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Abstract
Code summarization aims to generate concise natural language

descriptions of source code, helping developers to acquaint with

software systems and reduce maintenance costs. Existing code sum-

marization approaches widely employ attention mechanisms to

assess the relevance between nodes in the Abstract Syntax Tree

(AST), which generates context vectors that reflect the semantics

of the source code. However, these approaches with AST fail to ex-

tract other granular features, such as code tokens and Control Flow

Graph (CFG), which suffer from severe semantic gaps when captur-

ing data and control dependencies. To address this issue, we design

an enhanced semantic extractor with multi-granularity feature fu-

sion (MGF-ESE) to improve the model capability in comprehending

and processing the overall semantics of the code. Specifically, to

process the AST more effectively, we present a novel AST gener-

ation method with compresses the scale of nodes to enhance the

semantic information of each node. Then, we present a disentan-

gled attention mechanism based on relative positional embeddings

for further encoding. Moreover, we extract the code tokens and

CFG of source code to supplement the syntactic and structural in-

formation, and further fuse them with the AST separately through

cross-attention modules. Finally, extensive experiments on two

public datasets show that MGF-ESE outperforms the state-of-the-

arts with higher-quality code summaries on key metrics, including

BLEU, METEOR, and ROUGE.
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1 Introduction
Recently, technological innovation, the open-source ecosystem, and

evolving user demands have driven the rapid development of soft-

ware systems, which are increasingly replacing more traditional

interaction scenarios and solving a broader range of practical prob-

lems. As a result, the scale and complexity of software systems have

significantly increased, with developers often spending more effort

on maintaining existing functions than on developing new ones

[35]. There is an urgent need for a method that allows developers

to quickly grasp the current software system code semantics. Gen-

erating code summaries is a viable solution that creates concise

natural language descriptions for source code [21], helping devel-

opers quickly understand the software system. However, code sum-

maries in software systems often lack readability or are completely

missing, failing to serve their intended purpose. The emergence of

automatic code summarization techniques has effectively alleviated

these issues by generating high-quality summaries without the

need for manually reading through all the code [28]. Research on

code summarization can be divided into three categories based on

the scope of abstraction: statement-level summaries [26], which

aim to explain the meaning of individual code statements; function-

level summaries [8], which aim to outline the main functions of a

function; and file-level summaries [7], which aim to describe the in-

tent of an entire code file. Our study concentrates on function-level

code summarization, as it provides a balanced degree of granularity,

avoiding the excessive detail of statement-level analysis while not

becoming overly general like file-level summarization.

Existing Works. Early code summarization employed rule and
template based methods [22]. Initially, a programming language was

selected, and corresponding templates were manually customized.

Summaries were generated by populating these templates accord-

ing to a pre-determined set of information extraction rules. Subse-

quently, information retrieval (IR) methods [11] [12] became widely

adopted, with the core approach being to measure the association

between code statements through vector operations, as noted by

[32]. In 2012, Hindle [15] and others proposed the “naturalness”

hypothesis of code, which posits that most code statements are

natural and inherently regular like natural language. Researchers

then began using deep learning-based approaches, believing that

neural network models could leverage large datasets of code to

learn complex contextual features, similarly to how natural lan-

guage is processed, thus generating more accurate code summaries.

Research has predominantly utilized sequence-to-sequence models

as the overarching framework, employing various time-series mod-

els in the encoder and decoder to process features of the source

code, and incorporating models such as CNN [30], LSTM [17], GCN

[5], and transformer [19]. In terms of feature extraction, most ex-

isting studies opt for the Abstract Syntax Tree (AST) as the code’s

feature representation, where each node in the AST represents a

syntactic element, and nodes are combined in a hierarchical tree

structure, capturing both the syntactic and structural information

of the source code.

Research Gaps. However, the aforementioned methods have their

shortcomings. Methods based on rules and IR primarily extract su-

perficial semantics, and improper identifier naming can severely im-

pact the accuracy of keyword extraction, lacking scalability. Meth-

ods based on deep learning typically focus only on the AST, but

due to the sparse information within AST nodes and the high num-

ber of nodes, the information becomes fragmented. This results

in an inability to provide continuous syntactic information and a

comprehensive view of control dependencies to the model.

Motivation. To address the aforementioned issues, we propose

an enhanced semantic extractor with multi-granularity feature fu-

sion. We extract code tokens, preorder traversal sequences of AST,

and Control Flow Graph (CFG) features from the source code, to-

kenize them using the BPE method, and embed them as feature
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vectors. The code tokens are input into the CodeBERT pre-trained

model to obtain context representations of the same dimension.

The AST sequences are input into a decoupled attention module

based on relative position encoding, allowing nodes to aggregate

semantic information from their siblings, ancestors, and descen-

dants. CFG features are initially aggregated using a GCN and then

global dependencies are captured through an attention mechanism.

Subsequently, the encoded features of adjacent granularities are

input into a cross-attention module to achieve feature fusion. Fi-

nally, the intermediate representation of the fused features is input

into the decoder module of a transformer architecture to generate

the summary. By preprocessing and encoding the multi-granularity

features of the source code, complete syntactic and structural infor-

mation of the source code can be learned, addressing the issue of

fragmented information representation in existing methods.

Contributions. Our contributions are four-folds, summarized as

follows.

