 1 1

 , g invertible.

Following the proof of Theorem 3, we have Following Step 1 in the proof of Theorem 3, we have
h1 = f−1

1 ,

f
(0)
1 = f−1

1 ◦ f1 , f (0)
2 = f−1

1 ◦ f2 , g(0) = g ◦ f1 ,

f
(0)
1 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , f
(0)
2 =

 1 0 0 0
1 2 0 0
−1 −1 1 0
0 0 0 1

 ,
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g(0) = g ◦

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1


Notice that I(f (0)) = {2, 3}. Following Step 2 in the proof of Theorem 3, we first swap j = 3 and
j′ = 4,

h3↔4 =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , g(1) = g ◦

1 0 0 0
1 1 0 0
1 1 1 1
1 1 1 0


We have f (2) ≜ h3↔4 ◦ f (1) ◦ h3↔4

f
(2)
1 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , f
(2)
2 =

 1 0 0 0
1 2 0 0
0 0 1 0
−1 −1 0 1

 .

Notice that I(f (1)) = {2, 4}. Following Step 2 in the proof of Theorem 3, we first swap j = 2 and
j′ = 3,

h2↔3 =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , g(2) = g ◦

1 0 0 0
1 1 1 1
1 1 0 0
1 1 1 0


We have f (3) ≜ h2↔3 ◦ f (2) ◦ h2↔3

f
(2)
1 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , f
(2)
2 =

 1 0 0 0
0 1 0 0
1 0 2 0
−1 0 −1 1

 .

g(2) = g ◦

1 0 0 0
1 1 1 1
1 1 0 0
1 1 1 0


Then we follow Step 3, i.e.,

f
(3)
1 = f1 ◦ f (2)

1 , f
(3)
2 = f1 ◦ f (2)

2 , g(3) = g2 ◦ f−1
1 ,

f
(3)
1 =

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 , f
(3)
2 =

1 0 0 0
1 1 0 0
2 1 2 0
1 1 1 1

 .

Notice that (g(2), f (2)) is the Identity Canonical form, and (g(3), f (3)) is in general canonical form.
They are counterfactually equivalent to each other by checking definition.

C SIMULATED EXPERIMENTS

C.1 EXPERIMENT DETAILS

Dataset The ground truth latent SCM f∗
d ∈ FIA takes the form f∗

d (ϵ) = F ∗
d ϵ+b∗d1I where F ∗

d =
(I−L∗

d)
−1, L∗

d ∈ Rm×m is domain-specific lower triangular matrix that satisfies sparsity constraint,
b∗d ∈ R is a domain-specific bias and 1I is an indicator vector where any entries corresponding to the
intervention set are 1. To be specific, [L∗

d]i,j ∼ N (0, 1) and b∗d ∼ Uniform(−2
√

m/|I|, 2
√
m/|I|).

The observation function takes the form g∗(x) = G∗ LeakyReLU (x) where G∗ ∈ Rm×m and the
slope of LeakyReLU is 0.5. To allow for similar scaling across problem settings, we set the de-
terminant of G∗ to be 1 and standardize the intermediate output of the LeakyReLU. The generated
F ∗
d , b

∗
d, G

∗ all vary with random seeds and all experiments are repeated for 10 different seeds. We
generate 100,000 samples from each domain for the training set and 1,000 samples from each do-
main in the validation and test set.
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Model We test with two ILD models: ILD-Can as introduced in Section 3.3 and a baseline model,
ILD-Dense which has no sparsity restrictions on its latent SCM. To be specific, the latent SCM of
ILD-Dense could be any model in FIA. We use I and I∗ to represent the intervention set of the
model and dataset, respectively. We note that for ILD-Dense, I contains all nodes and for ILD-Can,
I contains only the last few nodes. Both models follow a similar structure as the ground truth. To be
specific, the latent SCM takes the form fd(ϵ) = Fd ϵ+bd where Fd = (I−Ld)

−1Sd, Ld ∈ Rm×m,
Sd ∈ Rm×m, and bd ∈ Rm. The observation takes the form g(x) = G LeakyReLU (x) + b where
G ∈ Rm×m, b ∈ Rm, and the slope of LeakyReLU is 0.5.

(a) ILD-Dense

(b) ILD-Can

(c) ILD-Identity-Can

Figure 3: An illustration of the matrices/vector used to create fd across the three ILD models when
m = 6 and |I| = 2. These are used such that fd(ϵ) = Fd ϵ + bd where Fd = (I − Ld)

−1Sd. The
grey elements are 0, the orange elements are parameters that are different for different domains, and
the blue elements are parameters shared across domains. We specify the value if it is a fixed number
other than 0. Note that we don’t implement ILD-Identity-Can in our experiments. We include it here
only for illustration of our theory.

In Figure 3a and Figure 3b, we add an illustration of the latent SCM for ILD-Dense and ILD-Can
respectively. We emphasize a few main differences between the dataset and models here: (1) For
ILD-Can, I only contains the last few nodes while for the dataset while I∗ could contain any node
we specify. We note that ILD-Dense is equivalent to a ILD-Can with all nodes in its intervention
set. (2) There is no constraint on the determinant of G and standardization in g(x). (3) The bias
added to all dimensions in the ground truth model is the same scalar value, but the bias in the model
is allowed to vary for each axis. (4) In the model, g is allowed a learnable bias.

Metric To evaluate the models, we compute the mean square error between the estimated coun-
terfactual and ground truth counterfactual, i.e. Error = 2

Nd(Nd−1)

∑
d′ ̸=d

∑
d ∥g∗ ◦ f∗

d′ ◦ (f∗
d )

−1 ◦
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(g∗)−1(xd) − g ◦ fd′ ◦ f−1
d ◦ g−1(xd)∥2. As in practice, we can only check data fitting instead

of counterfactual estimation, and we report the counterfactual error computed with the test dataset
when the likelihood computed with the validation set is highest.

