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Abstract

Composed image retrieval which combines a reference image and a text modifier
to identify the desired target image is a challenging task, and requires the model to
comprehend both vision and language modalities and their interactions. Existing
approaches focus on holistic multi-modal interaction modeling, and ignore the
composed and complimentary property between the reference image and text
modifier. In order to better utilize the complementarity of multi-modal inputs for
effective information fusion and retrieval, we move the multi-modal understanding
to fine-granularity at concept-level, and learn the multi-modal concept alignment
to identify the visual location in reference or target images corresponding to text
modifier. Toward the end, we propose a NEUral COncept REasoning (NEUCORE)
model which incorporates multi-modal concept alignment and progressive multi-
modal fusion over aligned concepts. Specifically, considering that text modifier
may refer to semantic concepts not existing in the reference image and requiring
to be added into the target image, we learn the multi-modal concept alignment
between the text modifier and the concatenation of reference and target images,
under multiple-instance learning framework with image and sentence level weak
supervision. Furthermore, based on aligned concepts, to form discriminative fusion
features of the input modalities for accurate target image retrieval, we propose
a progressive fusion strategy with unified execution architecture instantiated by
the attended language semantic concepts. Our proposed approach is evaluated on
three datasets and achieves state-of-the-art results. Code is available at https:
//github.com/VisionLanguageLab/NEUCORE!

1 Introduction

Composed image retrieval [Vo et al., 2019} |Chen et al., 2020b, [Liu et al.|[2021] |Delmas et al., [2022]
aims to identify target image, corresponding to the input query composed of a reference image and
a text modifier describing how the reference image should be modified, as illustrated in Figure[T]
Compared to traditional image-to-image retrieval task [|Gu et al., 2022} |[Zhao et al., {2020, 2021} Wu
et al., [2022] and text-to-image retrieval task [Ma et al.,[2022al [Lu et al.|[2022] where single modality
is provided as input, composed image retrieval is a challenging task as it requires joint vision and
language understanding to retrieve the corresponding target image.

Existing works tackle this problem by directly fusing the multi-modal features after single modality
encoding [Liu et al., 2021} |Baldrati et al., |2022]]. This type of approaches first processes input
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Figure 1: Example of composed image retrieval. Visual concepts are mined from images and aligned
with semantic concepts from the text modifier. Based on aligned concepts, the reference image feature
is fused with the text modifier in a sequential way to identify the target image feature. Different
colors denote different concepts. Note that a concept from text modifier may appear in the reference
image ( ), the target image ( ), or both ( ).

modality as a whole and lacks fine-grained multi-modal understanding at concept-level, preventing
the model from performing concept-level composition, while most of the time the text modifier
specifies partial semantic editing for the reference image. Therefore, we propose a NEUral COncept
REasoning (NEUCORE) model to mine and align the visual concepts in reference and target images
with the semantic concepts in text modifier, to enhance the semantic consistency between the multi-
modal feature composition and the target image feature. Specifically, our NEUCORE model consists
of two main components, i.e., multi-modal concept alignment and progressive multi-modal fusion
over concepts.

Firstly, we propose to mine and align visual and semantic concepts under the weak supervision
of image-text pair where the ground truth mapping of visual concepts in images and semantic
concepts in sentences is unknown, instead of relying on object detectors [Ren et al.|[2015] to generate
region proposals and object tags to realize multi-modal concept alignment which suffers from the
problems of heavy computational load and limited concept label space [Fang et al., 2022]]. A multiple-
instance learning framework with candidate visual concepts as instance, is designed with practical
considerations of concept existence uncertainty, imbalance and noisy optimization, for tackling
image-text pair weak supervision. Notably, a text modifier specifies the change to the reference
image, and the change operations not only include attribute editing over the existing concepts in
reference image, but also involve adding concepts into reference image or removing concepts from
the reference image, which will cause the concept existence uncertainty among reference and target
images. For example, in Figure [I] the shepherd dog in the text modifier appears in the reference
image, but the golden retriever appears in both the reference and target images. To overcome this
uncertainty, we concatenate the reference and target image tokens corresponding to candidate visual
concepts, and employ a transformer [Vaswani et al.,|2017] to jointly encode the reference and target
images considering the nice property of patch-level feature encoding in transformer.

