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Abstract

Cross-lingual natural language inference is
a fundamental problem in cross-lingual lan-
guage understanding. Many recent works
have used prompt learning to address the lack
of annotated parallel corpora in XNLI. How-
ever, these methods adopt discrete prompting
by simply translating the template to the tar-
get language and need external expert knowl-
edge to design the templates. Besides, dis-
crete prompts of human-designed template
words are not trainable vectors which can
be migrated to target languages in the infer-
ence stage flexibly. In this paper, we pro-
pose a novel Soft prompt learning frame-
work enhanced by Language-INdependent
Knowledge (SoftLINK) for XNLI. SoftLINK
first constructs cloze-style question with soft
prompts for the input sample. Then we lever-
age bilingual dictionaries to generate an aug-
mented multilingual question for the original
question. SoftLINK also adopts a multilingual
verbalizer to align the representations of origi-
nal and augmented multilingual questions on
the semantic space with consistency regular-
ization. Experimental results on XNLI demon-
strate that SoftLINK can achieve state-of-the-
art performance and significantly outperform
the previous methods under the few-shot and
full-shot cross-lingual transfer settings.

1 Introduction

Multilingual NLP systems have gained more atten-
tion due to the increasing demand for multilingual
services. Cross-lingual language understanding
(XLU) plays a crucial role in multilingual systems,
in which cross-language natural language inference
(XNLI) is a fundamental and challenging task (Con-
neau et al., 2018; MacCartney and Manning, 2008).
In XNLI settings, the model is trained on the source
language with annotated data to reason the relation-
ship between a pair of sentences (namely premise
and hypothesis) and evaluated on the target lan-
guage without parallel corpora.

Type Prompt Templates

DpP Premise. Question: Hypothesis? Answer: <MASK>.
SP Premise. Hypothesis? <v;>...<v,> <MASK>.
MP Premise. Question: Hypothesis? <v;>...<v,> Answer: <MASK>.

Table 1: The example of prompt templates for NLI.
Premise and Hypothesis are a pair of sentences from
the NLI dataset. Quest ion and Answer are template
words of discrete prompts. <v;> is the trainable vector
of soft prompts.

Pre-trained multilingual language models, such
as mBERT (Devlin et al., 2019), XLLM (Conneau
and Lample, 2019) and XLM-R (Conneau et al.,
2020), have demonstrated promising performance
on cross-lingual transfer learning. These language
models learn a shared multilingual embedding
space to represent words in parallel sentences.
However, these models are trained on a large num-
ber of parallel corpora, which are not available
in many low-resource languages. The major chal-
lenge of XNLI is the lack of annotated data for
low-resource languages.

To address this problem, some works explored
using prompt learning (Brown et al., 2020; Schick
and Schiitze, 2021; Shin et al., 2020) when adapt-
ing pre-trained language models to downstream
tasks in the cross-lingual scenarios. Prompt learn-
ing reformulates the text classification problem
into a masked language modeling (MLM) prob-
lem by constructing cloze-style questions with a
special token <MASK>. The model is trained to
predict the masked word in the cloze-style ques-
tions. As shown in Table 1, prompt learning can
be divided into three types: Discrete Prompts (DP),
Soft Prompts (SP), and Mixed Prompts (MP). Zhao
and Schiitze (2021) investigated the effectiveness
of prompt learning in multilingual tasks by simply
applying soft, discrete, and mixed prompting with
a uniform template in English. Qi et al. (2022)
proposed a discrete prompt learning framework
that constructs an augmented sample by randomly



sampling a template in another language. By com-
paring the augmented samples and the original
samples in English template, the model can effec-
tively perceive the correspondence between dif-
ferent languages. However, discrete prompts of
human-designed template words which requires ex-
tensive external expert knowledge are not flexible
enough to adapt to different languages. Therefore,
the model can’t transfer cross-lingual knowledge
from high-resource to low-resource languages.