Training details We use Adam optimizer for both f and g with a lr = 0.001, β1 = 0.5, β2 =
0.999, and a batch size of is 500. We run all experiments for 50,000 iterations and compute validation
likelihood and test counterfactual error every 100 steps. f is randomly initialized. Regarding g, G
is initialized as an identity matrix and b is initialized as 0.

C.2 ADDITIONAL SIMULATED EXPERIMENT RESULTS

For better organization here, we split our experiment into three cases as introduced below. The
first two cases point to the question: given the fact that we use the correct sparsity, does sparse
canonical form model designing provide benefits in generating domain counterfactuals? The third
case investigates the more practical scenario where we don’t have any knowledge of the ground truth
sparsity and we explore what would be a better model design practice in this case.

Case 0: Exact match between dataset and models In this section, we investigate the perfor-
mance of ILD-Dense and ILD-Can while assuming that the ground truth intervention set only con-
tains the last few nodes and we choose the correct size of the intervention set.

To understand how the true intervention set affects the gap between ILD-Dense and ILD-Can, we
varied the size of the ground truth intervention. In Figure 4, we observe that the performance gap
tends to be largest when the true intervention set is the most sparse and the performance of ILD-
Can approaches to the performance of ILD-Dense as we increase the size. This makes sense as
ILD-Can is a subset of ILD-Dense and they are equivalent when I = {1, 2, 3, 4, 5, 6}. Additionally,
even when the ground truth model is relatively dense (when |I∗| is close to m), ILD-Can is still
better than ILD-Dense. Then we test how our algorithm scales with dimension when the number of
domains is different. In Figure 5, we notice that ILD-Can is significantly better than ILD-Dense in
9 out of 12 cases. In the next paragraphs, we further investigate the 3 cases that do not outperform
ILD-Dense to understand if it seems to be a theoretic or algorithmic/optimization problem.

We take a further investigation on the three cases where ILD-Can is close to or worse than ILD-
Dense. As shown in Figure 6, when the latent dimension is 10 and the number of domains is 2,
i.e. m = 10 and Nd = 2, the validation likelihood of ILD-Can is much lower than ILD-Dense
especially in comparison to that with m = 4, 6. We conjecture that the performance drop in terms
of counterfactual error could be a result of the worse data fitting, i.e., the model does not fit the
data well in terms of log-likelihood. As further evidence, we show the counterfactual error and
corresponding validation log-likelihood in Table 3. We observe that the log-likelihood of ILD-Dense
tends to be much lower when it has a larger counterfactual error than that of ILD-Dense. As for the
relatively worse performance of ILD-Can when m = 4, Nd = 2 and m = 4, Nd = 3, we report the
counterfactual error corresponding to each seed in Table 4 and Table 5 respectively. When the latent
dimension is 4 and the number of domains is 2, i.e., m = 4, Nd = 2, ILD-Can is better than ILD-
Dense with 9 out of 10 seeds. However, it fails significantly with seed 0 and thus leads to a larger
average of counterfactual error. When m = 4, Nd = 3, ILD-Can is better than ILD-Dense with 7
out of 10 seeds but ILD-Can is not significantly better than ILD-Dense in terms of average error. We
think this is more likely an optimization issue with lower dimensions, which is not explored by our
theory. We conjecture that larger models with smoother optimization landscapes will perform better
as we see in the imaged-based experiments. We also note that these models are not significantly
overparametrized and thus may not benefit from the traditional overparameterization that aids the
performance of deep learning in many cases. Further investigation into overparameterized models
may alleviate this algorithmic issue.

Despite some corner cases in which the optimization landscape may be difficult for these simple
models, all the results point to the same trend that the sparse constraint and canonical form motivated
by our theoretic derivation indeed aids in counterfactual performance—despite not explicitly training
for counterfactual performance.

Case 1: Correct |I| but mismatched intervention indices In this section, we include more re-
sults in the more practical scenario where we choose the correct number of the intervened nodes
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but they are not necessarily the last few nodes in the latent SCM. This experiment is related to our
canonical ILD theory, i.e., that there exists a canonical counterfactual model (where the intervened
nodes are the last ones) corresponding to any true non-canonical ILD that has the same sparsity. As
a starting point, we first illustrate the existence of a canonical model we try to find in Figure 10.

To investigate the effect of different indices of the intervened nodes, in Figure 7, we change the true
intervention set I∗ while keeping the number of intervened nodes |I∗| the same. We observe that
ILD-Can is consistently better than ILD-Dense regardless of which nodes are intervened except for
one case. When the number of domains is 2 and I∗ = {4, 5}, we find the gap is much smaller mainly
because ILD-Can fails to fit the observed distribution in one case as shown in Table 6. We then test
the effect of the number of domains with different latent dimensions in Figure 8. We observe that our
model performs consistently well with different numbers of domains and latent dimensions. In Fig-
ure 9, we visualize how ILD-Can leads to a lower counterfactual error in comparison to ILD-Dense.
As shown in Figure 9a and Figure 9b, ILD-Can clearly does better in counterfactual estimation. In
Figure 9c and Figure 9d, both of them have a relatively larger error. However, ILD-Can tends to find
a closer solution while ILD-Dense matches distribution more randomly. This could result from the
large search space of ILD-Dense and it can easily encodes a transformation such as rotation which
will not hurt distribution fitting but will lead to a significant counterfactual error.

Even though we do not know the specific nodes being intervened on, similar to Case 1, we show that
sparse constraint leads to better counterfactual estimation.

