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ABSTRACT

We address the challenge of federated learning on graph-structured data distributed
across multiple clients. Specifically, we focus on the prevalent scenario of in-
terconnected subgraphs, where interconnections between different clients play a
critical role. We present a novel framework for this scenario, named FEDSTRUCT,
that harnesses deep structural dependencies. To uphold privacy, unlike existing
methods, FEDSTRUCT eliminates the necessity of sharing or generating sensitive
node features or embeddings among clients. Instead, it leverages explicit global
graph structure information to capture inter-node dependencies. We validate the ef-
fectiveness of FEDSTRUCT through experimental results conducted on six datasets
for semi-supervised node classification, showcasing performance close to the cen-
tralized approach across various scenarios, including different data partitioning
methods, varying levels of label availability, and number of clients.

1 INTRODUCTION

Many real-world data are graph-structured, where nodes represent entities and edges capture their re-
lationships. For example, in anti-money laundering, nodes symbolize accounts and edges correspond
to confidential transactions.

Graph neural networks (GNNs) are specialized neural networks for graph-structured data, showing
success in fields such as drug discovery, social networks, or traffic flow modeling (Stokes et al.,
2020; Fan et al., 2019; Jiang and Luo, 2022). In many practical applications, graph data is inherently
distributed across multiple clients, i.e., the global graph encompasses multiple, non-overlapping
subgraphs. For example, in anti-money laundering, local graphs represent internal transactional
networks of financial institutions.

For this and many other applications, data sharing among clients is often restricted due to privacy,
regulations, or proprietary restrictions. Federated learning (FL) (McMahan et al., 2017) offers
a way to utilize global graph-structured data while maintaining data privacy. Various flavors of
federated GNNs exist (Liu et al., 2022). This paper focuses on one of the most prevalent scenarios,
subgraph federated learning (SFL) (Zhang et al., 2021), where clients hold disjoint subgraphs
that together form a global graph with interconnections between the different local subgraphs.
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Figure 1: Node classification accuracy. For all datasets, FEDSTRUCT
exhibits performance close to the centralized setting (CENTRAL GNN).

Training a GNN involves aggregating feature represen-
tations of neighboring nodes to generate more expres-
sive embeddings (Kipf and Welling, 2017; Hamilton
et al., 2017; Veličković et al., 2018). In SFL, a key
challenge is facilitating training when some neighboring
nodes, whose information is crucial for training, reside
in other clients without sharing raw data across clients.
This setup falls under the well-known communication-
privacy-accuracy trilemma (Chen et al., 2020) which
necessitates solutions that preserve the privacy of lo-
cal data and supports minimal communication overhead
between clients and the central server, while achieving high accuracy for the end-to-end task.

Several approaches have been proposed to address this trilemma (Zhang et al., 2021) (FEDSAGE+),
(Peng et al., 2022) (FEDNI), (Chen et al., 2021; Du and Wu, 2022; Lei et al., 2023) (Yao et al., 2024)
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(FEDGCN), (Baek et al., 2023) (FEDPUB). However, except (Baek et al., 2023), these methods rely
on sharing node features or embeddings between clients, which raises significant privacy concerns.
Moreover, there are challenges related to performance, as the global model needs to accurately
aggregate distributed knowledge, and communication cost, as transmitting features or embeddings
between clients can be resource-intensive.

To address privacy risks, inspired by Cui et al. (2022), we observe that the global graph structure
alone can be highly informative and is less sensitive than node features. This opens up the possibility
of training robust classifiers without exposing raw data, achieving high performance that surpasses
that of standard FL.

Our contribution. We address the problem of subgraph FL for node classification within a global
graph containing multiple, non-overlapping, subgraphs belonging to different clients. More precisely,
we consider the prevalent scenario where cross-subgraph interconnections are known (such as in
transaction networks). However, we assume that neither the server nor the clients have knowledge of
the global graph connections or the node features, i.e., the node features and intra-connections for
each subgraph remain private. Our contributions include:
• Building on the observation above, we propose a novel SFL framework, named FEDSTRUCT, that

exploits deep structural dependencies and tackles the key challenges of privacy, performance, and
communication cost. To safeguard privacy, FEDSTRUCT decouples graph structure and node
feature information: Unlike existing approaches, FEDSTRUCT eliminates the need for sharing or
generating node features or embeddings. Instead, it leverages global graph structure information to
capture inter-node dependencies among clients. FEDSTRUCT minimizes structural information
exchanged between clients, limiting privacy leakage and reducing communication complexity
while achieving utility close to a centralized approach.

• We introduce a method to generate task-dependent node structure embeddings, coined HOP2VEC,
that adapts to the graph and demonstrates competitive performance compared to task-agnostic
methods such as NODE2VEC (Grover and Leskovec, 2016), graphlet counting (Pržulj, 2007), or
the technique used in FEDSTAR (Tan et al., 2023).

• By integrating a decoupled GCN and leveraging deep structural dependencies within the global
graph, we effectively tackle the semi-supervised learning scenario. Further, FEDSTRUCT relies on
non-local neighbor-extension and inter-layer combination, techniques commonly used to handle
heterophilic graphs (Zheng et al., 2022). To the best of our knowledge, FEDSTRUCT is the first
SFL framework capable of handling heterophilic graphs.

• We validate the effectiveness of FEDSTRUCT on six datasets for semi-supervised node classifi-
cation, showcasing excellent performance close to a centralized approach in multiple scenarios
with different data partitioning methods, availability of training labels, and number of clients.
Particularly, FEDSTRUCT yields outstanding performance in scenarios with limited number of
labeled training nodes. In heavily semi-supervised settings, it significantly outperforms both
FEDSAGE+ and FEDPUB. Moreover, it achieves peformance close to that of FEDCGN (which
does not provide privacy and assumes server access to the global adjacency matrix) (see Figure 1).
The source code is publicly available in the Github Link.

2 RELATED WORK

SFL with no knowledge of cross-subgraph interconnections. Relevant works include (Zhang
et al., 2021) (FEDSAGE+), (Peng et al., 2022) (FEDNI), (Zhang et al., 2024) (FEDDEP), (Baek
et al., 2023) (FEDPUB), and (Zhang et al., 2022; Liu et al., 2023). FEDSAGE+, the first method for
subgraph FL, generates features for missing 1-hop neighbors across subgraphs using a variational
autoencoder. FEDNI extends this by using a GAN to generate higher-quality node features. The
in-painting idea is further expanded to handle heterogeneous graphs in (Zhang et al., 2022) and
missing links in (Liu et al., 2023). FEDDEP builds on FEDSAGE+ by generating embeddings that
capture deeper structural information (up to k-hop neighbors). A limitation of in-painting methods,
like FEDSAGE+ and FEDNI, is the unpredictable quality of the generated features, which can either
lead to poor models or expose sensitive information through confident predictions. FEDPUB avoids
in-painting by employing personalized aggregation based on the functional similarity between client
models.

SFL with knowledge of cross-subgraph interconnections. Relevant works include (Yao et al.,
2024) (FEDGCN), (Lei et al., 2023) (FEDCOG), and (Chen et al., 2021; Du and Wu, 2022). FEDGCN
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securely transmits cross-client neighbor information once before training, preventing the server from
accessing local data but exposes aggregated node features to neighboring clients. This can risk data
leakage since node features often contain meaningful patterns. FEDCOG decouples local subgraphs
into internal and border graphs, with graph convolution divided between them. It requires sharing
intermediate embeddings, effectively performing a convolution on the global graph. Other methods
employ sampling techniques to address the challenges of SFL (Chen et al., 2021; Du and Wu, 2022).

In summary, all prior approaches rely on sharing original or generated node features or embeddings
(except FEDPUB) and assume homophily, which often does not hold in real-world settings.

Structural information in GNNs. Recent studies have revealed limitations in the capacity of GNNs
to capture the structure of the underlying graph. To overcome this obstacle, some works explicitly
incorporate structural information into the learning, showing superior performance compared to
standard GNNs (Bouritsas et al., 2023; Tan et al., 2023). To increase GNN’s representation power,
Bouritsas et al. (2023) introduces structural information to the aggregation function. The authors
demonstrate that the proposed architecture is strictly more expressive than standard GNNs. FED-
STAR (Tan et al., 2023) presents an FL scheme where clients share explicit structural information to
enhance local performance. No work has leveraged explicit structural information in SFL.

3 PRELIMINARIES

Graph notation. We consider a graph denoted by G = (V, E ,X,Y ), where V is the set of n nodes,
E the set of edges, X ∈ Rn×d the node feature matrix, and Y ∈ Rn×c the label matrix. For each node
v ∈ V , we denote by xv ∈ Rd its corresponding feature vector and by yv ∈ Rc its corresponding
one-hot encoded label vector. We consider a semi-supervised learning scenario and denote by Ṽ ⊆ V
the set of nodes that possess labels. The labels of the remaining nodes are set to 0. We also denote by
NG(v) = {u|(u, v) ∈ E} the neighbors of node v.

For a given matrix M , let Muv be its (u, v)-th element. The topological information of the whole
graph is described by the adjacency matrix A ∈ Rn×n, where Auv = 1 if (u, v) ∈ E . We define the
diagonal matrix of node degrees as D ∈ Rn×n, where Duu =

∑
v Auv . Furthermore, we denote by

Ã = A+ I the self-loop adjacency matrix, and by Â = D̃−1Ã the normalized self-loop adjacency
matrix, where d̃uu =

∑
v∈V Ãuv . We also define [m] = {1, . . . ,m}.

GNNs. Modern GNNs use neighborhood aggregation followed by a learning transformation to itera-
tively update node representations at each layer. Let h(l)

v be the feature embedding of node v at layer l,

with h
(0)
v = xv . At layer l ∈ [L] of the GNN we have h(l)

NG(v) = AGG(l)

({
h
(l−1)
u , ∀u ∈ NG(v)

})

and hv = UPD(l)
(
h
(l−1)
v , h

(l)
NG(v) ,Θ

(l)
)

, where Θ(l), AGG(l) and UPD(l) denote the learnable
weight matrix, aggregation function, and update function associated with layer l, respectively.

Decoupled GCNs. A significant limitation of GNNs is over-smoothing (Liu et al., 2020; Dong et al.,
2021), which results in performance degradation when multiple layers are applied. Over-smoothing
is characterized by node embeddings becoming inseparable, making it challenging to distinguish
between them. This phenomenon is attributed to the interweaving of the propagation and update
steps within each GNN layer (Liu et al., 2020; Dong et al., 2021). To address over-smoothing, a
well-known solution (hereafter referred to as decoupled GCN) is to decouple the propagation and
update steps (Liu et al., 2020; Dong et al., 2021). Let fθ(·) be a multi layer perceptron (MLP)
network with learning parameters θ. A decoupled GCN can be described with the model

H(L) = ĀFθ(X) , (1)

where Fθ(X) = ||(fθ(xv)
T ∀v ∈ V), with || being the concatenation operation, and T denotes the

transpose operation. Ā is the L-hop combined adjacency matrix and it can be computed as

Ā =

L∑

l=1

βlÂ
l . (2)

The elements of Ā reflect the proximity of two nodes in the graph, with βl determining the contribution
of each hop. Parameters {βl}Ll=1 can be set manually or learned during training.
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4 SYSTEM MODEL

We consider a scenario where data is structured according to a global graph G = (V, E ,X,Y ),
which is distributed among K clients such that each client owns a smaller local subgraph. We denote
by Gi = (Vi,V∗

i , Ei, E∗i ,Xi,Yi) the subgraph of client i, where Vi ⊆ V is the set of ni nodes that
reside in client i, referred to as internal nodes, for which client i knows their features. V∗

i is the
set of nodes that do not reside in client i but have at least one connection to nodes in Vi. We call
these nodes external nodes. Importantly, client i does not have access to the features of nodes in V∗

i .
Furthermore, Ei represents the set of edges between nodes owned by client i (intra-connections), E∗i
the set of edges between nodes of client i and nodes of other clients (interconnections), Xi ∈ Rni×d

the node feature matrix, and Yi ∈ Rni×c the label matrix for the nodes within subgraph Gi, and we
denote by Ṽi the set of nodes that possess labels. Similar to graph G, NGi

(v), A(i), and D(i) denote
the set of local neighbors, the local adjacency matrix, and the local diagonal matrix for subgraph Gi.

4.1 FEDERATED LEARNING

The FL problem can be formalized as learning the model parameters that minimize the aggregated
loss across clients,

θ∗ = argmin
θ

L(θ) , (3)

with

L(θ) = 1

|Ṽ|

K∑

i=1

Li(θ), and Li(θ) =
∑

v∈Ṽi

CE(yv, ŷv) , (4)

where CE is the cross-entropy loss function between the true label yv and the predicted label ŷv .

The model θ is trained iteratively over multiple epochs. At each epoch, the clients compute the
local gradients∇θLi(θ) and send them to the central server. The server updates the model through
gradient descent,

θ ← θ − λ∇θL(θ), ∇θL(θ) =
1

|Ṽ|

K∑

i=1

∇θLi(θ) , (5)

where λ is the learning rate.

5 FEDSTRUCT: STRUCTURE-EXPLOITING SUBGRAPH FEDERATED LEARNING

In this section, we introduce FEDSTRUCT, a novel SFL framework designed to leverage inter-node
dependencies among clients while safeguarding privacy. The central concept of FEDSTRUCT is to
harness explicit information about the global graph’s underlying structure to improve node label
prediction while ensuring that neither the server nor the clients have access to the node features. More
precisely, at each client i ∈ [K], node prediction is performed for a node v ∈ Vi as

ŷv = softmax
(
hv + zv

)
, (6)

where hv is the node feature embedding (NFE) and zv is the node structure embedding (NSE), which
encodes structural information of the nodes. Also Z = ||

(
(zT

v , ∀v ∈ V
)
, where Z is the structure

embedding matrix (SEM) containing NSEs.

