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Abstract

Cross-lingual natural language inference is001
a fundamental problem in cross-lingual lan-002
guage understanding. Many recent works003
have used prompt learning to address the lack004
of annotated parallel corpora in XNLI. How-005
ever, these methods adopt discrete prompting006
by simply translating the template to the tar-007
get language and need external expert knowl-008
edge to design the templates. Besides, dis-009
crete prompts of human-designed template010
words are not trainable vectors which can011
be migrated to target languages in the infer-012
ence stage flexibly. In this paper, we pro-013
pose a novel Soft prompt learning frame-014
work enhanced by Language-INdependent015
Knowledge (SoftLINK) for XNLI. SoftLINK016
first constructs cloze-style question with soft017
prompts for the input sample. Then we lever-018
age bilingual dictionaries to generate an aug-019
mented multilingual question for the original020
question. SoftLINK also adopts a multilingual021
verbalizer to align the representations of origi-022
nal and augmented multilingual questions on023
the semantic space with consistency regular-024
ization. Experimental results on XNLI demon-025
strate that SoftLINK can achieve state-of-the-026
art performance and significantly outperform027
the previous methods under the few-shot and028
full-shot cross-lingual transfer settings.029

1 Introduction030

Multilingual NLP systems have gained more atten-031

tion due to the increasing demand for multilingual032

services. Cross-lingual language understanding033

(XLU) plays a crucial role in multilingual systems,034

in which cross-language natural language inference035

(XNLI) is a fundamental and challenging task (Con-036

neau et al., 2018; MacCartney and Manning, 2008).037

In XNLI settings, the model is trained on the source038

language with annotated data to reason the relation-039

ship between a pair of sentences (namely premise040

and hypothesis) and evaluated on the target lan-041

guage without parallel corpora.042

Type Prompt Templates

DP Premise. Question: Hypothesis? Answer: <MASK>.
SP Premise. Hypothesis? <v1>...<vn> <MASK>.
MP Premise. Question: Hypothesis? <v1>...<vn> Answer: <MASK>.

Table 1: The example of prompt templates for NLI.
Premise and Hypothesis are a pair of sentences from
the NLI dataset. Question and Answer are template
words of discrete prompts. <vi> is the trainable vector
of soft prompts.

Pre-trained multilingual language models, such 043

as mBERT (Devlin et al., 2019), XLM (Conneau 044

and Lample, 2019) and XLM-R (Conneau et al., 045

2020), have demonstrated promising performance 046

on cross-lingual transfer learning. These language 047

models learn a shared multilingual embedding 048

space to represent words in parallel sentences. 049

However, these models are trained on a large num- 050

ber of parallel corpora, which are not available 051

in many low-resource languages. The major chal- 052

lenge of XNLI is the lack of annotated data for 053

low-resource languages. 054

To address this problem, some works explored 055

using prompt learning (Brown et al., 2020; Schick 056

and Schütze, 2021; Shin et al., 2020) when adapt- 057

ing pre-trained language models to downstream 058

tasks in the cross-lingual scenarios. Prompt learn- 059

ing reformulates the text classification problem 060

into a masked language modeling (MLM) prob- 061

lem by constructing cloze-style questions with a 062

special token <MASK>. The model is trained to 063

predict the masked word in the cloze-style ques- 064

tions. As shown in Table 1, prompt learning can 065

be divided into three types: Discrete Prompts (DP), 066

Soft Prompts (SP), and Mixed Prompts (MP). Zhao 067

and Schütze (2021) investigated the effectiveness 068

of prompt learning in multilingual tasks by simply 069

applying soft, discrete, and mixed prompting with 070

a uniform template in English. Qi et al. (2022) 071

proposed a discrete prompt learning framework 072

that constructs an augmented sample by randomly 073
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sampling a template in another language. By com-074