Case 2: Intervention set size mismatch In this section, we include more results in the most
difficult cases where we have no knowledge of the dataset. To investigate what will happen if there
is a mismatch of the number of intervened nodes between the true model and the approximation,
i.e., |I| ≠ |I∗|, we first change I∗ while keeping the model unchanged, i.e., I is fixed. As shown
in Figure 11, the performance gap between ILD-Can and ILD-Dense become smaller as the dataset
becomes less sparse while ILD-Can outperforms ILD-Dense in all cases. We then change I while
keeping I∗ unchanged. As shown in Figure 12, the performance of ILD-Can approaches to that
of ILD-Dense as we increase |I|. A somewhat surprising result is that ILD-Can has the lowest
counterfactual error when |I| = 1. However, as we check data fitting in Figure 13, we can tell
ILD-Can fails to fit the observed distribution in this case. We conjecture the main reason for this is
that our theory does not guarantee the existence of a distributionally and counterfactually equivalent
canonical model in those cases as we are using a model that is more sparse than the ground truth
dataset. Hence, we cannot rely on the counterfactual estimation when the observed distribution is
not fitted.

In summary, we observe that ILD-Can always tends to get a lower counterfactual error even though
we choose a wrong size of intervention set, i.e. |I| ̸= |I∗|. However, we also observe that in the
cases where our model is more sparse than ground truth, the data fitting performance of ILD-Can
would drop more significantly. We believe this could also be a good indicator of whether we find a
reasonable |I|.
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Figure 4: Case 0: Test counterfactual error with different I∗. To understand how the true interven-
tion set affects the gap between ILD-Dense and ILD-Can, we varied the size of the ground truth
intervention. It can be observed that the performance gap tends to be largest when the true interven-
tion set is the sparsest and the performance of ILD-Can approaches to the performance of ILD-Dense
as we increase the size.
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Figure 5: Case 0: Test counterfactual error with different dimension. We investigate how our algo-
rithm scales with dimension. We observe that ILD-Can is significantly better than ILD-Dense in 9
out of 12 cases, and we also notice that there 3 cases where their performance is close to that of each
other. Here the intervention set contains the last two nodes. For example, when m = 4, I = {3, 4},
and when m = 10, I = {9, 10}.
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Figure 6: Case 0: Lowest validation log likelihood (same as when we report the test counterfactual
error) when testing different dimension with Nd = 2. We observe that the likelihood gap between
ILD-Can and ILD-Dense is largest when m = 10.

Table 3: Case 0: Test counterfactual error and validation log likelihood for each seed when m =
10, Nd = 2. We observe that the log likelihood of ILD-Dense tends to be much lower when it has a
larger counterfactual error than that of ILD-Dense.

Seed 0 1 2 3 4 5 6 7 8 9

Counterfactual error ILD-Can 4.625 0.111 0.120 0.072 4.572 10.617 4.360 6.809 0.099 0.479
ILD-Dense 23.821 0.611 2.178 5.823 4.779 0.694 0.487 1.653 3.170 6.365

Log likelihood ILD-Can -6.873 -7.066 -5.672 -4.637 -0.572 -3.261 -6.062 -4.552 -1.367 -5.170
ILD-Dense -4.034 -6.434 -5.679 -4.197 0.711 -1.908 -4.180 -2.413 -1.483 -4.796

Table 4: Case 0: Test counterfactual error for each seed when m = 4, Nd = 2. ILD-Can is better
than ILD-Dense except when seed is 0. However, there is a significant failure for ILD-Can with seed
0.

Seed 0 1 2 3 4 5 6 7 8 9
ILD-Can 23.790 2.309 1.747 3.180 1.265 0.864 0.779 0.227 3.325 6.362

ILD-Dense 3.321 3.435 2.838 4.209 5.356 6.456 1.615 2.165 5.195 7.937

Table 5: Case 0: Test counterfactual error for each seed when m = 4, Nd = 3. ILD-Can is better
than ILD-Dense with seed 1, 2, 3, 5, 6, 7, 8.

Seed 0 1 2 3 4 5 6 7 8 9
ILD-Can 23.821 0.611 2.178 5.823 4.779 0.694 0.487 1.653 3.170 6.365

ILD-Dense 24.472 3.658 2.925 5.785 3.260 5.795 3.878 4.560 4.009 5.965
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Figure 7: Case 1: Test counterfactual error with different indices. Here we observe that ILD-Can
performs consistently better than ILD-Dense. When Nd = 2 and I = {4, 5}, the performance of
ILD-Can gets relatively higher because it fails significantly in one case as shown in Table 6.
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Figure 8: Case 1: Test counterfactual error with different number of domains when I = {1, 2}.
ILD-Can performs consistently well with different number of domains and latent dimension.

Table 6: Case 1: Test counterfactual error and validation log likelihood for each seed when Nd = 2
and I = {4, 5}. When seed is 5, the error of ILD-Can is much larger than that of ILD-Dense. In
the meanwhile, we notice that the log likelihood of ILD-Can is much lower than that of ILD-Dense
which indicates ILD-Can fails to fit the observed distribution well. When seed is 6, there is also a
gap in log likelihood. But both models perform very badly in terms of counterfactual error in this
case, and we conjecture this results from a very hard dataset.