The NFEs hv are computed locally at each client by a GNN model based on the local node features
Xi and local connection Ei as

hv = FGNNθf
(Xi, Ei, v) = fθf

(v) . (7)

The NSEs zv are generated based on the structural information of the global graph and clients need
to collaborate to obtain them. Their use is anticipated to enhance node classification compared to the
case of a classifier solely relying on NFEs. We describe how to generate NSEs in Sec. 5.1.

The FEDSTRUCT framework is illustrated in Figure 2 and described in Alg. 1 in App. B.
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Figure 2: General design of the FEDSTRUCT framework. Global Graph: underlying graph consisting of interconnected subgraphs. Local graphs: clients’ subgraphs
augmented with external nodes (without features or labels). Structure encoding: Generates node structure features for each node and shares them with other clients.
Augmented local graphs: Generate node feature embeddings and node structure embeddings. Federated learning: Federated learning step exploiting node feature
embeddings and node structure embeddings.

5.1 NODE STRUCTURE FEATURES, NODE STRUCTURE EMBEDDINGS, AND NODE PREDICTION

Node structure features. To generate NSEs, our proposed method relies on node structure features
(NSFs), which encapsulate structural information about the nodes, such as node degree and local
neighborhood connection patterns, as well as positional information such as distance to other nodes
in the graph. For each node v ∈ V , the corresponding NSF, sv ∈ Rds , is a function of the set of edges
E , sv = QNSF(v, E). We define the matrix containing all NSFs as S = ||(sTv , ∀v ∈ V). Function
QNSF can be defined through various node embedding algorithms, e.g., one-hot degree vector (Xu
et al., 2019; Cui et al., 2022), graphlet degree vector (GDV) (Pržulj, 2007), NODE2VEC (Grover and
Leskovec, 2016), or as in FEDSTAR (Tan et al., 2023) (we will refer to the NSF technique in (Tan
et al., 2023) as FEDSTAR). We describe these different node embeddings in App. A. In Sec. 5.5, we
introduce a method to generate task-dependent NSFs, which, in contrast to methods such as GDV
and NODE2VEC, does not require knowledge of the global graph.

Node structure embeddings. Obtaining the NSEs requires structural information from nodes in
other clients, which, with a standard GNN would involve numerous communication rounds during
the training. By using a decoupled GCN, it is possible to precompute the necessary structural infor-
mation for generating NSEs, thereby significantly reducing communication overhead. Consequently,
FEDSTRUCT leverages a decoupled GCN to define the NSEs. Specifically, for client i ∈ [K] and
node v ∈ Vi, let gθs(sv) be an MLP network applied to NSF sv . Using Eq. 1, Z is obtained as

Z = sGNNθs(S, E) = Ā Gθs(S) , (8)

where Gθs(S) = ||(gθs(su)
T, ∀u ∈ V), and Ā is the L-hop combined adjacency matrices for graph

G defined in Eq. 2. Note that computing Z requires the L-hop combined adjacency matrix Ā, which
is not locally available. However, since Ā remains static during the training, it can be precomputed
once before training begins. We address this in Sec. 5.4.

Node prediction. Upon the creation of the NSEs, each client computes the label predictions through
Eq. 6. For a node v ∈ Ṽi, expanding Eq. 8 leads to

zv =
∑

u∈V
Āvugθs(su) , (9)

where Āvu is the (v, u)-th element of Ā. Using Eq. 9 in Eq. 6 leads to

ŷv = softmax
(∑

u∈V
Āvugθs(su) + fθf

(v)
)
. (10)

Optimization. We optimize the learning parameters, θ = (θf ||θs), by solving Eqs. 3–4 with ŷv in
Eq. 10 using stochastic gradient descent. The local gradients are provided in Prop. 3, App. C.1.

5.2 DECOUPLED GRAPH CONVOLUTIONAL NETWORK AND FILTERING

Using a DECOUPLED GCN not only allows us to precompute Ā, but also makes the GNN more
adaptable to heterophilic graphs. To illustrate this, we see the decoupled GCN as a filter. Consider
the eigendecomposition of the normalized self-loop adjacency matrix Â (defined in Sec. 3),

Â = ÛΛ̂ÛT =

n∑

j=1

λ̂jûjû
T
j , (11)
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(a) The L-hop combined adjacency matrix of the Cora dataset (b) The pruned L-hop combined adjacency matrix of the Cora dataset

Figure 3: Comparison between the L-hop combined adjacency matrix of the original dataset and the pruned version with p = 30. Although some details are lost in
the pruning, the main community structure of the graph is preserved.

where ûj is the j-th eigenvector corresponding to the eigenvalue λ̂j . Using Eq. 11 in Eq. 2 we obtain

Ā = Û




L∑

l=0

βlΛ̂
l


 ÛT = ÛΛ̄ÛT,

where Λ̄ is a diagonal matrix with entries

Λ̄ = T (Λ̂) = diag
(
T (λ̂1), . . . , T (λ̂n)

)
,

with T (x) =
∑L

l=0 βlx
l. Therefore, Eq. 8 can be re-written as

Z = Û

(
T (Λ̂)Ŝ

)
, (12)

where Ŝ = ÛTGθs(S) is the graph Fourier transform of input signal Gθs(S). Eq. 12 corresponds to
the filtering of the input signal Gθs(S) with the polynomial filter T (Λ̂). The parameters {βl}Ll=1 can
be used to facilitate the learning process by filtering for the relevant signal. For instance, a low-pass
filter is suitable for homophilic graphs, whereas higher frequencies may be required for heterophilic
graphs to capture information from nodes multiple hops away.

In practice, calculating the eigenvalue decomposition of Â in the decentralized setup is expensive
as the computational complexity of the eigenvalue decomposition of an n × n matrix is O(n3).
Therefore, we use Eq. 8 to calculate Z.

5.3 PRUNING

The exact computation of the L-hop combined adjacency matrix Ā scales with O(n2), making
it impractical for very large networks. However real-world graph-structured datasets are often
sparse. Moreover, as shown in Sec. 5.2, Ā is a filtered version of Â and is, therefore, of low rank,
see Figure 3a. Inspired by this, we introduce an estimation method that significantly reduces the
computation complexity of calculating Ā while maintaining its general structure.

The key idea is to apply a pruning technique when calculating Âl for l ∈ [Ls]. Specifically, we
choose an integer p≪ n and retain only the top p · n values of matrix Âl at each iteration, reducing
complexity from Ls · n2 to Ls · p · n. In Figure 3, we compare Ā to its pruned version (p = 30) on
Cora. As can be seen, pruning mostly removes off-diagonal connections (links between nodes in
different communities), while preserving the main community structure of the graph. As shown in
Sec. 6, this does not negatively impact the learning process, as nodes in the same community tend to
have similar information, allowing the model to maintain its performance.

5.4 STRUCTURAL INFORMATION SHARING

For a given client i, training FEDSTRUCT involves computing∇θLi(θ) and predicting node labels
ŷv,∀v ∈ Ṽi. We denote by Ā[i] = ||(ĀT

v,:, ∀v ∈ Ṽi) client i’s local partition of Ā, where Āv,: =

||(Āvu, ∀u ∈ V). By observing that Eq. 10 depends only on Ā[i] and S, we have the following
proposition.
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Proposition 1. For client i, training FEDSTRUCT, i.e., computing {ŷv, ∀v ∈ Ṽi} and ∇θLi(θ),
requires only the local partition Ā[i] and S.

Prop. 1 (proved in App. C.2) states that clients do not require knowledge of the global adjacency
matrix to predict a node’s label or compute gradients. Instead, only the local partition of the global L-
hop combined adjacency matrix, Ā[i], is required to operate FEDSTRUCT. Combined with the heavy
pruning operation, which effectively prunes Ā[i], this approach significantly limits the structural
information shared between clients. Optionally, homomorphic encryption may be used. As a result,
it is very difficult to reconstruct other clients’ adjacency matrices from the pruned Ā[i], enhancing
privacy. Additionally, due to graph isomorphism, Ā[i] cannot be leveraged to uniquely reconstruct
other clients’ adjacency matrices, further reinforcing privacy. Clients have to collaboratively calculate
Ā[i]. In App. D, we provide an algorithm and an example to obtain Ā[i] before training begins.

5.5 HOP2VEC: TASK-DEPENDENT NODE STRUCTURE EMBEDDING

Well-known NSF methods like NODE2VEC and GDV require knowledge of the L-hop neighborhood
of a node, are task agnostic, and hinge on a homophily assumption (see App. A). To circumvent
these shortcomings, we propose HOP2VEC, a novel method to generate task-dependent NSFs that
captures structural information beyond direct neighbors without requiring knowledge of the L-hop
neighborhood and is applicable to heterophilic graphs.

The idea behind HOP2VEC is to view NSFs as learnable features. To this end, NSFs are randomly
initialized and updated during the training of FEDSTRUCT. More precisely, for fixed θ, the NSFs are
optimized by solving

S∗ = argmin
S

L(θ,S) .1 (13)

The optimization is carried out through gradient descent,

S ← S − λs∇SL(θ,S) , (14)

where λs denotes the learning rate.

Using HOP2VEC, we note that the learning of gθs(su) (see Sec. 5.1, e.g., Eq. 8) is equivalent to the
learning of su, i.e., the purpose of passing the NSFs through the sGNN is to generate task-dependent
NSEs. Since the NSFs {su}u∈V are subject to optimization, we can integrate the learning parameters
of gθs(su) into su and rewrite Eq. 10 as

ŷv = softmax
(∑

u∈V
Āvusu + fθf

(v)
)
. (15)

To operate FEDSTRUCT, as in Sec. 5.4, client i only need access to Ā[i] as shown in Prop. 2.
Proposition 2. Let Li(θ,S) in Eq. 4 use the cross-entropy loss and let S = ||(sTq , ∀q ∈ V)
represent the matrix containing NSFs generated by HOP2VEC. Additionally, let ŷv be as in Eq. 15.
The gradient ∇SLi(θ,S) is given by

∇SLi(θ,S) =
∑

v∈Ṽi

Āv,:(ŷv − yv)
T . (16)

Proof. See App. C.3.

The FEDSTRUCT framework with HOP2VEC is described in Alg. 2 in App. B.

5.6 COMMUNICATION COMPLEXITY

In Table 1, we present the communication complexity of FEDSTRUCT alongside that of FEDSAGE+.
We divide the communication complexity into two parts: a pre-training component, accounting for
events taking place before the training is initiated, and an online component accounting for the actual
training phase. In the table, parameters E, K, and n represent the number of training rounds, clients,

1In Eq. 13 we made explicit that the loss function L(θ) (introduced in Eq. 3 and Eq. 4) is contingent on S
through the estimated labels ŷv (see Eq. 10).
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Table 1: Communication Complexity of FEDSTRUCT.

ALGORITHM PRE-TRAINING TRAINING

FEDSTRUCT O(K · d · n+ Ls ·K · p · n) O(E ·K · |θ|)
FEDSTRUCT + HOP2VEC O(Ls ·K · p · n) O(E ·K · |θ|+ E ·K · d · n)
FEDSAGE+ 0 O(E ·K2 · |θ|+ E ·K · d · n)

and nodes in the graph, respectively. Parameter d is the node feature size (all feature dimensions
are assumed to be equal to d), and |θ| is the number of model parameters (all model parameters are
assumed to be of the same order).

As seen in Table 1, the online complexity of FEDSTRUCT is significantly lower than that of FED-
SAGE+, which is on the order of n. The online complexity of FEDSTRUCT with HOP2VEC, however,
is also on the order of n. The pre-training complexity of FEDSTRUCT is on the order of Ls · p · n.
Overall the complexity of FEDSTRUCT is the same of FEDSAGE+, i.e., on the order of n.

6 EVALUATION

To demonstrate the performance and versatility of FEDSTRUCT, we conduct experiments on six
datasets pertaining to node classification under scenarios with varying i) amounts of labeled training
nodes, ii) number of clients, iii) number of layers, and iv) data partitioning methods . The inter-
connections between clients heavily depend on the latter. The datasets considered are: Cora (Sen
et al., 2008), Citeseer (Sen et al., 2008), Pubmed (Namata et al., 2012), Chameleon (Pei et al., 2020),
Amazon Photo (Shchur et al., 2018), and Amazon Ratings (Platonov et al., 2023). Statistics of the
different datasets are provided in App. E.

Experimental setting. We focus on a strongly semi-supervised setting where data is split into
training, validation, and test sets containing 10%, 10%, and 80% of the nodes, respectively. We
artificially partition the datasets into interconnected subgraphs that are then allocated to the clients.
Here, we consider a random partitioning, which assigns nodes to subgraphs uniformly at random.
This partitioning constitutes a very challenging setting as the number of interconnections is high
and, hence, the learning scheme must exploit such connections, and is relevant in, e.g., transaction
networks, where accounts do not necessarily have a preference to interact with nodes in the same
subgraph. In App. F, we also provide details and results for two other partitionings using the Louvain
algorithm, as in (Zhang et al., 2021), and the K-means algorithm (Lei et al., 2023).

To provide upper and lower benchmarks, all experiments are also conducted for a centralized setting
utilizing the global graph and a localized setting using only the local subgraphs. In App. F we also
give results for an MLP approach to highlight the importance of utilizing the spatial structure within
the data. For the GNN, we rely on GRAPHSAGE (Hamilton et al., 2017) with two or three layers,
depending on the dataset (decoupled GCN performs similarly as shown in Table 6 in App. E). We
further compare FEDSTRUCT to vanilla FL (FEDSGD GNN), FEDPUB, and FEDSAGE+ (Zhang
et al., 2021), which do not exploit cross-clients interconnections, and FEDGCN (Yao et al., 2024) as
an SFL method that exploits interconnection. For FEDCGN, it is important to note that the server
must access the global adjacency matrix to aggregate encrypted node features (shared by the clients)
and forward the result. Moreover, the homomorphic encryption only protects against the server, not
against the clients, which have access to aggregated node features of other clients, constituting a
breach of privacy as recently shown in (Ngo et al., 2024).

