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Abstract
The ability to organically reason over and with
both text and images is a pillar of human intelli-
gence, yet the ability of Multimodal Large Lan-
guage Models (MLLMs) to perform such multi-
modal reasoning remains under-explored. Exist-
ing benchmarks often emphasize text-dominant
reasoning or rely on shallow visual cues, fail-
ing to adequately assess integrated visual and
textual reasoning. We introduce EMMA (En-
hanced MultiModal reAsoning), a benchmark tar-
geting organic multimodal reasoning across math-
ematics, physics, chemistry, and coding. EMMA
tasks demand advanced cross-modal reasoning
that cannot be addressed by reasoning indepen-
dently in each modality, offering an enhanced test
suite for MLLMs’ reasoning capabilities. Our
evaluation of state-of-the-art MLLMs on EMMA
reveals significant limitations in handling com-
plex multimodal and multi-step reasoning tasks,
even with advanced techniques like Chain-of-
Thought prompting and test-time compute scaling
underperforming. These findings underscore the
need for improved multimodal architectures and
training paradigms to close the gap between hu-
man and model reasoning in multimodality. The
project homepage can be accessed at https:
//emma-benchmark.github.io/.

1. Introduction
Multimodal reasoning is fundamental to human intelligence.
For example, interior designers combine textual descriptions
with mental imagery to optimize room layouts. Text-based
reasoning allows us to analyze abstract concepts, while
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Multimodal  reasoning question  in EMMA

Human reasoning

Model reasoning (GPT-4o)

The	direction	of	the	electric	force	due	to	-2Q	and	+3Q can	be	visualized	with	a quick	free-body	
sketch	of	the	electric	forces:

Question: Three	point	charges,	of	charge		+Q,	-2Q	,	and	+3Q	,	are	placed	equidistant	as	shown.	
Which	vector	best	describes	the	net	direction	of	the	electric	force	acting	on	the	+Q		charge?

attractrepel Combining	the	forces:
∵ |+3Q|>|-2Q|
∴ repel		>	attract	

Error: While	the	model	understands	that	like	charges	repel,	it	incorrectly	identifies	the	force	
from	+3Q to	+Q as	downward-right⬊ ,	when	it	should	be upward-left⬉.

……

Figure 1: A sample multimodal reasoning question in EMMA.
Humans engage in graphical reasoning: guided by the principles of
electric force, they draw force vectors with appropriate directions
and visually compute their sum. While GPT-4o understands that
like charges repel, it mistakes the direction of the repulsive force,
highlighting its limitations in multimodal reasoning.

visual reasoning enables us to draw insights from complex
visual information. Combining these skills provides a robust
framework for solving technical and creative challenges.

Recent advancements in Large Language Models (LLMs)
have significantly enhanced their reasoning abilities (Ope-
nAI, b; Qwen, 2024; Zhao et al., 2024; DeepSeek, 2024),
enabling strong performance on tasks such as formal logic
reasoning (Hendrycks et al., 2020b), graduate-level aca-
demic question answering (Rein et al., 2023), and competi-
tive programming (codeforces; Bai et al., 2023; Hendrycks
et al., 2020a). Despite these successes, these models primar-
ily focus on text-only reasoning, leaving an open question:
can Multimodal LLMs (MLLMs) effectively reason across
both language and visual inputs?

A major bottleneck in addressing this question is the lack of
appropriate benchmarks. Existing multimodal benchmarks
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Math Physics Chemistry Coding

2D Transformation

3D Spatial Simulation

Pattern Inference

Path Tracing/Change of  view simulation

Multi-hop Visual Object Counting 

Visual Decomposition Simulation

3D Field Simulation

Graph Reasoning 

Path Tracing 

Multi-hop Visual Reasoning

Knowledge-based Counting

Reaction Simulation

Advanced Chart Type

3D

Alignment, Orientation, & Position

Polar coordinates

…

Q: Which code snippet will generate the 
visualization shown?

Q: How can we change the code snippet below 
to create the visualization shown?

Q: Which visualization will the following code 
snippet generate?

A. B.

C. D.

Q: How can we change the code snippet below, 
which generates the first image, so that it 
generates the second image shown?

A. B. C. D.

Q: In the transition-
state structure shown 
in the image, calculate 
the total number of  
bonds in the structure, 
including single, double, 

Q: An 'arrow-pushing' 
diagram is a common 
type of chemical image 
used to illustrate 
electron flow in 
mechanistic steps. 

Q: A monkey has torn off  a piece of  Captain Jack's 
map. What does the piece the monkey has torn off  
look like?

Q: Janaína made the construction on a grid, using 
some lighted colored cubes and others darker. 
Looking from above the construction, what can 
she see?

Q: Complete the matrix.

Q: The kangaroo wants to visit the koala. On its 
way it is not allowed to jump through a square 
with water. Each arrow shows one jump on to a 
neighbouring field. Which path is the kangaroo 
allowed to take?

Q: Subtract all large rubber spheres. Subtract all 
big shiny cylinders. How many objects are left?

Q: A mass of  2.0 kg is attached to the end of  a 
light cord to make a pendulum 5.0 meters in 
length. The mass is raised to an angle of  
relative to the vertical, as shown, and released. 
The speed of  the mass at the bottom of  its swing 
is: 

a. 60 m/s 
b. 7.7 m/s 
c. 40 m/s 
d. 6.3 m/s 
e. 10 m/s

Q: A long bar magnet is 
placed above a current 
loop oriented as shown. 
In which direction will 
the North pole of  the bar 
magnet feel a force due to 
the current loop?

a. +x b. –x c. +y d. -y
e. The bar magnet will feel no force due to the 
current loop.

Q: A billiard ball rolling across a table in the +x
direction at 3 meters per second hits the edge of  
the table at a perpendicular angle, and bounces 
back in the -x direction, now traveling at 2 meters 
per second in the opposite direction. The greatest 
magnitude of  acceleration for the billiard ball 
was at time:

a. t = 1 × 10⁻³ s
b. t = 2 × 10⁻³ s
c. t = 5 × 10⁻³ s
d. t = 7 × 10⁻³ s
e. t = 9 × 10⁻³ s

Q: A ray of  light is incident on a spherical mirror 
after passing through its focus F. Which of  the 
following diagrams shows 
the reflected ray correctly? 
Note: The smooth side is the 
reflecting part of  the mirror, 
and the dotted side is the 
back.

A. B. C. D.

Q: In the circuit shown below, a capacitor C = 4F, 
inductor L=5H, and resistors                &
are placed in a diamond-shaped configuration. 
This circuit is fed with an alternating current of  
unknown frequency with a peak voltage                .
Determine the magnitude of  the maximum 
instantaneous output voltage as shown in the 
diagram.

Reaction Simulation-Pro

Q: An 'arrow-pushing' diagram is a common type 
of chemical image used to illustrate electron flow 
in mechanistic steps. The molecule undergoes 
changes after the electron has been relocated or 
reacted. Which of the following options shows the 
molecule after the change?

A. B. C. D.

A. B. C. D.

A. B. C. D.

Graph Reasoning 

Q: The \%yield of ammonia as a function of time in 
the reaction
at is given below. If 
this reaction is conducted 
at              with                , 
the \%yield of ammonia 
as a function of time is 
represented by: 

and triple bonds but excluding those involving 
hydrogen. Note: Disregard arrows. Consider all 
components present in the transition-state 
structure shown in the image.

A. [*]C(C1[*])=NOCC1=O  B. [*]C(C1[*])=NOC1=O
C. [*]C(C1[*])=NOC1O.       D. [*]C(C1[*])=NNC1=O

Structure Recognition

A. P > Q > R > S
C. P > R > Q > S

B. P > Q > R > S
D. R > P > S > Q

Q: KI in acetone, undergoes          reaction with 
each of P, Q, R and S. The rates of the reaction vary 
as

Please provide the SMILES expression for the 
molecule after the electron has been relocated, as 
depicted in the image.

Figure 2: Overview of EMMA. EMMA covers four subjects: math, physics, chemistry, and coding. Questions are categorized based on
the specific skills they measure, enabling fine-grained analysis.

largely test surface-level visual understanding (Antol et al.,
2015; Goyal et al., 2017; Yu et al., 2023; Akter et al., 2024)
or textual knowledge (Yue et al., 2024b;a; Marino et al.,
2019) recall with multimodal inputs. While some bench-
marks (Lu et al., 2024b; Wang et al., 2024a) include math
questions with images, Zhang et al. (2024a) have shown that
many of these tasks reduce to language-only reasoning, as
the visual content is often fully described in text.

To address this gap, we introduce EMMA: an Enhanced
MultiModal reAsoning benchmark, specifically designed
to evaluate the ability to solve problems that require both

visual- and language-based problem-solving. EMMA fea-
tures questions that are difficult to solve by relying solely on
text-based reasoning or a single visual pass. Instead, solv-
ing these problems necessitates a back-and-forth process
between interpreting visual inputs and applying multimodal
reasoning steps, where visual aids are often integral or more
efficient for arriving at the solution. For instance, Figure 1
illustrates a sample physics problem that asks for the direc-
tion of the net electric force. While GPT-4o understands that
like charges repel, it mistakes the direction of the repulsive
force, highlighting its limitations in multimodal reasoning.
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Unlike recent benchmarks (Ramakrishnan et al., 2024; Chol-
let, 2019), which focus on spatial cognition, or visual puz-
zles that can be perfectly represented in text, EMMA in-
troduces domain-specific challenges where reasoning can
often be strengthened by visual aids. These include tasks
like 3D spatial transformations, chemical structure recogni-
tion, multi-step physical simulations, and program output
visualization (Figure 2). EMMA consists of 992 multimodal
reasoning questions gathered from existing benchmarks
through a rigorous filtering pipeline, and 1,796 newly con-
structed questions created manually in collaboration with do-
main experts. Our evaluation of ten state-of-the-art (SoTA)
MLLMs on EMMA reveals three key findings:

MLLMs struggle with multimodal reasoning: All models
perform suboptimally on EMMA, regardless of the usage
of Chain-of-Thought (CoT) prompting (Wei et al., 2022).
On the balanced subset of EMMA, the best-performing
model, Gemini 2.0 Flash Thinking, scores only 48.00%,
which is 10.75% higher than the best non-reasoning MLLM,
Qwen2-VL (Wang et al., 2024b), but still trails human ex-
perts by 29.75%. These results suggest a limitation of cur-
rent MLLMs in performing in-depth multimodal reasoning.

Test-time compute scaling methods with textual CoTs
are insufficient: We explore test-time compute scaling of
SoTA MLLMs with different methods (e.g., majority voting,
best-of-N, and tournament) up to 16 times, yet they still fail
to address the multimodal reasoning challenges in EMMA.
Simply increasing the number of candidate responses with
textual CoTs does little to compensate for the models’ inabil-
ity to produce valid visual reasoning steps, particularly for
tasks requiring fine-grained spatial understanding or multi-
step reasoning. In addition, current MLLMs and specialized
reward models struggle with complex multimodal reasoning
themselves, which can make their reward signals unreliable
and limit the utility of test-time compute scaling.

Visual reasoning is the bottleneck: Through error anal-
ysis, we find that SoTA MLLMs frequently struggle with
tasks requiring precise spatial simulations, multi-hop visual
reasoning, and integration of visual and textual information.
These shortcomings are particularly pronounced in prob-
lems where visual aids offer a simpler path to the solution.
Further, textual CoT negatively impacts model performance
on visual-reasoning-heavy tasks, highlighting the need for
new paradigms to improve visual reasoning.

These insights suggest that the performance gap between
text-based and multimodal reasoning arises from MLLMs’
limited ability to perform fine-grained visual reasoning.
EMMA highlights the need for new architectures and train-
ing paradigms that can better integrate and reason over di-
verse modalities, enabling models to leverage both visual
and linguistic information more effectively.

2. Related Work
Multimodal Large Language Models Recent years have
witnessed rapid progress in MLLM development. Building
upon early techniques in vision-language modeling (Tan &
Bansal, 2019; Lu et al., 2019; Chen et al., 2020; Radford
et al., 2021; Li et al., 2020; Zhang et al., 2021; Yu et al.,
2022), modern MLLMs (Li et al., 2024a; Lu et al., 2024a;
Team, c; Liu et al., 2024a; Yang et al., 2024a; Achiam et al.,
2023; Team, a; Li et al., 2023) leverage the success of LLMs
and various visual instruction tuning techniques (Liu et al.,
2024b;a; Zhu et al., 2023), achieving impressive perfor-
mance in many multimodal tasks.

LLM and MLLM Reasoning State-of-the-art models (Ope-
nAI, b; Qwen, 2024; Zhao et al., 2024; DeepSeek, 2024)
now achieve strong performance on tasks such as formal
logic reasoning (Hendrycks et al., 2020b), graduate-level
academic question answering (Rein et al., 2023), and com-
petitive programming (codeforces). These advancements in
text-based reasoning have spurred growing interest in multi-
modal reasoning, exemplified by visual CoT models (Shao
et al., 2024; Zhang et al., 2023) and visual CoT prompting
techniques (Zhou et al., 2024). Although visual CoT prompt-
ing techniques have shown promise, their focus is primarily
on enhancing perception through methods like cropping im-
ages to simulate attention. Hence, these approaches offer
limited support for tasks that demand more advanced visual
reasoning skills, such as visual manipulation or imagination.

Multimodal Reasoning Benchmarks Most existing rea-
soning benchmarks are text-based (e.g., (Cobbe et al., 2021;
Hendrycks et al., 2021; Srivastava et al., 2022; Jin et al.,
2023; Suzgun et al., 2022)), but the rising demand for multi-
modal evaluation has led to the development of benchmarks
across diverse domains (e.g., (Lu et al., 2024b; Wang et al.,
2024a; Li et al., 2024b; Yang et al., 2024c; Ying et al., 2024;
Chen et al., 2024a; Li et al., 2024c; Cheng et al., 2024)). Re-
cent efforts focus on spatial and relational reasoning (Akter
et al., 2024; Ramakrishnan et al., 2024) and college-level
reasoning requiring domain knowledge (Yue et al., 2024a).
However, many multimodal benchmarks contain redundant
text-image information, allowing models to bypass visual
reasoning (Zhang et al., 2024a). To address this, MMMU-
Pro (Yue et al., 2024b) incorporates a filtering pipeline to
enhance multimodal evaluation. In this work, we further
refine such approaches by curating a benchmark that fo-
cuses explicitly on tasks requiring strong visual reasoning.
Unlike existing benchmarks, our test suite emphasizes mul-
timodal reasoning challenges that are difficult to solve with
text-based reasoning and a single visual pass.
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Table 1: Key statistics of EMMA.
Statistic Number
Total questions 2,788
- Multiple-choice questions 2,002 (72%)
- Free-form questions 786 (28%)
- Questions with answers 2,788 (100%)
- Questions newly added 1,796 (64%)
Image in the question 2,599 (93%)
Image in the option(s) 195 (7%)
Problems with multiple images 298 (10%)

3. The EMMA Benchmark
3.1. Overview of EMMA

We introduce EMMA, an Enhanced MultiModal ReAsoning
Benchmark. EMMA is composed of 2,788 problems, of
which 1,796 are newly constructed, across four domains:
math, physics, chemistry, and coding. All questions in
EMMA are in either multiple-choice or open-ended formats
with short, easily checkable ground truth answers. The
key statistics of EMMA are summarized in Table 1, and its
composition is presented in Figure 3.