paring the augmented samples and the original075

samples in English template, the model can effec-076

tively perceive the correspondence between dif-077

ferent languages. However, discrete prompts of078

human-designed template words which requires ex-079

tensive external expert knowledge are not flexible080

enough to adapt to different languages. Therefore,081

the model can’t transfer cross-lingual knowledge082

from high-resource to low-resource languages.083

In this paper, we propose a novel soft prompt084

learning framework (SoftLINK) for XNLI which085

can learn language-independent knowledge and086

transfer it from high-resource languages to low-087

resource languages. First, we construct cloze-style088

questions for the input samples with soft prompts089

which consist of trainable vectors. Second, we ap-090

ply the code-switched substitution strategy (Qin091

et al., 2021) to generate multilingual questions092

which can be regarded as cross-lingual views for093

the English questions. Compared with discrete094

prompts, soft prompts perform prompting directly095

in the embedding space of the model and can be096

easily adapted to any language without human-097

designed templates. Both the original and aug-098

mented questions are fed into a pre-trained cross-099

lingual base model. The classification probability100

distributions is calculated by predicting the masked101

token with a multilingual verbalizer. Third, the102

two probability distributions are regularized by103

the Kullback-Leibler divergence (KLD) loss (Kull-104

back and Leibler, 1951) to align the representations105

of original and augmented multilingual questions.106

The entire model is trained with a combined objec-107

tive of the cross-entropy term for classification ac-108

curacy and the KLD term for representation consis-109

tency. Finally, to transfer the language-independent110

knowledge learned in the training stage, the well-111

trained soft prompt vectors will be frozen in the112

inference stage. Experimental results on the XNLI113

benchmark show that SoftLINK outperforms the114

baseline models by a significant margin under both115

the few-shot and full-shot settings.116

Our contributions can be summarized as follows:117

• We propose a novel Soft prompt learn-118

ing framework enhanced by Language-119

Independent Knowledge (SoftLINK) for120

XNLI. SoftLINK leverages bilingual dictio-121

naries to generate an augmented multilingual122

code-switched questions for original ques-123

tions constructed with soft prompts.124

• We adopt a multilingual verbalizer to align 125

the representations of original and augmented 126

questions in the multilingual semantic space 127

with consistency regularization. 128

• We conduct extensive experiments on XNLI 129

and demonstrate that SoftLINK can signifi- 130

cantly outperform the baseline methods under 131

the few-shot and full-shot cross-lingual trans- 132

fer settings. 133

2 Related Work 134

Early methods for cross-lingual natural language 135

inference are mainly neural network, such as Con- 136

neau et al. (2018) and Artetxe and Schwenk (2019). 137

which encode sentences from different languages 138

into the same embedding space via parallel corpora 139

(Hermann and Blunsom, 2014). In recent years, 140

large pre-trained cross-lingual language models 141

have demonstrated promising performance. Devlin 142

et al. (2019) extend the basic language model BERT 143

to multilingual scenarios by pre-trained with multi- 144

lingual corpora. Conneau and Lample (2019) pro- 145

pose a cross-lingual language model (XLM) which 146

enhances BERT with the translation language mod- 147

eling (TLM) objective. XLM-R (Conneau et al., 148

2020) is an improvement of XLM by training with 149

more languages and more epochs. Although these 150

methods do not rely on parallel corpora, they still 151

have limitations because fine-tuning needs annota- 152

tions efforts which are prohibitively expensive for 153

low-resource languages. 154

To tackle this problem, some data augmentation 155

methods have been proposed for XNLI. Ahmad 156

et al. (2021) propose to augment mBERT with uni- 157

versal language syntax using an auxiliary objective 158

for cross-lingual transfer. Dong et al. (2021) adopt 159

Reorder Augmentation and Semantic Augmenta- 160

tion to synthesize controllable and much less noisy 161

data for XNLI. Bari et al. (2021) improve cross- 162

lingual generalization by unsupervised sample se- 163

lection and data augmentation from the unlabeled 164

training examples in the target language. However, 165

these methods do not perform well in few-shot set- 166

tings. 167

Recently, prompt learning (Brown et al., 2020; 168

Shin et al., 2020; Lester et al., 2021) has shown 169

promising results in many NLP tasks in few-shot 170

setting. The key idea of prompt learning for 171

XNLI is reformulating the text classification prob- 172

lem into a masked language modeling problem 173

by constructing cloze-style questions. Schick and 174
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XLM-R

<s>Two men on bicycles competing in a race.</s> 
<s>People are riding bikes? <v1>…<vn> <MASK> </s> 

<s>Two männer on bicyclettes competing in a yarı¸s.</s> 
<s>People are equitazione bikes? <v1>…<vn> <MASK> </s> 

XLM-R

Code-switched
Strategy

yes nomaybe

Multilingual verbalizer 
yes nomaybe

Multilingual verbalizer 

KLD Loss

CE Loss CE Loss+

Training 
Objective

xxxx: Premise, Hypothesis

: Soft prompts

 : Mask tokens

Figure 1: The framework of SoftLINK. The left part is the original questions. The right part is the augmented
multilingual questions. The model is trained with a combined objective of the cross-entropy losses and the KLD
loss.