For FEDSTRUCT, we consider three methods to create NSFs: one-hot degree vector (DEG), FEDSTAR
(FED⋆), and the task-dependent approach proposed in Sec. 5.1 HOP2VEC (H2V), see App. A for
details. For H2V, we also provide the performance of the non-pruned version (FEDSTRUCT (H2V)-
F), for comparison. Throughout, we set the filter parameters (see Sec. 5.2) βLs

= 1 and βl = 0
otherwise, effectively filtering out links between dissimilar nodes. While these parameters could be
optimized for specific graphs, we chose this setup to demonstrate the robustness of FEDSTRUCT.

Overall performance. In Table 2, we report the node classification accuracy, after model convergence,
on the different datasets for a random partitioning over 10 independent runs. The accuracy difference
between central GNN and local GNN provides insights into the potential gains by utilizing FL. For
example, on the Cora and Amazon Ratings datasets with 10 clients, the gap is 43.78% and 9.05%,
respectively. For these datasets, FEDSGD GNN closes the gap to 16.94% and 5.24%, respectively.
FEDSAGE+ yields similar performance as FEDSGD GNN for all datasets. FEDPUB also exhibits
similar performance due to the low number of labeled nodes and random partitioning, as detecting
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Table 2: Node classification accuracy with random partitioning. Nodes are split into train-val-test as 10%-10%-80%. For each result, the mean and standard deviation
are shown for 10 independent runs. The top performance is highlighted in black bold, and the second-best in blue bold. Edge homophily ratio (h) is given in brackets.

CORA (h = 0.81) CITESEER (h = 0.74) PUBMED (h = 0.80)

CENTRAL GNN 82.94± 1.26 69.37± 1.07 85.12± 1.15
5 CLIENTS 10 CLIENTS 20 CLIENTS 5 CLIENTS 10 CLIENTS 20 CLIENTS 5 CLIENTS 10 CLIENTS 20 CLIENTS

FEDSGD GNN 67.55± 1.05 66.00± 1.51 64.47± 1.26 64.59± 0.80 63.38± 0.76 63.91± 1.09 84.74± 0.36 84.66± 0.22 84.55± 0.52
FEDSAGE+ 68.03± 0.87 66.33± 1.69 64.64± 1.72 64.38± 0.91 63.93± 0.97 63.63± 1.24 84.61± 0.35 84.64± 0.37 84.45± 0.37
FEDPUB 67.59± 1.16 61.82± 1.84 48.47± 2.66 64.50± 0.95 62.91± 0.76 52.08± 3.78 82.16± 0.49 82.39± 0.41 82.30± 0.44
FEDGCN-2HOP 2 82.21± 0.95 82.90± 0.95 82.39± 1.26 70.20± 1.13 70.49± 1.03 70.42± 0.81 85.46± 0.69 85.73± 0.77 85.90± 0.80

FEDSTRUCT (DEG) 72.24± 0.81 69.89± 1.85 66.01± 1.82 65.35± 1.05 63.54± 0.64 62.34± 1.00 84.03± 0.42 84.01± 0.38 83.64± 0.36
FEDSTRUCT (FED⋆) 72.25± 0.90 69.61± 1.87 66.13± 1.54 65.54± 1.07 63.38± 0.90 61.97± 0.89 83.98± 0.38 84.02± 0.35 83.69± 0.47
FEDSTRUCT (H2V) 79.34± 0.85 79.27± 0.90 78.47± 1.26 66.20± 0.83 65.43± 0.98 64.33± 0.92 84.67± 0.34 85.02± 0.43 85.24± 0.40
FEDSTRUCT (H2V)-F 79.99± 1.04 79.88± 0.92 78.80± 1.48 66.15± 1.09 65.93± 0.81 64.96± 0.79 85.24± 0.44 85.79± 0.60 86.09± 0.42

LOCAL GNN 49.36± 1.56 39.24± 1.64 31.02± 1.63 49.00± 1.52 39.88± 1.62 32.72± 1.12 79.00± 0.67 75.27± 0.59 70.74± 0.43

CHAMELEON (h = 0.23) AMAZON PHOTO (h = 0.82) AMAZON RATINGS (h = 0.38)

CENTRAL GNN 54.38± 1.96 94.10± 0.30 41.42± 0.80
5 CLIENTS 10 CLIENTS 20 CLIENTS 5 CLIENTS 10 CLIENTS 20 CLIENTS 5 CLIENTS 10 CLIENTS 20 CLIENTS

FEDSGD GNN 40.23± 1.89 36.80± 1.70 34.62± 1.47 92.17± 0.37 91.55± 0.34 90.72± 0.37 37.06± 0.69 35.96± 0.46 36.31± 0.54
FEDSAGE+ 40.05± 2.11 36.32± 1.59 34.68± 1.69 92.18± 0.33 91.33± 0.47 90.65± 0.59 37.01± 0.75 35.85± 0.39 36.17± 0.53
FEDPUB 40.15± 1.44 33.31± 1.37 28.34± 1.13 90.19± 0.38 88.05± 0.68 85.53± 0.74 36.55± 0.63 35.72± 0.60 36.18± 0.93
FEDGCN-2HOP2 50.35± 1.92 48.77± 1.73 49.35± 2.18 93.76± 0.23 93.72± 0.41 93.72± 0.54 40.87± 0.37 40.78± 0.56 40.35± 0.59

FEDSTRUCT (DEG) 44.33± 1.56 41.82± 1.78 40.13± 1.85 90.73± 0.32 89.72± 0.43 89.42± 0.48 39.35± 0.47 38.67± 0.66 38.31± 0.54
FEDSTRUCT (FED⋆) 44.71± 1.44 41.89± 1.67 40.06± 2.02 90.75± 0.36 89.78± 0.38 89.14± 0.38 39.31± 0.51 38.65± 0.44 38.36± 0.58
FEDSTRUCT (H2V) 53.33± 2.25 52.60± 1.25 51.85± 1.26 91.14± 0.46 90.93± 0.27 91.25± 0.38 41.14± 0.43 40.97± 0.64 40.55± 0.25
FEDSTRUCT (H2V)-F 53.20± 1.97 53.09± 1.85 51.89± 1.09 90.57± 0.54 90.74± 0.29 91.29± 0.58 41.13± 0.37 41.07± 0.56 40.83± 0.36

LOCAL GNN 35.63± 1.79 29.60± 1.25 23.70± 0.66 87.91± 0.65 77.12± 1.75 60.44± 0.98 34.32± 0.46 32.80± 0.43 31.68± 0.52

2FEDGCN lacks privacy as the server must have access to the global adjacency matrix and aggregated node features and 2-hop structures are shared between clients,
which also constitutes a privacy breach as shown in (Ngo et al., 2024). Moreover, the official implementation overlooks isolated external neighbors removal, potentially
enhancing prediction performance above its actual capabilities.

communities in this setup cannot be done efficiently. Moreover, FEDGCN is included as a method
that considers the inter-connections between nodes. This method, relying on server access to the
global adjacency matrix (see App. C.4), shares 2-hop aggregated node features with other clients and,
therefore, it is not private.

From Table 2, it can be seen that FEDSTRUCT further improves performance compared to FEDSGD
GNN and FEDSAGE+. The improvement is significant for the Cora and Chameleon datasets. For
Chameleon and 20 clients, FEDSTRUCT with HOP2VEC achieves an accuracy of 52.76% compared
to 34.33% for FEDSAGE+. The table also shows that the performance improves with NSFs able to
collect more global information as can be seen by the improvements between DEG, FED⋆, and H2V.
Notably, FEDSTRUCT achieves performance close to that of the non-private framework FEDGCN
and the centralized approach. Also, notice that for Chameleon and Amazon-ratings, two heterophilic
graphs, FEDSTRUCT outperforms FEDGCN.

Compared to, e.g., FEDSGD GNN, FEDSTRUCT remains robust to an increasing number of clients
and, as shown in App. F, across different partitioning methods, highlighting its ability to exploit inter-
client connections. Furthermore, FEDSTRUCT (H2V) exhibits only a slight reduction in performance
compared to FEDSTRUCT (H2V)-F, while significantly reducing communication complexity (see
Sec. 5.6). Additional results, including federated averaging and central decoupled GCN, are provided
in App. F for various partitionings, varying number of labeled training nodes, and degrees of
heterophily.

6.1 IMPACT OF THE NUMBER OF LABELED TRAINING NODES

As noted by Liu et al. (2020), decoupled GCN addresses over-smoothing. Dong et al. (2021) further
showed its suitability for semi-supervised learning by leveraging pseudo-labels from unlabeled nodes.
Figure 4 (a), shows FEDSTRUCT’s performance on Cora for varying NSF generators and labeled node
ratios, using a x%-10%-(90− x)% train-val-test split, where x is the percentage of labeled nodes.

FEDSTRUCT with H2V comes close to CENTRAL GNN across all labeled node fractions, performing
well even with just 5% labeled nodes, achieving a top-1 accuracy of 76%. In contrast, FEDSAGE+
and FEDPUB show a sharp decline, dropping from a top-1 accuracy of 75% with 50% labeled nodes
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Figure 4: (a) Accuracy vs training-ratio for CORA with random partitioning and 10 clients; (b) Accuracy vs number of propagation layers on CORA with K-means
partitioning and 5 clients; (c) Accuracy vs number of clients on CHAMELEON with random partitioning; (d) Accuracy on CHAMELEON with 10 clients for various
partitioning methods.

to a top-1 accuracy of 60% and 50%, respectively, with 5% labeled nodes. Finally, it can be seen that
LOCAL GNN deteriorates with fewer labels.

6.2 IMPACT OF THE NUMBER OF LAYERS IN THE DECOUPLED GCN

We evaluate the impact of the number of GNN/decoupled GCN layers on the Cora dataset. We com-
pare FEDSTRUCT with different NSEs to CENTRAL GNN and FEDSGD GNN (using GRAPHSAGE).
We also assess FEDSTRUCT’s performance when only NSEs are used during inference (H2V S). We
consider a setup with K-means partitioning and 10 clients.

Figure 4 (b) shows that GNNs suffer from oversmoothing after just a few layers, limiting the ability
to use distant nodes. In contrast, FEDSTRUCT’s performance remains stable across a varying number
of layers, suggesting effective use of distant nodes. FEDSTRUCT (H2V S) performs poorly with
fewer than 10 or more than 30 layers, peaking between 10-20 layers. This is due to the NSEs being
unable to capture extended neighborhoods with few layers, and over-smoothing with many layers.
H2V S achieves 75% accuracy, while H2V reaches 80%, indicating that while NSEs provide useful
information, NFEs are necessary to achieve performance close to CENTRAL GNN.

6.3 IMPACT OF THE NUMBER CLIENTS AND PARTITIONING METHOD

Next, we evaluate the impact of the number of clients on the performance of FEDSTRUCT with
different NSEs, alongside FEDSGD GNN, FEDPUB, and FEDGCN, using the Chameleon dataset
with random partitioning. As shown in Figure 4 (c), FEDSTRUCT and FEDGCN show stable
performance as the number of clients increases. FEDSTRUCT’s ability to leverage deeper structures
allows it to perform nearly as well as CENTRAL GNN. In contrast, FEDPUB and FEDSGD degrade
with more clients, with FEDPUB performing the worst due to the increased difficulty in predicting
communities as the number of clients grows.

In Figure 4 (d), we present the performance on Chameleon with 10 clients under different partition-
ing methods. FEDSTRUCT consistently achieves the best performance across all scenarios, even
surpassing CENTRAL GNN with the less challenging Louvain partitioning. Both FEDSTRUCT and
FEDGCN (which does not provide privacy) exhibit robustness across different partitioning methods,
while the other frameworks are more sensitive to the choice of partitioning.

7 CONCLUDING REMARKS

We introduced FEDSTRUCT, a framework for SFL that decouples node and structure features,
explicitly exploiting structural dependencies. FEDSTRUCT effectively addresses the privacy-
communication-utility trilemma as follows:

Privacy: Unlike other SFL frameworks, which require sharing original or generated node fea-
tures and/or embeddings among clients, FEDSTRUCT eliminates this need and minimizes sensitive
information sharing. Privacy considerations are detailed in App. G.1.

Utility: FEDSTRUCT performs close to a centralized approach, excelling in semi-supervised learning
with few labeled nodes, and significantly outperforms earlier methods like FEDSAGE+ and FEDPUB in
challenging scenarios. It is also robust across different partitionings, client numbers, and heterophily.

Communications: FEDSTRUCT’s communication overhead scales linearly with the number of nodes,
comparable to benchmarks like FEDSAGE+.
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Table 3: Comparing NSF generator algorithms

DATA DEG GDV NODE2VEC FED⋆ HOP2VEC

TASK DEPENDENT ✗ ✗ ✗ ✗ ✓
GLOBAL PROPERTIES ✗ ✗ ✓ ✓ ✓
FAST ✓ ✗ ✗ ✗ ✓
NO PARAMETER TUNING ✓ ✓ ✗ ✗ ✓
LOCALLY COMPUTABLE ✓ ✗ ✗ ✓ ✓

A NODE STRUCTURE FEATURE GENERATION

In this appendix, we provide some background on the creation of NSFs. The simplest method
considered in this paper is the one-hot degree encoding (DEG), which simply creates a vector with a
single non-zero entry whose position indicates the node degree. Naturally, the one-hot encoding is
unable to capture anything beyond 1-hop neighbors.

Graphlet degree vectors (GDVS) go beyond the 1-hop neighborhood by representing the local
structure of a node within the node structure feature (NSF). This is achieved by, for each node,
counting the number of occurrences within a pre-defined set of graphlets (Pržulj, 2007). Although
GDV is more expressive than DEG, this approach suffers from high complexity as the number of
graphlets grows very fast with the number of nodes.