To provide fine-grained insights into how MLLMs might fail
in multimodal reasoning, we assign labels to each problem
in our benchmark. These labels are either created by domain
experts or assigned by GPT-4o and subsequently verified by
experts. As shown in Figure 2, questions in EMMA assess
a wide array of multimodal reasoning skills. For example,
the pattern inference problem in math challenges models to
identify and generalize visual patterns; the visual decom-
position simulation problem in physics requires graphically
decomposing forces to determine resultant effects; the re-
action simulation problem in chemistry demands precise
interpretation and simulation of electron movement; the 3D
visualization problem in coding1 evaluates spatial imagina-
tion by requiring models to associate function calls with
their corresponding 3D representations.

3.2. Data Curation

As discussed in Section 2, most existing multimodal reason-
ing benchmarks likely contain many problems that primarily
measure text-based reasoning. To address this, we employ a
two-step approach to constructing EMMA (Figure 4). First,
we source problems from existing multimodal reasoning
benchmarks and apply rigorous filtering to exclude those
solvable through text-based reasoning and a single visual
pass. Next, we categorize the remaining problems for each
subject into fine-grained multimodal reasoning skill tax-
onomies and manually collect more samples aligned with
these taxonomies to expand our dataset.

1Different from the other subjects in EMMA, coding questions
can be assigned more than one category since our visualizations
tend to employ multiple advanced techniques.

Graph Reasoning 0.32%

Visual Decomposition 2%

Field Simulation 1%

Multi-Hop Rea 1%

Graph Rea 1%

Path Tracing
0.47%

Figure 3: Composition of EMMA.

Filtering Mechanisms To filter for questions that require
multimodal reasoning, Yue et al. (2024b) provide only the
text from multimodal reasoning questions to LLMs and
discard questions that can be correctly answered this way.
Nonetheless, some of the remaining questions may still not
truly measure visual reasoning, as a single pass of visual per-
ception and language understanding may suffice to answer
them. We extend this one step further (illustrated in Fig-
ure 4): we first caption the images in multimodal reasoning
questions using GPT-4o and then pass both the original text
and our generated captions to MLLMs, filtering out ques-
tions that can be answered under this condition. For each
candidate question, we query Llama-3-70B-Instruct (Dubey
et al., 2024), GPT-4o, and Qwen2-72B-Instruct (Yang et al.,
2024a) ten times; if any model answers a question correctly
at least five times, we discard it, following the 5/10 threshold
in MMMU (Yue et al., 2024a). This more stringent filtering
ensures that the remaining questions require models to en-
gage deeply with visual information. We introduce the data
collection process for each project in detail below.

Math We first apply the filtering pipeline to Math-
Vision (Wang et al., 2024a) and MathVista (Lu et al., 2024b),
and then manually inspect the remaining set and craft a tax-
onomy consisting of five categories with a strong focus on
multimodal reasoning, including 3D Simulation, 2D Trans-
formation, Path Tracing, Multi-hop Object Counting, and
Pattern Inference. Next, we use GPT-4o to categorize all
questions based on this taxonomy, followed by a manual ver-
ification. In addition, we supplement our benchmark with
additional pattern inference questions from RAVEN (Zhang
et al., 2019), which inherently require multi-hop visual rea-
soning. This process results in a total of 892 math questions.

Physics We apply the filtering pipeline to multimodal
physics problems in OlympiadBench (He et al., 2024),
EXAMS-V (Das et al., 2024), and MMMU (Yue et al.,
2024a), which yields only 80 problems. In addition, we
manually collect more problems online from Learn AP
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Filtered out

Question:	Is	this	an	odd	function?

Caption:	The	function	is	y	=	0.5x	…

[Question	Only]	

[Question +	Caption]	

Retained

Manually 
collected 

Curated from 
scratchFiltered

out

Sourced from existing benchmarks

Further enriched manually

Image

Question:	Min	grey	moves	to	free	black	car?

Caption:	A	grid-based	puzzle	features	cars	…

[Question	Only]

[Question +	Caption]

Image

Figure 4: Data curation process for EMMA (Sec. 3.2).

Physics (Physics) and Khan Academy (Academy) and filter
them, resulting in 76 more new problems. Through manual
labeling, we verify that these problems span a wide range
of topics, including 3D Field Simulation, Graph Reasoning,
and Path Tracing. We note that despite our best efforts, mul-
timodal physics problems meeting our criteria are difficult
to source and construct.

Chemistry After filtering the chemistry portion of
MMMU (Yue et al., 2024a) and EXAMS-V (Das et al.,
2024), we are only left with 42 questions. Since these ques-
tions mostly involve reasoning about molecular formulas,
we construct more problems on organic chemistry. We ana-
lyze the chemical properties of molecules in SMiCRM (Le-
ung et al., 2024) with RDKit (lan, 2013), a computational
chemistry toolkit, and develop 904 novel questions over
chemical structure recognition and bond counting. In ad-
dition, we draw from the collection of chemical reactions
in Li (2009) and collaborate with PhD students in chemistry
to annotate reaction outcomes, contributing another 210
questions on reaction simulation.

Coding We design four coding tasks to assess MLLMs in
real-world visualization creation scenarios. For instance,
to evaluate the ability to reproduce a visualization, we con-
struct “Vis Choose Code” questions where models select
the code that generates a target chart. Since previous visual-
ization design benchmarks all use MLLM judges, we do not
source from them, but manually construct all coding ques-
tions from scratch. We first identify “seed visualizations” us-
ing advanced visualization techniques from CharXiv (Wang
et al., 2024c), the matplotlib example gallery (Team, b) fol-
lowing (Wu et al., 2024), and our prior experience. Next, we
generate four variations for each seed visualization to form
a “set” by introducing design variations (e.g., changes in

spine configuration, line style, and axis scaling) either man-
ually or through prompting MLLMs, with post-hoc manual
verification. We provide these design variations as labels
for each problem. Finally, we construct different types of
questions using these visualization sets. Our curation results
in 564 multiple-choice coding questions.

3.3. Comparison with Existing Benchmarks

Our enhanced data filtering pipeline ensures that EMMA
focuses on questions requiring in-depth multimodal reason-
ing, i.e., those that cannot be solved solely using text-based
reasoning or a single visual pass. While MMMU-Pro (Yue
et al., 2024b) removes questions solvable through their text
portion alone, it may still retain problems for which vi-
sual reasoning is inessential. In contrast, EMMA applies a
stricter filtering criterion, discarding questions solvable with
text and image captions. For instance, the left example in
Figure 4 (adapted from MathVista) asks whether a depicted
function is even or odd. Although unsolvable without the
image, the problem can be shortcut by extracting the func-
tion’s text expression embedded in the image. In this case,
the role of vision is more aligned with visual perception
than with visual reasoning. By eliminating such problems,
which MMMU-Pro’s approach would retain, EMMA better
evaluates the multimodal reasoning capabilities of models.

We also contribute 1,796 novel multimodal reasoning prob-
lems across physics, chemistry, and coding. After filtering
physics and chemistry problems from all relevant bench-
marks to our knowledge (e.g., (He et al., 2024; Das et al.,
2024; Yue et al., 2024a)), only 100 remain. We expand
this to 1,332 in EMMA by manually sourcing additional
data and hiring domain experts. For coding, EMMA is
the first benchmark to systematically evaluate data visual-
ization skills using a multiple-choice format, enabling a
standardized assessment and obviating the need for MLLMs
as judges. Moreover, through meticulous manual labeling
or verification, we provide fine-grained labels for each ques-
tion (Figure 2), categorizing them based on the specific
skills they assess. These labels enable a detailed analysis of
MLLM performance, as we demonstrate in Section 5.

4. Experiments
4.1. Evaluation Settings

Data Split To create a more balanced subset of EMMA, we
randomly sample 400 questions (100 per subject) from the
benchmark, hereafter referred to as EMMA-mini. Within
each subject, we aim for equal representation across cate-
gories to the extent possible.

Human Performance To estimate expert-level performance
on EMMA-mini, we hire two human experts per subject and
report their average score. This score serves as a baseline
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Table 2: Evaluation results of state-of-the-art MLLMs, which are outperformed by human experts with wide margins. The highest
and second-highest scores are highlighted in green and blue , respectively. ↑ indicates CoT improvements, while ↓ denotes reductions.

CoT
EMMA EMMA-mini

Math Phys. Chem. Coding Overall Math Phys. Chem. Coding Overall
(892) (156) (1,176) (564) (2,788) (100) (100) (100) (100) (400)

Random choice − 14.01 25.64 16.50 25.71 18.08 13.00 23.00 27.00 28.00 22.75
Human Expert − − − − − − 75.00 64.50 86.00 85.50 77.75

Claude 3.5 Sonnet ✗ 25.34 33.97 40.90 38.65 35.08 23.00 34.00 44.00 35.00 34.00
Gemini 2.0 Flash ✗ 23.88 38.46 36.31 42.02 33.61 20.00 40.00 36.00 41.00 34.25
GPT-4o ✗ 27.24 38.46 31.89 40.07 32.42 30.00 38.00 33.00 40.00 35.25
Qwen2-VL-72B-Instruct ✗ 33.07 42.31 32.06 34.57 33.46 38.00 40.00 34.00 37.00 37.25
LLaVA-Onevision-72B ✗ 27.69 35.90 25.26 28.72 27.33 25.00 32.00 24.00 28.00 27.25
InternVL2-Llama3-76B ✗ 25.11 22.44 24.06 27.84 25.07 31.00 22.00 21.00 28.00 25.50
InternVL2.5-78B ✗ 31.39 38.46 35.20 31.91 33.50 30.00 40.00 38.00 33.00 35.25
Claude 3.5 Sonnet ✓ 29.37 41.03 41.07 40.60 37.23 (↑ 2.15) 30.00 38.00 41.00 39.00 37.00 (↑ 3.00)
Gemini 2.0 Flash ✓ 25.90 38.46 24.66 40.96 29.12 (↓ 4.48) 24.00 41.00 36.00 44.00 36.25 (↑ 2.00)
GPT-4o ✓ 25.56 43.59 33.67 39.01 32.71 (↑ 0.29) 27.00 44.00 35.00 38.00 36.00 (↑ 0.75)
Qwen2-VL-72B-Instruct ✓ 27.69 34.62 24.57 29.43 27.12 (↓ 6.35) 35.00 34.00 32.00 23.00 31.00 (↓ 6.25)
LLaVA-Onevision-72B ✓ 22.42 15.38 22.70 30.67 23.82 (↓ 3.52) 23.00 26.00 23.00 29.00 25.25 (↓ 2.00)
InternVL2-Llama3-76B ✓ 22.20 32.05 19.73 30.32 23.35 (↓ 1.72) 27.00 33.00 21.00 32.00 28.25 (↑ 2.75)
InternVL2.5-78B ✓ 25.56 39.74 27.47 25.18 27.08 (↓ 6.42) 31.00 36.00 24.00 19.00 27.50 (↓ 7.75)
Gemini 2.0 Flash Thinking-1219 − 31.61 56.41 37.93 43.44 38.06 35.00 57.00 41.00 41.00 43.50
Gemini 2.0 Flash Thinking-0121 − 37.11 60.26 41.58 48.05 42.50 34.00 63.00 47.00 48.00 48.00
QVQ-72B-Preview − − − − − − 34.00 39.00 24.00 31.00 32.00
o1 − − − − − − 41.00 49.00 40.00 53.00 45.75

contextualizing model performance.

Models We evaluate ten state-of-the-art MLLMs under
the zero-shot setting, including five open-source mod-
els (Qwen2-VL (72B) (Wang et al., 2024b), QVQ-72B-
Preview (Alibaba), LLaVA-Onevision (72B) (Li et al.,
2024a), InternVL2 (76B) (Team, c), and InternVL2.5 (78B)
(Chen et al., 2024b)) and five proprietary ones (GPT-
4o (OpenAI, a), Claude 3.5 Sonnet (Anthropic), Gem-
ini 2.0 Flash (Deepmind, a), Gemini 2.0 Flash Thinking
(Deepmind, b), and o1 (OpenAI, b)). Due to rate limits, we
report o1 and QVQ performance on EMMA-mini only. All
other models are evaluated on the entire benchmark.

Prompting Strategies For all models except o1, QVQ, and
Gemini 2.0 Flash Thinking, we test two prompting strate-
gies: (1) Direct prompting, which instructs models to out-
put the answers without reasoning steps; and (2) Chain-
of-Thought (CoT) prompting (Wei et al., 2022), where we
prompt models to “think step-by-step”.

4.2. Main Results

Are MLLMs Multimodal Reasoners? Table 2 demon-
strates that all models perform suboptimally across the
subjects in EMMA. On EMMA-mini, the best-performing
model, Gemini 2.0 Flash Thinking-0121, achieves an ac-
curacy of 48.00%, trailing human experts by 29.75%. At
the lower end, LLaVA-OneVision-72B scores only 25.25%,
barely surpassing random choice by 2.5%. Drilling down
into subjects, the best models show the smallest gap with hu-
man performance on physics, with Gemini 2.0 Flash Think-
ing scoring 1.5% lower than human experts. This smaller
gap may reflect the inherent difficulty of physics problems,

leading human experts to achieve a score of 64.5%. For
other subjects, however, the best-performing models lag
significantly behind human experts, with gaps of 34%,
39%, and 32.5% in math, chemistry, and coding, respec-
tively. These results underscore the limitations of current
MLLMs in addressing complex multimodal reasoning tasks.

On the full EMMA benchmark, closed-source models gen-
erally outperform open-source ones, particularly with CoT
prompting. Across all subjects, Qwen2-VL-72B-Instruct is
the only open-source model to place in the top two for any
subject. Gemini 2.0 Flash Thinking-0121 scores best on ev-
ery subject (note that o1 is not evaluated on the full set due
to rate limits). In particular, it performs exceptionally well
in physics, leading by 16.67% over the second-best model
(excluding Gemini 2.0 Flash Thinking-1219), GPT-4o. Cod-
ing is another area where it excels, leading the second-best
model (excluding Gemini 2.0 Flash Thinking-1219), Gemini
2.0 Flash, by 6.03%. Notably, on EMMA-mini, o1 outper-
forms Gemini 2.0 Flash Thinking-0121 by 5% in coding,
suggesting even stronger coding capabilities. In sum, these
results highlight the advantages of optimizing models for
reasoning by training them to generate thought processes
over traditional MLLM paradigms.

