
DeepOSets: Non-Autoregressive In-Context Learning
of Supervised Learning Operators

Shao-Ting Chiu
Dept of Electrical & Computer Engineering

Texas A&M University
College Station, TX, USA stchiu@tamu.edu

Junyuan Hong
Institute for Foundations of Machine Learning

University of Texas
Austin, TX, USA jyhong@utexas.edu

Ulisses Braga-Neto
Dept of Electrical & Computer Engineering

Texas A&M University
College Station, TX, USA ulisses@tamu.edu

Abstract

We introduce DeepSets Operator Networks (DeepOSets), an efficient, non-
autoregressive neural network architecture for in-context operator learning. In-
context learning allows a trained machine learning model to learn from a user
prompt without further training. DeepOSets adds in-context learning capabilities
to Deep Operator Networks (DeepONets) by combining it with the DeepSets ar-
chitecture. As the first non-autoregressive model for in-context operator learning,
DeepOSets allow the user prompt to be processed in parallel, leading to significant
computational savings. Here, we present the application of DeepOSets in the
problem of learning supervised learning algorithms, which are operators mapping
a finite-dimensional space of labeled data into an infinite-dimensional hypothesis
space of prediction functions. In an empirical comparison with a popular autore-
gressive (transformer-based) model for in-context learning of the least-squares
linear regression algorithm, DeepOSets reduced the number of model weights
by several orders of magnitude and required a fraction of training and inference
time. Furthermore, DeepOSets proved to be less sensitive to noise, significantly
outperforming the transformer model in noisy settings.

1 Introduction

In supervised learning [1], there are input and output spaces X and Y , training data Dn =
{(x1, y1), . . . , (xn, yn)} in data space (X×Y)n, and a hypothesis space H of functions f : X → Y .
A supervised learning algorithm is an operator

Φn : (X×Y)n −→ H (1)

between the data and hypothesis spaces. Given the training data Dn and an input xquery, this
supervised learning operator produces a function fn = Φn(Dn) ∈ H, such that fn(xquery) predicts
the output corresponding to xquery. Usually X ⊆ Rd and Y ∈ R, in the regression case, or
Y = {0, 1, . . . , c− 1}, in the classification case. Hence, the data space is finite-dimensional, while
the hypothesis space is infinite-dimensional.

Meta-learning, or “learning to learn,”[2, 3] is an idea that is present in key areas of machine learning,
such as few-shot learning [4], multi-task learning [5], continuous learning [6], foundation models [7],
and more. For our purposes, meta-learning is the problem of learning the best supervised learning

To appear at the “Foundation Models for Science” worshop at Neurips’2024.

algorithm for a given data domain. In view of the previous discussion, meta-learning is a problem of
operator learning [8, 9], namely, learning the supervised learning operator from data.

In-context learning (ICL) refers to the ability of a trained machine learning model to learn from a
user prompt without further training [10]. ICL has had tremendous success in the field of natural
language processing using the transformer architecture [11]. The problem we consider in this paper,
namely, ICL of functions in a hypothesis class, seems to have been first proposed in [12], which
used recursive neural networks (RNN) and long-short term memory (LSTM) networks. Recently,
an approach based on transformers has been studied [13, 14, 15, 16, 17, 18]. At both training and
inference time, the aforementioned approaches require the data specified in the user prompt to be
processed sequentially, one data point at a time, in an auto-regressive manner. However, in supervised
learning the data set is typically permutation-invariant, and therefore an auto-regressive architecture
such as the transformer is unnecessary and computationally wasteful.

In this paper, we propose an efficient alternative that processes the data in parallel. Our approach
combines the DeepSets [19] and DeepONet [9] neural architectures. DeepONet is a powerful
universal approximator of continuous operators between function spaces, which consists of separate
branch and trunk networks; in DeepOSets, the training data set in the prompt becomes the input to
the branch network, while the query point is the input of the trunk network. However, this requires a
modification to the original design of DeepONet, since in ICL, the prompt may be of variable size.
To address this, we employ the popular Deep Sets architecture for set learning. Adding a Deep Sets
module to the branch network of the DeepONet allows the model to accept a varying number of
in-context examples. The Deep Sets module also introduces a permutation-invariance inductive bias
to improve generalizability.