Seed 0 1 2 3 4 5 6 7 8 9

Counterfactual error ILD-Can 1.395 0.862 1.338 0.193 7.557 12.422 21.762 3.879 2.352 0.479
ILD-Dense 8.610 5.979 4.134 2.983 9.795 4.719 24.232 5.327 8.497 8.500

Log likelihood ILD-Can -4.441 -5.737 -4.448 -5.504 -4.393 -3.376 -5.187 -5.073 -4.033 -4.102
ILD-Dense -4.170 -5.632 -4.316 -5.458 -4.174 -2.181 -4.052 -5.010 -5.270 -4.302
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(a) ILD-Can: Domain 1 → 2 (b) ILD-Dense: Domain 1 → 2

(c) ILD-Can: Domain 3 → 1 (d) ILD-Dense: Domain 3 → 1

Figure 9: Visualization of counterfactual error when m = 6, Nd = 3, |I| = 2, I∗ = {1, 2}. In each
plot, we find the first two principle components and project the data along that direction. We select
10 points, then find the corresponding ground truth counterfactual and estimated counterfactual. The
black arrow points from ground truth to estimated counterfactual.
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(a) Step 0: f (0) = fd (b) Step 0: g(0) = g

(c) Step 1: f (1) = f−1
1 ◦ fd (d) Step 1: g(1) = g ◦ f−1

(e) Step 2: f (2) = h1↔3 ◦ f−1
1 ◦ fd ◦ h1↔3 (f) Step 2: g(2) = g ◦ f−1 ◦ h1↔3

Figure 10: An illustration of the existence of a distributionally and counterfactually equivalent model
in canonical form when m = 4 and I = {2}. h1↔3 represents a swapping matrix. g(2) ◦ f (2) is
one of the caonical model we try to find. Note that the observed distributions in the right column are
always the same while the latent distributions on the left change. In particular, the canonical ILD
model on the bottom left has independent distributions for the first three variables and is only the
non-identity on the last node.
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Figure 11: Case 2: Test counterfactual error with different |I∗| and fixed |I| = 2. The performance
of ILD-Can gets worse as the dataset becomes less sparse. But it is still better than ILD-Dense. Note
that when |I| = 2 and I∗ = {6}, the ground truth canonical model is still a subset of the models we
search over.
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Figure 12: Case 2: Test counterfactual error with different |I| and fixed I∗. The performance of
ILD-Can approaches to that of ILD-Dense as we increase |I|.
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Figure 13: Case 2: Lowest validation log likelihood with different |I| and fixed I∗. When |I| = 1,
there is a more significant gap between ILD-Can and ILD-Dense with all Nd which indicates ILD-
Can might fail to fit the observed distribution.
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Figure 14: Simulated experiment results (latent dimension m = 6, number of domains Nd =
3) where observation function of both the model and ground truth g are implemented based on
RealNVP. The model g consists of 4 affine coupling layers and the ground truth g consists of 4
affine coupling layers. Results are averaged over 10 runs with different ground truth SCMs and the
error bar represents the standard error.

C.3 SIMULATED EXPERIMENT WITH MORE COMPLICATED STRUCTURES

As an extended study of our simulated experiment, we implement a more complicated observa-
tion function for the ground truth g∗. We build g∗ based on RealNVP (Dinh et al., 2016), where
g∗ is composed of four sequences of affine coupling layers followed by permutation. Follow-
ing the notation used in Appendix C.1, the ground truth ILD now takes the form g ◦ f(ϵ) =
Permutation(AffineCoupling(. . .Permutation(AffineCoupling(LeakyReLU (x) + b)) . . . )).

We first investigate the setting where our model g exactly matches the ground truth ILD, i.e. we use
the same number of affine coupling layers for the ground truth g∗ and our model g. In Figure 14a,
we observe that, similar to Figure 1a, ILD-Can outperforms ILD-Dense no matter which nodes are
intervened when |I| = |I∗|. We then test our model in the setting where |I| ≠ |I∗|, and as shown
in Figure 14b, the performance of ILD-Can drops as we |I| grows larger than |I∗|, but it is always
better than ILD-Dense. This trend is similar to what we observed in Figure 1b. We then test when
the ILD-Can architecture does not match ILD-Dense. To do this, we increased the number of affine
coupling layers in the model g to be 8, and in Figure 15a and Figure 15b, we observe similar trends
when comparing ILD-Dense and ILD-Can in all cases. This gives evidence that ILD-Can helps with
domain counterfactual estimation even when the structures of the model and ground truth do not
exactly match.

To further our investigation with mismatching models, we set g to be a VAE-based model composed
of three fully connected layers while keeping the ground truth the same as above. To keep the latent
dimension relatively comparable, we set the ground truth dimension to be 10 and the latent dimen-
sion of VAE to be 6. In Figure 16a and Figure 16b, we observe a similar trend as that with flow
model. In Figure 17, only when |I| < |I∗|, there is a significant difference in the pursuit of distri-
bution equivalence. This again supports our finding that the distribution equivalence performance
could be a good indicator of choosing |I| in practice.
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Figure 15: Simulated experiment results (latent dimension m = 6, number of domains Nd = 3)
where the observation function of both the model and ground truth g are implemented based on
RealNVP. The model g consists of 8 affine coupling layers and the ground truth g consists of 4
affine coupling layers. Results are averaged over 10 runs with different ground truth SCMs and the
error bar represents the standard error.
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Figure 16: Simulated experiment results (in the ground truth latent dimension m = 10 and in the
VAE model m = 6, number of domains Nd = 3) where the observation function of the ground truth
g consists of 4 affine coupling layers and the observation function of the model is a VAE composed
of three fully connected layers. Results are averaged over 10 runs with different ground truth SCMs
and the error bar represents the standard error.
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Figure 17: Lowest validation negative ELBO (in the ground truth latent dimension m = 10 and in
the VAE model m = 6, number of domains Nd = 3) without knowledge of |I∗| and I∗ = {8, 9}.
Results are averaged over 10 runs with different ground truth SCMs and the error bar represents the
standard error. The number here corresponds to the validation negative ELBO of the checkpoints
we use to report test counterfactual error.