Does CoT help? We observe divergent tendencies in the
effectiveness of CoT prompting across closed- and open-
source models. We exclude o1, QVQ, and Gemini 2.0 Flash
Thinking from this analysis, as they inherently generate CoT
as part of their responses. Under direct prompting, accura-
cies achieved by the best open-source models are well within
2% of Claude 3.5 Sonnet (the best closed-source model).
However, the gap widens significantly under CoT prompt-
ing, with the best open-source model underperforming by al-
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Table 3: Results of different test-time scaling strategies on EMMA-mini, including (1) majority voting, (2) best-of-N, (3) tournament-
style best-of-N. Pass@N accuracies are included as upper bounds of the scaling performance.

Model Method Reward Model N=1 N=2 N=4 N=8 N=16

GPT-4o

Majority Voting −

36.00

− 37.25 36.25 38.25
BoN GPT-4o (Self) 35.50 35.75 36.75 −
BoN Gemini Flash Thinking 40.75 36.25 36.5 −
Tournament Gemini Flash Thinking 40.75 39.25 41.25 35.25
Pass@N − 45.00 53.25 65.75 74.00

Gemini 2.0 Flash

Majority Voting −

36.25

− 37.75 39.25 39.75
BoN Gemini Flash (Self) 38.25 36.50 36.00 −
BoN Gemini Flash Thinking 36.75 37.00 40.25 −
Tournament Gemini Flash Thinking 36.75 37.25 40.75 38.75
Pass@N − 45.25 56.25 64.50 75.00

Gemini 2.0 Flash Thinking
Majority Voting −

43.50
− 48.00 49.00 50.75

Tournament Gemini Flash Thinking (Self) 45.50 47.25 47.25 48.00
Pass@N − 53.75 64.50 71.50 81.50

o1 − − 45.75 − − − −

most 10%. Comparing each model’s performance with and
without CoT on EMMA and EMMA-mini, CoT prompt-
ing generally improves performance for closed-source
models and reduces performance for open-source mod-
els. Notably, Qwen2-VL-72B-Instruct and InternVL2.5-
78B, the top two open-source models overall under direct
prompting, suffer decreases of over 6% in accuracies on
both EMMA and EMMA-mini. While some tasks might
not benefit significantly from textual CoT, we hypothesize
that this divergence arises because open-source models fail
to fully leverage the potential of language to assist in mul-
timodal reasoning tasks where language could be helpful.
We elaborate on this hypothesis in detail in Section 5.

4.3. Results on Test-Time Compute Scaling

We test three test-time compute scaling methods (Snell et al.,
2024; Yang et al., 2024b; OpenAI, b) on EMMA-mini: ma-
jority voting, Best-of-N selection, and Tournament selection.
Both Best-of-N and Tournament selection require a reward
model to select the best response among multiple candidates.
We use CoT prompting to generate the candidate responses,
so that the reward model has enough context to score the re-
sponses. For each test-time scaling method, we experiment
with N = 1, 2, 4, 8, and 16, as long as the context length of
the reward model allows.

Majority Voting: Majority voting selects the most frequent
response among batches of N candidate responses, breaking
ties by randomly choosing from the most frequent answers.

Best-of-N: Best-of-N selection (Cobbe et al., 2021; Light-
man et al., 2023) chooses the highest-scoring response (Gu
et al., 2024) according to a reward model. We explore two
configurations: using the base model itself or a stronger
reasoning model (e.g., Gemini 2.0 Flash Thinking) as the
reward model.

Tournament Selection: In Tournament Selection (Son et al.,
2024; OpenAI, c), responses compete in matches, with win-
ners advancing through rounds until the final selection. We

use the best-performing reward model identified in the Best-
of-N experiments, which is Gemini 2.0 Flash Thinking.

Does test-time compute scaling help? Table 3 presents
results of test-time compute scaling methods on top of GPT-
4o, Gemini 2.0 Flash, and Gemini 2.0 Flash Thinking-1219.
Overall, test-time compute scaling improves model per-
formance, but it fails to close the gap to human expert
performance. The highest accuracy improvements are
5.25% for GPT-4o, 4.5% for Gemini 2.0 Flash, and 7.5% for
Gemini 2.0 Flash Thinking. Notably, without test-time scal-
ing (N=1), Gemini 2.0 Flash Thinking-1219’s accuracy is
2.25% lower than that of o1, but it overtakes o1 by 5% with
majority voting at N=16. Nonetheless, its best performance
still lags human performance by 27%.

We also observe distinct patterns in test-time compute scal-
ing performance across different models. While scaling
beyond N=8 for GPT-4o and Gemini 2.0 Flash leads to
performance degradation, Gemini 2.0 Flash Thinking con-
tinues to benefit incrementally from additional test-time
compute, at least up to N=16. In fact, stronger base models
also achieve higher Pass@N accuracy: Gemini 2.0 Flash
Thinking’s Pass@N consistently surpasses those of the other
two models by around 7%, suggesting that a stronger base
reasoner is more likely to cover the correct response when
given multiple attempts. In sum, these results suggest that
using a stronger model as the base model raises the upper
bound for test-time scaling.

Comparing scaling strategies for each model, we find that
GPT-4o and Gemini 2.0 Flash achieve their greatest im-
provements when Gemini 2.0 Flash Thinking is used as the
reward model. Additionally, tournament selection consis-
tently outperforms Best-of-N (BoN) selection. These results
suggest that using a stronger model as the reward model
enables weaker models to achieve better results, particularly
when the reward model can make fine-grained decisions
involving a couple candidate responses each time. This is
intuitive, as evaluating responses also requires reasoning.
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30.19%

52.83%

9.43%

7.55%

Perceptual Error
Visual Reasoning Error
Text Reasoning Error
Lack of Knowledge

Error Type

Figure 5: Distribution of error types made by o1 on the math
and coding portions of EMMA-mini. The majority of errors arise
in visual reasoning.

On the other hand, we find that self-reward modeling often
underperforms. Even using Gemini 2.0 Flash Thinking for
self-reward modeling yields performance consistently below
that of majority voting. We conjecture that self-reward mod-
eling may be less effective because the model’s evaluation
criteria may be disrupted by its own generation patterns,
making it less sensitive to differences in the reasoning of
the generated responses than an independent reward model.

5. Error Analysis
Error Distribution We present an analysis of the errors
made by o1 on the math and coding portions of EMMA-mini.
In total, o1 incorrectly answers 59 math questions and 47
coding questions. Figure 5 categorizes these errors into four
types. Perceptual errors, such as misinterpreting visual
information, account for 30.19% of all errors. Lack of
knowledge errors, including mistakes related to API usage,
contribute 7.55%. Visual reasoning errors, such as failures
to simulate 3D processes, constitute the largest category
at 52.83%. Finally, textual reasoning errors, including
calculation mistakes or logical missteps, represent 9.43%.
The predominance of visual reasoning errors underscores
the limitations of current models in addressing complex
visual reasoning tasks. Figure 6 illustrates a representative
case: while o1 correctly identifies that the problem calls for
the application of the Right-Hand Rule, it fails to simulate
where the thumb would point to when the right-hand fingers
are curled in the direction of the current. We provide more
error cases in Appendix D.

The Effects of Textual CoT Table 2 reveals a notable
discrepancy: while CoT prompting improves reasoning in
closed-source MLLMs, it tends to hurt performance in open-
source models. Although the cause remains unclear without
access to training data or methods, we analyze error rate per
skill category to propose a conjecture. Figure 7 compares
accuracy differences between CoT and Direct prompting for
six models on two math tasks: 2D Transformation and Multi-
Hop Object Counting. On 2D Transformation, all but one
model shows reduced performance with CoT; on Multi-Hop
Object Counting, while CoT generally helps closed-source

Question: A	long	bar	magnet	is	placed	above	a	
current	loop	oriented	as	shown.	In	which	direction	
will	the	North	pole	of	the	bar	magnet	feel	a	force	due	
to	the	current	loop?
a.	+x	 b. –x c.	+y d.	–y e.	The	bar	magnet	will	feel	
no	force	due	to	the	current	loop.

Human	Reasoning (Ground	Truth):
The	current	loop	will	produce	a	magnetic	field	B
according	to	the	Right-Hand	Rule	as	shown	below.

Then,	as	shown	on	the	left, B points	out	from	the	
middle	of	the	current loop	I,	directed	in	the	+x	
direction	at	the	location	where	the	bar	magnet	is

o1:	A current	loop	behaves	like	a	small	bar	magnet	
whose	magnetic-dipole	moment	points	according	to	
the	Right-Hand	Rule.		
• From	the	figure,	the	current	goes	around	the	loop	in	

such	a	way	that	if	you	curl	your	right-hand	fingers	in	
the	direction	of	the	current,	your	thumb	points	up

Physics: 3D Field Simulation 

Error	Analysis:	

located.	This	magnetic	field,	pointing	to	the	right,	will	have	the	effect	of	repelling	
the	North	pole	of	the	bar	magnet,	forcing	the	bar	magnet	to	the	right,	in	the	+x
direction.	The	correct	answer	is a.

(the	+	y direction).		Consequently,	the	loop	acts	like	a	magnet	whose	“north”	
side	is	on	top	(at	+	y).	 ……	Hence	the	force	on	the	north	pole	is	c.	+y	.	

The	error	occurred	because	of	limited	visual	spatial	imagination,	leading	to	
the	wrong	conclusion about the direction of the thumbwhen applying	the Right-
Hand	Rule.	Additionally,	the	3D	spatial	nature	of	the	magnetic	field	is	not	
properly	simulated,	leading	to	a	faulty	reasoning	of	the	"north"	pole's	position.

Figure 6: A representative example of visual reasoning error
from o1. o1 misapplies the Right-Hand Rule due to limited visual
spatial simulation skills.

models, it makes all but one open-source model perform
worse. In fact, we notice that CoT prompting introduces
more hallucinations for open-source models.

2D Transformation questions primarily test for visual sim-
ulation and spatial imagination, which are difficult to ver-
balize. The question in Figure 8, for example, calls for
spatial imagination beyond the power of language. In con-
trast, Multi-Hop Object Counting can leverage language to
describe the relative positions of objects. Hence, we con-
jecture that visual-centric tasks, such as 2D Transformation,
are poorly suited for textual CoT, whereas tasks that benefit
from text-based reasoning, such as Multi-Hop Object Count-
ing, allow models to achieve greater performance gains with
textual CoT, as evidenced by the closed-source models.

6. Conclusion
We contribute EMMA, an Enhanced MultiModal reAson-
ing benchmark. EMMA features multimodal questions
that cannot be solved by independently reasoning within
each modality. Evaluation of ten MLLMs reveals a sub-
stantial performance gap compared to human experts on
EMMA, with techniques such as Chain-of-Thought prompt-
ing and test-time compute scaling offering only marginal
gains. EMMA highlights the need for new architectures
and training paradigms that can better integrate and rea-
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Figure 7: Performance differences w/ and w/o CoT for two
math tasks: 2D Transformation and Multi-Hop Object Counting.

Question: Rebecca	folds	a	square	piece	of	paper	twice.	Then	she	cuts	off	one	
corner	as	you	can	see	in	the	diagram.	Then	she	unfolds	the	paper.	What	could	the	
paper	look	like	now?

Math: 2D Transformation

GPT-4o	with	CoT	:	To	solve	this	problem,	we	need	to	carefully	analyze	the	folding
and	cutting	process	and	determine	the	resulting	pattern	when	the	paper	is
unfolded. ✓ Step	1:	Understand	the	folding	……	✓ Step	2:	Understand	the	cutting	
process
1. Rebecca	cuts	off	one	corner	of	the	folded	paper.	✓

• Since	the	paper	is	folded	into	a	smaller	square,	this	\“corner\”	is	actually	a	
corner	of	the	folded	square,	which	corresponds	to	multiple	corners	of	
the	original	square.✘

……	
Final	Answer:\boxed{E}

Human	Reasoning (Ground	Truth):

Direct GPT-4o	: B.

Error Analysis: After	folding	into	1/4,	the	“corners”	of	the	folded	paper	are	not	
the	original	corners. The	solution	fails	to	properly	simulate	the	unfolding	process.

Figure 8: An example where textual CoT is unhelpful for
solving the problem. While GPT-4o correctly solves the problem
without CoT, it answers incorrectly with CoT. The thought process
demonstrates a superficial association with spatial manipulations
and relations rather than genuine visual reasoning.

son over diverse modalities. Like any benchmark, EMMA
has its limitations, which can be improved in future works.
Future iterations could also enrich the currently underrepre-
sented physics section or expand the chemistry section to
incorporate a broader range of chemistry topics. Nonethe-
less, EMMA sets a new standard for assessing MLLMs on
multimodal reasoning.

Impact Statement
This work addresses the challenge of evaluating multimodal
reasoning in AI systems by introducing EMMA, a bench-
mark designed to assess models’ ability to integrate textual
and visual information. By curating a diverse set of difficult
problems, EMMA provides a rigorous evaluation framework
for understanding model performance in multimodal tasks.

The societal implications of this work are significant. Im-
proved multimodal reasoning could enhance AI applications
in science, engineering, and education, enabling more effec-
tive problem-solving and decision-making. However, our
findings highlight persistent gaps in current models’ abil-
ity to perform fine-grained visual reasoning, limiting their
reliability in high-stakes applications.

While our curation process effectively filters out shallow
multimodal reasoning, manual selection may introduce unin-
tended biases in question formulation and domain represen-
tation. Additionally, as AI systems improve at multimodal
reasoning, there is potential for misuse in generating decep-
tive or misleading visual content, raising ethical concerns.
Addressing these challenges requires continued research
into more diverse and automated benchmark construction
methods, as well as responsible AI deployment.

By exposing critical weaknesses in state-of-the-art models,
EMMA sets a new standard for evaluating multimodal rea-
soning, driving future research toward more advanced AI
systems.
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A. Overview of the Appendix
This Appendix is organized as follows:

• Section B contains details about the composition of
EMMA, the data curation process, and comparison
with existing benchmarks;

• Section C contains experimental details, including the
prompts used, models tested, hyperparameter settings,
and the breakdown results on different categories;

• Section D contains additional case studies for each
subject.

B. EMMA Details
B.1. Composition of EMMA

EMMA comprises 2,788 questions across four subjects:
math, physics, chemistry, and coding. We now provide a
detailed breakdown of EMMA by subject:

Math The math portion of EMMA consists of 892 ques-
tions, of which 562 are multiple-choice questions and 330
are free-form questions. These questions can be categorized
into five areas: 2D Transformation (266 questions); 3D
Spatial Simulation (275 questions); Path Tracing/Change
of View simulation (127 questions); Multi-Hop Visual
Object Counting (124 questions); and Pattern Inference
(100 questions).