On top of visual encoding of reference and target images using transformer, the optimization for
visual and semantic concept alignment is achieved by attention based multiple instance learning [Ilse
et al.,|2018]|| under the supervision of the semantic concepts parsed from the text modifier. Practically,
the semantic concepts from each text modifier are represented by the multi-label representation in the
concept label space which is constructed by the semantic concepts from all text modifiers in training
data. Considering that each text modifier only mentions very limited semantic concepts in each pair
of reference and target images compared to the large concept label space, there exists the problem of
positive-negative imbalance during the optimization. Besides, the partial semantic editing property
of the text modifier for the reference image may cause the situation that, some visual concepts are
not referred by the text modifier and mislabeled as negative labels in the multi-label representation,
according to the labeling rule that only the semantic concepts mentioned in the text modifier will
be set as positive in the concept label space for that example. An asymmetric loss is applied to
alleviate the imbalance and mislabeling problems during the concept alignment optimization. After
the optimization, the visual tokens are assigned with semantic meaning and aligned with the semantic
concepts referred in the text modifier.



Secondly, after aligning visual and semantic concepts, we are able to fuse multi-modal features at
fine granularity instead of holistic visual and text features [Delmas et al., 2022, [Liu et al., 2021]]
for final target image retrieval. A progressive multi-modal fusion module is proposed to gradually
fuse the aligned concepts from the reference image and the text modifier in a sequential way with
each step having its own focus. Progressive multi-modal fusion over concepts involves two sub-
problems of how to generate the fusion operation sequence, and the specific design for each fusion
operation. We propose a unified fusion operation design which can be instantiated by different
sequence indicators to realize different fusion operations, through leveraging the advantage that the
normalization layer can fuse its own preserved features, obtained from sequence indicators, with input
visual features [Ulyanov et al.l 2017]]. The unified design overcomes the time-consuming drawback
of previous hand-crafted fusion designs and removes the dependence on expert knowledge [[Andreas
et al., [2016b, [Mao et al.| 2019, [Yi1 et al. 2018]. The fusion operation sequence is sequentially
generated by the co-attention of global encoding over individual word embedding in the text modifier,
and each sequence step focuses on local semantic concept feature guided by the global semantic
context of text modifier. The attended local semantic concept feature is the sequence indicator at each
sequence step, and is used to drive the instantiation of the unified fusion operation, taking on the
role of a meta-learner. Our proposed fusion sequence generation method is optimized with the final
retrieval loss without single step supervision needed as in sequence-to-sentence methods [Hu et al.,
2017, |Chen et al.,[2020a, Mao et al., 2019, |Yi et al., [2018|, |Johnson et al., [2017], and is able to deal
with diverse sentences compared to language parser based approaches [Andreas et al.,[2016bla].

To summarize our contributions, we introduce a model NEUCORE for composed image retrieval
consisting of a multi-modal concept alignment module and a multi-modal fusion module over aligned
concepts. Our NEUCORE model learns fine-grained multi-modal concept alignment under image
and sentence level weak supervision with actual influencing factors considered. Reference image
and text modifier are progressively fused using a unified fusion operation over aligned concepts and
under the sequence guidance of attended local semantic concepts, to gain a representation for target
image retrieval with more semantic consistency. We validate our proposed model on three datasets.
The results show that our method consistently outperforms the state-of-the-art, demonstrating the
effectiveness of our approach.

2 Related Work

Composed Image Retrieval. Composed image retrieval task receives a reference image and a
text modifier describing how the reference image should be modified to obtain the desired target
image. Previous approaches [Vo et al.,[2019,|Chen et al., [2020b} |[Kim et al., 2021} |Lee et al., [2021],
Liu et al. 2021 [Delmas et al., 2022] encode the reference image or text modifier into a holistic
feature representation, and ignore the fine-grained information in composed image retrieval where the
composed and complimentary property between the reference image and text modifier inputs happens.
In this paper, our approach moves the multi-modal understanding to fine granularity at concept-level,
and models the interactions between visual and semantic concepts for composed image retrieval.