• We designed a novel AST structure generation method that com-

presses the number of nodes and removes redundant data, in-

creasing the syntactic information density of individual nodes,

improving the model’s ability to encode AST features.

• The encoder of MGF-ESE extracts features at three different gran-

ularity levels, employing tailored encoding methods for multi-

dimensional representation of the source code, effectively cap-

turing various layers of semantic information.

• We applied a cross-attention module to fuse multi-granularity

source code information from low to high levels, enhancing the

model’s understanding of overall contextual information.

• Experiments on selected datasets demonstrate the advanced per-

formance of MGF-ESE in summary generation, with ablation

studies confirming the robustness of each module.

2 Related Work
2.1 Code Summarization Based on Neural

Network Models
With the continuous development of neural networks, researchers

have explored ways to enhance the quality of code summarization

through more advanced foundational models. Early models for

code summarization were primarily based on RNNs for sequence

modeling. Iyer et al. [17] introduced the first deep learning-based

model for code summarization, employing a LSTM network as an

encoder to generate vector representations of source code. This

vector is then fed into another RNN decoder to generate the code

summary. Allamanis et al.[2] introduced a convolutional attention

mechanism to effectively detect local time-invariant and long-range

topical attention features in source code. With the widespread

adoption of the Transformer model in the NLP field [4], Ahmad et al.

[1] began exploring the attention mechanisms within Transformers

to capture the long-distance dependencies between code elements.

Since then, most research in code summarization has been based on

the Transformer model. Building on this, Choi et al. [5] integrated

GNNs, which effectively encode the graphical structural features of

code. On the other hand, Li et al. [19] leveraged CNNs to reduce data

dimensions, thereby conserving computational resources. However,

due to the length of source code features, capturing long-distance

dependencies remains a challenge.

2.2 AST Processing in Code Summarization
AST are one of the most fundamental features of source code [18].

Improper processing of ASTs can lead to difficulties for models in

understanding and handling the syntactic and structural informa-

tion of source code. There are mainly two approaches to addressing

this issue: The first approach involves using specific folding al-

gorithms for linearization. For example, Hu et al. [16] proposed a

novel Structured-Based Traversal (SBT) method for serializing ASTs.

Building on this, MRNCS [10] improved the method by removing ir-

relevant syntactic nodes while preserving the core semantics of the

AST, termed as Simplified Syntax Tree (SST). The second approach

utilizes appropriate encoding techniques and neural networks to

model ASTs. Shido et al. [27] introduced the Tree-LSTM model, an

extension of the traditional LSTM that accepts tree-shaped data

as input, allowing each node to aggregate information from its

parent and child nodes. MMCS [36] enhanced this model by adding

different types of edges to form a heterogeneous graph, improving

the capture of implicit relationships between AST nodes. The AST-

trans model [31] employs relative position encoding and decoupled

attention to focus on the feature aggregation between ancestor-

descendant and sibling nodes in ASTs, significantly reducing time

complexity. Finally, the CSA-trans model [23] uses the SBM at-

tention mechanism, which allows the model to learn more global

node relationships within the AST and improves computational effi-

ciency by simplifying the attention aggregation strategy. However,

these methods overlook the extraction of other granular features

from source code, leading to diminishing marginal utility in pro-

cessing AST representations, resulting in difficulties in generating

high-quality code summaries.

In summary, while recent studies have employed advanced

model architectures to encode ASTs using improved serialization

techniques and tree structure modeling with neural networks, they

still fall short in fully capturing features across varying levels of

granularity. Enhancing code summarization by incorporating multi-

granularity feature extraction is thus a central goal of our ongoing

work.

3 Preliminary and Problem Formulation
3.1 Preliminary
CodeBERT Pre-Trained Model: CodeBERT [7] adopts a multi-

layer bidirectional Transformer architecture, capable of performing

masked language modeling on bimodal data (Natural Language (NL)

descriptions and Programming Language (PL) code). By predicting

randomlymasked tokens in the input sequence, the model enhances

its understanding of unlabeled programming language data.

Attention Mechanism [33]:When encoding AST and CFG fea-

tures, the vector updates between nodes are implemented through

attention mechanisms. This mechanism simulates human-like at-

tention by assigning varying levels of importance to different parts

of the specific code being processed. The core of this mechanism

is the scaled dot-product attention operation, which primarily in-

volves transforming the input data through linear projections to

generate corresponding Q, K, and Vmatrices. The attention weights

are computed by calculating the dot product between the Q and K

matrices, followed by weighted updates on the V matrix.
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Figure 1: Overview of MGF-ESE Model. Input code features, including code tokens, AST, and CFG, are preprocessed and encoded
to capture multi-granularity semantics before being fed into the Transformer-based decoder for summarization generation.

Compared to traditional attention mechanisms, where posi-

tional encoding (PE) is directly added to the semantic embeddings,

disentangled attention [13] introduces separate positional encod-

ing vectors for each node in addition to their content encoding

vectors. When calculating attention weights, this mechanism not

only computes the correlation between content vectors but also

considers the impact of content-to-position and position-to-content

relationships on the final results. In the feature sequence of source

code, the correlation between two nodes is significantly influenced

by their relative positions. Disentangled attention can effectively

model the influence of both semantic and positional information

on the overall correlation between nodes.