Tasks in the 2D Transformation category often involve
operations such as rotating, translating, or flipping shapes.
Examples are provided in Figure 9. Humans typically solve
these problems by leveraging their ability to “see” and men-
tally manipulate objects, simulating spatial transformations
to arrive at a solution. During data filtering, we observe that
models also rely heavily on visual information to solve these
problems, as they often fail when provided only with textual
descriptions of the accompanying images. Similarly, prob-
lems in the 3D Spatial Simulation category require a simi-
lar visual reasoning approach, but with the key difference
that the simulation must be performed in three-dimensional
space. The Path Tracing/Change of View Simulation cat-
egory involves solving problems akin to maze navigation,
where the task requires tracing a path from a starting point to
an endpoint while considering changes in perspective. We
present two typical examples in Figure 10. Problems in the
Multi-Hop Visual Object Counting category are sampled
from Math-Vista (Lu et al., 2024b), with some examples
shown in Figure 11. Unlike straightforward object counting,
which might ask, “How many objects are present?”, these
questions require models to identify objects based on their
attributes and perform subtraction operations grounded in
visual properties. The Pattern Inference category involves

identifying how shapes or colors evolve across a series of
diagrams and predicting the next pattern in the sequence.
Solving such problems draws on the ability to recognize
visual regularities, which are challenging to describe accu-
rately using text alone, necessitating strong visual reasoning.
Typical examples are provided in Figure 12.

Rotation

Image:

Question: Which of the 
rectangles A to E can be 
covered by the pattern on the 
right-hand side in such a way 
that the result is a totally 
black rectangle? 

Translation

Image:

Question: Which of the 
following pictures can you 
NOT do with all the pieces 
beside? 

Flip

Image:

Question: Mr Hofer has drawn 
a picture of flowers on the inside 
of a display window (large 
picture). What do these flowers 
look like when you look at the 
picture from the outside? 

Path Tracing

Image:

Question: The two-sided mirrors reflect the 
laser beams as shown in the small picture: 
<image1> . At which letter does the laser 
beam leave the picture: <image2> ?

Change of view

Image:

Question: In how many places in the 
picture are two children holding each other 
with their left hands?

Figure 9: Three main types of questions belonging to the 2D
Transformation category in math: Rotation, Translation, and Flip-
ping.

Rotation

Image:

Question: Which of the 
rectangles A to E can be 
covered by the pattern on the 
right-hand side in such a way 
that the result is a totally 
black rectangle? 

Translation

Image:

Question: Which of the 
following pictures can you 
NOT do with all the pieces 
beside? 

Flip

Image:

Question: Mr Hofer has drawn 
a picture of flowers on the inside 
of a display window (large 
picture). What do these flowers 
look like when you look at the 
picture from the outside? 

Path Tracing

Image:

Question: The two-sided mirrors reflect the 
laser beams as shown in the small picture: 
<image1> . At which letter does the laser 
beam leave the picture: <image2> ?

Change of View Simulation

Image:

Question: In how many places in the 
picture are two children holding each other 
with their left hands?

Figure 10: Two typical examples of the Path Tracing / Change of
View Simulation category in math.

Question: Subtract all large rubber 
spheres. Subtract all big shiny cylinders. 
How many objects are left?
 

Question: Subtract all red things. Subtract 
all tiny matte balls. How many objects 
are left?

Question: Subtract all brown blocks. 
Subtract all large blue rubber things. How 
many objects are left?

Question: Subtract all rubber balls. 
Subtract all yellow shiny things. How 
many objects are left?

Figure 11: Four typical problems from the Multi-Hop Visual
Object Counting category in math.

Physics The physics portion of EMMA includes 156 ques-
tions divided into five categories: 3D Field Simulation (37
questions), Graph Reasoning (26 questions), Multi-Hop
Visual Reasoning (33 questions), Path Tracing (13 ques-
tions), and Visual Decomposition Simulation (47 ques-
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Source: Math-Vista

Image:

Question: Choose the answer for the 
missing picture.

Source: RAVEN

Image:

Question: Choose the answer for the 
missing picture.

Figure 12: Questions in the Pattern Inference category for math
are sourced from two datasets: Math-Vista (Lu et al., 2024b) and
RAVEN (Zhang et al., 2019). Two examples from these sources
are presented for illustration.

tions). All physics questions in EMMA are multiple-choice
questions.

The Visual Decomposition Simulation category (47 ques-
tions) is often related to topics in physics such as Dynamics,
Circular Motion, & Gravitation. It typically involves the
analysis of forces acting on static or dynamic objects, which
requires visual decomposition of forces and visual simula-
tion of current and future states. The 3D Field Simulation
category (37 questions) addresses topics like Electric Force,
Field, and Potential. These tasks emphasize visual simula-
tions of properties and phenomena in three-dimensional elec-
tric and magnetic fields. The Graph Reasoning category
(26 questions) involves interpreting and reasoning about
physics-related graphs, such as velocity-time (v-t) graphs,
displacement-time (s-t) graphs, and trajectory graphs. The
Multi-Hop Visual Reasoning category (33 questions) is
a mixed category, which includes some circuit analysis di-
agrams, as well as various types of problems that require
multi-hop thinking. In the Path Tracing category (13 ques-
tions), most problems involve light refraction. These tasks
require analyzing the paths of particles by tracing their tra-
jectories based on the perspectives depicted in the images.

Chemistry The chemistry portion of EMMA includes
1,176 questions. Only 20 of them come from existing bench-
marks, the vast majority of 1,156 are created by us. These
questions can be categorized into five areas: Knowledge-
based Counting (456 questions); Graph Reasoning (9
questions); Structure Recognition (474 questions); Reac-
tion Simulation (132 questions); and Reaction Simulation
Pro (105 questions; Based on the test Reaction Simulation
skill, the requirements for visual reasoning are more profes-
sional, where all options in multiple-choice questions are
images). Among the chemistry questions, only the answer
corresponding to the category Knowledge-based Counting
is free-form, and all the remaining questions are multiple-
choice.

EMMA prioritizes chemistry problems that require rich
multimodal reasoning over simple fact recall or direct ap-
plications. To fill the gaps in current datasets, we manually
developed a new test suite concentrating on organic chem-

istry because we found that this type of problem makes
up the majority of the remaining data set filtered. In these
newly developed sections, we focus on “arrow-pushing” di-
agrams, a common representation used to illustrate electron
flow in mechanistic steps. The dataset includes structural
molecular identifiers of molecular images in chemical reac-
tion mechanisms. The questions are categorized into three
types in increasing reasoning difficulty: Knowledge-based
Counting, Structure Recognition, and Reaction Simula-
tion.

The Knowledge-based Counting category (456 questions)
involves counting the number of chemical bonds of a chem-
ical structure. The task requires domain-specific knowledge
and multiple inference steps to accurately count different
bonds. Structure Recognition (474 questions) presents
a more difficult task. It requires correctly identifying the
number and type of atoms and chemical bonds, recogniz-
ing the molecular structure, and deriving the corresponding
chemical expression or SMILES expression. Notably, each
molecule in the diagram corresponds to a unique SMILES
expression, encapsulating both compositional and structural
information.

Reaction Simulation (132 questions) is the task requiring
the most advanced visual reasoning. It involves inferring the
post-reaction SMILES/Chemical expression based on the
molecular composition and structural information available
before the reaction, guided by the direction of electron flow
indicated by arrows. Due to its complexity and the poor per-
formance of models on the simpler open-ended tasks, this
task is presented in the form of multiple-choice questions.
Reaction Simulation Pro (105 questions) assess reaction
simulation skills and visual reasoning with a higher level
of expertise. Each question presents options in the form
of images, requiring participants to not only simulate reac-
tions but also engage in complex multi-step reasoning by
comparing different choices. Graph Reasoning (9 ques-
tions) involves graph-based reasoning problems related to
chemistry knowledge, such as reaction rate changes.

Coding Implementing user interfaces (UIs) is a fundamen-
tal task in software engineering. In this work, we focus on a
critical aspect of UI development: data visualization. Creat-
ing data visualizations not only requires working knowledge
of the charting toolkits, but also demands reasoning over
how various visual elements coordinate to achieve the de-
sired results. To stress-test MLLMs’ visualization skills, we
design four tasks: Visualization Choose Code (188 ques-
tions; given an image of a visualization, choosing which
visualization program generates it), Code Choose Visu-
alization (188 questions; given a visualization program,
choosing which image it generates), Modify without the
Original Image (94 questions; given a target visualiza-
tion image and a visualization program that does not yet
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generate the target image, choosing what change should
be applied to the program to create the target image), and
Modify with the Original Image (94 questions; given a
target visualization image, a visualization program that does
not yet generate the target image, and the image that the
current program generates, choosing what change should
be applied to the program to create the target image). The
four examples in Figure 15 illustrate each task. All coding
questions in EMMA are multiple-choice questions created
by us from scratch. Notably, these tasks simulate various
real-world applications of MLLMs, requiring skills essen-
tial for replicating a target visualization or redesigning an
existing one. To ensure familiarity, all visualization code in
our benchmark is generated in Python using matplotlib or
seaborn.

Further, similar to the other subjects, we provide fine-
grained categorizations for each coding question based on
the skills it measures. Since visualizations involve multi-
ple design choices and each problem includes at least four
visualizations (or visualization programs), each question
may be assigned to multiple categories. On average, each
question is associated with 2.11 categories. Through man-
ual coding, we identify a total of ten categories: 3D (108
questions; reasoning about visualizations in 3D), Color &
Texture (156 questions; reasoning about the colors and tex-
tures of marks), Data Reasoning (108 questions; reasoning
about the data in visualizations); Advanced Chart Type
(276 questions; involving advanced chart types, such as fish-
bone diagrams), Alignment, Orientation, & Position (180
questions; reasoning about how visual elements should be
arranged), Gridline (60 questions; reasoning about the use
of gridlines), Polar Coordinates (48 questions; reasoning
about charts in polar coordinates), Axis & Scale (108 ques-
tions; reasoning about the use of axes and scales), Legend
(96 questions; reasoning about the appearance, content, and
position of legends), Marker & Line (48 questions; reason-
ing about the style of markers and lines). Section D contains
sample questions for some of the categories.

B.2. Additional Data Curation Details

We now provide additional details on data curation for chem-
istry and coding.

Chemistry We generate ten responses with state-of-the-art
LLMs for image-captioned versions of chemistry questions
in existing multimodal reasoning datasets (Yue et al., 2024a;
Das et al., 2024; Lu et al., 2022). Questions that are an-
swered correctly in at least five out of ten rounds are filtered
out. Analysis of the remaining questions shows that most in-
volve molecular formulas, indicating that molecular-related
tasks often require additional visual information for effec-
tive reasoning.

Based on this observation, we construct the chemistry sec-
tion in EMMA from scratch, which features three tasks of
increasing difficulty. The original data is sourced from SMi-
CRM (Leung et al., 2024). Notably, the correct answers for
the Reaction Simulation task—the most challenging and the
one that best reflects vision’s role in the reasoning process—
are constructed and verified by a PhD candidate in chemical
molecules. The questions and answers for the Reaction
Simulation task are sourced from Li et al.’s collection of
chemical reactions (Li).

Coding We manually curate all questions for coding. Our
curation process consists of three stages. In the first stage,
we identify “seed visualizations” that employ advanced vi-
sualization techniques or present a rich space for design
variations. We source these seed visualizations through
three channels: CharXiv (Wang et al., 2024c) (a benchmark
consisting of diverse charts extracted from arXiv papers),
the official matplotlib example gallery 2, and our prior ex-
perience. For each source, we attempt to reproduce visual-
izations demonstrating advanced techniques (e.g., 3D bar
charts) in Python using GPT-4o or Claude 3.5 Sonnet, retain-
ing only those that MLLMs cannot reasonably replicate after
multiple iterations of prompting. The first stage ultimately
results in 47 seed visualizations.

In the second stage, we generate four variations for each
seed visualization. When we prompt MLLMs to reconstruct
visualizations during the first stage, MLLM-generated vi-
sualizations are often ill-formed, nonsensical, or otherwise
fail to achieve the desired effects. However, since these
visualizations are generated by MLLMs, they may be indis-
tinguishable from the correct visualizations to the models.
Yet, it is crucial for MLLMs to recognize such flaws, as
early identification of errors is essential for efficient human-
AI collaboration. As such, we include such “buggy” code
snippets as variations of seed visualizations. In addition, we
further enrich the set by introducing design variations (e.g.,
changes in spine configuration, line style, or axis scaling) ei-
ther manually or through prompting MLLMs, with post-hoc
manual verification. After the second stage, we are left with
188 visualizations, organized into 47 sets, each containing
four visualizations.

In the third stage, we construct questions using these 188 vi-
sualizations. For Vis Choose Code, we iterate through each
visualization within a set and construct questions asking
models to select the code snippet used to generate the chart.
For Code Choose Vis, we iteratively choose a code snippet
from each set and ask models to identify the correspond-
ing generated image. For Modification, we first introduce
another design variation in each set, and then select two

2https://matplotlib.org/stable/gallery/
index.html. This approach is inspired by Wu et al. (Wu et al.,
2024).
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pairs of visualizations from the set, where each set contains
a relatively well-formed chart and another random chart.
We construct questions by comparing the code of the ran-
domly selected snippet with others, asking what changes are
needed to produce the target visualization. While the target
visualization image is requisite, we vary whether the origi-
nal visualization image is provided. In sum, this procedure
generates four Code Choose Vis questions, four Vis Choose
Code questions, and four Modification questions (two with
the original image and two without) per set, resulting in a
total of 564 questions evenly divided among the tasks.

B.3. Comparison with Other Benchmarks

EMMA stands out from existing multimodal benchmarks
by emphasizing questions that truly demand multimodal
reasoning capabilities. Through meticulous manual label-
ing or verification, we provide fine-grained labels for each
question, categorizing them based on the specific skills they
assess. This approach enables a more detailed analysis of
the limitations of MLLMs.

Math Various benchmark datasets (Lu et al., 2024b; Wang
et al., 2024a; Yue et al., 2024a;b) have been proposed to
evaluate the mathematical reasoning capabilities of MLLMs.
However, existing math benchmarks often emphasize shal-
low perceptual cues or rely heavily on text-dominant rea-
soning. In contrast, our dataset mainly focuses on assessing
the performance of MLLMs on tasks that require integrated
reasoning, particularly those that are highly dependent on
visual information. Specifically, we employ an enhanced
data filtering pipeline to separate questions that could be
answered correctly using only the caption of images. Rep-
resentative examples of such problems are illustrated in
Figure 13. In some cases, the images provide no additional
information required to solve the question, and the answer
can be derived entirely from the text of the question alone,
as shown in the middle example in Figure 13. In other
instances, questions can be solved using image captions,
leveraging the text reasoning capabilities of MLLMs. These
images either consist solely of textual information, as il-
lustrated in the rightmost example in Figure 13, or can be
fully described textually without necessitating further rea-
soning involving image transformations. For instance, in
the leftmost example in Figure 13, as long as the key textual
information in the image, such as y = 0.5x, is identified,
the question can be solved without employing a graphical
approach.