The resulting DeepOSets architecture allows a significant reduction in the number of required
parameters and requires a small fraction of training time compared to transformer-based approaches,
represented here by the well-known method in [13]. This makes DeepOSets a promising candidate
for resource-constrained environments. We remark that this parallels the emmergence of non-
autoregreesive alternatives to expensive transformers in natural language processing [20, 21].

To improve generalization performance further, we use k-ary Janossy pooling [22] of the ICL
examples (Section 2.5). In the baseline case k = 1, DeepOSets has linear complexity O(n) in the
number of examples at training time. At inference time, the complexity is constant, for any value of
k, after the first query is processed (Section 2.7). In contrast, the transformer model incurs quadratic
complexity, even at inference time, due to the need to compute attention matrices for each new query
(Section 3.6). These factors help explain why the transformer model is drastically slower thand
DeepOSets (Table 2).

We present experimental results with ICL for least-squares linear regression that show that DeepOSets
can efficiently learn from in-context examples. In one of our experiments (Table 2), the baseline
DeepOSets model with 72K parameters displayed a test error 10 times smaller than that of a popular
transformer-based approach [13] with 22 million parameters, a reduction in parameter size of almost
four orders of magnitude. In addition, DeepOSets exhibited much faster convergence, completing
training in less than 10 minutes, whereas the transformer approach took at least 4 hours to reach
comparable results. Inference time was also much faster, with DeepOSets taking 0.087 ms per query,
while the transformer model took 7.11 ms. The performance of DeepOSets was less sensitive to the
presence of noise, so that DeepOSets became much more accurate than the transformer in moderate
to high noise cases (at a smaller number of weights and faster training). This robustness to noise is a
significant advantage of DeepOSets over transformer models (Section 3.5).

Main Contributions

• We propose DeepOSets, a non-autoregressive approach to in-context operator learning.

• Our approach combines the powerful DeepSets and DeepONet architectures to allow the
model to generalize across different numbers of in-context examples and their permutations.

• We demonstrate empirically that DeepOSets can learn classical least-squares linear regres-
sion much more efficiently than a comparable transformer-based approach; it is parameter
efficient, it is faster to train, and it is more robust to noise (making it more accurate than the
transformer under noisy conditions).

2

2 Methodology

2.1 In-Context Learning of Supervised Learning Operators

Without loss of generality, let us consider from now on that X ⊆ Rd. We will use boldface to
represent elements (vectors) in X . Here, as in [13], we will use synthetic data to train our model,
in which case we assume noiseless training data Dn = {(x1, f(x1)), . . . , (xn, f(xn))}, with a
randomly picked function f : X → Y in the given hypothesis space.

The ICL prompt for the supervised learning operator model at training time is
Prompt︷ ︸︸ ︷

x1, f(x1)︸ ︷︷ ︸
Example1

,x2, f(x2)︸ ︷︷ ︸
Example2

, . . . ,xn, f(xn)︸ ︷︷ ︸
Examplen︸ ︷︷ ︸

In-Context Examples

,xquery . (2)

At inference time, the objective is to use a given user prompt consisting of a (possibly noisy) training
dataset Dn = {(x1, y1), . . . , (xn, yn)} and a test point xquery to infer f(xquery), without any further
training, by employing a trained neural operator:

Φ(Dn;w) (xquery) ≈ f(xquery) , (3)

where the model weights w are adjusted during training using a sample of prompt examples and
target functions, and remain fixed during inference.