3.2 Problem Definition
Automatic code summarization is a key task in the field of intelligent

software engineering, with significant implications for practical

applications such as system maintenance and code review. The

objective of code summarization is to generate a corresponding

comment 𝑁 = {𝑛1, . . . , 𝑛𝑖 } for the source code 𝐶 = {𝑐1, . . . , 𝑐𝑖 }.
The required dataset 𝐷 for the experiment consists of N pairs of

source code and comments (C, N). We use the training set to train

the model’s ability to understand the source code, the validation

set to fine-tune the model, and the test set to evaluate the model’s

performance. The optimization function of this model is defined as

follows:

𝐿 = − 1

𝑁

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

log[𝑝 (𝑦𝑡 |𝑦1, . . . , 𝑦𝑡−1)], (1)

Essentially, cross-entropy guides the optimization of the learnable

parameters in the model by quantifying the discrepancy between

the predicted probability distribution of the summary words and

their actual distribution, thereby enhancing themodel’s understand-

ing of the source code.

4 Method
4.1 Overview
The structure of the proposed MGF-ESE is illustrated in Figure

1 and primarily comprises four main components: a code token

encoder, an AST encoder, a CFG encoder, and a decoder. The code

token encoder inputs feature 𝐹𝑇𝑜𝑘 ∈ R𝑙𝑇𝑜𝑘×𝑑𝑚𝑜𝑑𝑒𝑙
into a CodeBERT

pre-trained model to obtain context vectors of the same dimension

and generates the Query matrix for subsequent cross-attention

modules. The AST encoder takes as input the AST’s preorder tra-

versal sequence 𝐹𝐴𝑠𝑡 ∈ R𝑙𝐴𝑠𝑡×𝑑𝑚𝑜𝑑𝑒𝑙
, sibling relationship matrix,

and ancestor-descendant relationship matrix, acquires relative po-

sitional embeddings through the inter-node distance relationships,

and finally aggregates node semantic information within a prede-

fined strong relationship scope via a decoupled attention module.

The CFG encoder inputs features in format 𝐺 (𝑉 , 𝐸) into GCN, ag-

gregates features, and arranges them according to the execution

order of CFG nodes in the program, feeding the resulting CFG fea-

ture matrix 𝐹𝐶𝑓 𝑔 ∈ R𝑙𝐶𝑓 𝑔×𝑑𝑚𝑜𝑑𝑒𝑙
into an attentionmodule. The AST

encoder is stacked with 𝑁 decoupled attention modules, while the

CFG encoder is stacked with 𝑁 GNN modules and 𝑁 self-attention

modules. The decoder receives intermediate vector representations

generated by two cross-attention modules and consists of 𝑁 identi-

cal decoder layers stacked together.

4.2 Pre-Processing and Embedding
Code Token Pre-processing: In high-quality source code, func-

tion names are typically composed using PascalCase or camelCase
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naming conventions to represent their overall functionality, serv-

ing as a form of summary. Given that the CodeBERT pre-trained

model can accept bicameral data as input, we tokenize the function

names from the source code code token and extract them as the NL

component of the input sequence. In the source code, their original

positions are uniformly replaced with “func name”. The overall

sequence is treated as the PL part.

AST Pre-Processing: We utilize the 𝑎𝑠𝑡 .𝑝𝑎𝑟𝑠𝑒 () method from the

Python language’s AST module to obtain the AST string repre-

sentation of Python source code. However, the string contains a

significant amount of redundancy due to nodes with null values.

To address this, we have developed a graph structure generation

method for the AST, which effectively filters out redundant informa-

tion from the AST string representation. This method also identifies

a unique parent node for all nodes other than the root node, form-

ing a tree data structure, as shown in Algorithm 1. This algorithm

divides the string representation of an AST into units based on

nodes while preserving parentheses. When string elements are fol-

lowed by formats such as “=value”, “=number”, or “=word”, they

are segmented into individual nodes. Finally, based on the struc-

tural information retained by the parentheses, each divided node is

assigned a unique parent node, resulting in a tree structure of the

AST. Ultimately, the publicly disclosed data processing method by

AST-trans is used to obtain the pre-order traversal sequence of the

AST and the node relationship matrix.

CFG Pre-Processing: The method for generating the CFG graph

structure of Python source code in this article is inspired by the core

ideas of the pycfg package. However, since this package is no longer

maintained and its functionality has various imperfections, exten-

sive improvements have been made based on this package. Addi-

tional recognizable node types have been introduced, and potential

erroneous paths, such as those that might occur while parsing try

and catch blocks, have been corrected. The control flow direction

when the program catches errors has also been refined. The gener-

ated CFG graph structure consists of nodes based on statements,

and concatenating all nodes can reconstruct the content of the code.

The CFG of the Java source code is generated using the angr tool.