Schütze (2021) explore discrete prompt learning175

to NLI with manually defined templates. Vu et al.176

(2022); Su et al. (2022) propose a novel prompt-177

based transfer learning approach, which first learns178

a prompt on one or more source tasks and then179

uses it to initialize the prompt for a target task.180

Wu and Shi (2022) adopt separate soft prompts to181

learn embeddings enriched with the domain knowl-182

edge Zhao and Schütze (2021) demonstrate that183

prompt-learning outperforms fine-tuning in few-184

shot XNLI by simply applying soft, discrete, and185

mixed prompting with a uniform template in En-186

glish. Qi et al. (2022) proposed a discrete prompt187

learning framework that constructs an augmented188

sample by randomly sampling a template in another189

language. However, the above methods can’t trans-190

fer knowledge from high-resource to low-resource191

languages. In our work, we adopt trainable soft192

prompts to learn language-independent knowledge193

by comparing the augmented multilingual and orig-194

inal questions.195

3 Framework196

The proposed SoftLINK framework is illustrated197

in Figure 1. The training process of SoftLINK198

is formalized in Algorithm 1. For every training199

triple (premise, hypothesis, label) in English, Soft-200

LINK first constructs a cloze-style question with201

soft prompts initialized from the vocabulary. Then,202

we apply the code-switched substitution strategy 203

to generate multilingual questions which can be re- 204

garded as cross-lingual views for the English ques- 205

tions. Both the original and augmented questios 206

are fed into a pre-trained cross-lingual model to 207

calculate the answer distributions of the mask to- 208

ken with a multilingual verbalizer. SoftLINK is 209

trained by minimizing the cross-entropy loss for 210

classification accuracy and the Kullback-Leibler 211

divergence (KLD) loss for representation consis- 212

tency. Finally, the well-trained soft prompt vectors 213

containing language-independent knowledge will 214

be frozen for use in the inference stage. 215

3.1 Soft Prompting 216

Each instance in batch I in XNLI dataset is denoted 217

as (Pi, Hi, Yi)i∈I , where Pi = {wP
j }mj=1 denotes 218

the word sequence of premise, Hi = {wH
j }nj=1 de- 219

notes the word sequence of hypothesis, and Yi ∈ Y 220

denotes the class label. SoftLINK first constructs a 221

cloze-style question with soft prompts as illustrated 222

in Table 1. The question template is expressed 223

as "<s>Premise.</s> <s>Hypothesis? <v1>...<vn> 224

<MASK></s>", where <s> and </s> are special 225

tokens to separate sentences, <MASK> is the mask 226

token, and vi is associated with a trainable vector 227

(in the PLM’s first embedding layer). Soft prompts 228

are tuned in the continuous space and initialized 229

with the average value of embeddings of the PLM’s 230
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multilingual vocabulary.

Algorithm 1 The training process of SoftLINK.

Input: the number of epochs E and the training
set D = {(Pi, Hi, Yi)}Mi=1.

1: Reform D to a set of cloze-style questions
Q = {(Qi, Yi)}Mi=1 with soft prompts for each
(Pi, Hi).

2: Extend the set Q = {(Qi, Q
a
i , Yi)}Mi=1 by gen-

erating augmented multilingual questions with
the code-switched strategy.

3: Divide Q into a set of batches B.
4: for epoch e = 1 to E do
5: Shuffle B.
6: for each batch {(Qi, Q

a
i , Yi)}1≤i≤N in B

do
7: Compute total loss L by Eq. 7.
8: Update the parameters θ.
9: end for

10: end for
231

In cross-lingual transfer scenarios, it’s a chal-232

lenge for a model to learn the cross-lingual knowl-233

edge from the source language and transfer to the234

target language. Therefore, we adopt the code-235

switched strategy to create multilingual augmenta-236

tions for the original questions. Followed by Qin237

et al. (2021), we use bilingual dictionaries (Lample238

et al., 2018) to replace the words of the original239

sentences. Specifically, for the English sentence,240

we randomly choose n = α ∗ l words to be re-241

placed with a translation word from a bilingual242

dictionary, where α is the code-switched rate and243

l is the length of the sentence. For example, given244

the sentence "Two men on bicycles competing in245

a race." in English, we can generate a multilingual246

code-switched sample "Two Männer(DE) on Bicy-247

clettes(FR) competing in a yarış(TR)." which can248

be regarded as the cross-lingual view of the same249

meaning across different languages. The original250

and augmented cloze-style questions are fed into a251

pre-trained cross-lingual model to obtain the con-252

textualized representation of the mask token, de-253

noted as homask and hamask. Let l denotes the size of254

the vocabulary and d the dimension of the repre-255

sentation of the mask token, the answer probability256

distribution of the original question is calculated257

by:258

yo = softmax(Whomask), (1)259

where W ∈ Rl×d is trainable parameters of the260

pre-trained MLM layer. The answer probability 261

distribution ya of the augmented question is calcu- 262

lated by the same way. 263

3.2 Multilingual Verbalizer 264

After calculating the answer probability distribu- 265

tion of the mask token, we use the verbalizer to 266

calculate the classification probability distribution. 267

The verbalizer M → V is a function that maps 268

NLI labels to indices of answer words in the given 269

vocabulary. Concretely, the verbalizer of English is 270

defined as {"Entailment"→ "yes"; "Contradiction" 271

→ "no"; "Neutral"→ "maybe"}. 272

Without parallel corpora in cross-lingual scenar- 273

ios, there is a gap in the classification space for 274

different languages. Thus we use a multilingual 275

verbalizer to learn a consistent classfication proba- 276

bility distribution across different languages. The 277

multilingual verbalizer is denoted as {Ml, l ∈ L}, 278

where L is the set of languages and l is a certain 279

language. Specifically, the verbalizer of Turkish is 280

defined as {"Entailment"→ "Evet."; "Contradic- 281

tion"→ "hiçbir"; "Neutral"→ "belki"}. 282

3.3 Trainning Objective 283

In the training stage, given a batch I of N triples 284

denoted as (Xo
i , X

a
i , Yi)1≤i≤N , the cross-entropy 285

losses for the original question Xo
i and the aug- 286

mented question Xa
i are respectively calculated 287

by: 288

`oi = −
1

|L|
∑
l∈L

N∑
j=1

I(j =Ml(Yi)) log y
o
i,j , (2) 289

`ai = − 1

|L|
∑
l∈L

N∑
j=1

I(j =Ml(Yi)) log y
a
i,j , (3) 290

where yoi,j (resp. yai,j) denotes the j-th element 291

of the answer probability distribution yo for the 292

original question Xo
i (resp. for the input Xa

i ) and 293

I(C) is the indicator function that returns 1 if C is 294

true or 0 otherwise. The cross-entropy losses of the 295

original and augmented questions on batch I are 296

calculated by: 297

LO = − 1

N

N∑
i=1

`oi , (4) 298

LA = − 1

N

N∑
i=1

`ai . (5) 299
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However, for the same premise and hypothe-300

