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ABSTRACT

Recent studies have shown that deep neural networks are not well-calibrated and
produce over-confident predictions. The miscalibration issue primarily stems from
the minimization of cross-entropy, which aims to align predicted softmax prob-
abilities with one-hot labels. In ordinal regression tasks, this problem is com-
pounded by an additional challenge: the expectation that softmax probabilities
should exhibit unimodal distribution is not met with cross-entropy. Rather, the or-
dinal regression literature has focused on unimodality and overlooked calibration.
To address these issues, we propose a novel loss function that introduces order-
aware calibration, ensuring that prediction confidence adheres to ordinal relation-
ships between classes. It incorporates soft ordinal encoding and label-smoothing-
based regularization to enforce both calibration and unimodality. Extensive exper-
iments across three popular ordinal regression benchmarks demonstrate that our
approach achieves state-of-the-art calibration without compromising accuracy.

1 INTRODUCTION

Despite significant advances in ordinal regression tasks, such as medical diagnosis and age estima-
tion, one critical aspect has often been overlooked: calibration. While research has predominantly
focused on improving accuracy, the importance of well-calibrated predictions in ordinal regression
remains underexplored. In high-risk applications, where both accuracy and reliability are crucial,
poorly calibrated models can lead to overconfident or underconfident decisions, potentially resulting
in harmful outcomes.

Ordinal regression, also called ordinal classification, involves a natural ordering between class la-
bels, setting it apart from nominal tasks. Approaches such as regression (Fu & Huang, 2008; Pan
et al., 2018; Yang et al., 2018; Li et al., 2019), classification (Liu et al., 2020; Polat et al., 2022b;
Vargas et al., 2022), and ranking-based methods (Niu et al., 2016; Chen et al., 2017; Cao et al.,
2020; Shi et al., 2023) have been developed to capture this ordinal structure, often outperforming
traditional frameworks by better aligning with the data’s inherent order. However, insufficient at-
tention to calibration has led to unreliable confidence estimates, particularly in fields like medical
diagnosis, where the consequences of miscalibration can be severe (Guo et al., 2017).

Calibration aims to align a model’s confidence estimates with actual accuracy, ensuring that pre-
dicted probabilities reflect the likelihood of correct predictions. Without proper calibration, models
risk overconfidence, especially when encountering ambiguous or noisy data, which can lead to un-
safe decisions in sensitive domains such as healthcare (Neumann et al., 2018; Moon et al., 2020).
For example, in disease severity prediction, a model should adjust its confidence based on input
uncertainty, particularly in ambiguous cases.

In addition to calibration, unimodality is crucial in ordinal classification. Unimodal distributions
ensure that the model assigns the highest probability to the correct label, with probabilities gradu-
ally decreasing as the distance from the true label increases, preventing paradoxical or inconsistent
predictions (Li et al., 2022; Vargas et al., 2022).

To address these dual challenges of calibration and unimodality, we propose Oridnal Regression
loss for Calibration and Unimodality (ORCU), a novel loss function that integrates order-aware cal-
ibration with a unimodal regularization term. Traditional regularization techniques often neglect
the ordered structure of ordinal tasks, but ORCU enforces both calibration and unimodality by ex-
plicitly modeling the ordinal relationships between classes. This ensures well-calibrated confidence
estimates that reflect the full ordinal structure, enabling the model to produce unimodal probabil-
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Figure 1: Overview of how the ORCU achieves improved calibration and unimodal probability
distribution in ordinal classification. It illustrates the role of the calibration regularization term,
LREG, when applied to soft label encoding for the Adience dataset (8 ordinal classes representing
age groups) as an example. Soft encoding is applied to hard ordinal labels (a-i). Then, LREG is
applied differently for k < yn (a-ii) and k ≥ yn (a-iii). (b) illustrates how LORCU’s gradients are
computed with examples shown for k = 0, 4. See section 3.4 and Table 1 for gradient analysis.

ity distributions that smoothly decrease as the distance from the true label increases. As a result,
ORCU not only improves prediction accuracy but also enhances the reliability and trustworthiness
of predictions, particularly in high-stakes applications like medical diagnosis.