Note that the target function f is not fixed as in traditional supervised learning but varies both at
training and inference time. In addition, the ICL supervised learning operator must be able to handle
in-context examples of varying length n. Together with the fact that the problem is permutation-
invariant to the arrangement of in-context examples, this implies that this form of ICL is an example
of set learning. Furthermore, even though the prompt can be handled in a sequential manner using
an auto-regressive transformer model, there is no such requirement in supervised learning, and the
prompt can be processed in parallel in a more efficient manner, which is the approach we adopt here.

2.2 DeepONets

DeepONet is a neural network architecture for learning operators between function spaces [9], which
possesses a universal approximation guarantee [23]. A DeepONet consists of a branch network and a
trunk network (see the right side of Fig. 1). In our use case, the branch network takes the training
data Dn and encodes this information into a feature vector b1, . . . , bp. The trunk network, on the
other hand, takes the input xquery at which the output function Φ(Dn) is to be evaluated, where
Φ is a supervised learning operator, and computes a feature vector t1, . . . , tp. The final output of
the DeepONet is obtained by taking the dot product of feature vectors from the branch and trunk
networks. The approximation can be written as:

Φ(Dn;w)(xquery) =

p∑
i=1

bi(Dn;wbr) · ti(xquery;wtr) + b0 . (4)

where w = {wbr,wtr, b0} comprise the neural network weights. This can be thought as a basis
expansion approximation, where the trunk network computes adaptive basis functions, and the branch
network computes the expansion coefficients. The bias term b0, while not strictly necessary, often
enhances performance.

2.3 Modifying DeepONets with DeepSets for In-Context Learning

Despite the success of DeepONets in operator learning, it is not appropriate for our purposes, due to
the following two major challenges:

• The branch network accepts a fixed number of inputs, and thus it cannot accomodate a
varying number of in-context examples.

• The branch network is not invariant to permutations of its input, which can lead to poor
generalization since in the majority of cases the supervised learning operator to be learned
is indeed invariant to permutations in the training data.

3

Figure 1: DeepOSets architecture for in-context learning of supervised learning operators.

To address these challenges, we modify the branch network using a set learning approaching, which
allows the DeepONet to process an indefinite number of in-context examples in a permutation-
invariant setting. Due to its efficiency, we choose the DeepSets paradigm [24] for set learning.
DeepSets is designed to accommodate point clouds of varying sizes, providing flexibility in handling
in-context examples. DeepSets has been shown to possess a universal approximation property for
permutation-invariant functions [25].

2.4 The DeepOSets Architecture

The DeepOSets architecture is displayed in Fig. 1. Each in-context example (xi, f(xi)) ∈ Rd+1 is
embedded into a higher-dimensional space by means of a trainable linear layer, and then encoded
into a feature vector hi ∈ Rdembed by means of an MLP φ. The encoded vectors hi are pooled into a
single vector h to obtain permutation invariance. The simplest pooling method is to average across all
features: h = 1

n

∑n
i=1 hi. The aggregated feature vector h provides the input to the branch network

of a DeepONet. Notice that the weights in the embedding layer and MLP φ are shared by all inputs.
The permutation invariance property of DeepOSets with respect to the in-context examples is an
inductive bias that can improve the model generalization ability.

2.5 Janossy Pooling

A variation of the baseline DeepOSet architecture in Fig. 1 is afforded by Janossy pooling [22]. The
modification occurs at the prompt input, which considers all possible n!/k!(n− k)! k-tuple subsets
of the n examples. Each k-tuple passes through an MLP φ and the outputs are pooled as before.
This can improve accuracy by allowing interactions between input examples to be modeled. The
case k = 1 correspond to the baseline case, while the case k = 2, known as binary Janossy pooling,
resembles self-attention [11] in that the interaction between pairs of inputs are modeled. In general,
the complexity of Janossy pooling is O(nk), which limits k to a small value. In our experimental
results, we consider the cases k = 1 and k = 2.