NODE2VEC is an unsupervised node embedding algorithm that creates NSFs from random walks
in the graph by capturing both local and global properties (Grover and Leskovec, 2016). It uses
controlled random walks to explore the graph, generating node sequences similar to sentences in a
language. For each node in the graph, multiple random walks are performed creating a large corpus
of node sequences. These sequences are then used to train a skip-gram model to predict the context
of a given node, i.e., the neighboring nodes in the random walks. Once trained, the NSFs are obtained
by querying the skip-gram model with a node and extracting its latent representation.

FED⋆ is proposed in (Tan et al., 2023) to capture structural similarities in the context of federated
graph classification. In particular, for each node in a local graph-structured data record, clients
create an NSF by concatenating NSFs created from DEG and from a random walk. We adapt this
methodology to our setting by extracting the diagonal element corresponding to a given node from
the powers of Â, during the process of computing Ā, in place of (Tan et al., 2023, Eq. 6).

As shown in Appendix H, NODE2VEC yields superior performance to DEG, GDV, and FED⋆ due
to its ability to capture global properties of the graph. Note, however, that NODE2VEC and GDV
require access to the adjacency matrix of the global graph which is not generally available for our
setting. Moreover, the objective function of NODE2VEC contains multiple hyperparameters and is
task agnostic, i.e., its representations do not account for the node classification task at hand.

The proposed HOP2VEC leverages the advantages of NODE2VEC while also alleviating its shortcom-
ings within our setting. In HOP2VEC, instead of learning the NSFs before FEDSTRUCT initiates,
we start from a random NSF and train a generator within FEDSTRUCT. As a result, we obtain NSFs
that are tailored toward the task, e.g., to minimize miss-classification. Notably, in sharp contrast to
NODE2VEC, HOP2VEC does not require knowledge of the complete adjacency matrix. Moreover,
compared to NODE2VEC, HOP2VEC is faster and does not need any hyperparameter tuning. Finally,
when paired with DECOUPLED GCN, it is able to capture the global properties of the graph. A
summary of the different NSF-generating methods is given in Table 3.

The NSFs obtained by HOP2VEC are task-dependent, capture deep structure dependencies, and do
not rely on homophily. The first property is inherent to the training—the NSFs are formed to minimize
misclassification. The second property results from the fact that the NSFs are optimized based on
Āuv through Eq. 10—since coefficient Āuv encompasses the L-hop neighbors of node v, and L can
be large, HOP2VEC is able to capture the global graph’s structure information. Furthermore, the
parameters βl of the trainable coefficients Āuv (see Sec. 3) can be adjusted (or learned) to account
for heterophilic graphs (we discuss heterophily in App. G.2).
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B TRAINING PROCESS OF FEDSTRUCT

The training process of FEDSTRUCT with generic NSEs is described in Algorithm 1. The training
process of FEDSTRUCT using HOP2VEC is described in Algorithm 2.

Algorithm 1 FEDSTRUCT

input K client with their respective subgraph {Gi}Ki=1 FEDSTRUCT model parameters θ = (θf ||θs)
for i=1 to K do

Collaboratively obtain Ā[i] based on Algorithm 3
Locally compute NSFs Si = {su,∀u ∈ Vi}
Share Si with all the clients

end for
for e=1 to Epochs do

for i=1 to K do
Client i collects θ from the server
for v ∈ Ṽi do

Calculate ŷv based on Eq. 10
end for
Calculate Li(θ) based on Eq. 4
Calculate∇θLi(θ) based on Proposition 3
Send ∇θLi(θ) to the server

end for
Calculate∇θL(θ) based on Eq. 5
θ ← θ − λ∇θL(θ)

end for

Algorithm 2 FEDSTRUCT using HOP2VEC

input K client with their respective subgraph {Gi}Ki=1 FEDSTRUCT model parameters θ = (θf ||θs)
Server initialize∇SL(θ,S) = 0
for i=1 to K do

Collaboratively obtain Ā[i] based on Algorithm 3
Create Si = {su,∀u ∈ Vi} by randomly initialize su ∀u ∈ Vi
Share Si with all the clients
Collect Sj ∀j ∈ [K] and create S = ||(sTv , ∀v ∈ V)

end for
for e=1 to Epochs do

for i=1 to K do
Client i collects θ from the server
Client i collects∇SL(θ,S) from the server
Client i updates S ← S − λs∇SL(θ,S)
for v ∈ Ṽi do

Calculate ŷv based on Eq. 15
end for
Calculate Li(θ,S) based on Eq. 4
Calculate∇θLi(θ,S) based on Proposition 3
Calculate∇SLi(θ,S) based on Proposition 2
Send ∇θLi(θ,S) and ∇SLi(θ,S) to the server

end for
Calculate∇θL(θ,S) based on Eq. 5
θ ← θ − λ∇θL(θ,S)
Calculate∇SL(θ,S) = 1

|Ṽ|
∑K

i=1∇SLi(θ,S)

end for
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C PROOF SECTION

C.1 LOCAL GRADIENT

To prove Proposition 1, we need the following Lemma and proposition.

Lemma 1. Let ŷ = softmax(q) and L = CE(y, ŷ), where CE is the cross-entropy loss function
and y is the label corresponding to the input vector q, with

∑c
i=1 yi = 1 and c being the number of

classes. The gradient of L with respect to z is equal to

∇qL = ŷ − y . (17)

Proof. Using the definition of cross-entropy

CE(y, ŷ) = −
c∑

i=1

yilog(ŷi) , (18)

and the definition of softmax,

softmax(q) = ||
(

eqi∑c
j=1 e

qj
∀i ∈ [c]

)
, (19)

we can rewrite L as

L =

c∑

i=1

yi
(
LSE(q)− qi

)

= LSE(q)

c∑

i=1

yi −
c∑

i=1

yizi

= LSE(q)− qTy , (20)

where LSE(q) = log(
∑c

j=1 e
qj ) is the log-sum-exp function. The partial derivative of LSE(q) with

respect to q is the softmax function

∇qLSE(z) = ||(
∂LSE(q)

∂qk
∀k ∈ [c])

= ||( eqk∑c
j=1 e

qj
∀k ∈ [c])

= softmax(q) . (21)

Therefore, using Eq. 21 and taking the derivative of Eq. 20 with respect to z leads to

∇qL = ∇qLSE(q)−∇q(q
Ty) = ŷ − y .

The local gradient∇θLi(θ) is given by the following proposition.

Proposition 3. Let Li(θ) in Eq. 4 use the cross-entropy loss with θ = (θf ||θs) and let ŷv be as
in Eq. 10. The local gradient

∇θLi(θ) = ||
(
∂Li(θ)

∂θj
, ∀j ∈ [|θ|]

)

is given by

∂Li(θ)

∂θs,j
=

∑

v∈Ṽi,u∈V
Āvu

∂gθs(su)

∂θs,j
(ŷv − yv),

∂Li(θ)

∂θf,j
=
∑

v∈Ṽi

∂fθf
(v)

∂θf,j
(ŷv − yv). (22)
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Proof. By the chain rule and Lemma 1, we have

∂Li(θ)

∂θj
=
∑

v∈Ṽi

∂qv
∂θj
∇1

¯v
Li(θ)

=
∑

v∈Ṽi

∂qv
∂θj

(ŷv − yv) ∀j ∈ [|θ|] , (23)

where qv =
∑

u∈V Āvugθs(su) + fθf
(v). Taking the derivative of qv with respect to the different

entries of θ leads to

∂qv
∂θs,j

=
∑

u∈V
Āvu

∂gθs(su)

∂θs,j
∀j ∈ [|θs|] (24)

∂qv
∂θf,j

=
∂fθf

(v)

∂θf,j
∀j ∈ [|θf |]. (25)

Substituting Eq. 24 and Eq. 25 into Eq. 23 and separating the summation over V over the different
clients concludes the proof.

C.2 PROOF OF PROPOSITION 1

1. To obtain {ŷv,∀v ∈ Ṽi} in Eq. 10, client i only needs external inputs Ā[i] and S.

2. To calculate ∇θLi(θ), client i only needs external inputs Ā[i] and S.

By combining 1 and 2 we prove Proposition 1.

C.3 PROOF OF PROPOSITION 2

First notice that

∇SLi(θ,S) = ||
(
(∇sp

Li(θ,S))
T ∀p ∈ V

)
. (26)

Using the chain rule and Lemma 1, we have

∇spLi(θ,S) =
∑

v∈Ṽi

∂qv
∂sp
∇qvLi(θ,S)

=
∑

v∈Ṽi

∂qv
∂sp

(ŷv − yv) ∀p ∈ V , (27)

where qv =
∑

u∈V Āvusu + fθf
(v). Taking the derivative of qv with respect to sp leads to

∂qv
∂sp

=
∑

u∈V
Āvu

∂su
∂sp

= Āvp
∂sp
∂sp

= ĀvpI ∀p ∈ V. (28)

Substituting Eq. 28 into Eq. 27 leads to

∇sp
Li(θ,S) =

∑

v∈Ṽi

Āvp(ŷv − yv) ∀p ∈ V. (29)

Finally, substituting Eq. 29 into Eq. 26 concludes the proof.
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C.4 FEDGCN WITH 2 HOPS NEEDS GLOBAL ADJACENCY MATRIX KNOWLEDGE

In the FedGCN scheme, as detailed in Equation 3 on page 5 of the FedGCN paper, to calculate ŷi,
the following information must be sent to the server by Client z:∑

j∈Ni

Iz(c(j))Aijxj (30)

hzj =
∑

m∈Nj

Iz(c(m))Ajmxm ∀j ∈ Ni \ i. (31)

Once the server obtains hzj for all clients z ∈ [K], it calculates the aggregate hj =
∑

z∈[K] hzj and
forwards this result to the client where node i resides. However, as hj is a quantity pertaining to
node j, the server must know that i and j are connected. Similar arguments hold for all other nodes.
Hence, the server needs access to the global adjacency matrix for this scheme to work with 2 hops.

D SCHEME TO OBTAIN THE LOCAL PARTITION OF THE L-HOP COMBINED
ADJACENCY MATRIX

D.1 ALGORITHM

As discussed in Section 5, FEDSTRUCT with decoupled GCN only requires the clients to have access
to their local partition of the global L-hop combined adjacency matrix, i.e., Ā[i]. In this appendix, we
present an algorithm that enables clients to acquire this matrix in a privacy-preserving manner. The
scheme for obtaining the local partitions of the L-hop combined adjacency matrix Ā[i] is designed
specifically to ensure that no client has access to the entire ℓ-hop (ℓ ∈ [1, . . . , L]) adjacency matrix
Âℓ.

We denote by Ã[i] = ||(ãT
v , ∀v ∈ Vi) and Â[i] = ||(âT

v , ∀v ∈ Vi) the local partition of Ã and
Â pertaining to the nodes of client i, respectively. Further, note that Â[i] =

(
D̃[i]

)−1
Ã[i], where

D̃[i] ∈ R|Vi|×|Vi| is the diagonal matrix of node degrees, with D̃[i](v, v) =
∑

u∈V ãvu, ∀v ∈ Vi.
Also, let Ã[i]

j ∈ R|Vi|×|Vj | denote the submatrix of Ã[i] that connects client i to client j for j ∈ [K]

and define Â
[i]
j analogously. Consequently, we have Â

[i]
j =

(
D̃[i]

)−1
Ã

[i]
j .

Each client i has access to:

• Ã
[i]
j ∈ R|Vi|×|Vj | for all j ∈ [K] : representing the outgoing edges from client i to client j .

• Ã
[j]
i ∈ R|Vj |×|Vi| for all j ∈ [K] : representing the incoming edges from client j to client i .

We note that client i can compute Â
[i]
j locally as it knows the destination of its outgoing edges, i.e.,

Ã
[i]
j for all j ∈ [K], and can compute D̃[i].

In client i, we are interested in acquiring its local partition of Ā, i.e., Ā[i] = ||(āT
v , ∀v ∈ Vi). Let

Ā
[i]
j ∈ R|Vi|×|Vj | denote the submatrix of Ā[i] that connects client i to client j for j ∈ [K]. Based on

Eq. 2 we can write Ā
[i]
j as

Ā
[i]
j =

Ls∑

l=1

βℓ[Â
[i]
j ]ℓ, j ∈ [K] , (32)

where [Â[i]
j ]ℓ is the submatrix of Âℓ that connects client i to client j for j ∈ [K]. Since Âℓ = ÂÂℓ−1

we can easily show that

[Â
[i]
j ]ℓ =

∑

k∈[K]

Â
[i]
k

[
Â

[k]
j

]ℓ−1
(33)

=(D̃[i])−1
∑

k∈[K]

Ã
[i]
k

[
Â

[k]
j

]ℓ−1

︸ ︷︷ ︸
computed at client k

. (34)
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By induction, we can demonstrate that if each client i has access to [Â
[i]
j ]ℓ−1 for all j ∈ [K] , they

can then collaborate with each other to compute [Â
[i]
j ]ℓ. Here’s a step-by-step breakdown:

1. Base case: For ℓ = 1 , we have [Â[i]
j ]1 = Â

[i]
j . This information is available to Client i from

the start for all j ∈ [K] .

2. Inductive step: Suppose Client i knows [Â
[i]
j ]ℓ−1 for all j ∈ [K] . Then, Client k can

compute the intermediate term

Bijk = Ã
[i]
k [Â

[k]
j ]ℓ−1 (35)

for all j ∈ [K] (since it knows [Â[k]
j ]ℓ−1 and Ã

[i]
k for all i, j ∈ [K]) and share it with Client

i. Notice that Client i cannot reconstruct [Â[k]
j ]ℓ−1 from Bijk due to the low rank nature

of Ã[i]
k . Additionally, Client k also prunes Bijk to remove any concern. Based on Eq. 34,

Client i can compute [Â
[i]
j ]ℓ by:

[Â
[i]
j ]ℓ = (D̃[i])−1

∑

k∈[K]

Bijk . (36)

To apply pruning, in each iteration, client k sends only the top ⌈ p
K ⌉ · ni values of Bijk to Client i

where p is the pruning parameter. Therefore, client i receives an estimate of [Â[i]
j ]ℓ as

[Â
[i]
j ]ℓ ≈ (D̃[i])−1

∑

k∈[K]

B̃ijk︸︷︷︸
computed at client k

, j ∈ [K] . (37)

where B̃ijk is the pruned version of matrix Bijk with pruning parameter ⌈ p
K ⌉. This summation

allows Client i to update its local adjacency matrix partition without requiring access to the entire
global adjacency matrix. At each step ℓ , Client i only accesses [Â[i]

j ]ℓ for all j ∈ [K] and does not
learn the full global matrix [Â]ℓ. Moreover, if additional security is required, the summation over
Bijk could be performed on a secure server using homomorphic encryption.