In this paper, we propose a novel soft prompt
learning framework (SoftLINK) for XNLI which
can learn language-independent knowledge and
transfer it from high-resource languages to low-
resource languages. First, we construct cloze-style
questions for the input samples with soft prompts
which consist of trainable vectors. Second, we ap-
ply the code-switched substitution strategy (Qin
et al., 2021) to generate multilingual questions
which can be regarded as cross-lingual views for
the English questions. Compared with discrete
prompts, soft prompts perform prompting directly
in the embedding space of the model and can be
easily adapted to any language without human-
designed templates. Both the original and aug-
mented questions are fed into a pre-trained cross-
lingual base model. The classification probability
distributions is calculated by predicting the masked
token with a multilingual verbalizer. Third, the
two probability distributions are regularized by
the Kullback-Leibler divergence (KLD) loss (Kull-
back and Leibler, 1951) to align the representations
of original and augmented multilingual questions.
The entire model is trained with a combined objec-
tive of the cross-entropy term for classification ac-
curacy and the KLD term for representation consis-
tency. Finally, to transfer the language-independent
knowledge learned in the training stage, the well-
trained soft prompt vectors will be frozen in the
inference stage. Experimental results on the XNLI
benchmark show that SoftLINK outperforms the
baseline models by a significant margin under both
the few-shot and full-shot settings.

Our contributions can be summarized as follows:

* We propose a novel Soft prompt learn-
ing framework enhanced by Language-
Independent Knowledge (SoftLINK) for
XNLI. SoftLINK leverages bilingual dictio-
naries to generate an augmented multilingual
code-switched questions for original ques-
tions constructed with soft prompts.

* We adopt a multilingual verbalizer to align
the representations of original and augmented
questions in the multilingual semantic space
with consistency regularization.

* We conduct extensive experiments on XNLI
and demonstrate that SoftLINK can signifi-
cantly outperform the baseline methods under
the few-shot and full-shot cross-lingual trans-
fer settings.

2 Related Work

Early methods for cross-lingual natural language
inference are mainly neural network, such as Con-
neau et al. (2018) and Artetxe and Schwenk (2019).
which encode sentences from different languages
into the same embedding space via parallel corpora
(Hermann and Blunsom, 2014). In recent years,
large pre-trained cross-lingual language models
have demonstrated promising performance. Devlin
et al. (2019) extend the basic language model BERT
to multilingual scenarios by pre-trained with multi-
lingual corpora. Conneau and Lample (2019) pro-
pose a cross-lingual language model (XLM) which
enhances BERT with the translation language mod-
eling (TLM) objective. XLM-R (Conneau et al.,
2020) is an improvement of XLM by training with
more languages and more epochs. Although these
methods do not rely on parallel corpora, they still
have limitations because fine-tuning needs annota-
tions efforts which are prohibitively expensive for
low-resource languages.

To tackle this problem, some data augmentation
methods have been proposed for XNLI. Ahmad
et al. (2021) propose to augment mBERT with uni-
versal language syntax using an auxiliary objective
for cross-lingual transfer. Dong et al. (2021) adopt
Reorder Augmentation and Semantic Augmenta-
tion to synthesize controllable and much less noisy
data for XNLI. Bari et al. (2021) improve cross-
lingual generalization by unsupervised sample se-
lection and data augmentation from the unlabeled
training examples in the target language. However,
these methods do not perform well in few-shot set-
tings.

Recently, prompt learning (Brown et al., 2020;
Shin et al., 2020; Lester et al., 2021) has shown
promising results in many NLP tasks in few-shot
setting. The key idea of prompt learning for
XNLI is reformulating the text classification prob-
lem into a masked language modeling problem
by constructing cloze-style questions. Schick and
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Figure 1: The framework of SoftLINK. The left part is the original questions. The right part is the augmented
multilingual questions. The model is trained with a combined objective of the cross-entropy losses and the KLD

loss.

Schiitze (2021) explore discrete prompt learning
to NLI with manually defined templates. Vu et al.
(2022); Su et al. (2022) propose a novel prompt-
based transfer learning approach, which first learns
a prompt on one or more source tasks and then
uses it to initialize the prompt for a target task.
Wu and Shi (2022) adopt separate soft prompts to
learn embeddings enriched with the domain knowl-
edge Zhao and Schiitze (2021) demonstrate that
prompt-learning outperforms fine-tuning in few-
shot XNLI by simply applying soft, discrete, and
mixed prompting with a uniform template in En-
glish. Qi et al. (2022) proposed a discrete prompt
learning framework that constructs an augmented
sample by randomly sampling a template in another
language. However, the above methods can’t trans-
fer knowledge from high-resource to low-resource
languages. In our work, we adopt trainable soft
prompts to learn language-independent knowledge
by comparing the augmented multilingual and orig-
inal questions.