2.6 Training

To train our model, we randomly sample functions and prompts as described previously. The training
loss to be minimized is the mean squared error (MSE) between the model outputs and the true
function values:

L(w) =
1

n

n∑
j=1

[Φ(Dn;w)(xqueryj
)− f(xqueryj

)]2 (5)

4

2.7 Training and Inference Complexity

In the baseline case k = 1, DeepOSets has linear training complexity O(n) in the number of in-context
examples. At inference time, prediction on a new query point given n fixed in-context examples
has constant complexity O(1). On the other hand, the transformer necessitates the computation
of the attention matrices for the entire prompt sequence for each new query, resulting in a O(n2)
complexity for predicting xquery from n in-context examples [26] (Table 2). Since xquery is a part
of the prompt, each new xquery necessitates new attention matrices, even if the rest of the prompt
elements remain the same. In other words, computation of the output for each new query requires
has quadratic complexity O(n2) in the number of in-context examples. Hence, in-context learning
with a transformer is “memoryless,” necessitating decoding the entire prompt for every new xquery .
In contrast, DeepOSets can process n examples in O(n), and inference time after the first xquery is
independent of the number of in-context examples.

3 Results

3.1 Implementation

All DeepOSets experiments were implemented in JAX [27] and Equinox [28]. Experiments involving
the transformer model in [13] were implemented in PyTorch [29]. All experiments were run on an
Nvidia RTX 4060 Ti 16GB GPU.

3.2 Hypothesis Space and Data Generation

In our experiments, the hypothesis space H consists of linear functions

H = {f | f(x) = wTx,w ∈ Rd} , (6)

where w is randomly generated during training. Following [13], we let w ∼ N (0, Id). Given a
sample function f thus generated, we again follow [13] and generate each context example xi from
N(0, Id) and obtain the corresponding target f(xi). The query point is sampled from the same
distribution as the in-context examples. During training, the function values are assumed to be
noiseless, but at inference time, we consider the more realistic case where the function values in the
prompt are corrupted with additive Gaussian noise.

3.3 Hyperparameter Setting

For d = 1, we linearly embed x and f(x) into 5-dimensional space. Then, the embedded examples
are processed by a 6-layer MLP with 50 hidden units into a vector of size 400. Both branch and trunk
nets contain 5 layers with 40 hidden units. The last layer of DeepOnet contains 100 units. For d = 5,
we linearly embed x and f(x) (the latter is appended with zeros to have the same dimension as x)
into 15-dimensional space. The embedded examples are processed by a single MLP with 2 hidden
layers and 200 hidden units into a vector of size 800. Both branch and trunk are MLPs with 6 hidden
layers and 200 hidden units. The last layer of the branch and trunk networks contain p = 200 neurons.
This resulted in a total number of trainable parameters equal to 72K and 0.57M for the d = 1 and
d = 5 cases, respectively (Table 1). Following [24], we employed the SELU activation function [30]
in the DeepSets module. For the trunk network, the tanh nonlinearity is used. Training employs the
Adam optimizer [31] with a learning rate of 1e-3 and exponential decay by 0.9 every 2000 steps.

3.4 DeepOSets Learns Linear Regression from In-Context Data

Fig. 2 displays several examples of training data sets and corresponding linear regression obtained
by the baseline DeepOSets (k = 1) in the case d = 1. The model was trained on noiseless prompts
of size n = 13. Training converged in 9 minutes with 16K iterations and reached training mean
square error 7.9e-4. At inference time, the model was challenged with prompt examples corrupted
by noise: f̃(x) = aTx + ε, where ε ∼ N (0, σ2), where σ2 = 0.1. In addition, the sample size at
inference time is n = 10, thus different than the sample size used for training. We can see in Fig. 2
that the trained DeepOSets model accurately recovers the ground-truth function. For comparison, the
regression with ordinary least-square regression is also displayed.