Multi-Modal Concept Alignment. Multi-modal concept alignment aims to align visual concept
space with semantic concept space to enable the fine-grained understanding and interaction between
visual and semantic concepts [Li et al., 2022 [Luo et al.,|2022| |Xu et al.,[2019]]. A line of methods [Liu
et al., 2022} |Li et al., [2021} |[Zhou et al.} 2020\ L1 et al., [2020, [Tan and Bansal, 2019] employ a pre-
trained object detector [Ren et al., [2015] to generate region proposals and their object tags as the
visual and semantic concepts, and then align them for downstream tasks. However, the object
detectors limit the number of concepts as they are typically trained on limited pre-defined object
categories. Some works investigate detector-free-based methods that use grid (patch) features [Fang
et al., 2022, [Jiang et al., 2020, Ma et al.,2022b] to predict visual concepts under weak supervision.
Collaboration among foundation models has recently emerged as a promising direction to obtain
multi-modal concepts [Zhao and Xul 2023]). In this paper, our model mines and aligns multi-modal
concepts under the setting that the text modifier only contains partial semantic editing property, which
is challenging to find correspondence to align concepts for composed image retrieval.
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Figure 2: (a) The overall architecture of our proposed NEUCORE model. It mines and aligns
multi-modal concepts, then fuses the reference image feature with the text modifier over aligned
concepts to identify the target image feature. (b) Multi-modal concept alignment module mines visual
concepts from images under image-level supervision and aligns them with semantic concepts from
text modifiers. (c) Progressive multi-modal fusion module decomposes the text modifier to a fusion
sequence by co-attention and progressive fuses the reference image and text modifier over aligned
concepts.

3 Method

Given a reference image I™ and a text modifier 7', the composed image retrieval task aims to combine
them to identify the target image I¢. Previous approaches holistically process each input modality and
then fusion, and is lack of the fine-grained compositional understanding. In this paper, we propose
Neural Concept Reasoning (NEUCORE) to tackle the composed image retrieval by mining and
aligning multi-modal concepts, and progressively fusing input modalities over concepts, as illustrated
in Figure[2] The explanation of the symbols used in this paper is listed in supplementary material.

For feature encoding, the text modifier feature q and contextualized word features t are encoded by a
text encoder Er. An image encoder E; is employed to extract reference and target image features,
and the reference tokens f” and target tokens f¢ are obtained by flattening encoded visual features:

q,t =Er(T),f" =E;(I"), f' = E;(I"), (1)

where superscripts " and ! indicate that a feature belongs to the reference or target image, respectively.

3.1 Multi-Modal Concept Alignment

To model the fine-grained vision and language alignment between reference image and text modifier,
we propose to mine and align visual concepts with semantic concepts from image-text pair data,
which surpasses previous detector-based methods limited to small pre-defined label space. Due to the
lack of concept-level supervision, we extract semantic concepts from text modifiers using a language
parser as pseudo labels and apply the pseudo labels as image-level supervision. However, it is still
challenging to learn multi-modal concept alignment with pseudo semantic concept labels at image
level. Specifically, given a semantic concept, we cannot determine whether the correspondent visual
concept appears in reference image or target image. For example, a text modifier “Remove a dog”
means a dog concept exists in the reference image, not in the target image. And a text modifier “Add
a cat” denotes a cat concept belonging to the target image, not in the reference image. Formally,
given an input (I", I*, or T'), a concept set contains all concepts in the input, denoted as C(-).
However, we cannot determine ¢ € C(I") or ¢ € C(I*), where ¢ € C(T). To resolve this ambiguity,
we combine visual tokens of I” and I* to form a larger token set I"* = [I", I'] and C(T') C C(I"),
where [-, -] denotes concatenation, considering that a concept ¢ described in T must exist in I” or
I (or both).



Specifically, we parseE] semantic concepts from the text modifier and embed each semantic concept
w, via GloVe [[Pennington et al.l 2014]] word embedding:

w. = Embedding(c). 2)

where ¢ € M and M is the concept vocabulary constructed by semantic concepts from all text
modifiers.