3 Framework

The proposed SoftLINK framework is illustrated
in Figure 1. The training process of SoftLINK
is formalized in Algorithm 1. For every training
triple (premise, hypothesis, label) in English, Soft-
LINK first constructs a cloze-style question with
soft prompts initialized from the vocabulary. Then,

we apply the code-switched substitution strategy
to generate multilingual questions which can be re-
garded as cross-lingual views for the English ques-
tions. Both the original and augmented questios
are fed into a pre-trained cross-lingual model to
calculate the answer distributions of the mask to-
ken with a multilingual verbalizer. SoftLINK is
trained by minimizing the cross-entropy loss for
classification accuracy and the Kullback-Leibler
divergence (KLD) loss for representation consis-
tency. Finally, the well-trained soft prompt vectors
containing language-independent knowledge will
be frozen for use in the inference stage.

3.1 Soft Prompting

Each instance in batch Z in XNLI dataset is denoted
as (P;, H;,Y;)iez, where P; = {ij L, denotes
the word sequence of premise, H; = {wJH iy de-
notes the word sequence of hypothesis, and Y; € )V
denotes the class label. SoftLINK first constructs a
cloze-style question with soft prompts as illustrated
in Table 1. The question template is expressed
as "<s>Premise.</s> <s>Hypothesis? <vi>...<v,>
<MASK></s>", where <s> and </s> are special
tokens to separate sentences, <MASK> is the mask
token, and v; is associated with a trainable vector
(in the PLM’’s first embedding layer). Soft prompts
are tuned in the continuous space and initialized
with the average value of embeddings of the PLM’s



multilingual vocabulary.

Algorithm 1 The training process of SoftLINK.

Input: the number of epochs £ and the training

setD = {(PZ> H;, K)}z]\il

1: Reform DD to a set of cloze-style questions
Q = {(Qs, Y:)}M, with soft prompts for each
(P, H;).

2: Extend the set Q = {(Q;, Q%,Y;)}1, by gen-
erating augmented multilingual questions with
the code-switched strategy.

3: Divide QQ into a set of batches B.

4: for epoche = 1to F do

5:  Shuffle B.

6:  for each batch {(Q;,Q¢,Y;)}i<i<n in B

do
7: Compute total loss £ by Eq. 7.
8: Update the parameters 6.
: end for

10: end for

In cross-lingual transfer scenarios, it’s a chal-
lenge for a model to learn the cross-lingual knowl-
edge from the source language and transfer to the
target language. Therefore, we adopt the code-
switched strategy to create multilingual augmenta-
tions for the original questions. Followed by Qin
et al. (2021), we use bilingual dictionaries (Lample
et al., 2018) to replace the words of the original
sentences. Specifically, for the English sentence,
we randomly choose n = « * [ words to be re-
placed with a translation word from a bilingual
dictionary, where « is the code-switched rate and
[ is the length of the sentence. For example, given
the sentence "Two men on bicycles competing in
arace." in English, we can generate a multilingual
code-switched sample "Two Ménner(DE) on Bicy-
clettes(FR) competing in a yarig(TR)." which can
be regarded as the cross-lingual view of the same
meaning across different languages. The original
and augmented cloze-style questions are fed into a
pre-trained cross-lingual model to obtain the con-
textualized representation of the mask token, de-
noted as hy o and h? . Let [ denotes the size of
the Vocabulary and d the dimension of the repre-
sentation of the mask token, the answer probability
distribution of the original question is calculated
by:

Y’ = SOfthLJ?(Whﬁlask), (1

where W € R!*4 is trainable parameters of the

pre-trained MLM layer. The answer probability
distribution y* of the augmented question is calcu-
lated by the same way.

3.2 Multilingual Verbalizer

After calculating the answer probability distribu-
tion of the mask token, we use the verbalizer to
calculate the classification probability distribution.
The verbalizer M — V is a function that maps
NLI labels to indices of answer words in the given
vocabulary. Concretely, the verbalizer of English is
defined as {"Entailment" — "yes"; "Contradiction"
— "no"; "Neutral" — "maybe"}.