5

Figure 2: Learning linear regression (d = 1, k = 1, n = 13, and σ2 = 0.1) with DeepOSets where
n is the number of in-context examples in training set. The black dots (•) represent 10 in-context
examples corrupted by Gaussian noise ε ∼ N (0, σ2 = 0.1). The blue line (—) represents ordinary
least squares regression, while the red line (—) corresponds to DeepOSets.

3.5 DeepOSets is Accurate and Robust to Noise

We further investigate the prediction accuracy of DeepOSets in low (d = 1) and high (d = 5)
dimensions, with noise ranging from low to high (σ2 ∈ [0.25, 2.0]), and varying number of in-context
examples (note that well-posedness of the linear regression problem requires at least d+1 examples).

Accuracy As expected, the results show that the prediction becomes more accurate as the number
of training examples increases and the noise decreases in both low and high dimensions (Figs. 3 and
4, respectively). In the case d = 1, we can see that the DeepOSets variants (k = 1 and k = 2) have
similar accuracy, and both outperform the transformer method uniformly across the different sample
sizes and noise intensities. In the case d = 5, this is still true in the case of larger noise intensity, but
in the case of low noise intensity, DeepOSets with k = 2 performs similarly to the transformer, and
both outperform the baseline DeepOSets with k = 1 (see also Table 1).

Robustness We can also see in Figs. 3 and 4 that the performance of DeepOSets is less sensitive to
the increase in noise intensity (i.e., it maintains consistent performance across different noise levels)

6

(a) Low noise (σ2 = 0.2) (b) High noise (σ2 = 2)

(c) 2 in-context training examples. (d) 10 in-context training examples.

Figure 3: Evaluating the trained DeepOSets on 1-dimensional linear regression with different noise
scales and number of in-context examples.

(a) Low noise (σ2 = 0.2) (b) High noise (σ2 = 2)

(c) 6 in-context examples. (d) 10 in-context examples.

Figure 4: Evaluating the trained DeepOSets on 5-dimensional linear regression with different noise
scales and a number of in-context examples. DeepOSets (k=2) represents DeepOSets with k-ary
Janossy Pooling[22].

7

than the transformer and even least-squares regression, which helps explain why DeepOSets is more
accurate in high noise settings.

Regression Problems Transformer[13] DeepOSets DeepOSets (k=2)
1 dimension

Linear Regression (d=1, n=6, σ2 = 0.0) 6.744e-04 1.548e-04 2.710e-03
Linear Regression (d=1, n=6, σ2 = 0.04) 6.454e-03 1.450e-03 4.759e-03
Linear Regression (d=1, n=6, σ2 = 0.2) 1.917e-01 3.158e-02 4.479e-02
Linear Regression (d=1, n=6, σ2 = 2.0) 6.692 1.113 9.622e-01
of Parameters 22M 71151 84296

5 dimensions
Linear Regression (d=5, n=6, σ2 = 0.0) 7.509e-02 1.642 5.221e-01
Linear Regression (d=5, n=6, σ2 = 0.04) 1.379e-01 1.611 5.462e-01
Linear Regression (d=5, n=6, σ2 = 0.2) 1.502 1.609 6.716e-01
Linear Regression (d=5, n=6, σ2 = 2.0) 3.172e+01 4.361 6.837
of Parameters 22M 568561 1942411

Table 1: Comparison between GPT and DeepOSets in Mean Square Error (MSE) and number of
parameters. Each experiment includes 30 test functions and 6 in-context examples.

3.6 DeepOSets is Lighter and Faster than Transformers

Model size We can see in Table 1 that, in the case d = 1, superior results are achieved by DeepOSets
at a small fraction of the number of parameters in the Transformer model (the DeepOSets models
are around 300 times smaller). In the case d = 5, comparable or superior results are obtained with
DeepOSets that are still an order of magnitude smaller than the transformer.