Contributions We make the following key contributions: (1) We propose ORCU, a novel loss
function that unifies calibration and unimodality within a single framework for ordinal regression.
ORCU incorporates soft encoding and introduces a regularization term that uniquely applies order-
aware conditions, ensuring that predicted probabilities reflect the ordinal relationships between
classes while providing reliable confidence estimates. (2) We provide a comprehensive analysis
demonstrating how ORCU effectively balances the trade-off between well-calibrated confidence es-
timates and accurate predictions. By integrating calibration and unimodality constraints into a single
loss function, ORCU addresses the limitations of existing methods that focus solely on either cal-
ibration or ordinal structure. (3) By unifying calibration and unimodality constraints, we establish
a new benchmark for reliable ordinal classification, significantly advancing the state of the art and
paving the way for future research on trustworthy models for ordinal tasks.

2 RELATED WORKS

Ordinal Regression Ordinal regression addresses the challenge of predicting a target value with
an inherent order, unlike nominal classification, where no ordinal relationships exist between labels.
Given an input x, the goal is to predict a label y, which follows an ordinal relationship such that
y1 ≺ y2 ≺ · · · ≺ yC , with ≺ representing a label order (e.g., yi is less severe or earlier in rank than
yi+1). Approaches to ordinal classification are broadly divided into three categories: regression
methods, classification-based methods, and ranking-based methods. In regression methods (Fu &
Huang, 2008; Pan et al., 2018; Yang et al., 2018; Li et al., 2019), ordinal labels y are treated as
continuous variables, applying losses like L1 or L2 to predict a scalar value reflecting the label
ordering. Classification-based methods (Liu et al., 2020; Polat et al., 2022b; Vargas et al., 2022)
discretize the continuous target space into bins, treating each bin as a class y ∈ {1, 2, . . . , C} and
predicting the class directly. Ranking-based methods (Niu et al., 2016; Chen et al., 2017; Cao et al.,
2020; Shi et al., 2023) decompose the task into C − 1 binary classifiers, each determining whether
the true label y exceeds a threshold, capturing the ordinal relationships between labels.
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Loss functions for ordinal regression The inherent limitations of Cross-Entropy (CE) loss in
handling ordinal relationships have led to several modified approaches (see Section 3.1). One such
approach is Soft ORDinal (SORD) encoding method (Diaz & Marathe, 2019), which adjusts the
label distribution by using soft labels to capture the proximity between classes, thereby ensuring
smoother and more order-aware predictions (see Section 3.2). Class Distance Weighted Cross-
Entropy (CDW-CE) (Polat et al., 2022b), on the other hand, keeps the traditional label structure
but incorporates a distance-based penalty into the loss function, encouraging predictions closer to
the true class and better aligned with the ordinal structure. CO2 (Albuquerque et al., 2021) extends
CE with a regularization term enforcing unimodality, ensuring that predicted probabilities decrease
smoothly as the distance from the true label increases. In contrast, Probabilistic Ordinal Embeddings
(POE) (Li et al., 2021) introduces both a regularization term and architectural changes, representing
each label as a probability distribution, thereby modeling both uncertainty and ordinal relationships.

Regularization-based loss functions for calibration Calibration, which aims to align predicted
confidence with actual accuracy, is particularly critical in high-risk tasks involving ordinal cate-
gories. Several regularization-based approaches have been proposed to improve calibration during
training, as they preemptively address miscalibration without relying on post-hoc adjustments. Label
Smoothing (LS) (Szegedy et al., 2016) is one of the foundational techniques, softening the sharp one-
hot label distribution to mitigate overconfidence. Sample-dependent Focal Loss (FLSD) (Mukhoti
et al., 2020) builds upon this by focusing calibration on harder-to-classify examples. Margin-based
Label Smoothing (MbLS) (Liu et al., 2022) selectively smooths predictions based on the margin
between predicted logits and true labels, while Multi-class Difference in Confidence and Accuracy
(MDCA) (Hebbalaguppe et al., 2022) applies this margin adjustment across the entire predicted
distribution. Adaptive and Conditional Label Smoothing (ACLS) (Park et al., 2023) dynamically
adjusts the level of smoothing, applying stronger smoothing to miscalibrated predictions while pre-
serving accurate confidence estimates for well-calibrated ones. While regularization-based calibra-
tion methods have been extensively studied, their application to ordinal tasks remains underexplored,
despite the crucial role of confidence estimation in such settings.