Without parallel corpora in cross-lingual scenar-
ios, there is a gap in the classification space for
different languages. Thus we use a multilingual
verbalizer to learn a consistent classfication proba-
bility distribution across different languages. The
multilingual verbalizer is denoted as {M;,l € L},
where L is the set of languages and [ is a certain
language. Specifically, the verbalizer of Turkish is
defined as {"Entailment" — "Evet."; "Contradic-
tion" — "hicbir"; "Neutral" — "belki"}.

3.3 Trainning Objective

In the training stage, given a batch Z of N triples
denoted as (X?, X?,Y;)1<i<n. the cross-entropy
losses for the orlgmal question X? and the aug-
mented question X' are respectively calculated
by:

0 =— |ZZIJ—Mz ) logys;, (2)

leLJ 1

ZZI

lel:] 1

Yi))logyi;, (3)

where y7 ; (resp. y;';) denotes the j-th element
of the answer probability distribution y° for the
original question X (resp. for the input X;') and
I(C) is the indicator function that returns 1 if C' is
true or 0 otherwise. The cross-entropy losses of the
original and augmented questions on batch Z are
calculated by:

1 N
coz—N;e;’, )

1 N
.CA:—N;@I. (5)



However, for the same premise and hypothe-
sis, the answer probability distribution of the aug-
mented multilingual question created by the code-
switched strategy may lead to a deviation from that
of the original question due to the misalignment of
representations in the multilingual semantic space.
Such a deviation may cause the model to learn the
wrong probability distribution when the model is
evaluated on target languages. To alleviate this
problem, we propose a consistency regularization
to constrain the answer probability distribution. In
particular, we adopt the Kullback-Leibler diver-
gence (KLD) to encourage the answer probability
distribution of the augmented question to be close
to that of the original question. The consistency
loss is defined as:

N
1 o a a o
LxLp = D (KL(y?llys) + KLy [99)),

i=1
(6)
The overall objective in SoftLINK is a tuned
linear combination of the cross-entropy losses and
KLD loss, defined as:

L=M Lo+ LA+ AkrDLrkrp, (7)

where )\, are tuninig parameters for each loss
term.

4 Experiment Setup
4.1 Benchmark Dataset

We conducted experiments on the large-scale multi-
lingual benchmark dataset of XNLI (Conneau et al.,
2018), which extends the MultiNLI (Williams et al.,
2018) benchmark (in English) to 15 languages!
through translation and comes with manually an-
notated development sets and test sets. For each
language, the training set comprises 393K anno-
tated sentence pairs, whereas the development set
and the test set comprises 2.5 K and 5K annotated
sentence pairs, respectively.

We evaluate SoftLINK and other baseline mod-
els under the few-shot and full-shot cross-lingual
settings, where the models are only trained on
English and evaluated on other languages. For
the few-shot setting, the training and validation
data are sampled by Zhao and Schiitze (2021)
with K € {1,2,4,8,16,32,64,128,256} shots

"The languages are English (EN), French (FR), Spanish
(ES), German (DE), Greek (EL), Bulgarian (BG), Russian

(RU), Turkish (TR), Arabic (AR), Vietnamese (VI), Thai (TH),
Chinese (ZH), Hindi (HI), Swahili (SW), and Urdu (UR)

per class from the English training data in XNLIL.
We report classification accuracy as the evaluation
metric.

4.2 Implementation Details

We implement SoftLINK using the pre-trained
XLM-RoBERTa model (Conneau et al., 2020)
based on PyTorch (Paszke et al., 2019) and the
Huggingface framework (Wolf et al., 2020).

We train our model for 70 epochs with a batch
size of 24 using the AdamW optimizer. The hyper-
parameter « is set to 0.3 for combining objectives.
The maximum sequence length is set to 256. All the
experiments are conducted 5 times with different
random seeds ({1, 2, 3, 4, 5}) and we report the
average scores. The trained soft prompt vectors
containing language-independent knowledge will
be frozen in the inference stage. Appendix A shows
the hyperparameters and computing devices used
under different settings in detail.