As the final step, Client i can compute Ā
[i]
j sequentially based on Eq. 32. The resulting algorithm

is shown in Algorithm 3. Finally, we notice that Algorithm 3 requires each client k to evaluate
Ls × nk × n2 matrix products and to communicate Ls × p × n matrices. This communication
complexity is linear with n and it is performed only once before the training initiates.

D.2 EXAMPLE

To illustrate our algorithm and its privacy mechanism, we provide an example to compute the 2-hop
combined adjacency matrix Ā, defined in Section 3.

As stated in Section 2, SFL can be categorized into two groups:

1. SFL with no knowledge of cross-subgraph interconnections.

2. SFL with knowledge of cross-subgraph interconnections.

This paper focuses on the second scenario, where the interconnections between clients (i.e., between
subgraphs) are known to the involved clients. Specifically, client i knows its incoming and outgoing
edges to every other client j, meaning it knows Ã[j]

i and Ã
[i]
j for all j ∈ [K].

It is important to note that the knowledge of Ã[j]
i and Ã

[i]
j does not imply that the entire global

adjacency matrix is accessible to client i. Each client has access only to the rows and columns
corresponding to its own nodes. As an example, consider a graph with 9 nodes, partitioned across 3
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Algorithm 3 Private acquisition of Ā[i]

input
{
Ã

[i]
j , Ã

[j]
i

}K
j=1

, D̃[i], power L, and list of weights {βℓ}Lℓ=1

output local matrix {Ā[i]}
for i = 1 to K do

for j = 1 to K do
Initialize Ā

[i]
j = β1(D̃

[i])−1Ã
[i]
j

end for
end for
for ℓ = 2 to Ls do

for i = 1 to K do
for k=1 to K do

Client k calculate Bijk = Ã
[i]
k [Â

[K]
j ]ℓ−1 ∀j ∈ [K]

Client k sends the pruned matrix B̃ijk to client i for j ∈ [K]
end for
Client i collects B̃ijk from clients k ∈ [K]

Client i stores [Â[i]
j ]ℓ = (D̃[i])−1

∑K
k=1 B̃ijk for j ∈ [K]

Ā
[i]
j ← Ā

[i]
j + βℓ[Â

[i]
j ]ℓ for j ∈ [K]

Ā[i] = [Ā
[i]
1 , Ā

[i]
2 , . . . , Ā

[i]
K ]

end for
end for

clients, given by the following adjacency matrix:

A =




0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 1 0 1 0 0 0
0 0 1 1 1 0 0 0 1
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 1 0




,

where Aij = 1 indicates a connection between nodes i and j, and Aij = 0 indicates no connection.

In this setting, Client 1 comprises nodes {1, 2, 3}, Client 2 comprises nodes {4, 5, 6}, and Client 3
comprises nodes {7, 8, 9}.
Below, we depict the entries of the adjacency matrix known to Client 2 using 1 (there is a connection),
0 (there is no connection) and ‘?’ (unknown connection):

Known entries of A for Client 2 =




? ? ? 0 0 0 ? ? ?
? ? ? 1 0 0 ? ? ?
? ? ? 0 0 1 ? ? ?
0 1 0 0 1 1 0 0 1
0 0 0 1 0 1 0 0 0
0 0 1 1 1 0 0 0 0
? ? ? 0 0 0 ? ? ?
? ? ? 0 0 0 ? ? ?
? ? ? 1 0 0 ? ? ?




(38)

Client 2 knows all its internal connections (e.g., node 6 is connected to node 5) as well as its external
edges (e.g., node 4 is connected to node 2 in Client 1 and node 9 in Client 3. The incoming edges to
Client 2 from Client 3 are given by

Ã
[j=3]
i=2 =



0 0 0
0 0 0
1 0 0


 . (39)
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That is, there is only one connection between Client 2 and Client 3 (between node 4 and node 9).
Thus, while Client 2 has access to its own local and inter-client edges, it remains unaware of the
internal connections of other clients or the interconnections between any other clients j ∈ {1, 3} and
k ∈ {1, 3}.
Hence, Client i knows a portion of the global adjacency matrix A, i.e., Ã[i], corresponding to the
connections between its own nodes and to some nodes in other clients. In particular, Client 1 knows

internal connections (including self loops): Ã[1]
1 =



1 1 1
1 1 1
1 1 1


 ,

outgoing connections: Ã[1]
2 =



0 0 0
0 0 0
0 0 1


 Ã

[1]
3 =



0 0 0
0 0 0
0 0 0


 ,

incoming connections: Ã[2]
1 =



0 0 0
0 0 0
0 0 1


 Ã

[3]
1 =



0 0 0
0 0 0
0 0 0


 .

Similarly, Client 2 knows

internal connections (including self loops): Ã[2]
2 =



1 1 1
1 1 1
1 1 1


 ,

outgoing connections: Ã[2]
1 =



0 0 0
0 0 0
0 0 1


 Ã

[2]
3 =



0 0 0
0 0 0
0 0 1


 ,

incoming connections: Ã[1]
2 =



0 0 0
0 0 0
0 0 1


 Ã

[3]
2 =



0 0 0
0 0 0
0 0 1


 .

and Client 3 knows

internal connections (including self loops): Ã[3]
3 =



1 1 1
1 1 1
1 1 1


 ,

outgoing connections: Ã[3]
1 =



0 0 0
0 0 0
0 0 0


 Ã

[3]
2 =



0 0 0
0 0 0
0 0 1


 ,

incoming connections: Ã[1]
3 =



0 0 0
0 0 0
0 0 0


 Ã

[2]
3 =



0 0 0
0 0 0
0 0 1


 .

Using Ã
[i]
j , j ∈ {1, 2, 3}, Client i can compute both the degree matrix D̃[i] and the normalized

adjacency matrix Â
[i]
j for all j ∈ [K]. For simplicity, we assume that Ã[i]

j = Â
[i]
j ∀i, j ∈ [K] in

this example, as they differ only by a normalization constant.

Following Eq. 35, we define the intermediate matrix Bijk = Ã
[i]
k Â

[k]
j . The following steps outline

the remaining computations:

1. Calculating Bijk.
Client 1 calculates B211, B221, B231 as follows,

B211 =



0 0 1
0 0 1
0 0 1


 B221 =



0 0 0
0 0 0
0 0 1


 B231 =



0 0 0
0 0 0
0 0 0


 . (40)
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Table 4: Statistics of the datasets.

DATA CORA CITESEER PUBMED CHAMELEON AMAZON PHOTO AMAZON RATINGS

# CLASSES 7 6 3 5 8 5
|V| 2708 3327 19717 2277 7650 24492
|E| 5278 4676 44327 36101 238162 93050
# FEATURES 1433 3703 500 2325 745 300
EDGE HOMOPHILY RATIO 0.81 0.74 0.80 0.23 0.82 0.38

Client 1 sends these matrices to Client 2. Notice that Client 2, by receiving
B211, B221, B231, cannot reconstruct Ã[1]

1 , Ã
[1]
3 , and Ã

[3]
1 due to the low rank nature

of the adjacency matrix. Moreover, Client 1 also prunes Bijk.
Similarly Client 3 calculates B213, B223, B233 as

B213 =



0 0 0
0 0 0
0 0 0


 B223 =



0 0 0
0 0 0
0 0 1


 B233 =



0 0 1
0 0 1
0 0 1


 , (41)

which are sent to Client 2 after pruning. A similar procedure applies for the other combina-
tions of Bijk, as outlined in Algorithm 3.

2. Calculating [Â
[i]
j ]2.

Upon receiving B211, B221, B231 and B213, B223, B233, Client 2 can compute
[Â

[2]
1 ]2, [Â

[2]
2 ]2, [Â

[2]
3 ]2 as

[Â
[2]
1 ]2 = (D̃[2])−1 (B211 +B212 +B213) , (42)

[Â
[2]
2 ]2 = (D̃[2])−1 (B221 +B222 +B223) , (43)

[Â
[2]
3 ]2 = (D̃[2])−1 (B231 +B232 +B233) . (44)

Note that B212, B222, B232 can be computed locally in Client 2. Using Eqs. 42– 44,
Client 2 can update its local 2-hop adjacency matrix without access to the global adjacency
matrix. Clients 1 and 3 follow the same procedure to compute [Â

[1]
j ]2 and [Â

[3]
j ]2 for each

j ∈ {1, 2, 3}, respectively.

This procedure can be extended to any number of hops ℓ. At hop ℓ , Client i only accesses [Â[i]
j ]ℓ for

all j ∈ [K] and does not learn the full global matrix [Â]ℓ. Moreover, if additional security is required,
the summation over Bijk could be performed on a secure server using homomorphic encryption.

E EXPERIMENTAL SETTING

In this section, we provide more details about the experiments in Section 6 and Appendix F. In
Table 4, statistics of the different datasets are shown. The edge homophily ratio, measuring the
fraction of edges that connect nodes with the same label, provides a measure of the homophily within
the dataset. Typically, a value above 0.5 is considered homophilic (Zheng et al., 2022). According to
this rule-of-thumb, among the datasets considered in this paper, two would be considered heterophilic,
i.e., Chameleon and Amazon Ratings.

Next, we provide the hyperparameters for the experiments. In Table 5, we provide the step sizes λ
and λs for the gradient descent step during the training, the weight decay in the L2 regularization,
the number of training iterations (epochs), the number of layers L in the node feature embedding,
the number of layers Ls in the DECOUPLED GCN, the dimensionality of the NSFs, ds, the pruning
parameter p, and the model architecture of the node feature and node structure feature predictors, fθf

and gθs , respectively.

All the experiments are obtained using an Nvidia A30 with 24GB of memory.
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Table 5: Hyper-parameters of the datasets.

DATA CORA CITESEER PUBMED CHAMELEON AMAZON PHOTO AMAZON RATINGS

λ 0.002 0.002 0.008 0.003 0.005 0.002
λs 0.002 0.002 0.008 0.003 0.005 0.002
WEIGHT DECAY 0.0005 0.0005 0.001 0.0003 0.001 0.0002
EPOCHS 40 60 125 60 150 70
L 2 2 2 1 1 2
Ls 10 20 20 1 3 5
ds 256 256 256 256 256 256
p 30 30 30 30 30 30
θf LAYERS [ 1433,64,7 ] [3703,64,6] [500,128,3] [2325,64,5] [745,256,8] [300,64,5]
θs LAYERS [256,256,7] [256,128,64,6] [256,128,3] [256,256,5] [256,256,8] [256,256,5]

F ADDITIONAL RESULTS

In this appendix, we provide additional results that we could not include in the main paper due
to space constraints. In particular, we provide results for different data partitioning methods: the
Louvain algorithm, the K-means algorithm, and random partitioning.

The Louvain algorithm aims at finding communities with high link density, effectively creating
subgraphs with limited interconnections. Here, we follow Zhang et al. (2021) where the global graph
is first divided into a number of subgraphs using the Louvain algorithm. As we strive to have an even
number of nodes among the clients, we inspect the size of the subgraphs and if any exceeds n/K
nodes, it is split in two. This procedure is repeated until no subgraph has more than n/K nodes. Next,
as the number of subgraphs may be larger than K, some subgraphs must be merged. To this end, we
sort the subgraphs in descending order with respect to their size and assign the first K subgraphs to
the K clients. If there are more than K subgraphs, we assign the (K + 1)-th subgraph by iterating
the K clients and assigning it to the first client for which the total number of nodes after a merge
would not exceed n/K. This process is repeated until there are only K subgraphs remaining. This
procedure results in subgraphs with approximately the same number of nodes and a low number of
interconnections.

For the K-means algorithm, we follow Lei et al. (2023) and partition the data into K clusters by
proximity in the node feature space. Similarly to the Louvain partitioning, we split any subgraph that
exceeds n/K nodes in two and assign it to another subgraph such that the resulting number of nodes
is less than n/K. Compared to the previous partitioning, the K-means approach does not consider the
topology, hence, there will be more interconnections between the different subgraphs compared to the
Louvain-based partitioning. Further, as highlighted in (Lei et al., 2023), as nodes with similar features
tend to have the same label, this partitioning method creates a highly heterogeneous partitioning as
each subgraph tends to have an over-representation of nodes of a given class.

Finally, we consider a random partitioning where each node is allocated to a client uniformly at
random. As this partitioning does not take into account the topology or the features, we end up with a
large number of interconnections where each subgraph has the same distribution over class labels,
i.e., the data is homogeneous across clients. Notably, given the large number of interconnections,
this setting arguably constitutes the most challenging scenario in subgraph FL as it is paramount to
exploit the interconnections to achieve good performance.

F.1 PERFORMANCE UNDER DIFFERENT PARTITIONING METHODS

In Table 6, we show the performance of FEDSTRUCT over each of the different partitionings for
10 clients and the train-val-test split according to 10%-10%-80%. We use this split to focus on a
challenging semi-supervised scenario. Furthermore, each of the results is reported using the mean
and standard deviation obtained from 10 independent runs.

First, as the central version of the training with GNN does not depend on the partitioning, it is the
same as in Table 2. We also report the performance of central training using DECOUPLED GCN and
when employing an MLP. By comparing the performance of CENTRAL GNN with CENTRAL MLP,
one may infer the gains of accounting for the spatial structure within the data. As seen in the table,
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Table 6: Classification accuracies for FEDSTRUCT with an underlying decoupled GCN. The results are shown for 10 clients with a 10–10–80 train-val-test split.

