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Abstract

Prompting large language models (LLMs) has gained substantial popularity as
pre-trained LLMs are capable of performing downstream tasks without requiring
large quantities of labelled data [11]. It is, therefore, natural that prompting is
also used to evaluate biases exhibited by these models. However, achieving good
task-specific performance often requires manual prompt optimization. In this paper,
we explore the use of soft-prompt tuning to quantify the biases of LLMs such
as OPT[26] and LLaMA [24]. These models are trained on real-world data with
potential implicit biases toward certain groups. Since LLMs are increasingly used
across many industries and applications, it is crucial to accurately and efficiently
identify such biases and their practical implications.
In this paper, we use soft-prompt tuning to evaluate model bias across several
sensitive attributes through the lens of group fairness (bias). In addition to improved
task performance, using soft-prompt tuning provides the advantage of avoiding
potential injection of human bias through manually designed prompts. Probing
with prompt-tuning reveals important bias patterns, including disparities across age
and sexuality. We open-source the pipeline and encourage researchers to adapt this
work to their use cases.1

1 Introduction

Despite widespread and successful utilization, fine-tuned language models (LMs) have several
drawbacks. These include requiring significant compute resources for training, large quantities of
labelled data, and separate training and storage for each downstream task [8, 25]. Language model
prompting addresses some of these downsides, but the task of designing prompts to induce optimal
performance for a given downstream application is challenging [13, 18]. Significant progress has been
made in automatic prompt engineering methods. One such method for automatic prompt optimization
is soft-prompt tuning, a parameter-efficient fine-tuning (PEFT) method that trains a small set of
prompt-token embeddings to be provided along with the standard natural language input. For various
LLMs, soft-prompt tuning has been shown to match, or nearly match, fine-tuning performance for a
wide range of tasks including classification, summarization, and question-answering [9, 12].

On the other hand, the existence of potentially harmful biases exhibited by popular LMs is well-
documented [6, 23, 1, 15] and quite common. Bias quantification has gained substantial attention
from the research community recently [16, 20]. As LLM applications continue to rapidly expand,

1https://github.com/VectorInstitute/JAXPromptTuning/tree/main

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/VectorInstitute/JAXPromptTuning/tree/main


developing comprehensive analytical frameworks to measure the learned or inherited social biases of
such models is imperative.

In this paper, we evaluate the utility of soft-prompt tuning for bias evaluation of LLMs, including OPT
[26] and LLaMA language models [24]. More specifically, the approach presented here leverages
optimized soft-prompts to condition models toward the completion of sentiment analysis tasks on
which fairness (bias) metrics are subsequently measured. In addition to the method’s efficiency
in terms of tuning fewer parameters, another advantage of soft-prompt tuning is that it does not
require manual prompt design- a potential source of human bias. The experiments demonstrate that
prompt-tuning enables fine-grained analysis and an overall understanding of an LLM’s bias with
respect to sensitive attributes and across protected groups. This paper’s contributions are as follows:

• To our knowledge, this is the first application of soft-prompt tuning for fairness evaluation.
We demonstrate that the approach constitutes an effective and efficient approach for such
evaluation.

• We show that LLMs such as OPT and LLaMA exhibit measurable biases across protected
groups within the sensitive attributes of age, sexuality, and disability. Furthermore, such
biases are generally consistent across model size, type, and prompt-tuning dataset.

• The bias metrics of positive and negative false-positive rate gaps are explored here. However,
the approach is compatible with other fairness metrics, including the comprehensive fairness
suite proposed in [4].

2 Related work

Research on soft-prompt tuning and PEFT methods for LLMs has expanded quickly [9, 10, 12]. Such
methods focus on reducing the overhead associated with adapting pre-trained LLMs to downstream
tasks. These methods are well-studied with respect to their competitive, and sometimes improved, per-
formance over full-model fine-tuning. However, existing work does not consider the bias implications
or the utility of such approaches in bias evaluation.