40



Published as a conference paper at ICLR 2024

D IMAGE COUNTERFACTUAL EXPERIMENTS

D.1 DATASET DESCRIPTIONS

Rotated MNIST and FashionMNIST We split the MNIST trainset into 90% training data,
10% validation, and for testing we use the MNIST test set. Within each dataset, we create the
domain-specific data by replicating all samples and applying a fixed θd counterclockwise rota-
tion to within that domain. Specifically we generate data from 5 domains by applying rotation
of 0◦, 15◦, 30◦, 45◦, 60◦. For Rotated FashionMNIST, we use the same setup as the RMNIST setup,
except we used the Fashion MNIST (Xiao et al., 2017) dataset. This dataset is structured similar to
the MNIST dataset but is designed to require more complex modeling (Xiao et al., 2017).

3D Shapes This is a dataset of 3D shapes that are procedurally generated from 6 independent latent
factors: floor hue, wall hue, object hue, scale, shape, and orientation (Burgess and Kim, 2018). In
our experiment, we only choose samples with one fixed scale. We then split the four object shapes
into four separate domains and set the 10 object colors as the class label. The causal graph for
this dataset can be seen in Fig. 18c, and following this, we should expect to see only the object
shape change when the domain is changed. Similar to the RMNIST experiment, we use 90% of the
samples for training and 10% of the samples for validation.

Color Rotated MNIST (CRMNIST) This is an extension of the RMNIST dataset which intro-
duces a latent color variable whose parents are the latent domain-specific variable and latent class
variable. Similar to RMNIST, the latent domain variable corresponds to the rotation of the given
digit, except here d1 = 0◦ rotation, d2 = 90◦ rotation, and the class labels are restricted to digits
y ∈ {0, 1, 2}. For each sample, there is a 50% chance the color is determined by the combination of
class and digit label and a 50% chance the color is randomly chosen. For example if ϵ ∼ N (0, 1),

fzc(y, d, ϵ) =



red, if y = 0, d = 1, ϵ > 0

green, if y = 0, d = 2, ϵ > 0

blue, if y = 1, d = 1, ϵ > 0

. . .

Random(red, green, blue, yellow, cyan, pink), if ϵ < 0

The causal graph for this dataset can be seen in Fig. 18b. Similar to the RMNIST experiment, we
use 90% of the samples for training and 10% of the samples for validation.

Causal3DIdent Dataset This is a benchmark dataset from (Von Kügelgen et al., 2021) which
contains rendered images of realistic 3d objects on a colored background that contain hallmarks of
natural environments (e.g. shadows, different lighting conditions, etc.) which are generated via a
causal graph imposed over latent variables (the causal graph can be seen in Figure 18d). Similar to
(Von Kügelgen et al., 2021), we chose the shape of the 3D object to be the class label, and we defined
the background color as the domain label. In the original dataset, the range of the background hue
was [−π

2 , π
2 ] and to convert it to a binary domain variable, we binned the background hue values

into bins [−π
2 ,−0.8] and [π2 , 0.8]. These ranges were chosen to be distinct enough that we can easily

distinguish between the domains yet large enough to keep the majority of original samples in this
altered dataset. We split the 18k binned samples into 90% training data and 10% validation data for
our experiment.

D.2 METRICS

Inspired by the work in Monteiro et al. (2023), we define four metrics (Effectiveness, Preservation,
Composition, and Preservation) specifically for the image-based counterfactuals with latent SCMs.
The key idea is to check if the correct latent information is changed when generating domain coun-
terfactuals (e.g., domain-specific information is changed, while all else is preserved). Since we don’t
have direct access to the ground truth value of latent variables (nor their counterfactual values), we
use a domain classifier hdomain and class classifier hclass to measure if the intended change has taken
place.
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Effectiveness: The idea is to check if the domain-specific variables change as wish in the counter-
factual samples.

P (hdomain (x̂d→d′) = d′)

Preservation: This checks if the semantically meaningful content (i.e. the class information) that is
independent of the domain is left unchanged while the domain is changed.

P (hclass (x̂d→d′) = y)

Composition: We check if our model is invertible on the image manifold, thus satisfying the pseu-
doinvertibility criteria.

P (hclass (x̂d→d) = y)

Reversibility: This metric checks if our model is cycle-consistent, or in other words, checking if the
mapping between the observation and the counterfactual is deterministic.

P (hclass (x̂d→d′→d) = y)

For the domain classifier hdomain and class classifier hclass , we used pretrained ResNet18 models (He
et al., 2016) that were fine-tuned by classifying clean samples (i.e. not counterfactuals) for 25 epochs
with the Adam optimizer, a learning rate of 1e-3, and a random data augmentation with probabilities:
50%: no augmentation, 17%: sharpness adjustment (factor=2), 17%: gaussian blur (kernel size=3),
17%: gaussian blur (kernel size=5). A reminder that for MNIST/FMNIST/ColorRotated MNIST,
the domain is rotation and the label is the original label of images (digits/type of clothes), for 3D
shapes, the domain is object shape and the label is object color, and for Causal3DIdent, the domain
is hue of the background and the label is the object shape.

D.3 CAUSAL INTERPRETATION OF OUR EXPERIMENTS

In this section, we introduce the causal interpretation of our experiments. To evaluate the model’s
capability of generating good domain counterfactuals, for each dataset, we have one domain latent
variable and choose one class latent variable that are generated independently of the domain latent
variable. As an example, for RMNIST, we choose rotation as the domain latent variable and digit
class as the class latent variable. As indicated in Figure 18a, for the counterfactual query “Given
we observed an image in this domain, what would have happened if it was generated by a different
domain?”, we should expect the image to be rotated while the class remain unchanged. Specifically,
we want to check

P(ZrotD=d′ |X = x,D = d) ̸= P(ZrotD=d′′ |X = x,D = d) ∀d, d′, d′′ ∈ D, d′ ̸= d′′

P(ZyD=d′ |X = x,D = d) = P(ZyD=d′′ |X = x,D = d) ∀ d, d′, d′′ ∈ D

where D is the set of all domains. However, in practice we cannot directly get the value of those
latent variables. This motivates our choice of evaluation metric of training a domain classifier and
class classifier to detect if the domain latent variable is changed and class latent variable (which we
call class) is preserved in the counterfactuals.