4.3 Baseline Models

We compared SoftLINK with the following cross-
lingual language models: (1) mBERT (Devlin et al.,
2019) is a BERT model pre-trained on Wikipedia
with 102 languages; (2) XLM (Conneau and Lam-
ple, 2019) is pre-trained for two objectives (MLM
and TLM) on Wikipedia with 100 languages; (3)
XLM-R (Conneau et al., 2020) extends XLM with
larger corpora and more epochs; (4) The work
(Dong et al., 2021) proposes an adversarial data
augmentation scheme based on XLM-R; (5) UXLA
(Bari et al., 2021) enhances XLM-R with data aug-
mentation and unsupervised sample selection; (6)
The work (Zhao and Schiitze, 2021) explores three
prompt-learning methods for few-shot XNLI, in-
cluding DP, SP, and MP; (7) PCT (Qi et al., 2022)
is a discrete prompt learning framework with cross-
lingual templates.

5 Experiment Results

5.1 Main Results

We conducted experiments on XNLI dataset under
the cross-lingual transfer setting, where models are
trained on the English dataset and then directly eval-
uated on the test set of all languages. The settings
can be further divided into two sub-settings: the
few-shot setting using a fixed number of training
samples, and the full-shot setting using the whole
training set.



Shots | Models | EN FR ES DE EL BG RU TR AR VI TH ZH HI SW UR | AVG.
Dp 332 341 338 33.0 332 332 338 340 321 328 330 33.6 334 335 320 | 332

Sp 36.7 38.6 383 369 375 365 37.6 348 348 351 357 37.6 364 345 355 364

1 MP 333 337 340 33.0 321 323 33.0 346 323 328 322 334 341 329 327 | 33.1
PCT' 37.1 362 374 372 358 368 36.1 364 345 353 36.6 37.7 358 341 363 | 362

Ours 43.0 40.1 41.1 398 402 425 44.0 374 411 415 404 422 401 383 37.7 | 40.6

DP 354 348 354 344 347 351 349 352 329 333 354 365 341 33.0 328 | 345

Sp 380 38.6 382 382 384 381 392 348 359 367 372 377 363 344 355 | 37.1

2 MP 346 343 338 341 333 343 340 345 328 338 346 354 338 339 326 | 34.0
PCT' 39.3 384 39.0 387 389 392 388 382 37.6 38.1 384 40.1 382 337 380 | 383

Ours 41.3 42.6 409 442 421 417 441 402 40.2 393 40.0 408 413 375 404 | 411

Dp 39.5 383 389 389 377 376 375 372 354 360 37.8 387 364 347 359 | 374

Sp 41.8 41.1 398 40.1 408 405 41.7 359 380 379 392 395 376 358 37.7| 392

4 MP 363 354 355 352 340 338 342 356 33.1 341 360 37.1 346 335 335]| 348
PCT' 41.1 39.1 409 41.0 394 395 402 39.0 374 38.0 384 403 375 352 379 39.0

Ours 46.8 45.1 455 464 446 444 448 426 405 39.6 412 439 433 382 42.7 | 433

Dp 364 352 350 348 348 348 346 34.1 327 337 351 356 33.0 329 331 | 344

SP 39.0 38.8 382 382 387 388 39.7 351 363 374 379 372 359 345 356 | 374

8 MP 348 348 347 348 332 332 338 351 327 336 345 363 348 33.1 327 | 34.1
PCT' 383 358 387 372 36.6 36.1 371 359 348 354 363 38.1 36.1 345 349 | 364

Ours 475 46.7 470 464 475 465 463 437 46.5 458 451 425 432 421 428 | 453

DP 382 36.6 369 375 374 371 36,5 357 351 358 372 379 359 338 349 | 364

Sp 39.5 409 394 402 404 406 406 363 389 385 395 374 369 371 359 | 388

16 | MP 332 344 345 340 32,6 33.0 339 347 325 333 335 357 343 333 327 | 337
PCT 46.5 443 415 369 457 408 424 437 43.6 447 439 448 448 40.1 425 | 43.1

Ours 48.8 48.0 47.1 477 472 474 478 443 456 46.6 449 46.1 449 434 433 | 46.2

Dp 437 439 428 435 425 435 425 420 41.8 419 405 399 393 375 398 | 417

Sp 447 423 423 421 423 434 438 38.8 403 4211 40.0 39.6 389 375 388 | 41.1

32 | MP 455 447 412 426 423 422 422 412 410 41.7 402 409 402 365 405 | 415
PCT 49.6 488 455 444 474 454 455 443 457 467 41.6 456 4677 403 429 | 454