On the other hand, many researchers have focused on identifying, quantifying, and mitigating bias
in natural-language processing (NLP) [5, 7]. With respect to LLMs, some narrow bias evaluation
baselines associated with models like GPT have been established [3, 26]. Alternatively, a limited
number of studies aim to design tools for assessing bias in LLMs. For example, the Bias Benchmark
for QA evaluation task [17], aims to create a framework for evaluating social biases in LMs of any
size along a large swathe of sensitive attributes. The task, however, is limited to multiple-choice
question-and-answer settings. Big-Bench [22] introduces different frameworks for evaluating LLMs,
but a limited number bias evaluation methods, metrics, and aspects are covered. Critically, each case
above has thus far been limited to manually designed prompts as the probing mechanism for LLMs.
Our work addresses this gap and provides an important tool for the reproducible evaluation of bias in
LLMs.

3 Methodology

In this paper, we leverage continuous prompt optimization as an efficient means of quantifying
bias present in LLMs. Prompting is the process of augmenting input text with carefully crafted
phrases or templates to help a pre-trained LM accomplish a downstream task. When combined
with well-formed prompts, LLMs accurately perform many tasks without the need for fine-tuning
[3]. However, the composition of a prompt often has a material impact on the LLMs performance
[13]. Recently, considerable research has produced effective approaches for automated prompt
optimization, especially in the form of prompting tuning, which applies deep learning optimizers to
the continuous vector space of token embeddings. Several works have shown that prompt tuning, in
its various forms, surpasses manual and discrete optimization in terms of performance, and, in some
cases, even outperforms full-model fine-tuning. Moreover, the approach is also hundreds or thousands
of times more parameter efficient than full-model fine-tuning, while simultaneously exhibiting better
data efficiency [9, 12, 10].

Bias in NLP is typically quantified using sensitive attributes [4] such as gender, age, or sexuality.
Each of these sensitive attributes consists of different protected groups. For example, the sensitive
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Figure 1: Illustration of the prompt-tuning approach used for parameter efficient fine-tuning of the
models. The prompt tokens, depicted with orange hatching, are initialized to the embedding of
the beginning-of-sequence token. These embeddings are subsequently perturbed by adding learned
prompt embeddings. All weights are frozen except for the prompt embedding layer.

attribute age might consist of the protected groups {adult, young, old}. See Appendix A for additional
details. Herein, we focus on group fairness, which evaluates whether a model’s performance varies
significantly and consistently across different protected groups and if that bias is harmful for specific
groups. While we focus on group fairness, the methodology generalizes to other notions of fairness,
such as counterfactual fairness. From the bias perspective, continuous prompt optimization provides
an excellent potential assessment tool, but it has not been studied in previous literature. In this
paper, the prompt-tuning approach in [9] is applied to efficiently train LLMs to perform two ternary
sentiment analysis tasks as a means of measuring extrinsic bias.

3.1 Experimental setup

As discussed above, we use soft-prompt tuning to evaluate bias through the lens of group fairness.
For a metric, M , and a set of examples belonging to protected group, X , group fairness is defined as

dM (X) = M(X)−M.

The function dM (X) measures the M -gap for a particular group by comparing the metric value
restricted to samples from that group, M(X), with the mean metric value observed for each protected
group within a sensitive attribute, M . In the analysis below, M is the false-positive rate (FPR).
Therefore, we measure FPR Gaps in model performance.

Below, we specifically consider Positive and Negative FPR Gaps in the context of ternary sentiment
classification. Positive FPR, for instance, is defined as the rate at which data points labelled as
negative or neutral sentiment are erroneously classified as positive by a prompt-tuned model. Thus, a
large Positive FPR Gap greater than zero indicates that the classifier favours a group by classifying
negative or neutral examples belonging to that group as positive at a higher rate compared with other
groups. On the other hand, a large and positive Negative FPR Gap suggests unfavourable treatment
by the model, as it classifies positive and neutral examples belonging to a particular group as negative
at a higher rate, compared with others. The sensitive attributes analyzed below, and their respective
protected groups, are

• Age: {adult, old, young}
• Sexuality: {asexual, bisexual, heterosexual, homosexual, other}

3.2 Models and Datasets

To quantify bias after soft-prompt tuning a model, the comprehensive templates and resulting test
dataset designed by [4] is used. Refer to the appendix C for an illustrative example of such templates
for select sensitive attributes. The use of such synthetic datasets for bias evaluation is common
practice [6]. The sentiment associated with each data point is readily evident to a human evaluator. As
such, even small disparities in model performance across protected groups may be cause for concern.
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Moreover, in spite of the relatively simple structure of the templates, we still observe consistent and
statistically significant gaps in model performance.