sis, the answer probability distribution of the aug-301

mented multilingual question created by the code-302

switched strategy may lead to a deviation from that303

of the original question due to the misalignment of304

representations in the multilingual semantic space.305

Such a deviation may cause the model to learn the306

wrong probability distribution when the model is307

evaluated on target languages. To alleviate this308

problem, we propose a consistency regularization309

to constrain the answer probability distribution. In310

particular, we adopt the Kullback-Leibler diver-311

gence (KLD) to encourage the answer probability312

distribution of the augmented question to be close313

to that of the original question. The consistency314

loss is defined as:315

LKLD =
1

N

N∑
i=1

(KL(yoi ||yai ) + KL(yai ||yoi )),

(6)316

The overall objective in SoftLINK is a tuned317

linear combination of the cross-entropy losses and318

KLD loss, defined as:319

L = λOLO + λALA + λKLDLKLD, (7)320

where λ∗ are tuninig parameters for each loss321

term.322

4 Experiment Setup323

4.1 Benchmark Dataset324

We conducted experiments on the large-scale multi-325

lingual benchmark dataset of XNLI (Conneau et al.,326

2018), which extends the MultiNLI (Williams et al.,327

2018) benchmark (in English) to 15 languages1328

through translation and comes with manually an-329

notated development sets and test sets. For each330

language, the training set comprises 393K anno-331

tated sentence pairs, whereas the development set332

and the test set comprises 2.5 K and 5K annotated333

sentence pairs, respectively.334

We evaluate SoftLINK and other baseline mod-335

els under the few-shot and full-shot cross-lingual336

settings, where the models are only trained on337

English and evaluated on other languages. For338

the few-shot setting, the training and validation339

data are sampled by Zhao and Schütze (2021)340

with K ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256} shots341

1The languages are English (EN), French (FR), Spanish
(ES), German (DE), Greek (EL), Bulgarian (BG), Russian
(RU), Turkish (TR), Arabic (AR), Vietnamese (VI), Thai (TH),
Chinese (ZH), Hindi (HI), Swahili (SW), and Urdu (UR)

per class from the English training data in XNLI. 342

We report classification accuracy as the evaluation 343

metric. 344

4.2 Implementation Details 345

We implement SoftLINK using the pre-trained 346

XLM-RoBERTa model (Conneau et al., 2020) 347

based on PyTorch (Paszke et al., 2019) and the 348

Huggingface framework (Wolf et al., 2020). 349

We train our model for 70 epochs with a batch 350

size of 24 using the AdamW optimizer. The hyper- 351

parameter α is set to 0.3 for combining objectives. 352

The maximum sequence length is set to 256. All the 353

experiments are conducted 5 times with different 354

random seeds ({1, 2, 3, 4, 5}) and we report the 355

average scores. The trained soft prompt vectors 356

containing language-independent knowledge will 357

be frozen in the inference stage. Appendix A shows 358

the hyperparameters and computing devices used 359

under different settings in detail. 360

4.3 Baseline Models 361

We compared SoftLINK with the following cross- 362

lingual language models: (1) mBERT (Devlin et al., 363

2019) is a BERT model pre-trained on Wikipedia 364

with 102 languages; (2) XLM (Conneau and Lam- 365

ple, 2019) is pre-trained for two objectives (MLM 366

and TLM) on Wikipedia with 100 languages; (3) 367

XLM-R (Conneau et al., 2020) extends XLM with 368

larger corpora and more epochs; (4) The work 369

(Dong et al., 2021) proposes an adversarial data 370

augmentation scheme based on XLM-R; (5) UXLA 371

(Bari et al., 2021) enhances XLM-R with data aug- 372

mentation and unsupervised sample selection; (6) 373

The work (Zhao and Schütze, 2021) explores three 374

prompt-learning methods for few-shot XNLI, in- 375

cluding DP, SP, and MP; (7) PCT (Qi et al., 2022) 376

is a discrete prompt learning framework with cross- 377

lingual templates. 378

5 Experiment Results 379

5.1 Main Results 380

We conducted experiments on XNLI dataset under 381

the cross-lingual transfer setting, where models are 382

trained on the English dataset and then directly eval- 383

uated on the test set of all languages. The settings 384

can be further divided into two sub-settings: the 385

few-shot setting using a fixed number of training 386

samples, and the full-shot setting using the whole 387

training set. 388
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Shots Models EN FR ES DE EL BG RU TR AR VI TH ZH HI SW UR AVG.