Ours 50.7 48.5 49.1 48.7 48.7 498 488 47.0 479 488 458 451 452 43.6 449 | 475

Dp 489 48.0 450 481 469 476 449 457 456 473 457 452 41.6 41.0 433 | 457

SP 49.0 46.1 458 46.0 437 438 445 419 435 453 447 442 409 405 40.1 | 440

64 | MP 51.8 483 46.6 482 46.8 46.0 448 448 439 483 450 43.0 40.1 378 44.0| 453
PCT 51.5 513 509 493 50.6 502 49.1 474 48.1 497 473 482 47.6 44.6 44.0 | 487

Ours 540 53.6 523 511 50.7 526 514 501 489 514 512 531 511 463 489 | 51.1

DP 5377 493 485 51.0 474 505 469 49.6 462 489 448 49.6 448 420 442 | 478

Sp 49.5 464 458 450 463 462 450 419 448 450 456 457 433 412 412 | 449

128 | MP 526 503 497 49.0 49.1 48.0 464 485 465 482 48.1 505 47.0 429 44.0 | 48.1
PCT 55.0 533 538 528 534 519 51.7 509 504 51.7 500 512 515 470 479 | 515

Ours 56.6 55.1 55.7 54.7 554 557 537 535 521 545 534 543 531 493 51.0 | 539

DpP 60.1 544 50.6 554 551 556 514 508 532 551 534 527 46.1 453 484 | 525

Sp 60.6 55.8 548 53.0 53.1 56.0 525 521 523 545 545 546 494 473 485 | 533

256 | MP 60.1 553 51.6 50.7 54.6 54.0 535 513 528 523 534 538 49.6 453 472 | 524
PCT 603 583 583 563 579 5677 552 546 547 574 556 558 546 51.6 52.6| 56.0

Ours 63.3 59.5 61.0 59.5 58.6 605 578 564 582 592 59.1 60.6 56.1 56.0 53.5 | 58.6

Table 2: Comparison results on XNLI under the few-shot cross-lingual transfer setting in accuracy(%). Each
number is the mean performance of 5 runs. "AVG." is the average accuracy for 15 languages. PCT' denote our
reproduced results of the model in Qi et al. (2022). The best performance is in bold.

Few-shot results Table 2 reports the results for
comparing SoftLINK with other models on XNLI
under the few-shot setting. The results of com-
pared models are taken from Zhao and Schiitze
(2021) and (Qi et al., 2022). PCT' in the 1, 2,
4, 8-shot experiments are reproduced by us, for
not being reported before. Note that all models
are based on XLM-R, s and trained on the same
split of data from Zhao and Schiitze (2021). Re-
sults show that SoftLINK significantly outperforms

all baselines for all languages under all settings.
As expected, all models benefit from more shots.
When the K shots per class increases, the gap be-
tween the performance of SoftLINK and the state-
of-the-art model (PCT) becomes larger, implying
our model is more effective and has a stronger abil-
ity to learn the language-independent knowledge
when training data are fewer. In particular, Soft-
LINK outperforms PCT by 4.4%, 2.8%, 4.3%, and
8.9% in the 1/2/4/8-shot experiments respectively.



Models EN FR ES DE EL BG RU TR AR VI TH ZH HI SW UR |AVG
mBERT 73.7 704 70.7 68.7 69.1 704 678 663 66.8 665 644 683 642 61.8 593 | 672
XLM 832 767 717 740 727 741 727 687 68.6 729 689 725 656 582 624 | 70.7
XLM-Rpzse 84.6 782 1792 770 759 775 755 729 721 748 71.6 737 698 647 651 | 742
Dong et al. (2021) 80.8 758 773 745 749 763 749 714 700 745 71.6 73.6 685 648 657 | 73.0
DP-XLM-Ry,..c 839 78.1 785 76.1 757 77.1 753 732 716 747 709 734 702 63.6 655 | 73.9
SP-XLM-Ry.cc 847 78.3 788 756 753 763 757 733 703 740 70.6 741 702 628 64.9 | 73.7
MP-XLM-Ry_ e 842 784 788 769 753 765 757 727 712 752 708 728 70.7 615 66.0 | 73.8
PCT-XLM-Ry.cc 849 794 797 717 766 789 769 740 729 760 720 749 717 659 67.3| 753
SoftLINK-XLM-Rp,... | 852 80.8 799 787 84.1 813 795 760 775 788 77.0 760 720 77.7 71.8 | 788
XLM-Riarge 889 83.6 84.8 831 824 837 807 792 79.0 804 778 79.8 768 727 733 | 80.4
UXLA - - 85.7 84.2 - - - - 80.5 - - - 78.7 747 734 -
PCT-XLM-R1.rge 88.3 842 85.1 837 831 844 819 812 809 807 788 803 784 73.6 756 | 813
SoftLINK-XLM-R1..q | 88.9 85.1 858 842 837 852 823 821 815 814 79.7 812 791 742 764 | 821
Table 3: Comparison results on XNLI under the full-shot cross-lingual transfer setting in accuracy(%). Each