Then, we obtain f™ by concatenating reference and target tokens, and employ a transformer Trans to
exchange context and find correspondence:

7" = Trans([f", f]). 3)

After modeling relation between reference and target tokens, we adopt a token-wise softmax to
acquire attention weights a, and then use the weights to summarize visual tokens to get a visual
concept feature £ which contains visual foreground information:

a = Softmax(f™"),fI* = a - f™. (€))
Finally, multi-modal alignment score s is calculated by the concept features and embeddings of

semantic concepts:
s=f" w.. 3)

However, employing vanilla classification loss functions, such as the binary cross-entropy loss
function, to optimize the score s leads to poor alignment. Text modifier only explicitly describes
partial concepts compared to abundant visual concepts in the pair of input images, denoted as
C(I™)y = C(I™) — C(T) and C(T) & C(I"). However, all concepts belonging to C(I") are
viewed as negative labels, leading to an increased risk of misclassifying visual concepts as background.
On the other hand, the number of concept categories |M| is much larger than positive concepts
described in each text modifier, i.e., |C(I"")| < M — C(I")|, causing high imbalance between
positive and negative concept labels in the multi-label representation. As a result, the problems of
mislabeling and imbalance hurt the training process, leading to incorrect concept alignment.

Therefore, we introduce an asymmetric loss [Ridnik et al.,[2021] for multi-modal concept alignment
to balance the visual and semantic concepts dynamically and discard possibly mislabeled concepts:

1
— B 13
Le= N g (1 s +log(s;) + E log(1 S ) , (6)

icP JjEN

where s’ = sigmoid(s); P and N are the positive and negative set, respectively. S+ and S— are two
hyper-parameters that control the degree of focus on positive and negative concepts.

3.2 Progressive Multi-Modal Fusion over Concepts

After obtaining aligned multi-modal concepts, the reference image feature f” and text modifier
feature q are progressively fused in a sequential way over aligned concepts to identify the target
concept feature . We propose to decompose the sequential fusion steps from the text modifier
without step level supervision. Specifically, to focus on distinct semantic contexts of a text modifier,
K independent fully connected layers FC;,¢ = 1,2, , K are employed to project text modifier
feature . We adopt the Multi-Head Attention (MHA) [[Vaswani et al.,[2017]] to extract the indicator
vector for each semantic fusion step in the fusion sequence S:

S = (MHA(FCy(q), t,t), MHA(FCsy(q), t,t), - - ,MHA(FCk(q), t, t)) @)

To progressively combine the reference image and text modifier over aligned concepts, we propose
to instantiate specific operators from a meta-fusion architecture according to the generated fusion
steps, which surpasses previous methods with time-consuming hand-crafted fusion operator design
and the limit to expert knowledge. Our basic idea is that fusion steps can be clustered into semantic
fusion groups, like “ADD” and “REMOVE,” although the expressions within each group may vary in
natural language. Therefore, we devise a transformer-based [Vaswani et al., 2017] meta-fusion
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module MetaFusion and allow it to be instantiated for specific semantic fusion groups. Specifically,
we employ a fully connected layer to generate parameters FC(S;) according to fusion steps’ indicators,

where i = 1,2,--- , K and S; € S, and initialize the normalization layers [Huang and Belongie
2017] in the transformer with these parameters:
_ )

After transformer fusion instantiation, reference image tokens exchange information with aligned
concepts in multi-head attention and fuse with text modifier information in the normalization layer:

filfl = NL(fzfla ,ufiao-i)v
Q7K7V = Wfi,—l’
£, =MHA(Q,K,V)+f_,, ©)

2
Al Y

£y =NL(fi_y; pi, 03),
f= FENE )+ £
where NL is a normalization layer; FFN is a feedforward network; W is a weight matrix; fo =f".
After K fusion steps, we obtain fj as the modified image feature to match the target images.

Finally, the concept matching score m can be calculated by:
m = fy - f!, (10)
where f! is the visual concept feature of target image.