Embedding: Tomitigate theOut-of-Vocabulary (OOV) problem, all

features of the source code are tokenized using Byte Pair Encoding

(BPE) [25], and each token is mapped to a unique index in the

vocabulary. Subsequently, each index is used to extract a fixed-

dimensional vector from the embedding matrix. For each modality,

the feature sequence is set to a maximum length, sequences shorter

than the specified length are padded with the < 𝑝𝑎𝑑 > tokens,

while longer sequences are truncated. The source code code tokens

are embedded following the above steps, with < 𝑐𝑙𝑠 > and < 𝑠𝑒𝑝 >

tokens added to the beginning and end of the index sequence the

index sequence to indicate the start and end positions. For the AST,

each node is tokenized, and if the tokenized length exceeds one, a

max-pooling operation is applied to aggregate multiple vectors into

a single vector representation. As for the CFG, since each individual

node contains relatively rich semantic features, we treat the node

as a code token and perform pre-training. The embedding vector

of the first < 𝑐𝑙𝑠 > token in the output is used to represent the

overall semantics of the node. By using CodeBERT for pre-training,

the model can bypass the need to train an embedding layer with

a large number of parameters while also obtaining single-vector

Algorithm 1 Tree Structure Representation from AST String

Input: 𝑖𝑛𝑝𝑢𝑡_𝑠𝑡𝑟𝑖𝑛𝑔 (String form of AST)

Output: 𝑉𝑎𝑙𝑖𝑑_𝑛𝑜𝑑𝑒𝑠(valid keyword in AST), and 𝑒𝑑𝑔𝑒𝑠 (a list of

edges representing parent-child relationships)

1: function Tree_Structured_AST(input_string)

2: 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 ← regex for words followed by ’=value’,

’=number’, ’=word’, or ’(’

3: 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 ← 𝑝𝑎𝑡𝑡𝑒𝑟𝑛.𝑓 𝑖𝑛𝑑𝑖𝑡𝑒𝑟 (𝑖𝑛𝑝𝑢𝑡_𝑠𝑡𝑟𝑖𝑛𝑔)
4: 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒_𝑛𝑜𝑑𝑒 ← [], 𝑙𝑎𝑠𝑡_𝑒𝑛𝑑 ← 0

5: for each match in matches do
6: Process brackets between matches and append to

𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒_𝑛𝑜𝑑𝑒

7: Extract and append keywords or brackets based on

match pattern

8: end for
9: Process remaining brackets after last match

10: 𝑉𝑎𝑙𝑖𝑑_𝑛𝑜𝑑𝑒𝑠 ← {𝑖 : 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒_𝑛𝑜𝑑𝑒 [𝑖] ∉′ [] ()′}
11: 𝑒𝑑𝑔𝑒𝑠 ← []
12: for 𝑖 in range(1, length(𝑉𝑎𝑙𝑖𝑑_𝑛𝑜𝑑𝑒𝑠)) do
13: 𝑐ℎ𝑖𝑙𝑑_𝑖𝑛𝑑𝑒𝑥 ← 𝑉𝑎𝑙𝑖𝑑_𝑛𝑜𝑑𝑒𝑠 [𝑖]
14: 𝑝𝑎𝑟𝑒𝑛𝑡_𝑖𝑛𝑑𝑒𝑥 ← FindParentElement(𝑆𝑡𝑟

𝑢𝑐𝑡𝑢𝑟𝑒_𝑛𝑜𝑑𝑒, 𝑐ℎ𝑖𝑙𝑑_𝑖𝑛𝑑𝑒𝑥)
15: if 𝑝𝑎𝑟𝑒𝑛𝑡_𝑖𝑛𝑑𝑒𝑥 is not None then
16: 𝑒𝑑𝑔𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 ((𝑝𝑎𝑟𝑒𝑛𝑡_𝑖𝑛𝑑𝑒𝑥, 𝑐ℎ𝑖𝑙𝑑_𝑖𝑛𝑑𝑒𝑥))
17: end if
18: end for
19: return 𝑉𝑎𝑙𝑖𝑑_𝑛𝑜𝑑𝑒𝑠, 𝑒𝑑𝑔𝑒𝑠
20: end function

representations for individual nodes. Due to the small number

of CFG nodes and the manageable space required to store node

embeddings, the choice has been made to enhance the model’s

training speed by pre-embedding the node features. The model

encoder in this article also uses the vocabulary corresponding to

the pre-trained model.

4.3 MGF-ESE Encoder
Code Token Encoder: The code token transformed from source

code fragments contains rich lexical and semantic information. Pro-

cessing the features of the code token provides the model with a

fundamental understanding of the source code. Taking into account

the balance between computational efficiency and model effective-

ness, we use the CodeBERT model as the code token encoder for

our model, as it achieves SOTA performance in code token repre-

sentation. The encoding process using CodeBERT is as follows:

�̃�𝑇𝑜𝑘 = 𝐶𝑜𝑑𝑒𝐵𝐸𝑅𝑇 (𝐸𝑇𝑜𝑘 ), (2)

𝐻𝑇𝑜𝑘 =𝑊𝑡 · �̃�𝑇𝑜𝑘 , (3)

where 𝐻𝑇𝑜𝑘 ∈ R𝑙×𝑑𝑚𝑜𝑑𝑒𝑙
is the context vector processed by Code-

BERT. The role of the fully connected layer𝑊𝑡 is to further fine-tune

the patterns and features relevant to the task at hand, based on

the context vectors generated by the general pre-trained model, so

that the model’s representational capacity can better focus on the

specific characteristics and requirements of the current dataset.
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AST Encoder: Since the AST contains a large number of nodes

representing the syntactic types of source code, it is typically longer

than the original code sequence. Traditional Transformer encoders

compute the correlation between each individual node and all other

nodes in the AST using the attention mechanism, which incurs

substantial computational overhead. For nodes with relatively large

distances and weak semantic correlations, calculating the corre-

lation scores results in higher computational costs compared to

effectively aggregating the embeddings of relevant nodes. Based

on the above observations and the existing work of AST-Trans, we

limit the aggregation scope of nodes to their sibling and parent-

child nodes, and further represent the closeness of relationships

using relative distances. This relative distance is embedded as an

independent relative distance vector and incorporated into the dis-

entangled attention mechanism to encode the AST. The specific

encoding process is as follows:

For the tree structure of the AST, we adopt a preorder traver-

sal to serialize it. Although the SBT method uses parentheses to

better preserve the original structure, it significantly increases the

serialized sequence length, which in turn raises the complexity of

capturing node relationships through matrices. Compared to in-

order and postorder traversals, the advantage of preorder traversal

is its ability to partially restore program statements. Although it

may lead to some information loss and cannot fully recover the tree

structure, it prevents excessive expansion of the sequence length

and helps maintain the model’s ability to extract key information

effectively.