3 A UNIFIED LOSS FUNCTIONS FOR CALIBRATION AND UNIMODALITY

3.1 LIMITATIONS OF CROSS-ENTROPY IN ORDINAL REGRESSION

In ordinal classification tasks, such as medical diagnosis or rating assessments, the inherent order
between classes plays a crucial role. Traditional loss functions, like CE, often fail to capture this
ordinal structure, leading to suboptimal performance and poorly calibrated predictions. This limita-
tion is particularly problematic in high-risk applications where both accurate predictions and reliable
confidence estimates are essential for informed decision-making.

Let yn ∈ {1, . . . , C} denote the true class label of the n-th sample, where N is the total num-
ber of samples and C represents the number of classes. The CE loss is defined as LCE =

−
∑N

n=1

∑C
k=1 yn,k log(ŷn,k) where yn,k is the one-hot encoded true label and ŷn,k is the predicted

probability. The gradient of LCE with respect to the logit zn,k is: ∂LCE
∂zn,k

= ŷn,k − yn,k. This formula-
tion forces the model to focus sharply on the true label, often resulting in overconfident predictions
that ignore relationships between adjacent classes. In ordinal tasks, predictions should reflect the
ordered nature of classes, with probability mass distributed smoothly around the true label. How-
ever, LCE typically produces sharp peaks, disregarding the ordinal structure and potentially leading
to unreliable predictions in critical scenarios.

To address these limitations, we propose a novel loss function that explicitly accounts for ordinal
relationships between classes while incorporating a regularization term to enforce unimodality and
improve calibration. Our approach aims to balance accurate ordinal predictions with well-calibrated
confidence estimates, enhancing performance in sensitive applications without compromising over-
all predictive accuracy.

3.2 SOFT ORDINAL ENCODING

One of the primary limitations of the traditional LCE loss in ordinal tasks is its reliance on one-hot
encoding, which concentrates probability mass entirely on the true label. This results in overconfi-
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dent predictions, disregarding the relationships between adjacent classes. To address these issues,
we employ the SORD encoding method (Diaz & Marathe, 2019), which redistributes the probabil-
ity mass across the ordinal classes in a way that reflects both the inherent ordinal structure and the
uncertainty between adjacent labels.

In an ordinal classification problem with C classes, the true label yn for the n-th sample is rep-
resented as a soft-encoded probability distribution y′n,k, defined as y′n,k = e−ϕ(yn,rk)∑C

j=1 e−ϕ(yn,rj)
, for

k = 1, . . . , C, where ϕ(yn, rk) is a distance metric that penalizes deviations from the true class yn
to each ordinal class rk during the soft encoding process. The Soft-encoded Cross-Entropy (SCE)
loss is then defined as:

LSCE = −
N∑

n=1

C∑
k=1

y′n,k log(ŷn,k), (1)

The gradient of LSCE with respect to the logit zn,k is ∂LSCE
∂zn,k

= ŷn,k − y′n,k. This gradient encourages
the model to distribute probability across adjacent classes in a way that aligns with the soft-encoded
true label distribution, mitigating overconfidence and resulting in more calibrated predictions that
accurately reflect the ordinal relationships between classes.

3.3 ORDER-AWARE REGULARIZATION: ENFORCING UNIMODALITY AND CALIBRATION

While LSCE effectively captures the ordinal relationships between labels and mitigates the overcon-
fidence issue in LCE, it can still lead to underconfident predictions due to the redistribution of prob-
ability mass across classes. To address this issue, we introduce a regularization-based method that
simultaneously enhances the model’s calibration and reinforces the learning of the ordinal structure
(which inherently leads to unimodality in the output distribution).