number is the mean performance of 5 runs. "AVG." is the average accuracy for 15 languages. The best performance

is in bold.

The improvements become less significant when
more shots are available. When the K shots per
class are larger than 8, the average performance
of SoftLINK also outperforms PCT by an abso-
lute gain of 2.5% on average. Furthermore, for
different languages, all methods perform best on
EN (English) and worst on AR (Arabic), VI (Viet-
namese), UR (Urdu), and SW (Swahili). Because
it is difficult to obtain usable corpora for these low-
resource languages for XLM-R. SoftLINK also out-
performs PCT on low-resource languages, which
demonstrates that our model is more effective in
cross-lingual scenarios, especially for low-resource
languages.

Full-shot results Table 3 shows the results on
XNLI under the full-shot setting. SoftLINK-XLM-
Ry.se achieves 78.8% accuracy averaged by 15
target languages, significantly outperforming the
basic model XLM-Ry .. by 4.6%. Compared
with PCT, SoftLINK improves by 3.5% on aver-
age based on XLM-R,.s.. Furthermore, we can
observe that the accuracy of SoftLINK exceeds
PCT by 0.3% on EN, but 4.6% on AR, 11.8% on
SW, and 10.5% on UR. This indicates that Soft-
LINK can obtain more cross-lingual knowledge
and thus better learn the semantic representations
on low-resource languages. To further investigate
the effectiveness, we also evaluated SoftLINK with
baselines based on XLM-R;,,4 model. It can
be seen that SoftLINK achieves 82.1% accuracy
on average, significantly outperforming PCT and
XLM-R1,rge by 0.8% and 1.7%. Compared with
the results on XLM-Ry,se, the improvements of
SoftLINK on XLM-R g are smaller, which in-
dicates that SoftLINK is more effective on XLM-

Rypase Which has fewer parameters and worse cross-
lingual ability. The performance gains are due to
the stronger ability of SoftLINK to learn language-
independent knowledge by aligning the represen-
tations of original and augmented samples in the
multilingual semantic space with consistency regu-
larization.

5.2 Ablation Study

To better understand the contribution of each key
component of SoftLINK, we conduct an ablation
study under the 8-shot setting with XLM-Ryp;¢c.
The results are shown in Table 4. After removing
the code-switched method, SoftLINK simply use
the original inputs. The performance decreases by
1.9% on average which shows the augmented mul-
tilingual samples can help the model to understand
other languages. When we remove the consistency
loss, the average accuracy decreases by 0.5%. Re-
moving the multilingual verbalizer leads to 5.7%
accuracy drop on average. We also replace soft
prompts with discrete prompts as illustrated in Ta-
ble 1, which leads to an accuracy drop of 0.7% on
average. Furthermore, we use random initialized
prompts to replace the prompts initialized from
the multilingual vocabulary, which leads to 0.5%
accuracy drop on average. Results show that the
prompts are important for the model to learn the
cross-lingual knowledge.

5.3 Analysis of Code-switched Method

To further investigate the code-switched method,
we conduct experiments using different single lan-
guage to create the augmented multilingual sam-
ples. Figure 2 shows the results of SoftLINK with
10 different seeds under the 8-shot setting for 15



Models EN FR ES DE EL BG RU TR AR VI TH ZH HI SW UR | AVG.
Original 475 46.7 47.0 464 475 465 463 437 465 458 451 425 432 421 42.8 | 453
w/o code-switched 46.8 454 449 452 457 454 450 414 448 442 427 385 404 389 41.1 | 434
w/o consistency loss 473 463 469 456 46.8 456 455 427 463 457 450 41.8 422 419 427 | 448
w/o multilingual verbalizer 40.8 40.7 405 39.7 410 408 408 392 390 396 39.1 380 389 37.6 384 | 39.6
using discrete prompts 46.6 460 466 457 460 460 46.1 428 452 453 448 414 428 420 422 | 446
using random initialized prompts | 47.6 46.6 46.4 458 46.7 458 448 43.0 46.1 457 447 426 429 403 42.6 | 448