We define the 𝑆 ∈ R𝑁×𝑁
matrix and 𝑃 ∈ R𝑁×𝑁

matrix to

store ancestor-descendant relationships (existence of a path from

the root node to both nodes) and sibling relationships (nodes shar-

ing a common parent) between nodes. Let 𝑁 be the total number

of nodes. The top-down and left-right directions are defined as pos-

itive directions. If the 𝑖-th node in the sequence is the grandparent

of the 𝑗-th node, then the shortest path distance between the two

nodes is 2, 𝑝 𝑗𝑖 = 2, while the corresponding 𝑝𝑖 𝑗 = −2. To further

constrain the aggregation range of nodes and reduce the spatial

complexity of processing data, we set a maximum relative distance

threshold 𝐾 for both types of relationships. If the relative distance

between two nodes exceeds this threshold, they are considered to

have no relationship, and the corresponding position in the matrix

is set to infinity. The specific rules for matrix definitions are as

follows:

𝑝𝑖 𝑗 =

{
PAR(𝑖, 𝑗) if |PAR(𝑖, 𝑗) | ≤ 𝐾,
∞ if |PAR(𝑖, 𝑗) | > 𝐾.

𝑠𝑖 𝑗 =

{
SIB(𝑖, 𝑗) if |SIB(𝑖, 𝑗) | ≤ 𝐾,
∞ if |SIB(𝑖, 𝑗) | > 𝐾.

(4)

Next, we transform the inter-node relationships stored in the

matrices into tree-structure-based relative position embeddings.

Since any given pair of nodes can only have either a ancestor-

descendant or sibling relationship, we use 𝑟 𝑗𝑖 to uniformly represent

𝑠 𝑗𝑖 or 𝑝 𝑗𝑖 and derive a unique relative distance index based on the

value of 𝑟 𝑗𝑖 . The definition rules of 𝛿𝑟 (𝑖, 𝑗) are as follows, values

greater than zero are considered strong relationship nodes of 𝑖:

𝛿 (𝑖, 𝑗) =
{
𝑟𝑖 𝑗 + 𝐾 + 1 if 𝑟𝑖 𝑗 ∈ [−𝐾,𝐾],
0 if 𝑟𝑖 𝑗 = ∞.

(5)

As previously mentioned, we define a positive direction for the

relative relationships between nodes to distinguish the hierarchical

relationships for the same pair of nodes. Therefore, positive and

negative indices with the same absolute value are embedded differ-

ently. Since the relative position embedding matrix does not have

separate columns for positive and negative indices, an offset value

of𝑃 + 1 is applied. Consequently, when calculating the correlation

of node 𝑖 to node 𝑗 , the process is as follows:

𝛼𝑖, 𝑗 = Q(𝑥𝑖 )K(𝑥 𝑗 )⊤ + Q(𝑥𝑖 )K𝑃
𝛿 (𝑖, 𝑗 )

⊤ + Q𝑃
𝛿 ( 𝑗,𝑖 )K(𝑥 𝑗 )

⊤ . (6)

In the above equation, 𝑥𝑖 and 𝑥 𝑗 represent the embeddings of

the 𝑖-th and 𝑗-th nodes in the preorder traversal sequence respec-

tively.We define a content-based query function𝑄 and key function

𝐾 , along with a relative position-based query function 𝑄𝑃
and key

function 𝐾𝑃
. 𝑄𝑃

𝛿 ( 𝑗,𝑖 ) denotes the 𝛿 ( 𝑗, 𝑖)-th row of 𝑄𝑃
, and 𝐾𝑃

𝛿 (𝑖, 𝑗 )
denotes the 𝛿 (𝑖, 𝑗)-th of 𝐾𝑃

. In this manner, we transform the rel-

ative position indices into independent relative position vectors

and assess the impact of relative positions on the final correlation

between token pairs through additional content-to-position and

position-to-content computations.

Based on the correlation scores between nodes and their strongly

related nodes, we utilize disentangled multi-head attention to up-

date the original feature, where each head only considers either

the ancestor-descendant or sibling relationships. The outputs are

then concatenated. Since three terms are computed in Equation (4),

the corresponding scaling factor is adjusted to
1√
3𝑑
. Accordingly,

we define a content-based value function 𝑉 and a relative distance-

based value function 𝑉 𝑃
. During the final node feature update, we

only focus on nodes with 𝛿 (𝑖, 𝑗)>0.