To train our proposed NEUCORE model, given mini-batch data, the model is optimized by the
batch-based classification loss, which is demonstrated to be an efficient optimization loss function for
the composed image retrieval task in previous approaches [Vo et al.| 2019, [Lee et al., [2021] [Delmas
et al.,[2022]:

N
! exp{ym(Ty, T;, C(I7),I})}
bn =~y 2108 iy i (11)

where 7 is a temperature parameter. m(I%, T¢ C'(I%), %) is the matching score (cosine similarity),
consisting of the concept matching score which is described in Equation (TI0) and the context matching
score which is described in [Delmas et al., [2022]. Combining with the loss function of concept

alignment, the final loss function is:
L="Ln+al,, (12)

where « control the trade-off between the two loss functions.

The learning algorithm of our NEUCORE model is summarized in supplementary material.

4 Experiments

4.1 Datasets

To evaluate our NEUCORE model, we extensively conduct experiments on three widely used datasets:
Shoes [Guo et al.,|[2018]], FashionIQ[Wu et al.,[2021]], and CIRR [Liu et al.| 2021].

Shoes is constructed from the Attribute Discovery Dataset [Berg et al.,[2010]. In [Guo et al., 2018]],
authors additionally label natural language query sentences for the composed image retrieval task
based on attribute labels in the original dataset. The dataset consists of 9k training triplets and 1.7k
test queries. FashionIQ covers three fashion categories: Dress, Top tee, and Shirt. It contains 46k
images for training, and 15k images for validation and testing. There are 18k queries for training,
12k queries for validation, and 12k queries for testing. Each query has two captions describing how
to modify from the reference image to the target image. CIRR consists of over 36k open-domain
images with human-generated text modifier. It is a more challenging dataset due to the richness of
visual information and the diversity of language queries. Following [Liu et al.;[2021]], 36k triplets are
split into 80% for training, 10% for validation, and 10% for testing in our experiments.



Table 1: Results (%) on CIRR dataset. CIRPLANT* employs a large pre-trained vision-language
model.

Method RQK R;QK (R@5+R,@1)
K=1 K=5 K=10 K=50 K=1 K=2 K=3 2
CIRPLANT* (init. OSCAR)[Liu et aL|[2021]  19.55 52.55 6839 9238 3920 63.03  79.49 45.88
CIRPLANT Liu et al.|[2021] 1518 4336 6048  87.64 3381 5699  75.40 38.59
TIRG Vo et alL[[2019] 1001 3831 5459 8469 3736 5931 7251 37.84
ARTEMIS Delmas et al.|[2022] 1696 4610 6131 8773 3999 6220 75.67 43.05
NEUCORE 1846 49.40 6357 8935 4427 67.06  78.92 46.84

4.2 Evaluation Protocol

Following [Delmas et al.| [2022], we report composed image retrieval performance in Recall within top-
K (RQK). Particularly, for CIRR dataset, following [Liu et al.,2021]], we additionally report Recall
within top-K on the visually similar subset (R;QK), where the subset of candidate target images is
visually similar to the correct target image, and it requires the fine-grained understanding ability of
both vision and language modalities and their interactions. Following previous works [Delmas et al.,
2022]], we evaluate NEUCORE model on the test set of CIRR dataset, the validation set of Shoes
dataset, and the validation set of FashionlQ dataset.

4.3 Implementation Details

We employ ResNet [He et al., |2016|] pre-trained on ImageNet as the image encoder. For the
text encoder, we adopt BiGRU [Cho et al.| 2014] to encode sentence q and obtain the hidden
states as contextualized word features t. The concept alignment module consists of 2 transformer
layers [Dosovitskiy et al., [2021]]. The batch size is 32. Following [Delmas et al.,2022]], we freeze
the image encoder during the first 8 epochs. Then the model is trained for 50 epochs. We use the
AdamW optimizer [Loshchilov and Hutter, [2019]] and set the initial learning rate to 5 x 10~* with a
decay of 0.5 every 10 epochs. 3 and 5_ are 1 and 4, respectively. K is 3. 7 is 2.65926. « is 200.
The model is trained on one NVIDIA RTX A5000 GPU.

4.4 Main Results

We compare the performance of our proposed NEUCORE model with previous SOTA works on three
benchmarks.