In addition to the above, we provide a fine-grained taxon-
omy for math problems. By first categorizing the questions
using GPT-4o and conducting expert-level manual verifica-
tion of the classifications, we identify categories that are
highly likely to require graphic transformation and spatial
simulation. These categories are not only applicable to all

math problems in our dataset but are also adaptable to other
dataset, such as MMMU (Yue et al., 2024a). In figure 14,
we present two examples from MMMU that fall under our
defined categories. We hope these categories will inspire
further exploration of the visual reasoning capability of
MLLMs.

Science (Physics & Chemistry) The latest multimodal rea-
soning benchmarks in science, such as (Yue et al., 2024a;
Das et al., 2024; Lu et al., 2022), do not provide many mul-
timodal physics and chemistry problems. In addition, they
often focus on superficial visual cues or heavily rely on text-
based reasoning. As pointed out by (Fu et al., 2024), text
representation can address 90% of physics and chemistry
questions in ScienceQA (Lu et al., 2022). As a result, our
filtering pipeline leaves only 100 problems in total for these
subjects from relevant benchmarks, which we expand to
1,332 with our newly constructed problems.

Our benchmark places greater emphasis on the role of vi-
sion in multimodal reasoning. Beyond filtering out problems
solvable through text alone, we manually review and anno-
tate the remaining questions to ensure a strong reliance on
visual information.

In particular, we focus on two specific types of problems.
First, some physics problems require visual imagination
and simulation of physical processes. Auxiliary images
can significantly enhance both the accuracy and efficiency
of problem-solving. Second, in chemistry, tasks such as
molecule counting, structure recognition, and reaction sim-
ulation demand effective utilization of visual information.
These two types of problems and their related data have
been largely overlooked in current science datasets. To ad-
dress this gap, we emphasize these under-explored aspects
in the science portion of EMMA by manually constructing
test questions and carefully sourcing them from existing
datasets.

Coding Most current visualization-related benchmarks as-
sess visualization understanding (Masry et al., 2022; Xia
et al., 2024; Liu et al., 2022; Methani et al., 2020). In this
work, we focus on evaluating how well MLLMs can reason
in multimodality when generating visualizations. To this
end, past work (Han et al., 2023; Wu et al., 2024; Shi et al.,
2024; Zhang et al., 2024b; Hu et al., 2024) has proposed
the task of visualization reproduction—generating code to
reproduce a target visualization. To evaluate the quality of
generations, researchers have developed heuristic measures
and employed MLLMs as judges.

EMMA enhances past work by introducing new task types.
Our four tasks enable targeted assessments of Vis2Code,
Code2Vis, and Visualization Modification. In particular,
while many users rely on MLLMs for visualization debug-
ging, this task has not been addressed by existing bench-
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The function is y = 0.5x …

No

Is this an odd function?
Yes or No

C:

C + Q:

I + Q: No

Chase wants to buy 4 kilograms of 
oval beads and 5 kilograms of star-

shaped beads. How much will he spend? 

C:

C + Q:

I + Q: 

The image is a price list …

$18

$18

Q: Q:A trip of the pupils to the zoo 
took 135 minutes. How many hours 

and minutes does it make?

2 h 15 min

2 h 15 min

The image is contains a bus…C:

C + Q:

I + Q: 

Q:

Figure 13: Three typical examples from other math datasets that do not really require the images or can be correctly answered using only
the captions of images. The leftmost and rightmost examples are from Math-Vista (Lu et al., 2024b) and the middle example is from
Math-Vision (Wang et al., 2024a). Q represents the question, C represents the caption of the image, and I represents the image.

2D Transformation

Image:

Question: The figure shows line ℓ with a regular, infinite, 

recurring pattern of squares and line segments. How many of the 

following four kinds of rigid motion transformations of the plane 

in which this figure is drawn, other than the identity transformation, 

will transform this figure into itself? 

(a) some rotation around a point of line ℓ 

(b) some translation in the direction parallel to line ℓ 

(c) the reflection across line ℓ 

(d) some reflection across a line perpendicular to line ℓ

3D Spatial Simulation

Image:

Question: How many steps from the 

solution based on <image 1> and <image 

2>?

Figure 14: Two examples from MMMU (Yue et al., 2024a), which
belong to our defined categories of 2D Transformation and 3D
Spatial Simulation respectively. Our classification is equally appli-
cable to other datasets.

marks. We further provide fine-grained, expert-generated
categorizations for each question based on the skills it mea-
sures (see Section B.1). Finally, all of our coding questions
are posed as multiple-choice questions, which removes the
need for using MLLMs as judges, which can be unreliable.

C. Experimental Details
C.1. Prompts for Data Curation

As previously discussed, we conduct much filtering to cull
out questions from existing datasets that genuinely require
visual reasoning, which involves using GPT-4o to generate
captions for images and passing the captions along with
textual questions to MLLMs to generate responses. The
prompts used to generate captions and responses are shown
in Table 4. Notably, when generating image captions, we
also provide the corresponding questions to models to make
sure the captions are as accurate as possible.

For math, after filtering the data, we conduct a detailed
observation and analysis of the remaining problems and
develop a taxonomy consisting of five categories. We then
utilize GPT-4o to assist with the categorization and the
prompts used during this process are shown in Table 4.

C.2. Prompts for Response Generation

We evaluate several state-of-the-art MLLMs on EMMA,
considering two different prompting strategies: Direct
prompting and Chain-of-Thought (CoT) prompting. Further-
more, our benchmark features two question types: Open-
ended and Multiple Choice. The corresponding prompts
vary according to the type of question and the prompting
strategy, as shown in Table 5

C.3. Models and Settings

During math data curation, we filter out questions that mod-
els can answer when provided only with the image caption
and the question. In this process, each model generates ten
candidate responses to ensure reliable and effective filtering.
To expedite response generation, we use the vLLM (Kwon
et al., 2023) library, an open-source tool for fast LLM in-
ference and serving. For all other cases, we load models
directly using the Transformers (Wolf et al., 2020) library.
All model sources are official and listed in Table 6. When
evaluating different models, we use default hyperparameter
values unless otherwise specified, with detailed parameter
settings provided in Table 6.
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Table 4: The prompts used to caption images and generate responses during data curation.

Setting Prompt

Generate Captions There is a question about the image or figure. Please describe the fine-grained content of the image
or figure based on this question, including scenes, objects, relationships, and any text present.
Please note that you do not need to answer this question directly, just describe the information of
this picture.

Generate Responses Please first solve the problem step by step, then put your final answer or a single letter (if it is a
multiple choice question) in one “\boxed{}”. Here is the natural description of the figure, please
solve the following problem based on the description.

Categorize There are some math problems combining images and text, and existing large models cannot
correctly reason through these problems. We have analyzed the reasons why large models fail to
classify these problems and have categorized them based on the challenges present in the problems.
The categories are as follows: A: To solve the problem, a 2D transformation is required, such
as translation, rotation, scaling, shearing, reflection, etc. B: To solve the problem, 3D spatial
imagination is needed. C: To solve the problem, path tracing/change of view simulation is needed,
such as a math problem about a maze. D: None of the above. It belongs to another category. Here
is a math problem, please give the math category that you think this problem belongs to and explain
why. If you choose D, please additionally include the type of math problem you believe it to be.

Table 5: The prompts used for evaluation across different question types and prompting strategies.

Type Strategy Prompt

Open-ended

CoT
{context}{question}
Answer the question using a single word or phrase and put the answer in one “\boxed{}”.
Please solve the problem step by step.

Direct

{context} {question}
Answer the question using a single word or phrase and put the answer in one “\boxed{}”.
Please ensure that your output only contains the final answer without any additional content
(such as intermediate reasoning steps).

Multiple
Choice

CoT
{context} {question} {options}
Answer with the option’s letter from the given choices and put the letter in one “\boxed{}”.
Please solve the problem step by step.

Direct

{context} {question} {options}
Answer with the option’s letter from the given choices and put the letter in one “\boxed{}”.
Please ensure that your output only contains the final answer without any additional content
(such as intermediate reasoning steps).
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Table 6: The sources of models used in the experiments and the hyperparameters configuration. Pass@1 refers to scenarios where
evaluation is performed only once, while pass@n refers to cases that require generating multiple candidate responses.

Model Parameter Setting Source URL

GPT-4o pass@1 temperature = 0.0 chatgpt-4o-latest https://platform.openai.com

GPT-4o pass@n temperature = 0.7 chatgpt-4o-latest https://platform.openai.com

Claude 3.5 Sonnet temperature = 0.0 claude-3-5-sonnet https://www.anthropic.com/

Gemini 2.0 Flash
pass@1 temperature = 0.0 gemini-2.0-flash-exp https://ai.google.dev/

Gemini 2.0 Flash
pass@n temperature = 0.7 gemini-2.0-flash-exp https://ai.google.dev/

Gemini 2.0 Flash
Thinking-1219 temperature = 0.0

gemini-2.0-flash-
thinking-exp-1219 https://ai.google.dev/

Gemini 2.0 Flash
Thinking-0121 temperature = 0.0

gemini-2.0-flash-
thinking-exp-0121 https://ai.google.dev/

OpenAI o1 - interface https://chatgpt.com/

Qwen2-VL-72B-Instruct temperature = 0.7 local checkpoint https://huggingface.co/Qwen/
Qwen2-VL-72B-Instruct

QVQ-72B-Preview temperature = 0.7 local checkpoint https://huggingface.co/Qwen/
QVQ-72B-Preview

LLaVA-Onevision-72B
do sample=True,
temperature = 0.7 local checkpoint https://huggingface.co/llava-hf/

llava-onevision-qwen2-72b-ov-hf

InternVL2-Llama3-76B
do sample=True,
temperature = 0.7 local checkpoint https://huggingface.co/

OpenGVLab/InternVL2-Llama3-76B

InternVL2.5-78B
do sample=True,
temperature = 0.7 local checkpoint https://huggingface.co/

OpenGVLab/InternVL2_5-78B

Table 7: Test-time scaling results on the math portion of EMMA-mini using Qwen2.5-Math-RM-72B, a specialized reward model
for math, and some generalist models as reward models. Since Qwen2.5-Math-RM-72B does not take images as input, we provide
GPT-4o-generated captions of images in the problems to it. Overall, generalist reward models provide better reward signals than
Qwen2.5-Math-RM-72B.

Model Method N=1 N=2 N=4 N=8 N=16

GPT-4o
BoN w. Self-RM

27.00
29.00 27.00 25.00 −

BoN w. Gemini 2.0 Flash Thinking as RM 30.00 28.00 31.00 −
BoN w. Qwen2.5-Math-RM-72B as RM 26.00 24.00 25.00 29.00

Gemini 2.0 Flash
BoN w. Self-RM

24.00
33.00 24.00 27.00 −

BoN w. Gemini 2.0 Flash Thinking as RM 33.00 24.00 25.00 −
BoN w. Qwen2.5-Math-RM-72B as RM 27.00 28.00 23.00 23.00

Gemini 2.0 Flash Thinking − 35.00 − − − −
o1 − 41.00 − − − −
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Task: Vis Choose Code
Category: Advanced Chart Type

Task: Modify without Original Image
Category: 3D

Task: Code Choose Vis
Category: Alignment, Orientation, 

& Position

Task: Modify with Original Image
Category: Polar coordinates

Q: Which code snippet will generate the visualization 
shown?

A.

B.

C.

D.

Q: How can we change the code snippet below to 
create the visualization shown?

A.

B.

C.

D.

Q: Which visualization will the following code snippet 
generate?

A. B.

C. D.

Q: How can we change the code snippet below, which 
generates the first image, so that it generates the 
second image shown?

A. B. C. D.

EMMA (coding):
1) Diverse tasks assess different abilities
2) Multiple-choice format enables easy assessment
3) Availability of categories allows fine-grained analysis

Recreate this
chart in Python.

MLLM Tested

MLLM Judge

Looks good to me!

Heuristics

Traditional visualization benchmarks that involve coding:
1) Mostly only use the task of visualization reproduction
2) Entail using MLLMs as judges, which may be unreliable

V.S.

Figure 15: Traditional visualization benchmarks for coding often require MLLMs to recreate a target visualization, with evaluations
conducted using a combination of MLLMs as judges and heuristic methods. In contrast, EMMA introduces four visualization-related
coding tasks designed to assess multimodal coding abilities across multiple dimensions. By employing a multiple-choice format, EMMA
eliminates the reliance on potentially unreliable MLLM-based judgment. Additionally, our fine-grained categories facilitate a detailed
analysis of the limitations of multimodal coding skills.

C.4. Best-of-N With a Specialized Math Reward Model

While we want to evaluate specialized reward models in
addition to generalist reward models, they are currently
only available for math. Qwen2.5-Math-RM-72B (Yang
et al., 2024b) is one such specialized LLM for evaluating
the quality of responses to math problems. For the math
portion of EMMA-mini, we first generate 16 responses
using each of GPT-4o and Gemini 2.0 Flash. We then score
each response using Qwen2.5-Math-RM-72B and select the
highest-scoring answer. As in previous experiments, we
test with N values of 2, 4, 8, and 16. Since Qwen2.5-Math-
RM-72B is not multimodal, we supply GPT-4o-generated
captions for all images in the questions to enable evaluation.

Table 7 compares scaling results on the math portion of
EMMA-mini using Qwen2.5-Math-RM-72B, a specialized
reward model for math, against other generalist reward mod-
els. Overall, generalist reward models generate better re-
wards than Qwen2.5-Math-RM-72B. We note, however, that
Qwen2.5-Math-RM-72B is not a text-only model, which
likely affects its performance on a multimodal benchmark
like EMMA.

C.5. Breakdown of Experiment Results by Category

In this section, we present a detailed breakdown of the re-
sults for each category across different subjects. Specifically,
the results for math are shown in Table 8, for physics in Ta-
ble 9, for chemistry in Table 10, and for coding in Table 11.

D. Case Study
We now present additional case studies, showcasing both
correct and incorrect responses by MLLMs, organized by
subject. We provide the original questions, MLLM re-
sponses, ground truth solutions, and our error analyses.
Some questions also feature o1 responses to the captioned
version of the original questions. Overall, we find that a
recurring pattern in error cases is that MLLMs fail to fully
engage their multimodal reasoning skills. When questions
require multiple visual passes or extended visual simulation
or manipulation, MLLMs often skip over these critical steps
in their thought processes or produce completely incorrect
solutions.
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Table 8: Performance of state-of-the-art MLLMs on Math. Column abbreviations: 2D = 2D Transformation, 3D = 3D Spatial Simulation,
Path = Path Tracing, Pat = Pattern Inference, MH = Multi-Hop Visual Object Counting.