CORA CITESEER PUBMED

CENTRAL GNN 82.94± 1.26 69.37± 1.07 85.12± 1.15
CENTRAL DGCN 83.48 ± 1.31 69.05 ± 1.20 85.61 ± 0.18
CENTRAL MLP 65.47±0.019 63.67± 0.81 84.31± 0.22

LOUVAIN RANDOM KMEANS LOUVAIN RANDOM KMEANS LOUVAIN RANDOM KMEANS

FEDAVG GNN 81.05± 0.82 64.64± 1.87 66.47± 1.52 69.71± 0.73 65.41± 1.54 65.58± 1.09 85.67± 0.13 85.19± 0.35 85.79± 0.26
FEDSGD GNN 81.22± 0.99 66.00± 1.51 67.57± 1.28 69.25± 1.19 63.38± 0.76 64.64± 1.27 84.87± 0.76 84.66± 0.22 84.85± 0.33
FEDAVG DGCN 77.49± 3.06 62.60± 3.59 66.18± 1.35 69.88± 0.90 65.04± 1.96 67.10± 1.02 84.36± 0.19 84.42± 0.26 85.41± 0.32
FEDSGD DGCN 82.05± 0.92 67.15± 2.52 69.85± 1.06 68.51± 1.38 63.23± 0.85 65.39± 1.04 84.74± 0.17 83.92± 0.40 84.68± 0.32
FEDAVG MLP 68.59± 1.99 65.78± 1.84 64.81± 1.83 66.03± 0.80 64.41± 0.75 64.63± 1.09 85.81± 0.34 84.71± 0.26 84.75± 0.43
FEDSGD MLP 65.41± 1.33 65.67± 1.62 64.42± 1.60 64.87± 1.04 63.68± 0.74 64.11± 0.80 84.05± 0.41 84.29± 0.31 84.28± 0.41
FEDSAGE+ 81.06± 0.89 66.33± 1.69 67.35± 1.18 69.21± 1.17 63.93± 0.97 64.33± 0.79 84.31± 1.62 84.64± 0.37 84.91± 0.30
FEDPUB 78.75± 1.33 61.82± 1.84 64.38± 1.50 69.20± 1.09 62.91± 0.76 62.56± 1.29 85.16± 0.29 82.39± 0.41 83.85± 0.64
FEDGCN-1HOP 82.24± 1.13 82.91± 1.24 81.60± 0.95 70.24± 0.81 70.63± 0.87 69.68± 1.14 86.72± 0.17 86.05± 0.65 85.84± 0.53
FEDGCN-2HOP 81.88± 1.10 82.90± 0.95 82.00± 0.76 70.45± 0.85 70.49± 1.03 69.29± 1.45 86.62± 0.20 85.73± 0.77 85.83± 0.48

FEDSTRUCT (DEG) 82.18± 0.79 69.89± 1.85 71.31± 1.42 68.29± 1.35 63.54± 0.64 65.84± 1.36 84.65± 0.17 84.01± 0.38 84.65± 0.45
FEDSTRUCT (FED⋆) 81.27± 1.13 69.61± 1.87 70.89± 1.21 68.29± 1.47 63.38± 0.90 65.75± 1.15 84.71± 0.13 84.02± 0.35 84.77± 0.40
FEDSTRUCT (H2V) 81.30± 0.97 79.27± 0.90 78.36± 0.82 68.65± 1.49 65.43± 0.98 66.44± 1.07 82.23± 0.33 85.02± 0.43 84.81± 0.42
FEDSTRUCT (H2V)-F 81.02± 0.60 79.88± 0.92 78.79± 0.96 68.35± 1.45 65.93± 0.81 66.84± 0.55 83.03± 0.41 85.79± 0.60 85.47± 0.57

LOCAL GNN 75.36± 1.43 39.24± 1.64 47.08± 2.55 59.15± 1.52 39.88± 1.62 50.90± 5.66 76.40± 3.49 75.27± 0.59 75.00± 2.83
LOCAL DGCN 76.78± 1.18 41.35± 1.33 51.17± 1.98 59.62± 1.45 41.99± 1.35 53.04± 5.33 81.54± 0.47 76.65± 0.48 80.10± 0.49
LOCAL MLP 67.26± 2.05 40.34± 1.64 46.44± 2.15 54.62± 1.64 41.28± 0.89 52.02± 5.49 81.30± 0.44 75.98± 0.53 78.81± 0.38

CHAMELEON AMAZON PHOTO AMAZON RATINGS

LOUVAIN RANDOM KMEANS LOUVAIN RANDOM KMEANS LOUVAIN RANDOM KMEANS

CENTRAL GNN 54.38± 1.96 94.10± 0.30 41.42± 0.80
CENTRAL DGCN 55.05 ± 1.56 92.77 ± 0.38 41.05 ± 0.41
CENTRAL MLP 31.10± 1.71 87.69± 1.37 37.74± 0.39

FEDAVG GNN 45.87± 1.81 33.06± 1.84 37.74± 2.96 92.45± 0.80 90.25± 0.42 89.32± 0.73 40.09± 0.48 36.31± 0.79 37.35± 0.70
FEDSGD GNN 47.95± 2.01 36.80± 1.70 38.35± 2.04 93.91± 0.40 91.55± 0.34 91.41± 0.37 40.93± 0.88 35.96± 0.46 37.40± 0.32
FEDAVG DGCN 42.01± 1.47 31.08± 1.24 34.12± 3.40 90.87± 0.34 88.42± 0.60 87.76± 0.52 40.14± 0.60 37.52± 0.37 37.96± 0.36
FEDSGD DGCN 48.01± 1.43 34.78± 1.39 35.73± 2.02 91.97± 0.39 89.85± 0.39 90.06± 0.32 40.69± 0.49 37.92± 0.39 38.22± 0.33
FEDAVG MLP 32.63± 2.31 29.49± 1.37 28.43± 1.69 90.16± 1.15 85.39± 1.26 85.87± 2.50 37.84± 0.60 37.23± 0.38 37.40± 0.19
FEDSGD MLP 31.91± 2.14 33.13± 1.24 32.46± 1.86 87.66± 0.86 88.39± 1.07 87.99± 1.35 37.42± 0.40 37.65± 0.38 37.29± 0.51
FEDSAGE+ 47.70± 1.68 36.32± 1.59 37.73± 1.58 93.82± 0.34 91.33± 0.47 91.39± 0.40 40.54± 0.71 35.85± 0.39 37.55± 0.38
FEDPUB 47.80± 1.65 33.31± 1.37 34.82± 2.07 91.51± 0.32 88.05± 0.68 88.84± 0.58 40.37± 0.66 35.72± 0.60 37.00± 0.62
FEDGCN-1HOP 52.95± 3.33 48.23± 1.81 48.35± 1.68 93.28± 0.59 93.60± 0.28 93.62± 0.31 41.13± 0.52 40.76± 0.35 40.56± 0.23
FEDGCN-2HOP 48.87± 2.00 48.77± 1.73 49.14± 1.98 93.54± 0.36 93.72± 0.41 93.59± 0.31 41.19± 0.56 40.78± 0.56 40.82± 0.42

FEDSTRUCT (DEG) 49.66± 1.61 41.82± 1.78 42.16± 1.86 92.05± 0.44 89.72± 0.43 90.17± 0.28 40.93± 0.29 38.67± 0.66 38.78± 0.35
FEDSTRUCT (FED⋆) 49.36± 1.89 41.89± 1.67 42.54± 1.56 92.02± 0.41 89.78± 0.38 90.07± 0.42 41.03± 0.37 38.65± 0.44 38.89± 0.49
FEDSTRUCT (H2V) 55.74± 1.09 52.60± 1.25 53.40± 1.69 91.21± 0.42 90.93± 0.27 91.42± 0.72 40.61± 0.51 40.97± 0.64 41.06± 0.42
FEDSTRUCT (H2V)-F 55.75± 1.46 53.09± 1.85 52.95± 1.72 90.40± 0.58 90.74± 0.29 91.11± 0.61 40.86± 0.56 41.07± 0.56 41.23± 0.43

LOCAL GNN 46.71± 2.42 29.60± 1.25 30.84± 2.60 91.24± 0.73 77.12± 1.75 79.48± 1.59 40.23± 0.71 32.80± 0.43 35.73± 0.41
LOCAL DGCN 46.23± 1.70 28.55± 1.08 30.12± 3.01 90.64± 0.45 81.64± 0.95 83.09± 0.83 41.30± 0.58 34.16± 0.25 36.32± 0.43
LOCAL MLP 31.44± 2.10 21.17± 0.65 22.70± 2.42 89.27± 0.75 69.89± 1.34 76.05± 0.80 37.67± 0.67 33.23± 0.39 35.25± 0.38
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exploiting the graph structure brings the largest benefits for Cora and Chameleon. Moreover, it can
be seen for all datasets GNN and DECOUPLED GCN yield similar results for centralized training.

In similar spirit, the performance gap between LOCAL GNN (LOCAL MLP) and CENTRAL GNN
(CENTRAL MLP) indicates the potential gains of employing collaborative learning between the
clients. Notably, this gap depends on the partitioning. From Table 6, it can be seen that the gap
is the largest for random partitioning followed by the K-means algorithm for all datasets. This is
expected, as local training suffers from a large number of interconnections. For example, in Cora,
the gap is 42.83%, 35.26%, and 6.54% for random, K-means, and Louvain partitioning, respectively.
Furthermore, LOCAL GNN and LOCAL DCGN performs similarly.

Considering FEDSGD GNN and FEDSGD DGCN, it can be seen that all scenarios benefit from
collaborative learning. For the Louvain partitioning, due to its community-based partitioning with the
low number of interconnections, FEDSGD GNN and FEDSGD DGCN performs well for all datasets.
For K-means and random partitioning, they performs worse, with the worst performance seen for
Cora, Chameleon, and Amazon Ratings. FEDSAGE+ achieves similar performance to FEDSGD
GNN whereas FEDPUB is inferior in most settings. The FEDSAGE+ IDEAL scheme, incorporating
the knowledge of the node IDs of missing neighbors in other clients, is based on a mended graph
with flawless in-painting of missing one-hop neighbors. Hence, this scheme serves as an upper bound
on techniques based on in-painting of one-hop neighbors, such as FEDSAGE+ and FEDNI. Notably,
this scheme completely violates privacy as the node features of missing clients cannot be shared
between clients. From Table 6, we see that this scheme is robust to different partitionings by offering
consistent performance close to the CENTRAL GNN.

We consider FEDSTRUCT with three different methods to generate NSFs: one-hot degree vectors
(DEG), FED⋆, and our task-dependent method HOP2VEC (H2V), see Appendix A for information.
The hyper-parameters are chosen as in Table 5. In Table 6, it can be seen that DEG, only being able
to capture the local structure, perform worse than the methods able to capture more global properties
of the graph. This is especially true for the K-means and random partitionings. FED⋆ achieves
performance close to DEG, likely due to the random walk approach not being informative, hence,
capturing essentially the same information as DEG, see Appendix A. Moreover, it can be seen that
HOP2VEC performs close to FEDSAGE+ IDEAL for all scenarios and is sometimes superior, e.g., on
the Chameleon datasets. This highlights the importance of going beyond the one-hop neighbors for
some datasets, something that is not possible in FEDSAGE+ IDEAL.

F.2 IMPACT OF PRUNING

To emphasize the strong performance of FEDSTRUCT and its robustness to structural noise, we
compare it with a version of FEDSTRUCT that does not use pruning (denoted as -F) in Table 7. As
shown in Table 7, FEDSTRUCT’s performance remains very close to the version without pruning
across all datasets, demonstrating its ability to handle the removal of structural information effectively.

G DISCUSSION

G.1 PRIVACY

Previous frameworks for subgraph FL (Zhang et al., 2021; Peng et al., 2022; Lei et al., 2023; Zhang
et al., 2022; Liu et al., 2023; Zhang et al., 2024; Chen et al., 2021; Du and Wu, 2022) require
the sharing of either original or generated node features and/or embeddings among clients. In
stark contrast, our proposed framework, FEDSTRUCT, eliminates this need, sharing less sensitive
information.

As outlined in Section 5, FEDSTRUCT requires some sharing of structural information between
clients. We begin our discussion by mounting a potential attack to show that some information may
be revealed from other clients. Thereafter, we discuss a strategy to mitigate such attacks by refraining
from sharing individual information about nodes. Specifically, we present a slightly different version
of FEDSTRUCT that relies on sharing aggregated quantities between clients without affecting the
performance of the original version.
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Table 7: Classification accuracy of FEDSTRUCT with pruning (pruning parameter p = 30) and without pruning. The results for pruning are presented in bold and the
result without the pruning are shown with -F. The results are shown for 10 clients with a 10–10–80 train-val-test split.