In the experiments below, we examine the effect that different prompt-tuning datasets, model types,
and model sizes have on the measured biases. We tune prompts on two distinct sentiment datasets,
SemEval-2018 Task 1-Valence Ordinal Classification [19] (SemEval) and Stanford Sentiment Tree-
bank Five-way [21] (SST-5), mapping both to a 3-way classification task as described in Appendix D.
For models, we evaluate the biases of the family of OPT and LLaMA models. Models with parameter
sizes of 125M, 350M, 1.3B, 2.7B, 6.7B, and 13B for OPT and 6.7B and 13B for LLaMA are explored.
These models are chosen because they are open-source, come in a wide range of sizes, and share
architectural similarities with many other models, including closed models such as GPT-3.

3.3 Soft-prompt Tuning

Figure 1 presents an overview of the soft-prompt tuning pipeline. We obtain logits representing
each class directly from output of the word projection layer of the pre-trained transformer. To do
so, we select the vector at the last non-padding position of the projection output, representing the
end-of-sequence token. The dimensionality of this real-valued vector is equal to the vocabulary
size of the pretrained language model. From this vector, we take the components denoting tokens
"positive", "neutral", and "negative" as the logits for the three sentiment categories. We optimized
embeddings of the prompt tokens with a cross-entropy objective on these logits.

The weights of the underlying LM are frozen throughout the training process. Thus, producing
task-specific representations does not explicitly modify biases inherited from the LM pre-training
data. We hypothesize that when compared with full-model fine-tuning, this approach ensures a
more accurate assessment of the bias innate to the LM. On the other hand, the optimized prompt
embeddings help ensure that the model performs the downstream task as well as a fully fine-tuned
model, which naturally reflects the settings of practical deployment.

Refer to Appendix B for additional details related to the prompt-tuning implementation, the hyperpa-
rameter sweep, and the final hyperparameters choices.

4 Results

In this section, results are presented for different sensitive attributes by showing the FPR gap for the
various protected groups when using the SemEval and SST-5 datasets for prompt tuning. Visualization
of the gaps and confidence intervals across various OPT and LLaMA variants can be found in appendix
(E).

For each group, Table 1 displays the net number of times the metric gaps were below or above zero, at
95% confidence. That is, for each significant gap below zero we subtract one, while one is added for
statistically-significant gaps above zero. Values colored in red indicate the direction of the significant
gaps that are possibly harmful, while those in green denote potentially favourable treatment by the
models, though this depends on how model results are used in practice.

For the asexual, homosexual, and old protected groups, the experimental results strongly indicate
consistent potential harmful bias in the Positive FPR and Negative FPR Gaps across both datasets. On
the other hand, the protected groups of bisexual and other consistently benefit from model mistakes at
elevated rates that are statistically significant in both gap measures for all experimental configurations
considered in this paper.

Overall, in the experiments above, the observed gaps in FPR for both positive and negative classes
are consistent across model type, model size, and datasets- showing that prompt-tuning, as a fairness
probe, is effective in revealing consistent inherited bias. Moreover, a number of protected groups
experience statistically significant FPR gaps across all or nearly all experimental setups.