For RMNIST/RFMNIST, we choose rotation as the domain variable and digit/clothes class as the
class variable. For 3D Shapes, we choose object shape as the domain variable and hue of objects
as the class variable. For CRMNIST, we choose rotation as the domain variable and digit class as
the class variable. For CausalIdent, we choose the hue of the background as the domain variable
and object class as the class variable. In the case of 3D Shapes, we can technically choose anything
other than object shape as the class variable. However, for simplicity, we choose one of them. In the
case of CRMNIST, we cannot choose Zcolor because it will change after we change the domain. In
the case of Causal3DIdent, we can choose anything but the hue of the object, though we figure Zy

is easier to check and can reduce error caused by classifier proxies.

We also want to note that other than observational image, access to domain information is also
important for answering this query. For example, in the case of RMNSIT, given an image that looks
like digit “9”, for the question “what would have happened if it is in domain 90◦”, the fact that the
current digit is in domain 0◦ (which means it is indeed digit “9”) or the current digit is in domain
180◦ domain 0◦ (which means it is digit “6”) would lead to different answer.
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Figure 18: (a) RMNIST/RFMNIST. Here Zrot represents the rotation of the image, Zy repre-
sents the original RMNIST/RFMNIST class, Zres contains other detail information such as writ-
ing style, which is controlled by how MNIST dataset was originally created. (b) Zc represents
the color of the digit while others are the same as (a). (c) 3D Shapes. Zshape represents the
object shape. Zhue obj, Zhue floor, Zhue wall represent the hue of the object, floor and wall respec-
tively. Zorient represents the orientation of the object. (d) Causal3DIdent. Zy represents the object
class. Zhue obj, Zhue bg, Zhue spl represent the hue of the object, background and spotlight respectively.
Zpos obj, Zpos spl represent the position of the object and spotlight respectively. Zrot obj represents the
rotation of the object. X is not shown in the graph but all nodes should point to it.

D.4 EXPERIMENT DETAILS

Model setup The relaxation to pseudo invertibility allows us to modify the ILD models to fit a
VAE (Kingma and Welling, 2013) structure. The overall VAE structure can be seen in Fig. 19,
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Figure 19: The model structure for the pseudo-invertible ILD model used in the high-dimensional
experiments. The overall structure matches that of a VAE where the encoder (left) first projects to
the latent space via g+ (the pseudoinverse of the observation function g). This latent encoding is
then passed to two domain-specific autoregressive models f+

d,µ, f
+
d,σ which produce the mean and

variance parameters (respectively) of the Gaussian posterior distribution. During training, the ex-
ogenous noise variable ϵ is then found via sampling from the posterior distribution (ϵ ∼ N (µd, σd))
which can be viewed as a stochastic SCM, however, during inference the exogenous variable is
set to the mean of the latent posterior distribution (i.e. ϵ := µd) to reduce noise when producing
counterfactuals. The decoder (right) follows the usual VAE decoder structure, with the exception
that the initial linear layer is an autoregressive function of the ϵ input. The structure of all the f
models is determined by the type of ILD model used (e.g., dense, canonical, or identity canonical)
and matches that seen in Fig. 3.

where the variational encoder first projects to the latent space via g+ to produce the latent encoding
z, which is then passed to two domain-specific autoregressive models f+

d,µ, f
+
d,σ which produce the

mean and variance parameters (respectively) of the Gaussian posterior distribution. The decoder of
the VAE follows the structure typical ILD structure: g ◦ fd. Here, g+ can be viewed as the pseu-
doinverse of the observation function g and fd can be viewed as a pseudoinverse of f+

d,µ During
training, the exogenous noise variable ϵ is then found via sampling from the posterior distribution
(ϵ ∼ N (µd, σd)) which can be viewed as a stochastic SCM, however, to reduce noise when pro-
ducing counterfactuals, when performing inference the exogenous variable is set to the mean of the
latent posterior distribution (i.e. ϵ = µd). In all experiments, g and g+ follow the β-VAE archi-
tecture seen in Higgins et al. (2017) (with the exception that in the Causal3DIdent experiment, g
and g+ follow the base VQ-VAE architecture (Van Den Oord et al., 2017) without the quantizer),
and the structure of the f models is determined by the type of ILD model used (e.g., independent,
dense, or relaxed canonical) and matches that seen in the simulated experiments and visualized in
Fig. 3. For the f models which enforce sparsity (i.e. ILD-Can), we use a sparsity level, |I|, of
5. We also introduce an additional baseline, ILD-Independent, which has an architecture similar to
the ILD-Dense baseline, with the exception that the g and g+ functions are no longer shared across
domains. The ILD-Independent baseline can be seen as training an independent β-VAE for each
domain, where each β-VAE an autoregressive fdense model as its last (first) layer for the encoder
(decoder), respectively. For experiment with RMNSIT, RFMNIST, 3D Shapes and Causal3DIdent,
we choose m = 20 and for CRMNIST, we choose m = 10.

Training We train each ILD model for 300K, 300K, 300K, 500K, and 200K steps for RM-
NIST, RFMNIST, CRMNIST, 3D Shapes and Causal3DIdent respectively using the Adam optimizer
(Kingma and Ba, 2014) with β1 = 0.5, β2 = 0.999, and a batch size of 1024. The learning rate
for g and g+ is 10−4, and all f models use 10−3. During training, we calculate two loss terms:
a reconstruction loss ℓrecon = |x − x̂|22 where x̂ is the reconstructed image of x and the ℓalign
alignment loss which measures the KL-divergence between the posterior distribution Qd(ϵ|x) and
the prior P (ϵ). Following the β-VAE loss calculation in Higgins et al. (2017), we apply a βKLD

upscaling to the alignment loss such that ℓtotal = ℓrecon + βKLD ∗ ℓalign. For all MNIST-like
experiments, we use βKLD = 1000, which we found leads to the lowest counterfactual error on the
validation datasets across all models; this also matches the βKLD used in Burgess et al. (2018), and
for 3DShape and Causal3DIdent we found βKLD = 10 leads to the lowest counterfactual error.