Results on CIRR Dataset. Table [l|shows the results. Our proposed NEUCORE model achieves
3.79% average improvement compared to the SOTA approach, ARTEMIS. Specifically, NEUCORE
model improves 1.5%, 3.3%, 2.26%, and 1.62% in K = 1, K = 2, K = 10, and K = 50 of RQK,
respectively. It demonstrates that NEUCORE model can better retrieve target images according to
reference images and text modifiers. Moreover, NEUCORE model improves 4.28%, 4.86%, and
3.25%in K =1, K = 2,and K = 3 of R,QK, indicating the recall of top-K on a visual similar
subset, which is a more challenging metric and evaluates a model’s fine-grained understanding
ability on a visual similar target subset. Under the same pre-training condition without using the
vision-language pre-trained weights, denoted as CIRPLANT, our model outperforms CIRPLANT
significantly on all metrics. Furthermore, when the CIRPLANT model is initialized with the pre-
trained weights from the OSCAR model [Li et al.,[2020] trained on 6.5 million image-caption pairs,
our model can still outperform it in R,@Q1 and R,@Q2 by 5.07 and 4.03, respectively. It indicates
our proposed multi-modal concept alignment module can effectively mine and align fine-trained
multi-modal concepts and the multi-modal fusion can fuse the reference image feature and text
modifier feature over concepts to identify the target image feature.

Results on Shoes Dataset. The results are shown in Table 2} Our proposed NEUCORE model
improves 1.04%, 2.37%, and 1.44% in K = 1, K = 10, and K = 50 of Recall compared to the
SOTA method ARTEMIS [Delmas et al., [2022]] on this dataset. And it achieves 1.62% improvement
on average, (RQ1 + RQ10 + RQ50)/3.



Table 2: Results (%) on Shoes dataset.

Method R@l RQ@10 Ra@50 [ERAI0LRA50
TIRG 1][2019] 1446 4751 7517 45.71
VAL [Chen et al.| [2020b 1649 49.12  73.53 46.38
CoSMo Lee et al[[2021 1672 4836  75.64 46.91
ARTEMIS Delmas et al[[2022]  18.72  53.11  79.31 50.38
NEUCORE 19.76 5548  80.75 52.00

Table 3: Results (%) on Fashion IQ dataset.

Method R@10 Ra@50 Hl04Re0

CIRPLANT [Liu et al| [2021] 14.82 3552 25.17

TIRG Vo et al[[2019] 23.17 4748 35.32

CoSMo |Lee et al.[[2021]] 19.87 42.65 31.26

ARTEMIS Delmas et al. []2022[] 26.05 50.29 38.17

NEUCORE 2645 51.75 39.15
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Figure 3: Qualitative examples of image-text queries on CIRR validation set and its Top-5 retrieval
results. Green dotted boxes denote the ground-truth target images, and semantic concepts in the input
text modifiers are highlighted by different colors. indicates that a concept appears only in the
reference image. denotes that a concept appears both in the reference and target images.
means that a concept appears only in the target image.

Results on FashionIQ Dataset. Table [3]illustrates the main results. Our proposed NEUCORE model
still obtains state-of-the-art results of RQ10 and RQ50. Due to the limited space, detailed results
with more evaluation metrics on the FashionIQ dataset can be found in supplementary material.

4.5 Ablation Study

To show the effectiveness of each component of our model design, ablation study for different variants
are conducted on the CIRR validation set as CIRR dataset contains more concepts and is better to
evaluate the fine-grained understanding ability of models.

Multi-modal Concept Alignment Module. The ablation study results of the concept alignment
module are illustrated in Table [d] “Reference Only” and “Target Only” denote that we do not
concatenate the reference and target image tokens and only use reference or target image tokens to
align with semantic concepts. The performance decrease of these two variants demonstrates that our
concept alignment module with the concatenation of reference and target images can help alleviate
the ambiguity problem of corresponding visual concepts, and improve multi-modal concept mining
and alignment for composed image retrieval task. “Cross-Entropy Loss” means that the asymmetric
loss for optimizing the concept alignment described in Equation (6)) is replaced with the binary
cross-entropy loss. The ablation results show the performance decrease, and confirm the existence of
the problems about positive-negative imbalance and mislabeling in multi-label concept classification.
Our proposed concept alignment module with asymmetric loss can help alleviate these problems.