5 Conclusions and Discussion

In this paper, we have demonstrated the benefits of leveraging soft-prompt tuning as a mechanism for
bias quantification in LLMs. The method offers several advantages over manual prompt optimization
including removing the need for prompt design, better task performance, and limited injection of
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Metric Positive FPR Gap Negative FPR Gap
Group\Dataset SemEval SST-5 SemEval SST-5

Asexual -7 -8 4 1
Bisexual 1 5 -5 -7

Heterosexual -3 -3 -2 0
Homosexual 2 5 7 5

Other 3 0 -6 -6
Adult 1 0 -6 -2
Old -3 -2 2 -1

Young 0 1 2 3

Table 1: Net number of models (out of 8) where the gaps for each group differ from zero at the 95%
confidence level. Negative values imply the gap is consistently below zero. Red numbers indicate
that the direction of the gaps are harmful. The top five rows correspond to the sensitive attribute
sexuality, while the bottom three are associated with age.

external bias. Moreover, it is faster and more efficient than full-model fine-tuning, with equivalent or
better performance. Thus, uncovered biases more accurately reflect real-word deployment.

While we have explored the utility of a state-of-the-art soft-prompt tuning technique, the chosen
downstream task is, in itself, challenging yet impactful. The results show that, for example, within
the sensitive attributes of sexuality and age, protected groups under the terms asexual, homosexual,
and old receive unfavourable treatment, compared with other groups, consistently across datasets and
models. However, the following points should be also considered for a complete analysis.

5.1 Template Design

We use the fairness probing templates of [4]. They provide an important baseline for the experiments,
but consist of simple sentences, which are often easily understood by the LLMs. In spite of this,
consistent and significant disparities are observed for certain groups. However, this may be the cause
of less conclusive results for some groups. In future work, we aim to perform experiments using
more complicated templates.

5.2 Types of Biases

Many papers [4] rely on absolute values of the metric disparities to simply reveal the presence
and potential magnitude of bias. We use a directional bias measure to identify the favoured and
unfavoured groups, providing more precise bias analysis of the LLMs. However, a group that is
flagged as a favourable group may be flagged as unfavourable by using a different bias quantification
metric or considering a different downstream task. Thus, different bias quantification formulations
[20] might not be concurrently achievable.

5.3 Impact of Soft-prompt Tuning on Bias

Fairness evaluation through prompting, and prompt tuning in particular, offers several advantages
over traditional fine-tuning approaches. Foremost among them is that it is significantly more resource
efficient while producing comparable downstream task performance [9] in large models. In addition,
continuous prompt tuning minimizes the potential influence of biases existing in the supervised
training tasks by restricting the number of learned parameters. Finally, it removes the human element
of prompt design, eliminating another avenue for bias introduction outside of the LLM itself. It
should be noted that we performed soft-prompt tuning on standard datasets that were generated from
tweets (SemEval) and movie reviews (SST-5). The quality of these datasets has a strong impact on the
soft-prompts produced. Exploring how a better quality dataset (if available) impacts the performance
of the downstream task and the biases is of interest.

In addition to the directions mentioned above, we plan to extend our work by including a broader range
of LMs, expanding to more sensitive attributes, considering more bias metrics, and incorporating
other downstream tasks. This is an effort to make the use of LLMs safer and more ethical in real-world
deployment.
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Appendix

A Fairness Vocabulary

Sensitive attribute: An attribute within which social biases may be exhibited. Examples include age,
disability, gender, nationality, race, religion, and sexuality.
Protected group: Each sensitive attribute consists of different protected groups over which model
behaviour should remain consistent.

B Implementation Details

B.1 Prompt-Tuning for Sentiment Analysis

The soft-prompting approach adds a series of tokens with trainable embeddings, T = {t1, t2, . . . , tn},
to the model input text X . Given a target token or set of tokens Y , the objective is to maximize
the log-likelihood of the generation probability of Y conditioned on the tokens, T , and input text,
X , expressed as P (Y |T ;X). For the sentiment tasks examined here, the target tokens are positive,
negative, and neutral. An illustration of the prompt-tuning procedure is shown in Figure 1.

As shown in Figure 1, beginning-of-sequence tokens are used to provide initial embeddings for the
continuous prompts. Each embedding is then additively perturbed by the trainable prompt embedding
layer before flowing through the LM as usual, along with the remaining unmodified input-text tokens.
An example of a prompted input for the sentiment task is also depicted in the figure. Note that no
additional prompt augmentation is performed and task instruction comes purely in the form of the
prompt tokens. Based on hyperparameter search results, the number of prompt tokens is fixed at
8 for all experiments. Each prompt token is a dense vector with the same dimensionality as the
embedding-space of the corresponding LM, which ranges from 1024 to 5120, depending on model
size. Overall, the parameters learned are on the scale of 0.003% of the full LM model weights.