D.5 ADDITIONAL RESULTS

The quantitative results in Table 7, Table 8, and Table 9 match the visual result seen in Figure 20,
Figure 21, Figure 22, where almost across all datasets the ILD-Can model seems to find a proper
latent causal structure that can disentangle the domain information from the class information –
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RMNIST RFMNIST
Comp. Rev. Eff. Pre. Comp. Rev. Eff. Pre.

ILD-Independent 99.79± 0.44 32.56± 0.20 94.97± 4.71 32.49± 0.22 69.75± 1.86 22.36± 0.76 99.62± 0.37 22.54± 1.19
ILD-Dense 99.76± 0.28 32.60± 0.21 80.92± 2.21 32.64± 0.23 71.20± 3.39 24.23± 2.51 98.51± 0.93 23.98± 2.18

ILD-Can 99.85± 0.27 79.84± 17.54 96.72± 1.89 64.99± 9.83 71.79± 4.55 70.44± 3.54 98.82± 0.73 62.15± 6.65

Table 7: Quantitative result with RMNIST and RFMNIST, where higher is better. They are both
averaged over 20 runs.

CRMNIST 3D Shapes
Comp. Rev. Eff. Pre. Comp. Rev. Eff. Pre.

ILD-Independent 87.24± 11.98 59.88± 6.46 94.65± 15.34 60.39± 6.95 99.79± 0.44 32.56± 0.20 94.97± 4.71 32.49± 0.22
ILD-Dense 88.18± 17.84 62.29± 10.51 92.72± 15.52 59.60± 8.92 99.76± 0.28 32.60± 0.21 80.92± 2.21 32.64± 0.23

ILD-Can 92.10± 13.24 85.74± 13.33 94.48± 10.71 72.95± 12.42 99.85± 0.27 79.84± 17.54 96.72± 1.89 64.99± 9.83

Table 8: Quantitative result with CRMNIST and 3D Shapes, where higher is better. CRMNIST are
averaged over 20 runs and 3D Shapes are averaged over 5 runs.

unlike the baseline models which seem to commonly change the class during counterfactual. We
again note that the training process for all of the models only include the typical VAE invertibility
loss (i.e. reconstruction loss) and latent alignment loss (i.e. the KL-divergence between the latent
prior and posterior distributions) and do not specifically include any counterfactual training. Thus,
we conjecture the enforcing of sparsity in the canonical models correctly biased these models in a
manner that preserved important non-domain-specific information when performing counterfactuals.
In Figure 25, Figure 26, Figure 27 and Figure 28, we track the change of our metrics w.r.t |I| (we did
not do this investigation for Causal3DIdent because that the training of that model takes much longer
time). We observe that as we increase |I|, the reversibility and preservation tends to decrease while
the effectiveness tends to increase. We conjecture that this is because as |I| increases, there is less
constraint on the original optimization problem (fitting the observational distribution) which could
potentially increase the performance. However, it leads to lower chance in finding a proper latent
causal structure for domain counterfactual generation, which results in the decrease in preservation.
ILD-Dense can be regarded as an extreme case of this. In summary, we validate the practicality of
our model design in the pseudoinvertible setting with extensive study on 5 image-based datasets.

Ours: ILD-CanBaseline: ILD-Independent

𝑑! 𝑑" 𝑑# 𝑑$ 𝑑%
𝑑!

𝑑! → 𝑑"

Baseline: ILD-Dense

𝑑! 𝑑" 𝑑# 𝑑$ 𝑑% 𝑑! 𝑑" 𝑑# 𝑑$ 𝑑%

𝑑! → 𝑑#

𝑑! → 𝑑$

𝑑! → 𝑑%

𝑑! → 𝑑&

Figure 20: Counterfactual plots for the three relaxed ILD models, where across the columns we
show examples of two clothing classes (e.g., “handbag” or “boot”) from each domain and each row
corresponds to the counterfactual to a different domain. It can be seen that while all models correctly
recover the rotation for each domain counterfactual, the baseline models usually change the class
label during counterfactual, while ILD-Can tends to preserve the clothing label, despite not being
privy to any label information during training.

Causal3DIdent
Comp. Rev. Eff. Pre.

ILD-Independent 88.15± 5.0 51.43±2.7 91.05± 17.7 51.94±3.0
ILD-Dense 83.59± 5.4 49.17±2.5 92.17± 13.6 48.83±3.0
ILD-Can 86.00± 5.6 79.73± 6.6 84.15± 23.5 79.73± 8.6

Table 9: Quantitative result with Causal3DIdent, where higher is better. Causal3DIdent are averaged
over 10 runs.
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Baseline: ILD-lnde endent Baseline: /LO-Dense Ours: /LO-Can 

Figure 21: Counterfactual plots for the three ILD models, where across the columns we show exam-
ples of two classes from each domain and each row corresponds to the counterfactual to a different
RMNIST domain. It can be seen that while all four models correctly recover the rotation for each
domain counterfactual, the baseline models usually change the digit label during counterfactual,
while ILD-Can tends to preserve the digit label, despite not being privy to any label information
during training.