CORA CITESEER PUBMED

CENTRAL GNN 82.94± 1.26 69.37± 1.07 85.12± 1.15
CENTRAL MLP 65.47±0.019 63.67± 0.81 84.31± 0.22

LOUVAIN RANDOM KMEANS LOUVAIN RANDOM KMEANS LOUVAIN RANDOM KMEANS

FEDSTRUCT (DEG) 82.18± 0.79 69.89± 1.85 71.31± 1.42 68.29± 1.35 63.54± 0.64 65.84± 1.36 84.65± 0.17 84.01± 0.38 84.65± 0.45
FEDSTRUCT (FED⋆) 81.27± 1.13 69.61± 1.87 70.89± 1.21 68.29± 1.47 63.38± 0.90 65.75± 1.15 84.71± 0.13 84.02± 0.35 84.77± 0.40
FEDSTRUCT (H2V) 81.30± 0.97 79.27± 0.90 78.36± 0.82 68.65± 1.49 65.43± 0.98 66.44± 1.07 82.23± 0.33 85.02± 0.43 84.81± 0.42

FEDSTRUCT (DEG)-F 81.90± 0.94 68.94± 2.66 71.09± 1.10 68.39± 1.52 63.45± 0.67 65.55± 0.98 84.75± 0.17 84.11± 0.33 84.75± 0.37
FEDSTRUCT (FED⋆)-F 81.68± 0.90 68.60± 2.85 70.61± 1.69 68.39± 1.48 63.74± 0.85 65.45± 1.21 84.77± 0.18 84.10± 0.33 84.80± 0.34
FEDSTRUCT (H2V)-F 81.02± 0.60 79.88± 0.92 78.79± 0.96 68.35± 1.45 65.93± 0.81 66.84± 0.55 83.03± 0.41 85.79± 0.60 85.47± 0.57

CHAMELEON AMAZON PHOTO AMAZON RATINGS

LOUVAIN RANDOM KMEANS LOUVAIN RANDOM KMEANS LOUVAIN RANDOM KMEANS

CENTRAL GNN 54.38± 1.96 94.10± 0.30 41.42± 0.80
CENTRAL MLP 31.10± 1.71 87.69± 1.37 37.74± 0.39

FEDSTRUCT (DEG) 49.66± 1.61 41.82± 1.78 42.16± 1.86 92.05± 0.44 89.72± 0.43 90.17± 0.28 40.93± 0.29 38.67± 0.66 38.78± 0.35
FEDSTRUCT (FED⋆) 49.36± 1.89 41.89± 1.67 42.54± 1.56 92.02± 0.41 89.78± 0.38 90.07± 0.42 41.03± 0.37 38.65± 0.44 38.89± 0.49
FEDSTRUCT (H2V) 55.74± 1.09 52.60± 1.25 53.40± 1.69 91.21± 0.42 90.93± 0.27 91.42± 0.72 40.61± 0.51 40.97± 0.64 41.06± 0.42

FEDSTRUCT (DEG)-F 49.80± 1.54 41.94± 1.58 42.23± 1.84 92.07± 0.35 90.31± 0.41 90.68± 0.34 40.95± 0.37 38.58± 0.53 38.88± 0.43
FEDSTRUCT (FED⋆)-F 49.23± 1.61 41.60± 1.80 42.45± 2.04 92.00± 0.45 90.12± 0.48 90.64± 0.35 40.98± 0.32 38.67± 0.60 38.97± 0.52
FEDSTRUCT (H2V)-F 55.75± 1.46 53.09± 1.85 52.95± 1.72 90.40± 0.58 90.74± 0.29 91.11± 0.61 40.86± 0.56 41.07± 0.56 41.23± 0.43

In FEDSTRUCT using task-agnostic NSFs, each client is provided with S, i.e., the NSFs of all clients.
Consider an honest-but-curious client i with NSFs {su : u ∈ Vi}. Client i may target client j by
identifying NSFs within client j that closely match some of its own NSFs. By this simple procedure,
client i may compare the topology of the matched local nodes and infer the topology of some of
the nodes within j. Furthermore, as θs is shared among all clients, client i would potentially be
able to guess the labels of the identified nodes within client j. Given a node’s label and topology, it
may be further possible to infer something about the node features. Using task-dependent NSF, i.e.,
HOP2VEC, the situation is similar.

Next, we discuss how to alter FEDSTRUCT to prevent reconstruction of the local NSFs, therefore
mitigating the aforementioned attack, starting from the task-agnostic NSF generators. From Proposi-
tion 3, the summation over V may be split into a summation over clients. The prediction and local
gradients for client i may then be written as

ŷv = softmax
( ∑

j∈[K]

∑

u∈Vj

Āvugθs
(su) + fθf

(v)
)
, v ∈ Ṽi, (45)

∂Li(θ)

∂θs,q
=
∑

v∈Ṽi

∑

j∈[K]

∑

u∈Vj

Āvu
∂gθs

(su)

∂θs,q
(ŷv − yv), ∀q ∈ [|θs|]. (46)

Notably, client i may evaluate its local gradient provided access to

s̄(j)v =
∑

u∈Vj

Āvugθs
(su), ∀v ∈ Ṽi (47)

s̃(j)vq =
∑

u∈Vj

Āvu
∂gθs

(su)

∂θs,q
, ∀q ∈ [|θs|],∀v ∈ Ṽi. (48)

for each client j ∈ [K]. For client j ̸= i to be able to evaluate these quantities, it needs access to Āvu

for all v ∈ Ṽi and u ∈ Ṽ , i.e., the weighted sum of the ℓ-hop paths, ℓ ∈ [L], from nodes in client i to
nodes in client j. Following Appendix D, client j has access to avu for v ∈ Ṽj and u ∈ V . Notably,
avu ̸= Auv due to different degree normalizations. Hence, to obtain the required quantitites in Eq. 47
and Eq. 48, client i may share {Āvu : v ∈ Ṽi, u ∈ Vj} with client j ∈ [K] after the algorithm in
Appendix D has finished.

Compared to FEDSTRUCT, the gradients of the above method cannot be calculated locally but bring
the benefit of clients only knowing their own local NSFs rather than the individual NSFs of others.

26



Published as a conference paper at ICLR 2025

Because of this, the training has to be done in two phases for each iteration where phase 1 accounts
for each client i ∈ [K] to collect the quantities in Eq. 47 and Eq. 48 from all other clients and where
each client computes the local gradients and shares these with the server during phase 2. Note that the
communication complexity in each training iteration does not increase as Eq. 47 and Eq. 48 amounts
to sharing |Ṽi|c and |θs|c parameters, respectively, where c is the number of class labels. Hence, in
total, each client i must share (|Ṽ \ Ṽi|+ |θs|)c parameters in each iteration with the other clients.
Note that this sharing can be made either via the server or via peer-to-peer links.

Although a formal privacy analysis seems formidable, we may follow an approach similar to (Lei
et al., 2023) to argue around the difficulty of perfectly reconstructing the local NSFs. To this end,
we take a conservative approach and consider honest-but-curious clients where all but one client is
colluding. Hence, we may consider two clients where client 1 is the attacker and client 2 is the target.
In each iteration, client 1 receives s̃(2)v ∈ Rc and s̃

(2)
vq ∈ Rc for v ∈ Ṽ1 and q ∈ [|θ2|]. To evaluate

s̃
(2)
v , client 2 utilizes∥av∥0 ds-dimensional NSFs where the L0-norm counts the number of non-zero

elements. Hence, for each received aggregate s̃
(2)
v , client 1 obtains c observations from∥av∥0 ds

unknowns. In total, client 1 will collect |Ṽ1| such observations, i.e., it observes c|Ṽ1| parameters.
Assuming a, for client 2, the worst-case scenario with all av being non-zero in the same locations
with m non-zero elements, client 2 will use the same inputs for each observation in client 1. Hence,
if nds > c|Ṽ1|, client 1 is unable to recover individual NSFs from client 2. Notably, client 2 has
full control as it knows m and can count the number of queries from client 1 and refuse to answer
if it exceeds mds/c. Similarly, to evaluate s̃

(2)
vq , client 2 utilizes ∥av∥0 ds-dimensional inputs to

compute a c-dimensional output. Hence, client 2 will share |θs|c parameters, computed from∥av∥0 ds
parameters |Ṽ1| times. Hence, again considering the worst-case view, if mds > c|θs||Ṽ1|, client 1
cannot reconstruct the local gradient. Again, client 2 may monitor the number of queries such that
the condition is not violated.

When using HOP2VEC as the NSF generator, we no longer optimize over θs but rather over the NSFs
S directly. The problem we face in FEDSTRUCT is that each client has access to S. To alleviate this
issue, we use Theorem 2 to split the summation over V to obtain

s̄(j)v =
∑

u∈Vj

Āvusu, ∀v ∈ Ṽi. (49)

Furthermore, the local gradients for the NSFs in client i are given as

∇SLi(θ,S) =
∑

v∈Ṽi

Āv,:(ŷv − yv)
T. (50)

We note that Eq. 49 is required to compute the local predictions on Ṽi, and hence to obtain Eq. 50.
In this version of FEDSTRUCT, the training procedure will be divided into three phases. Phase 1
amounts to each client evaluating Eq. 49 for all other clients and sharing the results. This results in
the sharing of |Ṽ \ Ṽi|c in total for each client. Phase 2 amounts to each client evaluating its local
gradient in Eq. 50 and sharing it with the server, similar to the original FEDSTRUCT. Next, the server
aggregates the local gradients over S and partitions the result with respect to the entries residing
in each client (the server must know the unique node-IDs in the clients) and returns only the NSF
gradients corresponding to the nodes residing in each client. Using this procedure, clients will only
have information about the NSFs pertaining to their local nodes.

Next, we again consider honest-but-curious clients with all but one colluding against a single target.
We denote the colluding clients as client 1 and the target as client 2. Client 1 observes Eq. 49 which
constitutes c observations from ∥av∥0 c-dimensional inputs. Assuming a worst-case scenario as
above with all av having m non-zero entries in the same locations, client 1 observes in total c|Ṽ1|
parameters from mc inputs. Hence, to prevent client 1 from perfectly reconstructing individual NSFs,
client 2 must ensure that m > |Ṽ1|. Again, client 2 has full control over this by counting the number
of queries ensuring it is below m.

To summarize, we are able to alter FEDSTRUCT to reveal less information about individual nodes
without impacting the performance. Further, each client may prevent perfect reconstruction from
being possible by limiting the amount of information that is shared with other clients. To go beyond
perfect reconstruction and understand the risk of approximate reconstruction seems formidable.
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G.2 HETEROPHILY

Employing a decoupled GCN within the FEDSTRUCT framework allows the nodes to access larger
receptive fields compared to standard GNNs. This proves advantageous in handling heterophily
graphs. This is because in heterophilic graphs, neighboring nodes may not provide substantial
information about the node labels. In such scenarios, the mixing of embeddings from higher-order
neighbors involves a greater number of nodes with the same class, promoting increased similarity
among nodes of the same class. Higher-order neighbor mixing is one of the well-known approaches
to deal with heterophilic graphs (Zheng et al., 2022). Notably, (Abu-El-Haija et al., 2019) aggregates
embeddings from multi-hop neighbors showing superior performance compared to one-hop neighbor
aggregation. To show why higher-order neighborhoods help in heterophilic settings, (Zhu et al., 2020)
theoretically establish that, on average, the labels of 2-hop neighbors exhibit greater similarity to the
ego node label when the labels of 1-hop neighbors are conditionally independent from the ego node.

Furthermore, the parameters {βj}Ls

j=1 can be trained or adjusted to control the mixing weight of
different l-hop neighbors. This allows the network to explicitly capture both local and global structural
information within the graph. Specifically, different powers of the normalized adjacency matrix
Âl, l ∈ [Ls], collect information from distinct localities in the graph. Smaller powers capture
more local information, while larger powers tend to collect more global information. Consequently,
selecting the appropriate parameters {βj}j=1Ls enables the model to adapt to various structural
properties within graphs.

An additional well-established strategy for addressing heterophilic graphs involves the discovery of
potential neighbors, as proposed by (Zheng et al., 2022). The concept of potential neighbor discovery
broadens the definition of neighbors by identifying nodes that may not be directly linked to the ego
nodes but share similar neighborhood patterns in different regions of the graph. GEOM-GCN (Pei
et al., 2020) introduces a novel approach by defining a geometric Euclidean space and establishing a
new neighborhood for nodes that are proximate in this latent space. To this aim, FEDSTRUCT employs
NSFs to foster long-range similarity between nodes that may not be in close proximity in the graph but
exhibit proximity in the latent structural space. Specifically, the use of methods such as STRUC2VEC
(Ribeiro et al., 2017) for generating NSFs enables the creation of vectors that share similarity, even
among nodes that may not be directly connected in the graph. Consequently, the NSEs produced
by these NSFs also demonstrate similarity, contributing to consistent node label predictions. This
approach showcases FEDSTRUCT’s capacity to capture latent structural relationships and enhance the
model’s ability to make accurate predictions in the context of heterophilic graphs.

The robustness of FEDSTRUCT in handling heterophilic graphs is demonstrated in Table 2 and Ta-
ble 6 for the Chameleon and Amazon Ratings datasets. Such datasets are heterophilic datasets,
with Chameleon having a higher degree of heterophily than Amazon Ratings (see Table 4). For
both datasets FEDSTRUCT yields performance close to Central GNN and significantly outperforms
FEDSAGE+ and FEDPUB. In Table 2, for the Chameleon dataset and 20 clients, FEDSTRUCT
with HOP2VEC achieves an accuracy of 52.76% compared to 34.33% for FEDSAGE+. For the
Amazon Ratings dataset and 20 clients, FEDSTRUCT with HOP2VEC achieves an accuracy of
41.16% compared to 36.09% for FEDSAGE+. Note that the improvement is larger for the more het-
erophilic dataset. Similar results can be observed for different partitioning methods, see Table 6. For
Chameleon, FEDSTRUCT with HOP2VEC outperforms FEDSAGE+ with 6.33%, 16.88% and 15.73%
for Louvain, random and K-means partitioning, respectively. For Amazon ratings, FEDSTRUCT
with HOP2VEC outperforms FEDSAGE+ with 0.07%, 5.05%, and 3.12% for Louvain, random and
K-means partitioning, respectively.

We highlight that we have not specifically optimized the parameters of FEDSTRUCT to handle
heterophilic graph structures, hence it might be possible to improve the performance of FEDSTRUCT
for these heterophilic graphs.

The robustness of FEDSTRUCT to different degrees of homophily/heterophily (in contrast to frame-
works such as FEDSAGE+ and FEDPUB), underscores the adaptability and effectiveness of our
framework to diverse graph scenarios, affirming its potential for a wide range of applications.
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Figure 5: FEDSTRUCT framework when the server has knowledge of the global graph’s connections. Global Graph: underlying graph consisting of interconnected
subgraphs. Local graphs: clients’ subgraphs augmented with external nodes (without features or labels). Structure encoding: The server generates node structure
features and node structure embeddings for each node and shares them with the clients. Augmented local graphs: Generate node feature embeddings. Federated
learning: Federated learning step exploiting node feature embeddings and node structure embeddings.