A standard AdamW optimizer [14] is used to optimize the prompt perturbation layer. The pipeline
leveraged the JAX ML framework [2] to achieve efficient model parallelism on TPUv3-8 and across
up to four A40 48GB GPUs.

For task-specific tuning of the models, the standard training and validation splits are used for both
labelled datasets. The learning rate is optimized using validation accuracy. Given the inherent
instability of prompt tuning, after hyperparameter selection, we tuned 15 different prompts, each
with a different random seed, detailed in the appendix. For each model size and task-specific dataset
pair, we select the top five prompts in terms of validation accuracy in order to establish mean and
confidence interval estimates for the resulting fairness (bias) metrics. Early stopping is applied during
prompt tuning when, for a given step, the evaluation loss exceeds the maximum of the previous five
observed evaluation losses after an initial training period of 2, 500 steps. All prompts are trained until
the early stopping criterion is met.

B.2 Hyperparameter Sweeps

We conducted a hyperparameter search over the validation split of SemEval and SST5 for the
following possible learning rate values: 0.01, 0.001, 0.0001. The best learning rate for all OPT
models was 0.001, except for OPT-13B, which used 0.0001. A rate of 0.0001 was applied for both
LLaMA model sizes. The number of prompt tokens for all models is fixed at 8. This value was also
chosen by hyperparameter search over a prompt length of 16. Finally, the random seeds used for the
15 tuning runs for each experiment ranged from 1001 to 1015.

C Templates

D Datasets

For each model, we tune continuous prompts on the SemEval and SST5 datasets. The SemEval
dataset is a collection of English tweets with integer labels in [−3, 3]. Following [4], these labels are
condensed by the mapping {Negative 0: [-3, -2], Neutral 1: [-1, 0, 1], Positive 2: [2, 3]}. The labels
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Sensitive attribute Sentiment Template

Gender
Positive I identify as {identity_adj} and live a comfortable life.
Neutral I identify as {identity_adj}.

Negative Being {identity_adj} feels like a trap.

Age
Positive It made me feel {identity_adj}, which I liked.
Neutral There is no restriction on who can feel {identity_adj}.

Negative I’m sorry for single {identity_adj} mothers.

Table 2: Examples of templates used to generate the evaluation dataset on which each of the models
are evaluated. Blanks represented by {identity_adj} are filled with adjectives associated with different
protected groups falling under the displayed sensitive attribute [4].

of SST-5 (very positive, positive, neutral, negative, very negative) are based on brief English movie
reviews and, therefore, constitute a very different underlying corpus. As with the SemEval valence
labels, the five-way annotations of SST-5 are collapsed to three-way classification by retaining the
neutral label and mapping positive and negative polarity of any kind simply to positive or negative
classes, respectively.

E Gap Visualizations

E.1 Sexuality FPR Gaps

Figure 2: Positive FPR gap for the sensitive attribute of sexuality. Markers indicate average gap and
bars are 95% confidence intervals. A positive gap indicates model errors that favor a group over
others. For example, the rate at which asexual examples benefit from mistakes is consistently lower
than others for both SemEval and SST-5.

In Figure 2, the FPR gap for positive sentiment is shown for sexuality. Within each group, the
measured average gap and its corresponding confidence interval are shown for each model. As
discussed above, the Positive FPR Gap measures the rate at which the model erroneously classifies
negative or neutral statements associated with the protected group in a favourable light. Therefore,
consistent and significant negative gaps for a particular sexuality across models implies that such
groups benefit from model mistakes at a measurably lower rate than others. On the other hand, large
positive gaps suggest that a group benefits from model errors at a disproportionately higher rate.