EMMA-mini EMMA
Overall 2D 3D Path MH Pat Overall

(100) (266) (275) (127) (124) (100) (892)

Random choice 13.00 15.04 12.73 10.24 22.58 9.00 14.01
Human Expert 75.00 - - - - - -

Direct Claude 3.5 Sonnet 23.00 26.69 18.18 21.26 49.19 17.00 25.34
Direct Gemini 2.0 Flash 20.00 25.19 20.73 19.69 37.90 17.00 23.88
Direct GPT-4o 30.00 27.44 19.64 17.32 58.87 21.00 27.24
Direct Qwen2-VL-72B-Instruct 38.00 24.81 20.00 18.90 78.23 53.00 33.07
Direct LLaVA-Onevision-72B 25.00 24.81 22.18 20.47 69.35 8.00 27.69
Direct InternVL2-Llama3-76B 31.00 22.18 14.55 22.83 65.32 15.00 25.11
Direct InternVL2.5-78B 30.00 28.95 21.82 18.90 80.65 19.00 31.39

CoT Claude 3.5 Sonnet 30.00 26.69 22.18 22.83 60.48 26.00 29.37
CoT Gemini 2.0 Flash 24.00 23.31 26.55 15.75 37.90 29.00 25.90
CoT GPT-4o 27.00 23.68 17.82 14.17 60.48 23.00 25.56
CoT Gemini 2.0 Flash Thinking-1219 35.00 30.83 27.64 20.47 60.48 23.00 31.61
CoT Gemini 2.0 Flash Thinking-0121 34.00 32.33 37.82 26.77 64.52 27.00 37.11
CoT OpenAI o1 41.00 - - - - - -
CoT Qwen2-VL-72B-Instruct 32.00 18.80 16.00 14.96 78.23 37.00 27.69
CoT LLaVA-Onevision-72B 23.00 19.17 13.45 16.54 64.52 11.00 22.42
CoT InternVL2-Llama3-76B 27.00 16.17 14.55 15.75 64.52 15.00 22.20
CoT InternVL2.5-78B 31.00 22.18 13.09 16.54 75.81 18.00 25.56

Table 9: Performance of state-of-the-art MLLMs on Physics. Column abbreviations: Path = Path Tracing, 3D = 3D Field Simulation, MH
= Multi-Hop Visual Reasoning, VD = Visual Decomposition Simulation, GR = Graph Reasoning.

EMMA-mini EMMA
Overall Path 3D MH VD GR Overall

(100) (13) (37) (33) (47) (26) (156)

Random choice 23.00 38.46 21.62 27.27 31.91 11.54 25.64
Human Expert 64.50 - - - - - -

Direct Claude 3.5 Sonnet 34.00 30.77 37.84 36.36 31.91 30.77 33.97
Direct Gemini 2.0 Flash 40.00 38.46 29.73 42.42 38.30 46.15 38.46
Direct GPT-4o 38.00 30.77 40.54 33.33 36.17 50.00 38.46
Direct Qwen2-VL-72B-Instruct 40.00 30.77 48.65 45.45 42.55 34.62 42.31
Direct LLaVA-Onevision-72B 32.00 23.08 27.03 39.39 48.94 26.92 35.90
Direct InternVL2-Llama3-76B 22.00 15.38 32.43 21.21 6.45 23.08 22.44
Direct InternVL2.5-78B 40.00 38.46 43.24 42.42 38.30 26.92 38.46

CoT Claude 3.5 Sonnet 38.00 53.85 37.84 36.36 42.55 42.31 41.03
CoT Gemini 2.0 Flash 41.00 30.77 29.73 36.36 44.68 46.15 38.46
CoT GPT-4o 44.00 69.23 35.14 39.39 44.68 46.15 43.59
CoT Gemini 2.0 Flash Thinking-1219 57.00 61.54 43.24 57.58 61.70 61.54 56.41
CoT Gemini 2.0 Flash Thinking-0121 63.00 61.54 54.05 60.61 57.45 73.08 60.26
CoT OpenAI o1 49.00 - - - - - -
CoT Qwen2-VL-72B-Instruct 34.00 15.38 35.14 33.33 34.04 46.15 34.62
CoT LLaVA-Onevision-72B 26.00 15.38 10.81 18.18 6.38 15.38 12.18
CoT InternVL2-Llama3-76B 33.00 53.85 27.03 21.21 12.90 38.46 32.05
CoT InternVL2.5-78B 36.00 46.15 35.14 30.30 46.81 42.31 39.74
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Table 10: Performance of state-of-the-art MLLMs on Chemistry. Column abbreviations: SR = Structure Recognition, GR = Graph
Reasoning, RS = Reaction Simulation, RS-pro = Reaction Simulation-Pro, KS = Knowledge-based Counting.

EMMA-mini EMMA
Overall SR GR RS RS-pro KS Overall

(100) (474) (9) (132) (105) (456) (1176)

Random choice 27.00 24.47 33.33 27.27 35.24 0.44 16.50
Human Expert 86.00 - - - - - -

Direct Claude 3.5 Sonnet 44.00 66.88 22.22 55.30 55.24 6.80 40.90
Direct Gemini 2.0 Flash 36.00 54.01 11.11 53.79 58.10 8.33 36.31
Direct GPT-4o 33.00 47.05 11.11 51.52 42.86 8.33 31.89
Direct Qwen2-VL-72B-Instruct 34.00 45.99 33.33 48.48 45.71 9.65 32.06
Direct LLaVA-Onevision-72B 24.00 38.19 33.33 39.39 26.67 7.24 25.26
Direct InternVL2-Llama3-76B 21.00 37.34 22.22 31.45 24.76 8.55 24.06
Direct InternVL2.5-78B 38.00 55.06 33.33 47.73 43.81 8.99 35.20

CoT Claude 3.5 Sonnet 41.00 57.17 33.33 58.33 58.10 15.57 41.07
CoT Gemini 2.0 Flash 36.00 22.15 33.33 50.00 59.05 11.84 24.66
CoT GPT-4o 35.00 42.41 33.33 51.52 45.71 16.67 33.67
CoT Gemini 2.0 Flash Thinking-1219 41.00 48.31 33.33 45.45 69.52 17.76 37.93
CoT Gemini 2.0 Flash Thinking-0121 47.00 53.16 66.67 48.48 58.10 23.25 41.58
CoT OpenAI o1 40.00 - - - - - -
CoT Qwen2-VL-72B-Instruct 32.00 33.33 11.11 37.12 42.86 7.89 24.57
CoT LLaVA-Onevision-72B 23.00 33.76 0.00 37.88 20.95 7.24 22.53
CoT InternVL2-Llama3-76B 21.00 29.11 22.22 30.65 22.86 6.58 19.73
CoT InternVL2.5-78B 24.00 37.13 33.33 37.12 33.33 13.16 27.47

Table 11: Performance of state-of-the-art MLLMs on Coding. Column abbreviations: CCV = Code Choose Vis, VCC = Vis Choose
Code, MwoI = Modify without Original Image, MwI = Modify with Original Image.

EMMA-mini EMMA
Overall CCV VCC MwoI MwI Overall

(100) (188) (188) (94) (94) (564)

Random choice 28.00 22.87 23.94 29.79 30.85 25.71
Human Expert 85.50 - - - - -

Direct Claude 3.5 Sonnet 35.00 32.98 41.49 40.43 42.55 38.65
Direct Gemini 2.0 Flash 41.00 39.36 42.02 43.62 45.74 42.02
Direct GPT-4o 40.00 43.09 35.11 40.43 43.62 40.07
Direct Qwen2-VL-72B-Instruct 37.00 35.11 30.85 36.17 39.36 34.57
Direct LLaVA-Onevision-72B 28.00 22.34 28.19 38.30 32.98 28.72
Direct InternVL2-Llama3-76B 28.00 27.66 39.52 30.85 28.72 27.84
Direct InternVL2.5-78B 33.00 30.85 31.38 35.11 31.91 31.91

CoT Claude 3.5 Sonnet 39.00 39.36 38.83 43.62 43.62 40.60
CoT Gemini 2.0 Flash 44.00 38.30 46.28 37.23 39.36 40.96
CoT GPT-4o 38.00 40.43 35.11 44.68 38.30 39.01
CoT Gemini 2.0 Flash Thinking-1219 41.00 43.62 46.81 39.36 40.43 43.44
CoT Gemini 2.0 Flash Thinking-0121 48.00 47.87 52.13 45.74 42.55 38.06
CoT OpenAI o1 53.00 - - - - -
CoT Qwen2-VL-72B-Instruct 23.00 31.38 28.72 25.53 30.85 29.43
CoT LLaVA-Onevision-72B 29.00 24.47 32.98 35.11 34.04 30.67
CoT InternVL2-Llama3-76B 32.00 24.47 29.79 38.30 35.11 30.32
CoT InternVL2.5-78B 19.00 25.53 25.00 25.53 24.47 25.18
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Question: Between two points four routes are drawn. Which route is the shortest?

GPT-4o:

Ground Truth:  E

Math:  2D Transformation

1. Route A: The route goes up and then down, forming a triangle. The total horizontal distance is 6 units (3 units to the left and 3 units to the right).The 

vertical distance is 3 units up and 3 units down. The total distance is the sum of the two slanted lines, but the overall horizontal distance between the two 

points is still 6 units.

2. Route B:  The route forms two peaks, but the total horizontal distance between the two points is still 6 units. The vertical distance is 3 units up and 3 units 

down, similar to Route A. The total distance is the sum of the slanted lines, but the overall horizontal distance between the two points is still 6 units.

3. Route C: The route forms three peaks, but the total horizontal distance between the two points is still 6 units. The vertical distance is 2 units up and 2 

units down for each peak. The total distance is the sum of the slanted lines, but the overall horizontal distance between the two points is still 6 units.

4. Route D: The route forms four peaks, but the total horizontal distance between the two points is still 6 units. The vertical distance is 1.5 units up and 1.5 

units down for each peak. The total distance is the sum of the slanted lines, but the overall horizontal distance between the two points is still 6 units.

5. Conclusion: All routes have the same horizontal distance between the two points, and the vertical movements cancel out. Therefore, the total distance 

between the two points is the same for all routes. Thus, the correct answer is: \boxed{E}

Figure 16: A sample correct case in math.
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Question: 

Six figures were drawn, one on each side of 

a cube, as shown beside, in different 

positions. On the side that does not appear 

beside is this drawing:<image1>. 

What is the figure on the face opposite to it ?

GPT-4o:

Ground Truth:  B

Math:  3D Spatial Simulation

To solve this problem, we need to determine which figure is on the face opposite to the kangaroo (shown in <image1>) on the cube

1. Analyze the cube in <image2>: The first cube shows three faces: a red square, a yellow star, a green triangle. The second cube shows three different faces: 

a green triangle, a blue circle, a brown arrow.

2. Identify the relationships between the faces: The green triangle appears on both cubes, so we can use this to understand the relative positions of the other 

faces. On the first cube, the green triangle is adjacent to the red square and the yellow star. On the second cube, the green triangle is adjacent to the blue 

circle and the brown arrow.

3. Determine the opposite faces: Since the green triangle is adjacent to the red square, yellow star, blue circle, and brown arrow, it cannot be opposite to any 

of these. Therefore, the face opposite the green triangle must be the kangaroo (which is not shown in <image2> but is given in <image1>).

4. Find the face opposite the kangaroo: The face opposite the green triangle is the kangaroo. The face opposite the kangaroo must be the green triangle.

5. Conclusion: The figure on the face opposite the kangaroo is the green triangle.

Final Answer: \boxed{B}

Figure 17: A sample correct case in math.
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Question: 

Three people walked through the 

snow in their winter boots. In which 

order did they walk through the 

snow?

GPT-4o:

Ground Truth:  A

Math: Path Tracing / Change of View

To solve this problem, we need to determine the order in which the three people walked through the snow based on the footprints shown in the diagram.

1. Identify the footprints: In <image1>, we see three distinct types of footprints: (A) One with a dotted pattern. (B) One with a striped pattern. (C) One 

with a solid sole with two ovals. In <image2>, the footprints are labeled as follows: (A) Dotted, Striped, Solid. (B) Dotted, Solid, Striped. (C) Striped, 

Dotted, Solid. (D) Striped, Solid, Dotted. (E) Solid, Striped, Dotted.

2. Analyze the overlapping footprints: In <image1>, we can see that some footprints overlap, which indicates that one person walked over the footprints 

of another. The solid sole with two ovals footprints are on top of the other two types of footprints in several places, indicating that this person walked 

last. The striped pattern footprints overlap the dotted pattern footprints in some areas, indicating that the person with the striped pattern walked second. 

The dotted pattern footprints are at the bottom, meaning this person walked first.

3. Determine the order: Based on the analysis, the order is: 1. Dotted pattern (first). 2. Striped pattern (second). 3. Solid sole with two ovals (third). 4. 

Match the order with the options in <image2>: The correct order is Dotted, Striped, Solid, which corresponds to option (A).

Final Answer:\boxed{A}

Figure 18: A sample correct case in math.
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Question: 

Subtract all large rubber spheres. Subtract all big 

shiny cylinders. How many objects are left? 

 

GPT-4o:

Ground Truth:  4

Math: Multi-hop Visual Object Counting

Let's analyze the image step by step:

1. Identify the objects: There is a green large rubber sphere on the left. There is a purple small rubber sphere near the center. There is a purple large 

rubber cylinder in the back. There is a yellow large shiny cylinder on the right. There is a metallic cube in the center. There is a yellow large rubber cube 

in the back.

2. Subtract all large rubber spheres: The only large rubber sphere is the green sphere on the left. We subtract this object.

3. Subtract all big shiny cylinders: The only big shiny cylinder is the yellow cylinder on the right. We subtract this object.

4. Count the remaining objects: Purple small rubber sphere (still present). Purple large rubber cylinder (still present). Metallic cube (still present). 

Yellow large rubber cube (still present). Thus, after subtracting the specified objects, there are 4 objects left.

Final answer: 4.

Figure 19: A sample correct case in math.
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Question: 

Find the value of the square in the figure.

 

GPT-4o:

Ground Truth:  2

Math: Pattern Inference

Let‘s solve this step by step by assigning variables to the shapes: Let the blue circle be ( C ). Let the red square be ( S ). Let the yellow triangle be ( T ).

Step 1: Analyze the first equation: From the first equation: [C + S = 5] This means the sum of the circle and the square is 5. 

 Step 2: Analyze the second equation: From the second equation: [T + T = 8] This simplifies to: [2T = 8] Dividing both sides by 2: [T = 4]. So, the value 

of the yellow triangle ( T ) is 4.

Step 3: Analyze the third equation: From the third equation: [C + T = 7]. Substitute ( T = 4 ) into this equation: [C + 4 = 7]. Subtract 4 from both sides: 

[C = 3]. So, the value of the blue circle ( C ) is 3.

Step 4: Solve for the red square: Now, go back to the first equation: [C + S = 5]. Substitute ( C = 3 ) into this equation: [3 + S = 5]. Subtract 3 from both 

sides: [S = 2]. So, the value of the red square ( S ) is 2.

 Final Answer: The value of the red square is \boxed{2}.

Figure 20: A sample correct case in math.

28



Can MLLMs Reason in Multimodality? EMMA: An Enhanced MultiModal ReAsoning Benchmark

Question: Each	half	of	this	figure	is	composed	of	3	red	triangles,	
5	blue	triangles	and	8	white	triangles.	When	the	upper	half	is	
folded	down	over	the	centerline,	2	pairs	of	red	triangles	coincide,	
as	do	3	pairs	of	blue	triangles.	There	are	2	red-white	pairs.	How	
many	white	pairs	coincide?