Table 4: Ablation results (%) of multi-modal concept alignment module on CIRR validation set.

Variants R@5 R,Q1 (1%@52&
NEUCORE 51.10 45.35 48.22
Reference Only 50.74 42.76 46.75
Target Only 49.77 42.48 46.12
Cross-Entropy Loss  47.52  42.71 45.11

Table 5: Ablation results (%) of multi-modal fusion module on CIRR validation set.

Variants RQ@5 R,Q1 w
NEUCORE 51.10 45.35 48.22
Remove Progressive Fusion Module  50.29  43.92 47.10
Layer Norm 4932 4473 47.03

Table 6: Analysis of zero-shot novel concept generalization on the new data split CIRR,, with
novel concepts in test data. K denotes R;QK (%).

Method K=1 K=2 K=3
ARTEMIS Delmas et al.[[2022] 30.86  55.71  68.29
NEUCORE 3743 63.14 72.57
Remove Concept Module 31.71 53.71 66.29

Progressive Multi-Modal Fusion Module. The ablation study results of the progressive multi-modal
fusion module are shown in Table[5] It confirms the effectiveness of our progressive multi-modal
fusion module with automatic fusion sequence generation and unified fusion module design. “Remove
Progressive Fusion module” means that we remove the multi-modal progressive fusion module and
directly fuse concatenation of the reference image feature and text modifier feature. The decreased
ablation results demonstrate that our proposed fusion module can better identify the target feature
by progressively fusing the reference image feature and text modifier feature over aligned concepts
with each step having focus. “Layer norm” denotes we use vanilla layer normalization instead of
adaptive instance normalization without adaptive instantiation. The results show adaptive instance
normalization can fuse features better in composed image retrieval task.

4.6 Analysis of Zero-Shot Concepts

Compared with previous approaches, our proposed NEUCORE model mines and aligns visual
concepts and semantic concepts. It aligns the visual embedding space and semantic embedding
space and transfers knowledge from language to vision, which can improve the zero-shot concept
recognition ability. To demonstrate it, we create a data split from CIRR validation set, named CIRR .
Specifically, we parse the concepts from the training and validation sets. Next, we compute their
difference set to obtain zero-shot concepts, i.e., not seen during training time. Then we only keep
these samples that contain zero-shot concepts to create zero-shot data split D,, resulting in 316
zero-shot concepts and 350 samples.

Results are reported in Table[6] Compared to the SOTA approach ARTEMIS which fuses holistic
multi-modal features for composed image retrieval, NEUCORE model improves 6.57%, 7.43%, and
4.28% in K = 1, K = 2, and K = 3 of recall within top-K of subset R, respectively. Moreover,
we also present the results of removing the multi-modal concept alignment module, which results
in performance drops of 5.72%, 9.43%, and 6.28% in R;QK, respectively. It illustrates that the
concept alignment module improves the zero-shot concept recognition ability by aligning visual
concepts with semantic concepts represented by word embedding, which transfers the knowledge
from word embedding to visual concepts.



4.7 Qualitative Results

Figure[3|shows the retrieval examples from a restricted subset of the CIRR validation set|Liu et al.
[2021]], where candidate target images are visually similar. It requires learning fine-grained vision and
language features and their interactions. The results show that our proposed NEUCORE model can
understand the content of text modifier and compose the reference image feature and text modifier
feature to identify the target image feature.

5 Conclusion

In this paper, we propose a model named NEUCORE to tackle the composed image retrieval task,
which consists of multi-modal concept alignment module and progressive multi-modal fusion module.
Multi-modal concept alignment module mines and aligns visual concepts from images with semantic
concepts from text modifiers, and the progressive multi-modal fusion module progressively fuses
the reference image feature with the text modifier feature over aligned concepts to identify the
target image feature. Extensive experiments demonstrate our proposed NEUCORE model learns
fine-grained multi-modal alignment and their interactions at concept-level from image-text paired
data.
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