Training speed We conducted a comparison of the performance and model size between the
transformer[13] and DeepOSets in linear regression with d = 1, n = 10, σ2=0.21. Given that the
transformer has approximately 300 times more parameters than DeepOSets, it requires 3 hours for
training. In contrast, DeepOSets only needs 9 minutes of training for the same regression problem and
demonstrates superior generalization with noisy prompts (see Table 2). Unlike the transformer-based
auto-regressive model, DeepOSets does not require additional parameters and computation for the
attention mechanism.

Inference speed DeepOSets efficiently predicts large numbers of queries xquery and exhibits
constant memory and complexity regardless of the number of in-context examples. In contrast, the
transformer exhibits quadratic complexity in the number of examples [26], as it necessitates the
recalculation of the attention matrices whenever xquery changes in the prompt.Fig. 5 confirms the
quadratic complexity of the transformer model. On the other hand, the inference time of DeepOSets
models only marginally increases with more in-context examples, showcasing the decisive advantage
of set learning over the auto-regressive approach for in-context learning.

Transformer[13] DeepOSets DeepOSets (k=2)
Parameters 22M 72K 84K
Training time 3 hours 9 min 8min
Complexity for first xquery on n examples O(n2) O(n) O(n2)
Complexity for second xquery on n examples O(n2) O(1) O(1)
Memory complexity for n examples O(n2) O(1) O(1)
Inference time per query (n = 10) 7.11 ms 0.087 ms 0.18ms
Test MSE 0.132 1.12e-2 2.89e-2

Table 2: Benchmark with d = 1, n = 13, and σ2 = 0.2 where n is the training sample size for
DeepOSets.

1Transformer experiments obtained from https://github.com/dtsip/in-context-learning

8

https://github.com/dtsip/in-context-learning

Figure 5: Effect of the number of in-context examples on inference time. The plot shows the
prediction time of the first xquery as a function of the number of in-context examples from 1 to 100.
The subplot displays the inference time for DeepOSets in log scale.

4 Discussion

The experimental results presented here have unveiled the potential of DeepOSets as a more efficient
and noise-robust alternative to autoregressive models, here represented by the transformer-based
model in [13], for in-context learning of supervised learning operators. DeepOSets requires fewer
parameters, trains faster, and has faster inference time than the transformer model. Several key
findings regarding the performance and behavior of DeepOSets were observed. The DeepSets module
effectively generalizes in-context examples, enabling DeepOSets to maintain consistent performance
with noisy prompts of varying size not encountered during training. Note that the DeepOSets model
is trained with noiseless data, and the ability to predict noisy prompts is meta-learned.

The significant advantage of DeepOSets over autoregressive approaches is the linear time and memory
complexity in inference (Table 2). DeepOSets has linear time complexity in the number of in-context
examples. Once the in-context examples are processed and fixed, the prediction on new xquery takes
constant time, while autoregressive approaches, such as the transformer, requires obtaining attention
matrices for every new prompt, even if the rest of the prompt is fixed. Furthermore, our experiments
demonstrated that DeepOSets performs more accurately than the transformer approach of [13] in
univariate and/or noisy problems, while being competitive (with k = 2) in high-dimensional (d = 5),
low-noise problems (while still being much faster in all cases).

A limitation of the approach is the difficulty of learning high-dimensional problems, which was already
observed in vanilla DeepONets [32, 33]. This limitation can be improved by a two-step training
method that trains branch and trunk separately [34]. Alternatively, multiple-input operators [35],
dimension reduction approaches [36, 37], and dimension separation [38] are all possible future work
to conquer the curse of dimensionality.

Finally, we note that DeepOSets can be extended to learning multiple supervised learning operators;
this would be the case when the algorithm contains hyperparameters, such as the regularization
parameter in ridge regression, the order of polynomial regression, or the number of neighbors
in a nearest-neighbor regression. A DeepOSets approach to automatic machine learning (Auto-
ML) would train the model for a range of hyperparameters and be able to automatically select the
hyperparameter for a new prompt. We also note that the DeepOSets architecture can be extended
to handle operator learning for PDEs, where the in-context examples consist of pairs of boundary
conditions or coefficient functions and solutions. These extensions will be considered in future work.