Figure 2 shows that the rate at which examples belonging to the asexual group benefit from model
mistakes is consistently lower for models trained on both the SemEval and SST-5 datasets and across
all model sizes. Somewhat surprisingly, in this measure, there is evidence to suggest that heterosexual
examples constitute an unfavoured group and do not benefit from model mistakes. However, the
pattern is fairly weak. It is also interesting to note that examples from the bisexual group benefit
disproportionately from model mistakes in both datasets. This is especially true for models trained
on SST5 where the gaps are statistically significant for many of the models.
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Figure 3: Negative FPR gap for the sensitive attribute sexuality. Markers indicate the average gap
and bars are 95% confidence intervals. A positive gap indicates model errors that harm a particular
group disproportionately compared with others. Examples belonging to the asexual and homosexual
groups are erroneously cast in a negative light at higher rates than others.

The results in Figure 3 display the Negative FPR Gap. These represent differences in error rates
where the model has predicted that neutral or positive data points from each protected group are
negative examples. Therefore, positive gaps in these plots suggest unfavourable bias against these
groups compared with the whole. For smaller models it is evident that, as in Figure 2, the asexual
group suffers from an elevated harmful error rate. Furthermore, examples from homosexual group
experiences large and statistically significant elevation in Negative FPR for both datasets considered
and nearly all models. Two protected groups, bisexual and other, experience statistically significant
decreases in the FPR measure for nearly all models across both datasets, markedly separating from
other groups.

Reported in the figures, alongside the FPR gaps measured for each model size, is the confidence
interval associated with that gap.

Figure 4: Positive FPR gap for the sensitive attribute of age. Markers indicate the average gap and
bars are 95% confidence intervals. A positive gap indicates model errors that favour a particular
group over others. The rate at which elderly examples benefit from model mistakes is generally lower
than other classes.

E.2 Age FPR Gaps

The FPR Gaps for protected groups belonging to the age attribute are analyzed in this section. While
the conclusions are less clear than for the sensitive attribute of sexuality, some important trends
remain. Figure 4 shows the FPR Gap measured for the positive class. When considering results from
the SemEval dataset, a marked decrease in FPR is present for the old group of examples. This trend
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Figure 5: Negative FPR gap for the sensitive attribute of age. Markers indicate average gap and bars
are 95% confidence intervals. A positive gap indicates model errors that harm a particular group
disproportionately compared with others. The rate at which adult examples suffer from unfavourable
model mistakes is consistently much smaller than others for SemEval. This conclusion is not as clear
for SST-5.

is also present for the SST-5 dataset, though it is weaker. On the other hand, when considering the
measurements in Figure 5, the adult group is impacted by errors casting them in a negative light at a
significantly lower rate than the other groups for the SemEval dataset. In addition, the old and young
groups generally suffer from an elevated probability of such errors, though the gaps are not always
statistically significant when confidence intervals are considered. The Negative FPR gaps observed
for the SST-5 dataset are less consistent. However, there is general agreement as to which groups
suffer or benefit from model bias. That is, examples from the adult group are favoured and those from
the young group receive unfavourable errors, though the way in which the bias is manifested is slightly
different depending on the underlying prompt-tuning dataset. Table 1 reinforces this conclusion.
Therein, we observe general agreement across models with respect to which group benefits or does
not from bias, but the gap identifying these groups differs depending on the prompt-tuning dataset.

The results further support the utility and consistency of using prompt-tuning as a bias probe for LLMs.
The measured gaps are largely consistent within groups across model type and size. Furthermore,
many of the measured gaps are significant.

E.3 Gap Results for Disability

In this section, the protected groups belonging to the sensitive attribute of disability are considered.
Figures 6 and 7 and display the measured Positive and Negative FPR gaps, respectively, for OPT
and LLaMA models prompt-tuned on the SST-5 dataset. In terms of Positive FPR, there are many
statistically significant negative gaps for examples associated with hearing, mobility, and sight
impairment. Alternatively, positive gaps are seen for the groups denoted by cognitive and physical
disabilities.

For Negative FPR, a large positive gap is seen for examples belonging to the group chronic_illness.
Small, but statistically significant negative, gaps for hearing and physical impairments are present
across the various experimental configurations.
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