1

DP 33.2 34.1 33.8 33.0 33.2 33.2 33.8 34.0 32.1 32.8 33.0 33.6 33.4 33.5 32.0 33.2
SP 36.7 38.6 38.3 36.9 37.5 36.5 37.6 34.8 34.8 35.1 35.7 37.6 36.4 34.5 35.5 36.4
MP 33.3 33.7 34.0 33.0 32.1 32.3 33.0 34.6 32.3 32.8 32.2 33.4 34.1 32.9 32.7 33.1
PCT† 37.1 36.2 37.4 37.2 35.8 36.8 36.1 36.4 34.5 35.3 36.6 37.7 35.8 34.1 36.3 36.2
Ours 43.0 40.1 41.1 39.8 40.2 42.5 44.0 37.4 41.1 41.5 40.4 42.2 40.1 38.3 37.7 40.6

2

DP 35.4 34.8 35.4 34.4 34.7 35.1 34.9 35.2 32.9 33.3 35.4 36.5 34.1 33.0 32.8 34.5
SP 38.0 38.6 38.2 38.2 38.4 38.1 39.2 34.8 35.9 36.7 37.2 37.7 36.3 34.4 35.5 37.1
MP 34.6 34.3 33.8 34.1 33.3 34.3 34.0 34.5 32.8 33.8 34.6 35.4 33.8 33.9 32.6 34.0
PCT† 39.3 38.4 39.0 38.7 38.9 39.2 38.8 38.2 37.6 38.1 38.4 40.1 38.2 33.7 38.0 38.3
Ours 41.3 42.6 40.9 44.2 42.1 41.7 44.1 40.2 40.2 39.3 40.0 40.8 41.3 37.5 40.4 41.1

4

DP 39.5 38.3 38.9 38.9 37.7 37.6 37.5 37.2 35.4 36.0 37.8 38.7 36.4 34.7 35.9 37.4
SP 41.8 41.1 39.8 40.1 40.8 40.5 41.7 35.9 38.0 37.9 39.2 39.5 37.6 35.8 37.7 39.2
MP 36.3 35.4 35.5 35.2 34.0 33.8 34.2 35.6 33.1 34.1 36.0 37.1 34.6 33.5 33.5 34.8
PCT† 41.1 39.1 40.9 41.0 39.4 39.5 40.2 39.0 37.4 38.0 38.4 40.3 37.5 35.2 37.9 39.0
Ours 46.8 45.1 45.5 46.4 44.6 44.4 44.8 42.6 40.5 39.6 41.2 43.9 43.3 38.2 42.7 43.3

8

DP 36.4 35.2 35.0 34.8 34.8 34.8 34.6 34.1 32.7 33.7 35.1 35.6 33.0 32.9 33.1 34.4
SP 39.0 38.8 38.2 38.2 38.7 38.8 39.7 35.1 36.3 37.4 37.9 37.2 35.9 34.5 35.6 37.4
MP 34.8 34.8 34.7 34.8 33.2 33.2 33.8 35.1 32.7 33.6 34.5 36.3 34.8 33.1 32.7 34.1
PCT† 38.3 35.8 38.7 37.2 36.6 36.1 37.1 35.9 34.8 35.4 36.3 38.1 36.1 34.5 34.9 36.4
Ours 47.5 46.7 47.0 46.4 47.5 46.5 46.3 43.7 46.5 45.8 45.1 42.5 43.2 42.1 42.8 45.3

16

DP 38.2 36.6 36.9 37.5 37.4 37.1 36.5 35.7 35.1 35.8 37.2 37.9 35.9 33.8 34.9 36.4
SP 39.5 40.9 39.4 40.2 40.4 40.6 40.6 36.3 38.9 38.5 39.5 37.4 36.9 37.1 35.9 38.8
MP 33.2 34.4 34.5 34.0 32.6 33.0 33.9 34.7 32.5 33.3 33.5 35.7 34.3 33.3 32.7 33.7
PCT 46.5 44.3 41.5 36.9 45.7 40.8 42.4 43.7 43.6 44.7 43.9 44.8 44.8 40.1 42.5 43.1
Ours 48.8 48.0 47.1 47.7 47.2 47.4 47.8 44.3 45.6 46.6 44.9 46.1 44.9 43.4 43.3 46.2

32

DP 43.7 43.9 42.8 43.5 42.5 43.5 42.5 42.0 41.8 41.9 40.5 39.9 39.3 37.5 39.8 41.7
SP 44.7 42.3 42.3 42.1 42.3 43.4 43.8 38.8 40.3 42.1 40.0 39.6 38.9 37.5 38.8 41.1
MP 45.5 44.7 41.2 42.6 42.3 42.2 42.2 41.2 41.0 41.7 40.2 40.9 40.2 36.5 40.5 41.5
PCT 49.6 48.8 45.5 44.4 47.4 45.4 45.5 44.3 45.7 46.7 41.6 45.6 46.7 40.3 42.9 45.4
Ours 50.7 48.5 49.1 48.7 48.7 49.8 48.8 47.0 47.9 48.8 45.8 45.1 45.2 43.6 44.9 47.5