Acknowledgements

Chiu and Braga-Neto were supported by NSF Award CCF-2225507.

9

References
[1] L. Devroye, L. Gyorfi, and G. Lugosi, A Probabilistic Theory of Pattern Recognition. New

York: Springer, 1996.
[2] J. Schmidhuber, Evolutionary principles in self-referential learning, or on learning how to

learn: the meta-meta-... hook. PhD thesis, Technische Universität München, 1987.
[3] J. Schmidhuber, “A neural network that embeds its own meta-levels,” in IEEE International

Conference on Neural Networks, pp. 407–412, IEEE, 1993.
[4] Z. Li, F. Zhou, F. Chen, and H. Li, “Meta-sgd: Learning to learn quickly for few-shot learning,”

arXiv preprint arXiv:1707.09835, 2017.
[5] M. Crawshaw, “Multi-task learning with deep neural networks: A survey,” arXiv preprint

arXiv:2009.09796, 2020.
[6] K. Javed and M. White, “Meta-learning representations for continual learning,” Advances in

neural information processing systems, vol. 32, 2019.
[7] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein,

J. Bohg, A. Bosselut, E. Brunskill, et al., “On the opportunities and risks of foundation models,”
arXiv preprint arXiv:2108.07258, 2021.

[8] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar,
“Neural operator: Graph kernel network for partial differential equations,” arXiv preprint
arXiv:2003.03485, 2020.

[9] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis, “Learning nonlinear operators via
DeepONet based on the universal approximation theorem of operators,” Nature Machine
Intelligence, vol. 3, pp. 218–229, Mar. 2021.

[10] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, S. Agarwal, et al., “Language models are few-shot learners,” arXiv preprint
arXiv:2005.14165, vol. 1, 2020.

[11] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is all you need,” arXiv preprint arXiv:1706.03762, vol. 10,
p. S0140525X16001837, 2017.

[12] S. Hochreiter, A. S. Younger, and P. R. Conwell, “Learning to learn using gradient descent,”
in Artificial Neural NetworksICANN 2001: International Conference Vienna, Austria, August
21–25, 2001 Proceedings 11, pp. 87–94, Springer, 2001.

[13] S. Garg, D. Tsipras, P. Liang, and G. Valiant, “What Can Transformers Learn In-Context? A
Case Study of Simple Function Classes,” Aug. 2023.

[14] R. Zhang, S. Frei, and P. L. Bartlett, “Trained transformers learn linear models in-context,”
Journal of Machine Learning Research, vol. 25, no. 49, pp. 1–55, 2024.

[15] Y. Bai, F. Chen, H. Wang, C. Xiong, and S. Mei, “Transformers as statisticians: Provable in-
context learning with in-context algorithm selection,” Advances in neural information processing
systems, vol. 36, 2024.

[16] Y. Xing, X. Lin, N. Suh, Q. Song, and G. Cheng, “Benefits of transformer: In-context learning
in linear regression tasks with unstructured data,” arXiv preprint arXiv:2402.00743, 2024.

[17] J. W. Liu, J. Grogan, O. M. Dugan, S. Arora, A. Rudra, and C. Re, “Can transformers solve
least squares to high precision?,” in ICML 2024 Workshop on In-Context Learning, 2024.

[18] J. Von Oswald, E. Niklasson, E. Randazzo, J. Sacramento, A. Mordvintsev, A. Zhmoginov,
and M. Vladymyrov, “Transformers learn in-context by gradient descent,” in International
Conference on Machine Learning, pp. 35151–35174, PMLR, 2023.

[19] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola, “Deep
sets,” Advances in neural information processing systems, vol. 30, 2017.

[20] J. Gu, J. Bradbury, C. Xiong, V. O. Li, and R. Socher, “Non-autoregressive neural machine
translation,” arXiv preprint arXiv:1711.02281, 2017.