𝑜𝑖 =

𝑗∈{ 𝑗 |𝛿 (𝑖, 𝑗 )>0}∑︁
𝑗

𝜎

(
𝛼𝑖, 𝑗√
3𝑑

) (
𝑉 (𝑥 𝑗 ) +𝑉 𝑃

𝑅𝑖 𝑗

)
. (7)

CFG Encoder: Compared to the AST, the number of nodes in the

CFG is significantly reduced, and applying a disentangled attention

mechanism does not effectively decrease the number of nodes being

processed. For non-branch and non-leaf nodes, the in-degrees and

out-degrees are very limited, typically having only one outgoing

edge and one incoming edge. For branch nodes, such as those

in loops, conditionals, and exception handling structures, there

are more edges connected. Based on these characteristics, we first

apply a Graph Convolutional Network (GCN) to perform initial

feature aggregation on the embedding matrix of the CFG. The graph

convolution performs message passing between neighboring nodes

based on the normalization of node degrees. Since a single CFG node

contains relatively rich semantic information, the GCN allows non-

branch nodes to aggregate the semantic features of surrounding

branch nodes without causing feature homogenization due to high

aggregation levels. The processing steps of GCN are shown as

follows:

𝐻 (𝑙+1) = 𝜎 (�̃�−
1

2 �̃��̃�−
1

2𝐻 (𝑙 )𝑊 (𝑙 ) ), (8)
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ℎ
(𝑙+1)
𝑖

= 𝜎
©­«

∑︁
𝑗∈𝑁 (𝑖 )∪{𝑖 }

1√︁
𝑑𝑖𝑑 𝑗

𝑊 (𝑙 )ℎ (𝑙 )
𝑗

ª®¬ . (9)

where 𝐻 (𝑙 ) represents the feature matrix of CFG nodes at layer 𝑙 ,

and𝐻 (𝑙+1) is the updated node feature matrix after the operation.�̃�

is the adjacency matrix containing connectivity information of

nodes within the CFG, augmented with an identity matrix to ensure

self-features are aggregated during updates.�̃� is the degree matrix

of �̃�, with diagonal elements representing the sum of each row of

�̃�,including the node’s out-degree, in-degree, and itself. �̃�−
1

2 repre-

sents the inverse square root of the degree matrix and �̃�−
1

2 �̃��̃�−
1

2

performs normalization based on node degrees to control the scale

of feature propagation across different nodes, preventing exces-

sively high-degree nodes from dominating feature updates, which

could lead to either explosion or vanishing of features during the

update process. Equation 7 specifies the update formula for an indi-

vidual node.

√︁
𝑑𝑖𝑑 𝑗 implement specific normalization effects where

higher-degree adjacent nodes contribute less weight to the node’s

feature integration.𝑊 (𝑙 )denotes the learnable weight matrix that

transforms node feature representations at each layer, followed by

the introduction of a non-linear activation function.

Due to the high semantic information density within CFG

nodes and the potential strong relationships between nodes that

are far apart (implicit control and data dependency paths), after

an initial aggregation of node features through GCN layers, we

construct a multi-head self-attention module based on the standard

transformer architecture. This module is used to further compute

the intermediate representation of CFG features, capturing the

global dependencies within the sequence. The process is illustrated

as follows:

𝐻𝑐 𝑓 𝑔 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑄 (𝑥𝑐 )𝐾 (𝑥𝑐 )𝑇√

𝑑

)
𝑉 (𝑥𝑐 ). (10)

In the above formula, 𝑥𝑐 represents the feature matrix of the

CFG. 𝑄 , 𝐾 and 𝑉 respectively stand for the query function, key

function, and value function. By aggregating features both locally

and globally, we obtain the final contextual representation of the

CFG node sequence.

4.4 Feature Fusion
In the previous steps, we independently processed three distinct

levels of granularity features. Next, we utilize a cross-attention

module to fuse the intermediate representations of these features.

Following the principle of integrating high-granularity information

into low-granularity features, the specific processing steps are as

follows:

𝐻𝑐𝑟𝑜𝑠𝑠_𝑇𝑜𝑘𝑒𝑛 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑄 (𝐻𝑇𝑜𝑘 )𝐾 (𝐻𝐴𝑠𝑡 )𝑇√

𝑑

)
𝑉 (𝐻𝐴𝑠𝑡 ) . (11)

𝐻𝑐𝑟𝑜𝑠𝑠_𝐴𝑆𝑇 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑄 (𝐻𝐴𝑠𝑡 )𝐾 (𝐻𝐶𝑓 𝑔)𝑇√

𝑑

)
𝑉 (𝐻𝐶𝑓 𝑔) . (12)

4.5 MGF-ESE Decoder
The decoder used in this paper is based on the traditional Trans-

former architecture’s decoder section, designed for generating code

summarization. The decoder is composed of 𝑁 stacked decoder lay-

ers, each divided into three parts. The first part includes a masked

multi-head self-attention mechanism, residual connections, and

normalization. The masking mechanism ensures that the model re-

lies only on the information already output at the current time step.

The second part comprises a cross-attention module, residual con-

nections, and normalization, where The cross-attention module is

designed to integrate features from code tokens with AST and from

AST with CFG. These features are combined with the output from

the previous part. The third part includes a feed-forward network,

residual connections, and normalization, which further capture

deeper features. Finally, a linear layer of dimension 𝑑
model

× 𝑑
vocab

and a softmax activation function are used to calculate the prob-

ability of generating each word in the vocabulary at the current

time step, with the highest probability index corresponding to the

output word for that time step.