64

DP 48.9 48.0 45.0 48.1 46.9 47.6 44.9 45.7 45.6 47.3 45.7 45.2 41.6 41.0 43.3 45.7
SP 49.0 46.1 45.8 46.0 43.7 43.8 44.5 41.9 43.5 45.3 44.7 44.2 40.9 40.5 40.1 44.0
MP 51.8 48.3 46.6 48.2 46.8 46.0 44.8 44.8 43.9 48.3 45.0 43.0 40.1 37.8 44.0 45.3
PCT 51.5 51.3 50.9 49.3 50.6 50.2 49.1 47.4 48.1 49.7 47.3 48.2 47.6 44.6 44.0 48.7
Ours 54.0 53.6 52.3 51.1 50.7 52.6 51.4 50.1 48.9 51.4 51.2 53.1 51.1 46.3 48.9 51.1

128

DP 53.7 49.3 48.5 51.0 47.4 50.5 46.9 49.6 46.2 48.9 44.8 49.6 44.8 42.0 44.2 47.8
SP 49.5 46.4 45.8 45.0 46.3 46.2 45.0 41.9 44.8 45.0 45.6 45.7 43.3 41.2 41.2 44.9
MP 52.6 50.3 49.7 49.0 49.1 48.0 46.4 48.5 46.5 48.2 48.1 50.5 47.0 42.9 44.0 48.1
PCT 55.0 53.3 53.8 52.8 53.4 51.9 51.7 50.9 50.4 51.7 50.0 51.2 51.5 47.0 47.9 51.5
Ours 56.6 55.1 55.7 54.7 55.4 55.7 53.7 53.5 52.1 54.5 53.4 54.3 53.1 49.3 51.0 53.9

256

DP 60.1 54.4 50.6 55.4 55.1 55.6 51.4 50.8 53.2 55.1 53.4 52.7 46.1 45.3 48.4 52.5
SP 60.6 55.8 54.8 53.0 53.1 56.0 52.5 52.1 52.3 54.5 54.5 54.6 49.4 47.3 48.5 53.3
MP 60.1 55.3 51.6 50.7 54.6 54.0 53.5 51.3 52.8 52.3 53.4 53.8 49.6 45.3 47.2 52.4
PCT 60.3 58.3 58.3 56.3 57.9 56.7 55.2 54.6 54.7 57.4 55.6 55.8 54.6 51.6 52.6 56.0
Ours 63.3 59.5 61.0 59.5 58.6 60.5 57.8 56.4 58.2 59.2 59.1 60.6 56.1 56.0 53.5 58.6

Table 2: Comparison results on XNLI under the few-shot cross-lingual transfer setting in accuracy(%). Each
number is the mean performance of 5 runs. "AVG." is the average accuracy for 15 languages. PCT† denote our
reproduced results of the model in Qi et al. (2022). The best performance is in bold.

Few-shot results Table 2 reports the results for389

comparing SoftLINK with other models on XNLI390

under the few-shot setting. The results of com-391

pared models are taken from Zhao and Schütze392

(2021) and (Qi et al., 2022). PCT† in the 1, 2,393

4, 8-shot experiments are reproduced by us, for394

not being reported before. Note that all models395

are based on XLM-Rbase and trained on the same396

split of data from Zhao and Schütze (2021). Re-397

sults show that SoftLINK significantly outperforms398

all baselines for all languages under all settings. 399

As expected, all models benefit from more shots. 400

When the K shots per class increases, the gap be- 401

tween the performance of SoftLINK and the state- 402

of-the-art model (PCT) becomes larger, implying 403

our model is more effective and has a stronger abil- 404

ity to learn the language-independent knowledge 405

when training data are fewer. In particular, Soft- 406

LINK outperforms PCT by 4.4%, 2.8%, 4.3%, and 407

8.9% in the 1/2/4/8-shot experiments respectively. 408
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Models EN FR ES DE EL BG RU TR AR VI TH ZH HI SW UR AVG.

mBERT 73.7 70.4 70.7 68.7 69.1 70.4 67.8 66.3 66.8 66.5 64.4 68.3 64.2 61.8 59.3 67.2
XLM 83.2 76.7 77.7 74.0 72.7 74.1 72.7 68.7 68.6 72.9 68.9 72.5 65.6 58.2 62.4 70.7
XLM-Rbase 84.6 78.2 79.2 77.0 75.9 77.5 75.5 72.9 72.1 74.8 71.6 73.7 69.8 64.7 65.1 74.2
Dong et al. (2021) 80.8 75.8 77.3 74.5 74.9 76.3 74.9 71.4 70.0 74.5 71.6 73.6 68.5 64.8 65.7 73.0
DP-XLM-Rbase 83.9 78.1 78.5 76.1 75.7 77.1 75.3 73.2 71.6 74.7 70.9 73.4 70.2 63.6 65.5 73.9
SP-XLM-Rbase 84.7 78.3 78.8 75.6 75.3 76.3 75.7 73.3 70.3 74.0 70.6 74.1 70.2 62.8 64.9 73.7
MP-XLM-Rbase 84.2 78.4 78.8 76.9 75.3 76.5 75.7 72.7 71.2 75.2 70.8 72.8 70.7 61.5 66.0 73.8
PCT-XLM-Rbase 84.9 79.4 79.7 77.7 76.6 78.9 76.9 74.0 72.9 76.0 72.0 74.9 71.7 65.9 67.3 75.3
SoftLINK-XLM-Rbase 85.2 80.8 79.9 78.7 84.1 81.3 79.5 76.0 77.5 78.8 77.0 76.0 72.0 77.7 77.8 78.8