[21] Y. Xiao, L. Wu, J. Guo, J. Li, M. Zhang, T. Qin, and T.-y. Liu, “A survey on non-autoregressive
generation for neural machine translation and beyond,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 45, no. 10, pp. 11407–11427, 2023.

10

[22] R. L. Murphy, B. Srinivasan, V. Rao, and B. Ribeiro, “Janossy pooling: Learning deep
permutation-invariant functions for variable-size inputs,” arXiv preprint arXiv:1811.01900,
2018.

[23] T. Chen and H. Chen, “Universal approximation to nonlinear operators by neural networks with
arbitrary activation functions and its application to dynamical systems,” IEEE transactions on
neural networks, vol. 6, no. 4, pp. 911–917, 1995.

[24] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola, “Deep
Sets,” in Advances in Neural Information Processing Systems, vol. 30, Curran Associates, Inc.,
2017.

[25] E. Wagstaff, F. B. Fuchs, M. Engelcke, M. A. Osborne, and I. Posner, “Universal approximation
of functions on sets,” Journal of Machine Learning Research, vol. 23, no. 151, pp. 1–56, 2022.

[26] F. D. Keles, P. M. Wijewardena, and C. Hegde, “On the computational complexity of self-
attention,” in International Conference on Algorithmic Learning Theory, pp. 597–619, PMLR,
2023.

[27] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke,
J. VanderPlas, S. Wanderman-Milne, and Q. Zhang, “JAX: composable transformations of
Python+NumPy programs,” 2018.

[28] P. Kidger and C. Garcia, “Equinox: neural networks in JAX via callable PyTrees and filtered
transformations,” Differentiable Programming workshop at Neural Information Processing
Systems 2021, 2021.

[29] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” in NIPS-W, 2017.

[30] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-normalizing neural networks,”
Advances in neural information processing systems, vol. 30, 2017.

[31] D. P. Kingma, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980,
2014.

[32] L. Mandl, S. Goswami, L. Lambers, and T. Ricken, “Separable deeponet: Breaking the curse of
dimensionality in physics-informed machine learning,” arXiv preprint arXiv:2407.15887, 2024.

[33] A. Peyvan, V. Oommen, A. D. Jagtap, and G. E. Karniadakis, “Riemannonets: Interpretable neu-
ral operators for riemann problems,” Computer Methods in Applied Mechanics and Engineering,
vol. 426, p. 116996, 2024.

[34] S. Lee and Y. Shin, “On the training and generalization of deep operator networks,” SIAM
Journal on Scientific Computing, vol. 46, no. 4, pp. C273–C296, 2024.

[35] P. Jin, S. Meng, and L. Lu, “MIONet: Learning multiple-input operators via tensor product,”
Feb. 2022.

[36] S. Lanthaler, “Operator learning with pca-net: upper and lower complexity bounds,” Journal of
Machine Learning Research, vol. 24, no. 318, pp. 1–67, 2023.

[37] K. Kontolati, S. Goswami, G. E. Karniadakis, and M. D. Shields, “Learning in latent spaces
improves the predictive accuracy of deep neural operators,” arXiv preprint arXiv:2304.07599,
2023.

[38] X. Yu, S. Hooten, Z. Liu, Y. Zhao, M. Fiorentino, T. Van Vaerenbergh, and Z. Zhang, “Separable
operator networks,” arXiv preprint arXiv:2407.11253, 2024.

11

	Introduction
	Methodology
	In-Context Learning of Supervised Learning Operators
	DeepONets
	Modifying DeepONets with DeepSets for In-Context Learning
	The DeepOSets Architecture
	Janossy Pooling
	Training
	Training and Inference Complexity

	Results
	Implementation
	Hypothesis Space and Data Generation
	Hyperparameter Setting
	DeepOSets Learns Linear Regression from In-Context Data
	DeepOSets is Accurate and Robust to Noise
	DeepOSets is Lighter and Faster than Transformers

	Discussion