5 Experiments
5.1 Experiment Setup
Dataset: This paper evaluates the effectiveness of the model using

datasets in two programming languages. The Java dataset is adopted

from the dataset used in the DeepCom method proposed by Hu et

al. [16], which was collected from high-quality open-source code

on GitHub during 2015-2016 and is considered a classic dataset

in code summarization research. The Python dataset is sourced

from the dataset provided by Wan et al [34]. This study focuses on

generating source code summaries at the function level. During

data preprocessing, bimodal data is converted into unimodal data,

comments in the code are removed, and samples with syntax errors

are filtered out. The selected datasets are shuffled and split into

train, valid, and test sets in a ratio of 8:1:1.

Evaluation Metrics: In this paper, we select widely used evalu-

ation metrics for code summarization research, including BLEU,

METEOR, and ROUGE-L, detailed as follows::

• BLEU (Bilingual Evaluation Understudy) [24] is an accuracy-

based metric that measures n-gram precision between the gen-

erated summaries and the reference labels by calculating the

overlap rate of n-grams and applying a brevity penalty to penal-

ize short translation hypotheses.

• METEOR (Metric for Evaluation of Translation with Explicit) [3]

considers both precision 𝑃 and recall 𝑅. It evaluates the alignment

between generated code summaries and reference summaries

while taking into account synonyms, stemming, and paraphras-

ing.

• ROUGE-L [20] leverages the Longest Common Subsequence for

evaluating the quality of summarization.

Baseline: The proposed model was compared with seven baseline

models, all of which adopted the sequence-to-sequence architecture.

The detailed information is summarized as follows:

• CODE-NN [17] uses an attention-based LSTM network to gener-

ate summaries.
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Table 1: Comparison of MGF-ESE with the baseline methods. Our method MGF-ESE demonstrates the best performance on all
datasets compared with other baseline models.

Methods Input
Java Python

BLEU-4 ROUGE-L METEOR BLEU-4 ROUGE-L METEOR

CODE-NN [17] Code 27.60 41.10 12.61 17.36 37.81 09.29

Dual Model [35] Code 42.39 53.61 25.77 21.80 39.45 11.14

Tree2Seq [6] AST 37.88 51.50 22.55 20.07 35.64 08.96

Transformer+GNN [5] AST 45.49 54.82 27.17 32.82 46.81 20.12

AST-Trans [31] AST 45.60 55.27 28.65 34.27 47.02 20.19

CSA-Trans [23] AST 45.95 56.02 29.24 35.69 49.05 21.13

DeepCom [16] Code+AST 39.75 52.67 23.06 20.78 37.35 09.98

GREAT [14] Code+AST 44.97 54.42 27.15 32.11 46.01 19.75

MGF-ESE Code+AST+CFG 46.79 56.48 29.93 36.37 50.22 21.84

• Dual Model [35] performs both code summarization and genera-

tion tasks simultaneously through dual learning

• Tree2Seq [6] uses tree-based LSTM as the encoder to capture the

structural information of AST

• Transformer + GNN [5] applies a transformer-based decoder to

process the AST encoded by the GNN.

• AST-Trans [31] aggregates node features with only two types of

relative relationships when applying disentangled attention.

• CSA-Trans [23] uses stochastic block model (SBM) attention for

improved node relationship extraction

• DeepCom [16] first applies the SBT to linearize the AST.

• GREAT [14] leverages code tokens enriched with diverse rela-

tional cues derived from the AST.

Because we are using the same dataset as SG-Trans [9], the

performance of our six baseline models comes from the literature.

We have reproduced the best-performing baseline model, CSA-

Trans. For AST-Trans, we employed the open-source method by

Sun et al. [29] to process the source code into an inputable format

and trained it using the hyperparameters provided in the paper.

Implement Details: The basic experimental settings are as follows:

the embedding dimension 𝑑 for a single token is set to 768. In

the AST encoder, the maximum relative distances for ancestor-

descendant and sibling relationships are set to 10 and 5, respectively.

The AST and CFG encoders, along with the model decoder, are

stacked in four layers. The dimension of the feedforward layer is

2048. We set the batch size to 32 and use the Adam optimizer for

weight updates, with a learning rate of 0.001. We employ dropout

strategy and early stopping mechanism during training to prevent

overfitting, with a dropout probability of 0.9 and a patience setting

of 15.

5.2 The Effectiveness of Our Method
To thoroughly evaluate the performance of the MGF-ESE model in

the task of code summarization generation, we conduct a series of

comparative experiments against eight baseline models.

Table 1 displays a comparison of MGF-ESE with eight baseline

models on key metrics. Due to Java having more explicit definitions

of syntax and structure that facilitate feature extraction, any model

performs significantly better on Java code summarization than on

Python code. Among all models, MGF-ESE stands out, achieving the

highest scores on the key metrics. Compared to code token-based

models such as CODE-NN and Dual Model, MGF-ESE demonstrates

substantial improvements; for example, it exceeds Dual Model by

10.37%, 16.14%, and 5.35% in BLEU-4, Meteor, and Rouge-L scores re-

spectively. code tokens only reflect the most basic semantic features

and do not fully express the structural characteristics of the source

code. In models based on code structural features, MGF-ESE has a

clear advantage over the traditional SBT serialization of AST used

by DeepCom, achieving higher scores of 17.71%, 29.79%, and 7.23%

in BLEU-4, Meteor, and Rouge-L. SBT serialization significantly

increases the length of the AST sequence, which is detrimental to

the model’s ability to extract key information from the sequences.