XLM-Rlarge 88.9 83.6 84.8 83.1 82.4 83.7 80.7 79.2 79.0 80.4 77.8 79.8 76.8 72.7 73.3 80.4
UXLA - - 85.7 84.2 - - - - 80.5 - - - 78.7 74.7 73.4 -
PCT-XLM-Rlarge 88.3 84.2 85.1 83.7 83.1 84.4 81.9 81.2 80.9 80.7 78.8 80.3 78.4 73.6 75.6 81.3
SoftLINK-XLM-Rlarge 88.9 85.1 85.8 84.2 83.7 85.2 82.3 82.1 81.5 81.4 79.7 81.2 79.1 74.2 76.4 82.1

Table 3: Comparison results on XNLI under the full-shot cross-lingual transfer setting in accuracy(%). Each
number is the mean performance of 5 runs. "AVG." is the average accuracy for 15 languages. The best performance
is in bold.

The improvements become less significant when409

more shots are available. When the K shots per410

class are larger than 8, the average performance411

of SoftLINK also outperforms PCT by an abso-412

lute gain of 2.5% on average. Furthermore, for413

different languages, all methods perform best on414

EN (English) and worst on AR (Arabic), VI (Viet-415

namese), UR (Urdu), and SW (Swahili). Because416

it is difficult to obtain usable corpora for these low-417

resource languages for XLM-R. SoftLINK also out-418

performs PCT on low-resource languages, which419

demonstrates that our model is more effective in420

cross-lingual scenarios, especially for low-resource421

languages.422

Full-shot results Table 3 shows the results on423

XNLI under the full-shot setting. SoftLINK-XLM-424

Rbase achieves 78.8% accuracy averaged by 15425

target languages, significantly outperforming the426

basic model XLM-Rbase by 4.6%. Compared427

with PCT, SoftLINK improves by 3.5% on aver-428

age based on XLM-Rbase. Furthermore, we can429

observe that the accuracy of SoftLINK exceeds430

PCT by 0.3% on EN, but 4.6% on AR, 11.8% on431

SW, and 10.5% on UR. This indicates that Soft-432

LINK can obtain more cross-lingual knowledge433

and thus better learn the semantic representations434

on low-resource languages. To further investigate435

the effectiveness, we also evaluated SoftLINK with436

baselines based on XLM-Rlarge model. It can437

be seen that SoftLINK achieves 82.1% accuracy438

on average, significantly outperforming PCT and439

XLM-Rlarge by 0.8% and 1.7%. Compared with440

the results on XLM-Rbase, the improvements of441

SoftLINK on XLM-Rlarge are smaller, which in-442

dicates that SoftLINK is more effective on XLM-443

Rbase which has fewer parameters and worse cross- 444

lingual ability. The performance gains are due to 445

the stronger ability of SoftLINK to learn language- 446

independent knowledge by aligning the represen- 447

tations of original and augmented samples in the 448

multilingual semantic space with consistency regu- 449

larization. 450

5.2 Ablation Study 451

To better understand the contribution of each key 452

component of SoftLINK, we conduct an ablation 453

study under the 8-shot setting with XLM-Rbase. 454

The results are shown in Table 4. After removing 455

the code-switched method, SoftLINK simply use 456

the original inputs. The performance decreases by 457

1.9% on average which shows the augmented mul- 458

tilingual samples can help the model to understand 459

other languages. When we remove the consistency 460

loss, the average accuracy decreases by 0.5%. Re- 461

moving the multilingual verbalizer leads to 5.7% 462

accuracy drop on average. We also replace soft 463

prompts with discrete prompts as illustrated in Ta- 464

ble 1, which leads to an accuracy drop of 0.7% on 465

average. Furthermore, we use random initialized 466

prompts to replace the prompts initialized from 467

the multilingual vocabulary, which leads to 0.5% 468

accuracy drop on average. Results show that the 469

prompts are important for the model to learn the 470

cross-lingual knowledge. 471

5.3 Analysis of Code-switched Method 472

To further investigate the code-switched method, 473

we conduct experiments using different single lan- 474

guage to create the augmented multilingual sam- 475

ples. Figure 2 shows the results of SoftLINK with 476

10 different seeds under the 8-shot setting for 15 477
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Models EN FR ES DE EL BG RU TR AR VI TH ZH HI SW UR AVG.