Table 4: Ablation study results for SoftLINK under the 8-shot

accuracy for 15 languages.
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Figure 2: Evaluation results of different strategies of
code-switched method under the 8-shot setting for 15
languages on average.

languages on average. We can observe that Soft-
LINK performs worst with an accuracy of 40.3%
when using ZH (Chinese) to replace the words in
sentences. When using TR (Turkish) to replace the
words in sentences, the performance of SoftLINK
outperforms the results using other language. The
reason is that TR is different from EN, while not
too rare like low-resource languages such as UR
and AR. Thus the model can understand it and bet-
ter learn cross-lingual knowledge. When randomly
select languages for each sentence, SoftLINK per-
forms best with a lower standard deviation. There-
fore, we use the random strategy for code-switched
method in our experiments.

5.4 Analysis of Soft Prompts

We also conducted experiments to show how the
length of soft prompts impacts the performance.
The results are illustrated in Figure 3 under the
8-shot setting. As shown in the figure, we can ob-
serve that the performance of SoftLINK is very
sensitive to the value of length. As the length of
soft prompts decreases, the performance of Soft-
LINK first increases and then decreases. Either
too short or too long, the soft prompts will make

setting in accuracy(%). "AVG." is the average
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Figure 3: Evaluation results of different lengths of soft
prompts under the 8-shot setting for 15 languages on
average.

our model perform badly. SoftLINK achieves the
best performance when the length of soft prompts
is 4. When the length is larger than 4, the ac-
curacy decreases sharply. The reason is that the
prompts can’t well capture the cross-lingual knowl-
edge when the length is too long.

6 Conclusion

In this paper, we propose a soft prompt learn-
ing framework enhanced by language-independent
knowledge (SoftLINK) for XNLI. SoftLINK lever-
ages bilingual dictionaries to generate an aug-
mented multilingual sample for input texts. Soft-
LINK adopts a multilingual verbalizer to align the
representations of original and augmented samples
on the semantic space with consistency regulariza-
tion. Experimental results on XNLI demonstrate
that SoftLINK significantly outperforms the previ-
ous methods under the few-shot and full-shot cross-
lingual transfer settings. The detailed analysis fur-
ther confirm the effectiveness of each component
in SoftLINK.

In the future, we will explore more effective
methods to train soft prompts and investigate how
to leverage more language-independent knowledge
to improve the performance of cross-lingual NLP
models.



7 Ethical Considerations

Natural Language Inference (NLI) is a fundamen-
tal task in natural language understanding, which
could help with tasks like questions answering,
reading comprehension, and summarization. Re-
cently, NLI has achieved remarkable success, due
to the development of large-scale pre-trained mod-
els. However, most NLI works and applications
are English-centric, which makes it hard to gener-
alize to other low-resource languages. Our work
focuses on improving zero-shot cross-lingual NLI
models that do not need any labeled data for target
languages, which have strong multilingual compre-
hension ability.
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Shots « Ir Epochs Weight decay Batch size
1 0.10 1e-05 70 0.01 12
2 0.10 1e-05 70 0.01 12
4 0.10 1e-05 70 0.01 12
8 0.15 1e-05 70 0.01 12
16  0.20 4e-06 70 0.01 12

32 0.15 7e-06 70 0.01 12
64  0.15 le-06 70 0.01 12
128  0.20 1le-06 70 0.01 12
256 035 1e-06 70 0.01 12
Full 030 1e-06 70 0.01 12

Table 5: Hyperparameters used under different settings
of XNLIL

A Training Details
A.1 Hyperparameters

Table 5 shows the hyperparameters used under dif-
ferent settings of XNLI. The model is trained for
70 epochs and the checkpoint that performs best
on development set is selected for performance
evaluation.

A.2 Computing Device

All experiments are conducted on GeForce GTX
3090Ti. We use the batch size 24 for a single gpu.
Three GPUs are used for few-shot experiments.
The full-shot experiments use 6 GPUs.
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