Human	Reasoning (Ground	Truth):
Forming	the	remaining	2	top	B	and	2	bottom	B,	
the	image	shows	there	are	already	3	B-B	pairs.	
Thus,	the	2	top	B	and	2	bottom	B	cannot	form	
more	B-B	pairs	but	instead	create	4	B-W	pairs.	
After	this,	the	remaining	W-W	pairs	total	5,	as	
counted	in	the	image.

o1:	 1.Count	the	total	number	of	triangles	per	half: … 2.	When	
folded:	… 3.	Given	pairings: … 4.	Account	for	these	given	pairs: …
5.	Update	the	counts	after	using	these	pairs: … 6.	Remaining	
pairs	to	form: … The	remaining	top	and	bottom	sets	are	the	same:	
2B	+	7W	on	top	and	2B	+	7W	on	bottom. 7.	Forming	the	
remaining	pairs:	With	equal	numbers	of	blues	and	whites	
on	both	sides,	the	most	natural	arrangement	is	to	pair	like	
colors	with	like	colors:- Pair	the	2	remaining	top	B	with	the	2	
remaining	bottom	B	→ 2	more	B-B	pairs.	- Pair	the	7	
remaining	top	W	with	the	7	remaining	bottom	W	→ 7	W-W	
pairs.	 8.	…Final	Answer: \(\boxed{7}\)

Math: 2D Transformation

Error	
Analysis:	

The	model	reasoning	suffers	from	two	key	issues.	First,	it	failed	to	
“remember”	prior	pairings,	which	humans	would	track	easily	using	
the	diagram,	revealing	its	inability	to	manage	dynamic	states	in	
multi-step	tasks	without	visual	feedback.	Second, tasks	without	
visual	feedback.	Second,	it	ignored	image-derived	constraints,	like	
the	“3-blue	pairs”	rule,	and	wrongly	assumed	pairing	like	colors	
was	natural.	This	highlights	the	model‘s	broader	limitation	in	
integrating	textual	and	visual	information,	particularly	for	tasks
requiring	spatial	reasoning	and	multi-hop	logic,	where	visual	aids	
simplify	the	solution.

Figure 21: A sample error case in math.
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Math: 3D Spatial Simulation

GPT-4o:
To solve this problem, we need to determine which faces of the cube are opposite each other and then add the numbers on those opposite faces.

1. Step 1: Identify opposite faces: The diagram shows the net of a cube. In a cube, each face has an opposite face. From the net, we can deduce the 

following pairs of opposite faces: (1)Face 5 is opposite face 6. (2)Face 1 is opposite face 4. (3)Face 2 is opposite face 3.

2. Step 2: Add the numbers on opposite faces: Now, we add the numbers on the opposite faces: 5 + 6 = 11, 1 + 4 = 5, 2 + 3 = 5

3. Step 3: List the results: The three results Sascha gets are 11, 5, and 5.

Final Answer: \boxed{11, 5, 5}

Question: 

The diagram shows the net of a cube whose faces are numbered. 

Sascha adds the numbers that are on opposite faces of the cube. 

Which three results does he get?

GPT-4o-caption:
1. Main Structure: The image depicts the net of a cube, consisting of six numbered square faces. The net layout includes: A center square labeled 2. 

Three squares adjacent to the center square, forming an inverted T: 1 on the left, 3 on the right, 5 on the top. A square labeled 4, located to the right of 3, 

extending horizontally. A square labeled 6, located below 3, extending vertically. 

2. Task: Sascha is tasked with folding the cube, determining the opposite faces, and adding the numbers on those faces. 

o1-preview:
To solve this problem, we need to determine which faces of the cube are opposite each other after folding the given net, and then calculate the sums of 

the numbers on those opposite faces.

1. Step 1: Visualizing the Net and Cube Folding. Let's first reconstruct the net as described: Square 2 is in the center, Square 1 is to the left of Square 2, 

Square 3 is to the right of Square 2, Square 5 is above Square 2, Square 4 is to the right of Square 3, Square 6 is below Square 3.

2. Step 2: Assigning Squares to Cube Faces. We can assign the squares to the faces of the cube as follows: Front Face: Square 3, Back Face: Square 4 

Left Face: Square 1, Right Face: Square 6, Top Face: Square 5, Bottom Face: Square 2

3. Step 3: Identifying Opposite Faces. The pairs of opposite faces are: (1). Front 3 and Back 4 (2). Left 1 and Right 6 (3). Top 5 and Bottom 2

4. Step 4: Calculating the Sums. (1). Front and Back Faces: [3 + 4 = 7] (2). Left and Right Faces: [1 + 6 = 7] (3). Top and Bottom Faces: [5 + 2 = 7]

Final Answer: \boxed{7, 7, 7}

[5]

[1] [2] [3] [4]

[6]

Ground Truth: 4, 6, 11

Error Reason:
This image can be accurately captioned by GPT-4o, as the descriptive content is totally correct. However, after extracting the information, the model 

needs to visualize the process of folding the 2D shape to a 3D cube and determine the relative positions of each face. Unfortunately, both GPT-4o and 

GPT-o1 fail to perform the correct spatial reasoning required for this task.

Totally Correct

Figure 22: A sample error case in math.
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Math: 2D Transformation

GPT-4o:
1. Understanding the Problem: In the first image (image1), Anna cuts the mushroom picture vertically into two halves. The task is to determine how the 

two halves can be rearranged to form a new picture.

2. Analyzing the Cut: The mushroom is cut vertically down the middle, so the left half of the mushroom (including half of the cap and half of the stem) 

is separated from the right half. The two halves can be rearranged in different ways, such as flipping or rotating them.

3. Analyzing the Options: Option A: The two halves are placed side by side, but they are not flipped or rotated. This looks like the original mushroom,

just split in half. Option B: The two halves are placed side by side, but the right half is flipped horizontally. This creates a symmetrical image. Option C: 

The two halves are placed one on top of the other, but they are not flipped or rotated. This does not seem to form a logical image. Option D: The two 

halves are placed one on top of the other, but the top half is flipped horizontally. This also does not form a logical image. Option E: The two halves are 

placed one on top of the other, but the bottom half is flipped horizontally. This does not form a logical image either.

4. Conclusion: The only option that forms a new, symmetrical picture is Option B, where the right half is flipped horizontally and placed next to the left 

half. Final Answer: \boxed{B}

Question: 

Anna cuts the picture of a mushroom in two 

halves. She then arranges the two pieces 

together to form a new picture. What could 

this new picture look like?

GPT-4o-caption:
1. Top Section <image1>: The image shows a drawing of a mushroom. The mushroom is symmetrical along a vertical axis. The mushroom has two 

distinct parts: Cap: A rounded, brown shape on top. Stem: A white oval base connected to the cap. A dashed vertical line divides the mushroom into two 

equal halves, splitting the cap and stem down the middle. At the bottom, there is a small drawing of scissors, suggesting that the mushroom will be 

physically cut into two vertical halves.

2. Bottom Section <image2>: Below the original mushroom, there are five rectangular images labeled (A), (B), (C), (D), and (E). Each rectangle depicts 

a possible arrangement of the two mushroom halves. (A): The two halves are placed side-by-side in their original orientation, forming a full mushroom 

when combined correctly. (B): The two halves are swapped and flipped, so the stem sections point outward while the cap sections meet at the center. (C): 

The two halves are rotated 90° clockwise, creating a horizontal arrangement with the cap on the left and the stem on the right. (D): The two halves are 

stacked vertically, with the cap on top and the stem below. (E): The two halves are flipped horizontally, creating a mirrored image where the cap sections 

face outward.

3. The task is to determine which of the five options correctly represents a new arrangement of the mushroom halves after being cut and rearranged.

Ground Truth: E

o1-preview:

To solve this problem, let's analyze the possible arrangements of the two mushroom halves after cutting it vertically.

1. Given: The mushroom is symmetrical along a vertical axis. After cutting it vertically, we have a left half and a right half, each containing half of the 

cap and half of the stem.

2. Possible manipulations: (a) Flip a half horizontally (mirror image over the vertical axis). (b) Rotate a half (e.g., 90° clockwise). (c) Swap the halves.

3. Analyze options: Option A: Placing the halves together in their original orientation forms the same picture, not a new one. So, it's not acceptable as a 

new arrangement. Option B: Swapping and flipping both halves horizontally results in the cap sections meeting at the center and the stem sections 

pointing outward. This creates a new symmetrical image different from the original. Option C: Rotating both halves 90° clockwise and placing them 

side by side can reconstruct the mushroom horizontally. However, since the halves are mirror images, the cap and stem won't align properly to form a 

coherent image. Option D: Stacking the halves vertically doesn't form a meaningful new picture because both halves have parts of the cap and stem, and 

stacking them won't align these parts sensibly. Option E: Flipping both halves horizontally and placing them together will make the stem sections meet at 

the center and the cap sections face outward. This is a possible new arrangement.

4. Conclusion:

Both Option B and Option E are possible new arrangements. However, since we need to choose one, and Option B directly follows from swapping and 

flipping the halves as described, Option B is the best choice.

Error Reason:
When using GPT-4o to caption the image, it fails to accurately determine whether the image has been flipped, rotated or swapped. Human perform such 

reasoning by mentally simulating the transformation of the image, a capability we believe current MLLMs lack. This process involves visual reasoning, 

which cannot be achieved through text-based reasoning alone.

Figure 23: A sample error case in math.
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Math: Pattern Inference

GPT-4o:
1. Rows and Columns: The grid is a 3x3 matrix, and each circle is divided into 8 equal sections, with some sections shaded green.

2. Row-wise Analysis: (A) First Row: The number of green sections increases by 1 as you move from left to right. First circle: 2 green sections. Second 

circle: 3 green sections. Third circle: 4 green sections. (B) Second Row: The number of green sections also increases by 1 as you move from left to right. 

First circle: 3 green sections. Second circle: 4 green sections. Third circle: 5 green sections. (C) Third Row: The number of green sections should follow 

the same pattern, increasing by 1 as you move from left to right. First circle: 4 green sections. Second circle: 5 green sections. Third circle (missing): It 

should have 6 green sections.

3. Conclusion: The missing circle should have 6 green sections. Now, let's look at the options: Option 6 has 6 green sections.

Thus, the correct answer is 6.

Question: 

Choose the answer for the missing picture.

GPT-4o-caption:
The image contains a pattern-based reasoning puzzle with the following key elements: 

1. Main Puzzle Grid (Top Section): A 3x3 grid where the first eight cells are filled with circular diagrams, and the bottom-right cell is marked with a 

question mark ("?"). Each circular diagram is divided into eight equal sectors. Some sectors are shaded in green, while others remain white. The shaded 

green sectors vary in number and position, showing distinct patterns across rows and columns. 

2. Rows in the Main Grid: Row 1: Cell 1: One green sector in the bottom-left position. Cell 2: Two adjacent green sectors in the left quadrant. Cell 3: 

Three adjacent green sectors, starting from the left and moving clockwise. Row 2: Cell 1: Two green sectors, one in the top-right and one in the bottom-

right quadrant. Cell 2: Three adjacent green sectors, forming the right half of the circle. Cell 3: Four adjacent green sectors, forming a "V" shape 

covering the bottom and right quadrants. Row 3: Cell 1: Three green sectors, forming a pattern in the bottom half. Cell 2: Four adjacent green sectors, 

creating an "L" shape in the left half. Cell 3: Missing circle (marked by "?"). 

3. Answer Options (Bottom Section): Below the main grid, six circular diagrams labeled 1 to 6 are presented as potential answers. Each diagram follows 

the same structure (eight equal sectors, some shaded green). The options are as follows: Option 1: Three green sectors in the bottom-left and bottom-

center quadrants. Option 2: Four adjacent green sectors covering the top and right quadrants. Option 3: Three green sectors in the top half, symmetric 

across the vertical axis. Option 4: Four adjacent green sectors, covering the bottom-left and bottom quadrants. Option 5: Four green sectors forming a 

cross, symmetric across both axes. Option 6: Five adjacent green sectors forming a large section from the bottom-left to the top-right quadrant. 

Ground Truth: 4

o1-preview:

1. Understand the Grid and the Circles: Each circle is divided into 8 equal sectors. Some sectors are shaded green, and others are white. The shading 

patterns vary across the grid. (A) Grid Details: (a) Row 1: Cell (1,1): 1 green sector (bottom-left position). Cell (1,2): 2 adjacent green sectors in the left 

quadrant. Cell (1,3): 3 adjacent green sectors, starting from the left and moving clockwise. (b) Row 2: Cell (2,1): 2 green sectors in the top-right and 

bottom-right positions. Cell (2,2): 3 adjacent green sectors forming the right half of the circle. Cell (2,3): 4 adjacent green sectors forming a "V" shape 

covering the bottom and right quadrants. (c) Row 3: Cell (3,1): 3 green sectors forming a pattern in the bottom half. Cell (3,2): 4 adjacent green sectors 

creating an "L" shape in the left half. Cell (3,3): Missing circle (marked by "?").

2. Identify Patterns in the Grid: (a) Number of Green Sectors: In each row, the number of green sectors increases by 1 from left to right. In each column, 

the number of green sectors increases by 1 from top to bottom. (b) Logical Deduction: The missing circle at Cell (3,3) should have 5 green sectors to 

continue the pattern. (c) Shading Pattern Direction: The shading seems to progress in a particular direction in each row.

3. Predict the Missing Circle's Shading Pattern: Since Cell (3,2) has 4 adjacent green sectors forming an "L" shape in the left half, it's logical to predict 

that Cell (3,3) will have 5 adjacent green sectors continuing from where the previous shading left off. The 5 green sectors likely form a contiguous area, 

possibly starting from the bottom-left sector and covering up to the top-right sector.

4. Match the Prediction with the Answer Options: Option 6 shows a circle with 5 adjacent green sectors forming a large section from the bottom-left to 

the top-right quadrant, which matches our prediction.

5. Conclusion: Based on the logical patterns observed in the grid, Option 6 is the correct answer. 

Error Reason:
Both GPT-4o and GPT-o1 incorrectly identify the pattern: they conclude that the number of green sections changes in a regular pattern. However, it’s 

easy to find the actual rule is that the position of the green sections changes in a regular pattern. By misidentifying the color, quantity and position, both 

models perform flawed reasoning and generate wrong answer.

Figure 24: A sample error case in math.
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Physics:  Visual Decomposition Simulation

Error Analysis: 

Placing the vector “tip-
to-tail” with the vector
gives a direction for
(and therefore, a) to the left.

Identify the direction 
of acceleration, same 
as the direction of the 
change in velocity 

Because: 

the direction of 
can be determined 
graphically.