Original 47.5 46.7 47.0 46.4 47.5 46.5 46.3 43.7 46.5 45.8 45.1 42.5 43.2 42.1 42.8 45.3
w/o code-switched 46.8 45.4 44.9 45.2 45.7 45.4 45.0 41.4 44.8 44.2 42.7 38.5 40.4 38.9 41.1 43.4
w/o consistency loss 47.3 46.3 46.9 45.6 46.8 45.6 45.5 42.7 46.3 45.7 45.0 41.8 42.2 41.9 42.7 44.8
w/o multilingual verbalizer 40.8 40.7 40.5 39.7 41.0 40.8 40.8 39.2 39.0 39.6 39.1 38.0 38.9 37.6 38.4 39.6
using discrete prompts 46.6 46.0 46.6 45.7 46.0 46.0 46.1 42.8 45.2 45.3 44.8 41.4 42.8 42.0 42.2 44.6
using random initialized prompts 47.6 46.6 46.4 45.8 46.7 45.8 44.8 43.0 46.1 45.7 44.7 42.6 42.9 40.3 42.6 44.8

Table 4: Ablation study results for SoftLINK under the 8-shot setting in accuracy(%). "AVG." is the average
accuracy for 15 languages.

AR BG DE EL ES FR HI RU TH TR VI ZH Rand
40

41

42

43

44

45

Ac
cu

ra
cy

Figure 2: Evaluation results of different strategies of
code-switched method under the 8-shot setting for 15
languages on average.

languages on average. We can observe that Soft-478

LINK performs worst with an accuracy of 40.3%479

when using ZH (Chinese) to replace the words in480

sentences. When using TR (Turkish) to replace the481

words in sentences, the performance of SoftLINK482

outperforms the results using other language. The483

reason is that TR is different from EN, while not484

too rare like low-resource languages such as UR485

and AR. Thus the model can understand it and bet-486

ter learn cross-lingual knowledge. When randomly487

select languages for each sentence, SoftLINK per-488

forms best with a lower standard deviation. There-489

fore, we use the random strategy for code-switched490

method in our experiments.491

5.4 Analysis of Soft Prompts492

We also conducted experiments to show how the493

length of soft prompts impacts the performance.494

The results are illustrated in Figure 3 under the495

8-shot setting. As shown in the figure, we can ob-496

serve that the performance of SoftLINK is very497

sensitive to the value of length. As the length of498

soft prompts decreases, the performance of Soft-499

LINK first increases and then decreases. Either500

too short or too long, the soft prompts will make501

2 3 4 5 6 7 8 9 10
The length of soft prompts

41

42

43

44

45

Ac
cu

ra
cy

Figure 3: Evaluation results of different lengths of soft
prompts under the 8-shot setting for 15 languages on
average.

our model perform badly. SoftLINK achieves the 502

best performance when the length of soft prompts 503

is 4. When the length is larger than 4, the ac- 504

curacy decreases sharply. The reason is that the 505

prompts can’t well capture the cross-lingual knowl- 506

edge when the length is too long. 507

6 Conclusion 508

In this paper, we propose a soft prompt learn- 509

ing framework enhanced by language-independent 510

knowledge (SoftLINK) for XNLI. SoftLINK lever- 511

ages bilingual dictionaries to generate an aug- 512

mented multilingual sample for input texts. Soft- 513

LINK adopts a multilingual verbalizer to align the 514

representations of original and augmented samples 515

on the semantic space with consistency regulariza- 516

tion. Experimental results on XNLI demonstrate 517

that SoftLINK significantly outperforms the previ- 518

ous methods under the few-shot and full-shot cross- 519

lingual transfer settings. The detailed analysis fur- 520

ther confirm the effectiveness of each component 521

in SoftLINK. 522

In the future, we will explore more effective 523

methods to train soft prompts and investigate how 524

to leverage more language-independent knowledge 525

to improve the performance of cross-lingual NLP 526

models. 527
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7 Ethical Considerations528

Natural Language Inference (NLI) is a fundamen-529

tal task in natural language understanding, which530

could help with tasks like questions answering,531

reading comprehension, and summarization. Re-532

cently, NLI has achieved remarkable success, due533

to the development of large-scale pre-trained mod-534

els. However, most NLI works and applications535

are English-centric, which makes it hard to gener-536

alize to other low-resource languages. Our work537

focuses on improving zero-shot cross-lingual NLI538

models that do not need any labeled data for target539

languages, which have strong multilingual compre-540

hension ability.541
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Shots α lr Epochs Weight decay Batch size

1 0.10 1e-05 70 0.01 12
2 0.10 1e-05 70 0.01 12
4 0.10 1e-05 70 0.01 12
8 0.15 1e-05 70 0.01 12

16 0.20 4e-06 70 0.01 12
32 0.15 7e-06 70 0.01 12
64 0.15 1e-06 70 0.01 12
128 0.20 1e-06 70 0.01 12
256 0.35 1e-06 70 0.01 12
Full 0.30 1e-06 70 0.01 12

Table 5: Hyperparameters used under different settings
of XNLI.

A Training Details 719

A.1 Hyperparameters 720

Table 5 shows the hyperparameters used under dif- 721

ferent settings of XNLI. The model is trained for 722

70 epochs and the checkpoint that performs best 723

on development set is selected for performance 724

evaluation. 725

A.2 Computing Device 726

All experiments are conducted on GeForce GTX 727

3090Ti. We use the batch size 24 for a single gpu. 728

Three GPUs are used for few-shot experiments. 729

The full-shot experiments use 6 GPUs. 730
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