H FEDSTRUCT WITH KNOWLEDGE OF THE GLOBAL GRAPH

In this section, we discuss FEDSTRUCT for the scenario where the server has complete knowledge of
the global graph’s connections. This scenario is commonly encountered in applications such as smart
grids and pandemic prediction. Importantly, also in this scenario we assume that the clients remain
unaware of the local graphs of other clients.

If the server has knowledge of the global graph, the NSEs may be computed centrally. Hence, contrary
to the case where the central server lacks knowledge of the global graph, any GNN model may be
used, i.e., it is not restricted to decoupled GCN (although, in Sec. H.3, we discuss the advantages
of using a decoupled GCN). Furthermore, any conventional NSF methods may be used such as
NODE2VEC and GDV that require knowledge of the L-hop neighborhood.

At each client i ∈ [K], node prediction is performed based on both the NFEs hv and node structure
embeddings (NSEs), zv. To this aim, we pass the NFEs and NSEs through a fully connected layer
with parameters Θc,

ŷv = softmax(ΘT
c

(
zv||hv)) = softmax

(
(Θ(s)

c )Tzv + (Θ(f)
c )Thv

)
∀v ∈ Vi . (51)

We denote the vectorized version of Θc by θc. From equation 51, we have that θc = θ
(s)
c ||θ(f)

c .

As the server is able to generate the NSEs, at each iteration, NSE updates will be sent to the
corresponding clients. For clients to send back gradient updates, they require the NSEs and their
derivatives with respect to the generator weight parameters, as seen in Proposition 4.

The FEDSTRUCT framework for this setting is conceptually shown in Figure 5.

Using a generic GNN, the local gradients are given in the following theorem.
Proposition 4. Let Li(θ), θ = (θf ||θs||θc), be the local training loss for client i in Eq. 4 and ŷv be
given in Eq. 51. The gradient

∇θLi(θ) = ||
(
∂Li(θ)

∂θj
∀j ∈ [|θ|]

)
(52)

is given by
∂Li(θ)

∂θs,j
=
∑

v∈Ṽ

∂zv
∂θs,j

Θ(s)
c (ŷv − yv) ∀j ∈ [|θs|],

∂Li(θ)

∂θf,j
=
∑

v∈Ṽ

∂hv

∂θf,j
Θ(f)

c (ŷv − yv) ∀j ∈ [|θf |],

∂Li(θ)

∂θ
(s)
c,j

=
∑

v∈Ṽ

∂
(
(Θ

(s)
c )Tzv

)

∂θ
(s)
c,j

(ŷv − yv) ∀j ∈ [|θ(s)
c |],

∂Li(θ)

∂θ
(f)
c,j

=
∑

v∈Ṽ

∂
(
(Θ

(f)
c )Thv

)

∂θ
(f)
c,j

(ŷv − yv) ∀j ∈ [|θ(f)
c |] ,

where θ·,j denotes the j-th entry of vector θ·,j .
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Algorithm 4 Algorithm for FEDSTRUCT with knowledge of the global graph

input Global graph G, sGNN and fGNN models, NSF generator function QNSF, K clients with
respective subgraphs {Gi}Ki=1, model parameters θ = (θf ||θs||θc)
S ← QNSF(E)
for e=1 to Epochs do
S(Ls) ← sGNNθs

(S, E)
for i=1 to K do

Client i collects θ from the server
Client i collects {zv,∀v ∈ Ṽi} from the server
Client i collects {∂zv

∂θs

,∀v ∈ Ṽi} from the server

H
(L)
i = fGNNθf

(Xi, Ei)
for v ∈ Ṽi do
ŷv = softmax(ΘT

c .(zv||hv))
end for
Calculate Li(θ) based on Eq. 4
Calculate∇θLi(θ) from Proposition 4
Send ∇θLi(θ) to the server

end for
Calculate∇θL(θ) based on Eq. 5
θ ← θ − λ∇θL(θ)

end for

The proof of the theorem is given in Section H.1.

Note that client i cannot compute ∇θLi(θ) directly as calculating ∂zv

∂θs,j

requires knowledge of the

global graph connections. Hence, the server must provide ∂zv

∂θs,j

along with zv for all v ∈ Ṽi. The
FEDSTRUCT framework when the server has knowledge of the global graph is described in Alg. 4.

H.1 PROOF OF PROPOSITION 4

Using Eq. 23 we have

∂Li(θ)

∂θj
=
∑

v∈Ṽi

∂zv
∂θj

(ŷv − yv) ,

where qv = (Θ
(s)
c )Tzv + (Θ

(f)
c )Thv . Taking the derivative of zv with respect to different entries of

θ leads to
∂qv
∂θs,j

=
∂zv
∂θs,j

Θ(s)
c ∀j ∈ [|θs|] (53)

∂qv
∂θf,j

=
∂hv

∂θf,j
Θ(f)

c ∀j ∈ [|θf |] (54)

∂qv

∂θ
(s)
c,j

=
∂
(
(Θ

(s)
c )Tzv

)

∂θ
(s)
c,j

∀j ∈ [|θ(s)
c |] (55)

∂qv

∂θ
(f)
c,j

=
∂
(
(Θ

(f)
c )Thv

)

∂θ
(f)
c,j

∀j ∈ [|θ(f)
c |] . (56)

Substituting Eq. 53, Eq. 54, Eq. 55, and Eq. 56 into Eq. 23 concludes the proof.

H.2 RESULTS

As aforementioned, knowledge of the adjacency matrix allows FEDSTRUCT to utilize NSF generators
such as GDV and N2V, see Appendix A. In Table 8, we provide some results for these NSFs
and benchmark them against GLOBAL DGCN and FEDSTRUCT (H2V) without knowledge of the
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Table 8: Classification accuracies for FEDSTRUCT with and without knowledge of the adjacency matrix. The results are shown for 10 clients with a 10–10–80
train-val-test split.

CORA CITESEER PUBMED

CENTRAL DGCN 83.72 ± 0.64 68.69 ± 1.04 86.26 ± 0.34
LOUVAIN RANDOM KMEANS LOUVAIN RANDOM KMEANS LOUVAIN RANDOM KMEANS

GLOBAL ADJACENCY MATRIX NOT KNOWN TO SERVER

FEDSTRUCT (DGCN+H2V) 81.34± 1.40 79.62± 0.85 80.34± 0.62 68.48± 0.98 66.34± 1.03 66.62± 1.59 83.39± 0.34 85.48± 0.29 85.93± 0.30

GLOBAL ADJACENCY MATRIX KNOWN TO SERVER

FEDSTRUCT (DGCN+GDV) 81.27± 1.56 72.09± 1.70 74.55± 1.47 68.82± 0.91 64.92± 1.04 66.22± 1.37 84.98± 0.21 85.59± 0.26 85.88± 0.21
FEDSTRUCT (DGCN+N2V) 82.26± 1.21 80.76± 0.91 80.97± 1.01 68.46± 1.17 66.88± 1.19 67.23± 0.92 84.84± 0.23 86.87± 0.31 87.08± 0.24

FEDSTRUCT (GNN+H2V) 80.87± 0.51 66.84± 0.71 68.06± 1.22 68.89± 0.99 63.77± 1.71 64.66± 0.96 76.04± 6.77 85.27± 0.45 82.92± 4.92
FEDSTRUCT (GNN+GDV) 80.62± 0.79 69.50± 1.23 69.86± 1.94 68.96± 1.09 64.78± 1.11 64.90± 1.17 81.56± 5.46 85.12± 0.40 85.36± 0.30
FEDSTRUCT (GNN+ N2V) 81.23± 1.02 75.24± 1.00 75.91± 0.90 69.22± 1.26 64.80± 1.71 65.53± 1.15 76.11± 6.80 86.24± 0.87 81.04± 6.28

CHAMELEON AMAZON PHOTO AMAZON RATINGS

CENTRAL DGCN 54.39 ± 2.24 92.27 ± 0.79 40.94 ± 0.46

LOUVAIN RANDOM KMEANS LOUVAIN RANDOM KMEANS LOUVAIN RANDOM KMEANS

GLOBAL ADJACENCY MATRIX NOT KNOWN TO SERVER

FEDSTRUCT (DGCN+H2V) 53.15± 1.26 52.37± 0.95 52.85± 2.44 90.56± 0.58 90.81± 0.73 91.07± 0.79 40.93± 0.39 41.00± 0.27 40.86± 0.50

GLOBAL ADJACENCY MATRIX KNOWN TO SERVER

FEDSTRUCT (DGCN+GDV) 48.08± 1.64 39.91± 1.07 40.76± 2.76 91.68± 0.72 90.51± 0.55 90.33± 0.57 41.43± 0.51 39.54± 0.41 39.65± 0.43
FEDSTRUCT (DGCN+N2V) 49.23± 1.58 43.34± 1.43 44.99± 2.88 91.86± 0.78 91.53± 0.46 91.65± 0.44 41.74± 0.30 41.84± 0.38 41.28± 0.55

FEDSTRUCT (GNN+H2V) 40.42± 2.01 38.36± 2.10 39.47± 1.53 93.36± 0.49 91.07± 0.57 90.81± 0.39 37.58± 0.57 35.13± 0.44 35.65± 0.36
FEDSTRUCT (GNN+GDV) 46.40± 2.32 38.80± 2.27 38.91± 2.31 93.17± 1.10 91.52± 1.00 91.63± 0.34 41.17± 0.53 36.74± 0.83 37.41± 0.78
FEDSTRUCT (GNN+N2V) 48.46± 2.21 45.12± 2.14 46.02± 2.77 91.78± 1.47 92.00± 0.59 91.59± 0.89 40.96± 0.33 40.29± 0.50 40.12± 0.60

adjacency matrix. While FEDSTRUCT (GDV) is mostly inferior to FEDSTRUCT (H2V), leveraging
NODE2VEC as the NSF generator boosts the performance even further in several scenarios. For
example, on Cora with Louvain partitiong, the performance is improved from 81.23% to 82.78%.
Even more, arbitrary GNN architectures are supported when the global adjacency matrix is available
at the server and may potentially improve performance even further.

H.3 GNN VS DECOUPLED GRAPH CONVOLUTIONAL NETWORK

As mentioned earlier, if the server has knowledge of the global graph, FEDSTRUCT can operate with
any underlying GNN model. However, in Figure 6 we demonstrate the advantages of incorporating
a decoupled GCN into our framework. To this aim, we provide results for FEDSTRUCT with
both an underlying decoupled GCN and a standard GNN (GRAPHSAGE) for a semi-supervised
learning scenario with varying fraction of labeled training nodes Specifically, we show the accuracy
for scenarios involving 50%, 10%, and 1% labeled nodes. For 50% and 10% of labeled nodes,
FEDSTRUCT with both underlying decoupled GCN and standard GNN yield similar results. However,
in a heavily semi-supervised scenario (as encountered in applications like anti-money laundering),
the accuracy of FEDSTRUCT with standard GNN experiences a significant decline. In contrast,
FEDSTRUCT with decoupled GCN achieves performance close to that of central GNN even in such a
challenging scenario. This highlights the critical role of employing a decoupled GCN to effectively
tackle the semi-supervised learning scenarios. Moreover, knowledge of the global graph edges
enables the use of NSFs such as NODE2VEC which, as seen in Figure 6, sometimes enhances the
performance compared to HOP2VEC.

H.4 COMMUNICATION COMPLEXITY

In this Section, we discuss the communication complexity of FEDSTRUCT when the server has
knowledge of the global graph. Note that, in this case, the NSEs can be computed by the server.
Hence, no sharing of information between the clients is needed and clients only communicate with
the server.

During the training, in each training round, each client collects θ and returns ∇θLi(θ,S) to the
server, totaling a communication of 2E ·K · |θ| parameters during the training. This is consistent
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Figure 6: Accuracy vs fraction of training nodes with labels for FEDSTRUCT with underlying decoupled GCN and underlying standard GNN (GRAPHSAGE) on the
Amazon Photo dataset with K-means partitioning.

Table 9: Communication Complexity of FEDSTRUCT when the Server has Knowledge of the Global Graph.

DATA BEFORE TRAINING TRAINING

FEDSTRUCT 0 O(E ·K · |θ|+ E · n · d · |θ|)
FEDSTRUCT + HOP2VEC 0 O(E ·K · |θ|+ E · n · d · |θ|+ E ·K · n · d+ E · n2 · d2)

across all versions of FEDSTRUCT. Additionally, the server sends zv, ∀v ∈ Ṽi, and {∂zv

∂θs

,∀v ∈ Ṽi}
to each client, adding up to E · n · d(|θ| + 1) parameters. The dominant term of the complexity
is E · n · d · |θ|, which scales with n. The complexity is therefore of the same order as that of
FEDSAGE+.

The use of HOP2VEC entails some additional communication complexity, corresponding to the
collection of {∂zv

∂sq

,∀v ∈ Ṽi, q ∈ V} by client i, constituting E · n2 · d2 parameters, and sending
∇SLi(θ,S) to the server, constituting E ·K · n · d parameters. In practical scenarios with large
graphs, E · n2 · d2 is the dominant term out of the two.

With HOP2VEC, the dominant complexity term is on the order of n2, which is impractical for
large networks. It should be noted, however, that real-world graph-structured datasets are sparse.
Furthermore, each node only depends on its Ls-hop neighbors. Hence, many of the values {∂zv

∂sq

,∀v ∈
Ṽi, q ∈ V} are zero and do not need to be communicated. Assuming an average node degree d̄ and Ls

layers, for which each node has access to d̄Ls nodes, the complexity of FEDSTRUCT with HOP2VEC
is on the order of min{n · d̄Ls , n2}. For small average degree d̄ and Ls, the complexity can therefore
be reduced significantly. The communication complexity is reported in Table 9.
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