Ground Truth: GPT-4o

Figure 25: A sample error case in physics.
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Human	Reasoning (Ground	Truth):
The	direction	of	the	electric	force	due	to	
-2Q	and	+	3Q can	be	visualized	with	a

Physics: 3D Field Simulation 

Error Analysis:Misunderstand	the	
net	force‘s	direction	during	vector	
addition.	The	issue	arose	from	not	
correctly	identifying	the	force		
direction	from	+3Q to	+Q (longer	red	
arrow in	vector	graphic	on	the	right),	
which	causes	the	net	force	to	point	⬉,	
not	downward-right⬊ in .

Question: Three	point	charges,	of	charge		+Q,	-2Q	,	and	+3Q	,	are	placed	
equidistant	as	shown.	Which	vector	best	describes	the	net	direction	of	the	electric	
force	acting	on	the	+Q		charge?

GPT-4o	with	CoT	:	

quick	free-body	
sketch	of	the	
electric	forces:

Direct GPT-4o	: b.

Figure 26: A sample error case in physics.
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The answer incorrectly assumes that the momentum 

in the y direction does not change, thus drawing the 

wrong conclusion: the net change of momentum is in 

the horizontal direction.

Physics:  Visual Decomposition Simulation

Question: 

Error Analysis: 

<image_1>

Ground Truth:

GPT-4o:

<image_2>

Figure 27: A sample error case in physics.
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Question: 

GPT-4o:

The image shows five graphs labeled a through e, each representing acceleration versus time:
a. The graph is a horizontal line at a constant value of g .
b. The graph starts at  g and curves downward, decreasing over time.
c. The graph starts below  g  and curves upward, increasing over time.
d. The graph starts at  g and curves downward, decreasing over time.
e. The graph starts below g and curves upward, increasing over time.
Each graph has a dashed line indicating g as a reference point.

When an object is dropped, it initially accelerates at the acceleration due to gravity, g . As it falls, air resistance (fric tion) 

increases, which reduces the net acceleration. However, since the object never reaches terminal velocity, the acceleration 

decreases but does not reach zero. Let's analyze the options:

a. The graph shows constant acceleration at g , which would be the case if there were no air resistance. This is not correct 

because the object is affected by air friction.

b. The graph shows acceleration starting at g  and gradually decreasing, which is consistent with the object being affected by air 

resistance. The acceleration decreases over time but does not reach zero, which matches the scenario where the object does no t 

reach terminal velocity.

c. The graph shows acceleration increasing over time, which is incorrect because air resistance would cause the acceleration to 

decrease, not increase.

d. The graph shows acceleration starting at g and decreasing rapidly, which could represent a situation where the object reaches

terminal velocity. However, the problem states that the object does not reach terminal velocity, so this is not the correct o ption.

e. The graph shows acceleration starting below g and increasing, which is incorrect because the object starts with an 

acceleration of g  and air resistance causes it to decrease.

The answer is b.

Physics: Graph Reasoning

GPT-4o Caption:

Figure 28: A sample error case in physics.
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Error Analysis: 

Ground Truth: (d) 

o1-preview:

Physics: Graph Reasoning

Misunderstanding the characteristics of exponential decay, it is believed that the declining 

trend of option B is reasonable, but overlooks that the decline of D is more gradual and 

better fits real physical phenomena. Moreover, the description in the question that “the 

acceleration will never reach 0” cannot be correctly matched to the image of any option.

o1-preview:

Figure 29: A sample error case in physics.
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Question: 

GPT-4o:

<image_1>

Ground Truth:

Physics:  3D Field Simulation

Figure 30: A sample correct case in physics.
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Question: 

GPT-4o:

Ground Truth:

Physics: Graph Reasoning

The graph shows the velocity of the billiard ball as a function of time. Initially, the ball is moving in the  +x  direction at 3 m/s, 

and then it slows down, reverses direction, and moves in the  -x  direction at  2 m/s .

The greatest magnitude of acceleration occurs when the velocity changes most rapidly, which corresponds to the steepest part 

of the velocity-time graph. From the graph, the steepest slope occurs around  𝑡 = 5 × 10−3 𝑠, where the ball is reversing 

direction.

The answer is c.

A billiard ball rolling across a table in the +x direction at 3 m/s 

hits the edge of the table at aperpendicular angle, and bounces 

back in the -x direction, now traveling at 2 m/s in theopposite 

direction, 'The greatest magnitude of acceleration for the billiard 

ball was at time

𝑎.  𝑡 = 1 × 10−3 𝑠 b.  𝑡 = 2 × 10−3 𝑠

c.  𝑡 = 5 × 10−3 𝑠 d.  𝑡 = 7 × 10−3 𝑠 e.  𝑡 = 9 × 10−3 𝑠

Figure 31: A sample correct case in physics.
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Chemistry: Reaction Simulation

Question: 

Ground Truth: B

GPT-4o:

An 'arrow-pushing' diagram is a common type of chemical image used to illustrate electron 

flow in mechanistic steps. Choose the molecular image that represents the SMILES expression 

for the molecule after the electron has been relocated, as depicted in the image.

A. C=C(/C[O-])C(C)=O

B. C=C(/C(C)=O)[O-]

C. C=C(/O)C(C[O-])=O

D. */C=C(/*)[O-].*C(*)=O

Let's analyze the arrow-pushing mechanism step by step:

1. The image shows a carbonyl group (C=O) with an arrow indicating electron movement from the double bond to the oxygen 

atom. This suggests that the oxygen will gain a negative charge, becoming an alkoxide ion (O⁻).

2. The second arrow shows the bond between the hydrogen (H) and the adjacent carbon breaking, with the electrons moving 

towards the carbon-carbon bond. This suggests the formation of a double bond between the two carbon atoms.

3. The result of this electron movement is the formation of a new C=C double bond and the oxygen becoming negatively 

charged (O⁻).

Now, let's examine the options:

- Option A: This structure shows a C=C double bond, a negatively charged oxygen (O⁻) attached to a carbon, and a carbonyl 
group (C=O). This does not match the expected structure because the negative charge is on the wrong oxygen.

- Option B: This structure shows a C=C double bond, a negatively charged oxygen (O⁻), and a carbonyl group (C=O) attached 

to the same carbon. This matches the expected structure after the electron movement.

- Option C: This structure shows a C=C double bond, but the negative charge is on a different oxygen, which does not match 

the expected structure.

- Option D: This structure is incomplete and does not match the expected structure.

The answer is \boxed{B}.

Figure 32: A sample correct case in chemistry.
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Chemistry: Knowledge-based Counting

Question: In the transition-state structure shown in the image, 

calculate the total number of bonds in the structure, including 

single, double, and triple bonds but excluding those involving 

hydrogen. Note: Disregard arrows. Consider all components 

present in the transition-state structure shown in the image. 

<image_1>

Ground Truth: By directly counting the bonds marked 

on the diagram, we can see there are a total of 21 bonds.

o1: A clear way to see why there are 17 total bonds (excluding those to hydrogen) is to break the structure 

into three parts and count them: 1. Cyclohexyl moiety: Six C–C single bonds within the cyclohexane ring. 2. 

Tetrahedral region around the acyl center: One single bond between the oxygen and the carbonyl carbon. One 

single bond between the same oxygen and the cyclohexyl carbon. One double bond in the acyl group (C=O). 

One single bond between the carbonyl carbon and the aromatic ring. 3. Aromatic ring with a chloro

substituent: In the Kekulé representation, the benzene ring has three single bonds and three double bonds (six 

ring bonds total). One single bond between a ring carbon and the chlorine atom. Adding these together, and 

ignoring any bonds to hydrogen: Single bonds: 6 (cyclohexane ring) + 1 (O–C in tetrahedral region) + 1 (O–

cyclohexyl carbon) + 1 (carbonyl C–aromatic ring) + 3 (single bonds in the benzene ring) + 1 (benzene–Cl) = 

13 single bonds. Double bonds: 1 (C=O in the acyl group) + 3 (double bonds in the benzene ring) = 4 double 

bonds. Thus, the total is 13 + 4 = 17 bonds (excluding any to hydrogen).

Error Analysis: 

The error lies in undercounting the total number 

of bonds. The original answer missed four key 

single bonds: two C–O bonds within the ester 

group, one O–C bond connecting the ester 

oxygen to the cyclohexyl ring, and one C–O 

bond in the acyl center. These omissions led to a 

total of 17 bonds instead of the correct 21 bonds.

Figure 33: A sample error case in chemistry.

41



Can MLLMs Reason in Multimodality? EMMA: An Enhanced MultiModal ReAsoning Benchmark

Coding: 3D, Color & Texture, and Axis & Scale

Question: 

GPT-4o:

Which visualization can this code possibly generate? We are using Python version 3.11.0, matplotlib version 3.6.3, and 

seaborn version 0.12.2 (if applicable). Think step by step. Then, append a new line after your thought process to provide 

your final answer. This new line should contain EXACTLY one letter (one of "A", "B", "C", or "D"). No other content 

is allowed on this last line.

Figure 34: A sample correct case in coding.

42



Can MLLMs Reason in Multimodality? EMMA: An Enhanced MultiModal ReAsoning Benchmark

Coding: Legend and Color & Texture

Question: 

Error Analysis: 

Ground Truth:

GPT-4o:

Which visualization can this code possibly generate? We are using Python version 3.11.0, matplotlib version 3.6.3, and 

seaborn version 0.12.2 (if applicable). Think step by step. Then, append a new line after your thought process to provide 

your final answer. This new line should contain EXACTLY one letter (one of "A", "B", "C", or "D"). No other content 

is allowed on this last line.

The code specifies that the legend is placed at the center right, which eliminates A and D. Since the plt.scatter() function is 

called multiple times (in a loop) to render the markers in the legend, each call assigns a distinct color to the markers.

Therefore, the markers will assume different colors. Correct Answer: B

GPT-4o assumes that, since the code does 

not explicitly specify a color for the legend 

markers, they will inherit the default color 

of the scatter plot. However, it fails to 

account for the fact that the plt.scatter() 

function is called multiple times to render 

the markers in the legend. As a result, each 

call assigns a distinct color to the markers, 

meaning the final legend markers will not 

all be blue.

Figure 35: A sample error case in coding.
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Coding: Legend and Position

Error Analysis: 

Ground Truth:

GPT-4o:

Question: 

Which visualization can this code possibly generate? We are using Python version 3.11.0, matplotlib version 3.6.3, and 

seaborn version 0.12.2 (if applicable). Think step by step. Then, append a new line after your thought process to provide 

your final answer. This new line should contain EXACTLY one letter (one of "A", "B", "C", or "D"). No other content 

is allowed on this last line.

GPT-4o notices that the fourth subplot

has a legend, but it does not perform

sufficient visual reasoning to identify its

relative position to the subplot, instead

simply referring to it as “a specific

location”.

The conditional in the loop tells us that

only the fourth subplot (index 3) has a

legend. The legend is placed with a

bbox_to_anchor set to (1, -0.2), meaning

it is to the lower right of the fourth

subplot. Since we have 4 rows and 2

columns, the fourth subplot is at Row 2

Column 2. Hence, D is the right answer.

Figure 36: A sample error case in coding.
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Coding: 3D, Color & Texture, and Axis & Scale

Question: 

Error Analysis: 

Ground Truth:

Claude 3.5 Sonnet:

Which visualization can this code possibly generate? We are using Python version 3.11.0, matplotlib version 3.6.3, and 

seaborn version 0.12.2 (if applicable). Think step by step. Then, append a new line after your thought process to provide 

your final answer. This new line should contain EXACTLY one letter (one of "A", "B", "C", or "D"). No other content 

is allowed on this last line.

Claude fails to point out the differences 

between discrete v.s. continuous color bars in A

and B. Furthermore, due to limitations in code 

understanding, it fails to recognize that 

ax.bar3d(xpos, ypos, zpos, dx, dy, dz, 

shade=True, cmap='viridis') actually wouldn’t

color the bars without the color parameter being 

explicitly set to a variable.

A and B have blue bars while C and D have 

gradient-colored bars. A and C have binned

color bars while B and D have continuous 

color bars. In the function call

ax.bar3d(xpos, ypos, zpos, dx, dy, dz, 

shade=True, cmap='viridis'), the 

cmap='viridis' is provided, but bar3d 

requires the color parameter to be explicitly 

set using the colormap and normalized dz

values. Without assigning colors based on 

dz, the bars default to a single color, which

eliminates C and D. The line norm = 

colors.BoundaryNorm(levels, cmap.N) 

specifies the color bar is binned, which 

leaves A as the correct answer.

Ground Truth:

Figure 37: A sample error case in coding.
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Coding: Axis & Scale

Question: 

Error Analysis: 

Ground Truth:

GPT-4o:

Our goal is to reproduce the visualization in the image shown. The code snippet above currently does not accurately 

generate the target visualization.

We are using Python version 3.11.0, matplotlib version 3.6.3, and seaborn version 0.12.2 (if applicable). What change 

should we apply to the original code in order to generate the target visualization? Think step by step. Then, append a 

new line after your thought process to provide your final answer. This new line should contain EXACTLY one letter 

(one of "A", "B", "C", or "D"). No other content is allowed on this last line.

<target image> <original code>

GPT-4o over-complicates the problem.

It invents misalignment between the

target image and the code to be

modified. The only disagreement

between the two is that the line chart

for intensity in the code has paddings

on both ends due to default settings,

whereas the target image does not have

these. GPT-4o fails to point this out,

but hallucinates about other issues,

highlighting limitations in multimodal

reasoning.

The only misalignment between the code and the target image is that the line chart for intensity in the code has paddings on

both ends due to default settings, whereas the target image does not have these. To remove the paddings, one simply needs to

share the x-axis between the subplots. Correct Answer: A

Figure 38: A sample error case in coding.
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Coding: Gridline and Data Reasoning

Question: 

Error Analysis: 

Ground Truth:

GPT-4o:

Which code snippet can possibly create the chart in the image? We are using Python version 3.11.0, matplotlib version 

3.6.3, and seaborn version 0.12.2. Think step by step. Then, append a new line after your thought process to provide 

your final answer. This new line should contain EXACTLY one letter (one of "A", "B", "C", or "D"). No other content 

is allowed on this last line.

The first mistake in the analysis is that the blue circle is

between the top two surfaces, not on the middle surface.

Nonetheless, the model correctly eliminates A and C on

the grounds that their placements of the circle are on the

bottom surface. The more fatal mistake lies in the

misinterpretation of the effect of rstride and cstride.

Matplotlib 3D surface plots by default carry gridlines. Yet,

in the target chart we do not observe gridlines on the three

surfaces, implying that the code must have overridden this

setting. However, GPT-4o concludes that such settings are

“unnecessary” in B, which leads to the wrong answer.

The placement of the blue circle (between the top two

surfaces) eliminates A and C. Since we do not observe any

gridlines on the three surfaces, which are part of the

default appearance of matplotlib 3D surface plots, the code

must have overridden it. D does so by setting rstride and

cstride to values large values, causing gridlines to be too

sparse to be rendered on the surfaces. Correct Answer: B

Figure 39: A sample error case in coding.
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