Compared to models that model AST in a tree-based structure such

as AST-Trans and CSA-Trans, MGF-ESE also shows significant im-

provements. Compared to the state-of-the-art model CSA-Trans,

improvements of 1.82%, 2.35%, and 0.82% in BLEU-4, METEOR, and

ROUGE-L metrics on the Java dataset and 1.90%, 3.36%, and 2.72%

on the Python dataset are achieved. Overall, MGF-ESE enhances

the quality of summary generation by extracting multi-granularity

features of the source code. code tokens and CFG are extracted from

the source code to overcome the limitations of AST in expressing

semantic and structural information. Additionally, a cross-attention

module is employed to further integrate code tokens and CFG fea-

tures, thus enabling the model to understand deep associations

between features across different granularities.

5.3 Ablation Study
We perform an ablation study to evaluate the effectiveness of indi-

vidual components of the MGF-ESE model. “w/o Token” refers to

not using the cross-attention module and excluding token feature
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Table 2: Ablation study on each component of MGF-ESE for
Java and Python datasets

Dataset Component BLEU-4 METEOR ROUGE-L

Java

w/o Token 45.95 28.95 55.11

w/o CFG 46.02 29.11 55.38

w/o AST 45.29 28.69 54.92

MGF-ESE 46.79 29.93 56.48

Python

w/o Token 34.88 20.97 48.46

w/o CFG 35.45 21.20 49.01

w/o AST 34.59 20.45 48.10

MGF-ESE 36.37 21.84 50.22

extraction, while “w/o CFG” refers to not using the cross-attention

module and excluding CFG feature extraction. “w/o AST” refers

to excluding AST feature extraction. The experimental results are

shown in Table 2.

Among the three modules, removing the AST encoder causes

the most significant degradation in model performance. In the Java

dataset, BLEU-4, METEOR, and ROUGE-L scores decrease by 3.22%,

4.14%, and 2.76%, respectively, while in the Python dataset, they

drop by 4.89%, 6.36%, and 4.22%, respectively. These results suggest

that without AST feature extraction, relying on code tokens with

significant granularity differences and CFG is detrimental to captur-

ing the overall semantics of the source code. This also demonstrates

that AST, which integrates both syntactic and structural informa-

tion, is the most important feature in source code analysis and

assists the decoder in computing attention over the fused features

of code tokens and CFG. Furthermore, the model performs better

when removing the CFG encoder than when removing the code

token encoder, indicating that when AST provides syntactic and

structural information, extracting additional basic syntactic infor-

mation from code tokens helps better capture the overall semantics

of the source code. It is also worth noting that in all ablation exper-

iments, the performance decline in the Python dataset is greater

than in the Java dataset, suggesting that the model is more sensitive

to the loss of semantic features in Python.

In conclusion, although the contributions of different modules

in MGF-ESE vary, each module enhances the overall performance

of the model.

5.4 The Impact of Code Length on Model
Performance

Figure 2 provides a detailed examination of how code length af-

fects the performance of five models on the BLEU metric within

a Java dataset. The analysis indicates that all models exhibit poor

performance when the code length is approximately 50. This is pri-

marily due to the insufficient information content in shorter code

segments, which hampers the models’ ability to extract essential

information effectively, thus impacting their performance. As the

code length increases to between 50 and 200, the models show a

fluctuating improvement in performance. Within this range, the

MGF-ESE model is particularly notable, benefiting from its efficient

strategy of node aggregation in the AST encoder and its capability

to extract multi-granularity features, thereby surpassing all baseline

models in performance. However, when the code length exceeds
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Figure 2: BLEU-4 of BaselineModel andMGF-ESE at Different
Code Lengths

200, all models experience a decline in performance due to the

increased difficulty in capturing long-distance dependencies and

rising computational complexity. Nevertheless, the CSA-Trans and

MGF-ESE models, which are based on the Transformer architecture,

exhibit less performance degradation due to their effective handling

of these long-distance dependencies. Notably, the MGF-ESE model,

with its advantage in capturing and further fusing multi-granularity

features of the source code, outperforms the CSA-Trans model in

overall performance.

5.5 Limitation
The experiments further confirm the complexity of balancing fea-

ture extraction granularity across different programming languages.

The model is particularly sensitive to the loss of semantic features

in Python, as evidenced by the significant performance decline ob-

served in the ablation studies. This underscores the need for more

precise feature integration strategies that can accommodate the

structural and semantic differences between languages.

6 Conclusion
In this paper, we introduce an Enhanced Semantic Extractor with

Multi-Granularity Feature Fusion (MGF-ESE). This model effec-

tively processes features of the AST by extending the semantic

information of individual nodes and aggregating features of highly

related nodes, while also reducing computational overhead. To com-

pensate for potential semantic gaps arising solely from AST feature

extraction, we additionally extract code tokens and CFG, integrating

these with the AST through a cross-attention module. Furthermore,

ablation studies conducted on the encoder confirm that eachmodule

significantly contributes to the overall performance of the model.

Our analysis of code length further substantiates that capturing

high-granularity features of the source code can significantly en-

hance the quality of generated summaries for lengthy code. In the

future, we plan to continue this line of research by exploring more

effective methods for integrating features of varying granularities

and attempting to apply our model to code summarization tasks in

other programming languages through transfer learning.
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