Baseline: ILD-lnde endent Baseline: /LO-Dense Ours: /LO-Can 

Figure 22: Counterfactual plots for the three ILD models, where across the columns we show exam-
ples of two classes from each domain and each row corresponds to the counterfactual to a different
object shape domain.
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Figure 23: Counterfactual plots for the three ILD models, where across the columns we show exam-
ples of two classes from each domain and each row corresponds to the counterfactual to a different
rotation domain.
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Figure 24: Counterfactual plots for the three ILD models, where across the columns we show exam-
ples of two classes from each domain and each row corresponds to the counterfactual to a different
background hue domain.
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Figure 25: Change of metrics w.r.t |I| for RMNIST. Results are with 20 runs and we remove outliers
when plotting.
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Figure 26: Change of metrics w.r.t |I| for RFMNIST. Results are with 20 runs and we remove
outliers when plotting.
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Figure 27: Change of metrics w.r.t |I| for CRMNIST. Results are with 20 runs and we remove
outliers when plotting.
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Figure 28: Change of metrics w.r.t |I| for 3D Shapes. Results are with 5 runs and we remove outliers
when plotting.
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E LIMITATIONS

A practical problem we noticed in our simulated experiments is that sometimes the sparse model is
harder to fit, i.e., its log-likelihood is worse than the dense model, even if we only consider the cases
where the true model is in the model class being optimized (e.g., the sparsity of the model is at least
as large as the sparsity of the ground truth model). We conjecture that this results from a harder
loss landscape as we add more constraints to the model. We believe a more careful investigation
of the model and algorithm could be an interesting and important future work. For example, if we
use a more significantly overparameterized model, there are chances that the training of ILD-Can
would become easier. Additionally, the addition of further loss terms could aid in the training of
these models, such as, assuming access to some ground truth domain counterfactuals (e.g., the same
patient received imaging at multiple hospitals) could be used to penalize our model when it changes
latent variables which do not change under the ground truth counterfactuals.

In our experiments, we aimed to test the effects of breaking some of our assumptions (e.g., “what
if our model is not strictly invertible”), and while our models still performed better in these cases,
there are likely cases where the breaking of our assumptions can cause our models to fail to produce
faithful counterfactuals. For example, in a case where there is a very large difference between
domains and there is no sparsity in the domain shifts, then it is likely that the constraints constituted
by our sparsity assumption will make the sparse models struggle to fit the observed distributions.

F EXPANDED RELATED WORK

Causal Representation Learning Causal Representation Learning (CRL) is a rapidly developing
field that aims to discover the underlying causal mechanisms that drive observed patterns in data and
learn representations of data that are causally informative (Schölkopf et al., 2021). This is in contrast
to traditional representation learning, which does not consider the causal relationships between vari-
ables. An extensive review can be found in Schölkopf et al. (2021). As this is a highly difficult task,
most works make assumptions on the problem structure, such as access to atomic interventions, the
graph structure (e.g., pure children assumptions), or model structure (e.g., linearity) (Xie et al., 2023;
Yang et al., 2022; Huang et al., 2022; Liu et al., 2022b; Xie et al., 2022; Chen et al., 2022; Squires
et al., 2023; Zhang et al., 2023; Sturma et al., 2023; Jiang and Aragam, 2023; Liu et al., 2022a; Varici
et al., 2023). Other works such as (Brehmer et al., 2022; Ahuja et al., 2022; Von Kügelgen et al.,
2021) assume a weakly-supervised setting where one can train on counterfactual pairs (x, x̃) during
training. Lachapelle et al. (2023) address the identifiablity of a disentangled representation leverag-
ing multiple sparse task-specific linear predictors. In our work, we aim to maximize the practicality
of our assumptions while still maintaining our theoretical goal of equivalent domain counterfactuals
(as seen in Table 1).

Counterfactual Generation Counterfactual examples are answers to hypothetical queries such as
“What would the outcome have been if we were in setting B instead of A?”. A line of works focus
on the identifiability of counterfactual queries (Nasr-Esfahany et al., 2023; Shah et al., 2022). For
example, given knowledge of the ground-truth causal structure, Nasr-Esfahany et al. (2023) are able
to recover the structural causal models up to equivalence. However, they do not consider the latent
causal setting and they assume some prior knowledge of underlying causal structures such as the
backdoor criterion. There is a weaker form of counterfactual generation which does not use causal
reasoning but instead uses generative models to generate counterfactuals (Nemirovsky et al., 2022;
Zhu et al., 2017; Zhou et al., 2022; Choi et al., 2018; Zhou et al., 2023; Kulinski and Inouye, 2023).
These typically involve training a generative model which has a meaningful latent representation
that can be intervened on to guide a counterfactual generation (Ilse et al., 2020). As these works do
not directly incorporate causal learning in their frameworks, we consider them out of scope for this
paper. Another branch of works try to estimate causal effect without trying to learn the underlying
causal structure, which typically assume all variables are observable(Louizos et al., 2017).

Causal Discovery and nonlinear ICA Causal discovery focus on identifying the causal relation-
ships from observational data. Peters et al. (2016); Heinze-Deml et al. (2018) achieve this via the
invariant mechanism between certain variable and and its direct causes. Most of these works do
not assume the setting of latent variables. Similar to CRL, nonlinear ICA typically aims at finding

49



Published as a conference paper at ICLR 2024

the mixing function. For example, some works try to identify it with access to auxiliary variables
(Hyvarinen et al., 2019; Khemakhem et al., 2020), by adding constraint on the mixing functions
(Gresele et al., 2021; Moran et al., 2021) or under specific scenario such as bivariate setting (Wu and
Fukumizu, 2020). Zheng et al. (2022) relax the constraint of auxiliary variable and impose structure
sparsity to achieve identifiability result, where structure sparsity is less general than the mechanism
sparsity discussed in our work. In contrast with CRL, most nonlinear ICA works do not consider
latent variables that are causally related.
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