Unlike traditional regularization methods, which focus solely on the highest probability class and ig-
nore the relationships between adjacent labels (Park et al., 2023), our approach leverages the ordinal
structure of the task. Specifically, our method adjusts the logits based on their ordinal relationship
to the true label yn, ensuring that the calibration regularization is order-aware. This approach di-
vides the logits into two regions: those where the class index k is smaller than the true label and
those where k is greater than or equal to the true label. By doing so, the regularization ensures
smooth decreases in probability on both sides of the true label, enforcing a unimodal distribution
while simultaneously improving calibration. The specific formulation of the regularization term is
as follows:

LREG =

N∑
n=1

C−1∑
k=1

{
Î(zn,k − zn,k+1), if k < yn,

Î(zn,k+1 − zn,k), if k ≥ yn,
(2)

where Î(r) = − 1
t log(−r) if r ≤ − 1

t2 , and Î(r) = tr − 1
t log

(
1
t2

)
+ 1

t otherwise.

This penalty function applies strong corrections when the differences between adjacent logits ap-
proach the boundary value −1/t2, ensuring unimodality is preserved. The temperature parameter t
controls the strength of this regularization. The final loss function ORCU, is defined as:

LORCU = LSCE + LREG. (3)
By integrating both LSCE and LREG, LORCU ensures that the model produces well-calibrated, uni-
modal predictions that accurately reflect the ordinal relationships between classes.

3.4 GRADIENT ANALYSIS: ENFORCING UNIMODALITY AND CALIBRATION

The gradient behavior of the proposed regularization term LREG is crucial for ensuring both uni-
modality and calibration. As illustrated in Figure 1, the LORCU loss applies soft label encoding and
uses regularization differently depending on whether k < yn or k ≥ yn. To better understand its im-
pact, we divide the gradient into four cases based on the relationship between the class index k and
the target label yn, as well as the magnitude of the difference between adjacent logits r (Table 1-b).
The regularization term adjusts the logits to ensure that the output distribution remains smooth and
unimodal, particularly in ordinal classification tasks.

When k < yn (Figure 1-ii), the model adjusts the logits to ensure that the probability distribution
decreases smoothly as the distance from the true label increases, maintaining a unimodal structure.
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Table 1: Gradient analysis of our loss function. The gradient is computed w.r.t. a logit when k < yn
and k ≥ yn. We also show the gradient of each term, LSCE and LREG, to analyze each one’s
contribution. ŷn,k denote the predicted probability, y′n,k representing the soft-encoded target, and t

being a variable controlling the regularization strength. Note that ∂LORCU
∂zk

= ∂LSCE
∂zk

+ ∂LREG
∂zk

.
k < yn

(r = zn,k − zn,k+1)
k ≥ yn

(r = zn,k+1 − zn,k)
r ≤ − 1

t2 r > − 1
t2 r ≤ − 1

t2 r > − 1
t2

(a) ∂LSCE
∂zn,k

ŷn,k − y′n,k
(b) ∂LREG

∂zn,k
− 1

tr t 1
tr −t

(c) ∂LORCU
∂zn,k

ŷn,k − (y′n,k + 1
tr ) ŷn,k − (y′n,k − t) ŷn,k − (y′n,k − 1

tr ) ŷn,k − (y′n,k + t)

This is achieved by keeping the difference between adjacent logits, r, negative. If r is negative and
has a large absolute value, the gradient of LREG becomes smaller, indicating that the model is close
to achieving a unimodal distribution. However, as r approaches the boundary − 1

t2 , the gradient
increases sharply to prevent any violations of unimodality. On the other hand, when r > − 1

t2 ,
indicating a deviation from the desired unimodal structure, a constant penalty is applied to restore
the distribution.

Dynamic gradient adjustment for simultaneous calibration and unimodality When the gra-
dients of LSCE and LREG are combined, the regularization term enables the model to address both
calibration and the learning of the ordinal structure (i.e., unimodality) simultaneously.

First, consider the case where k < yn (as shown in Figure 1-(a-ii)), where the predicted class is
lower than the true class. In this scenario, for large positive r values (Figure 1-(b-ii)), the regular-
ization term reduces y′n,k by a factor of t, increasing the difference between ŷn,k and y′n,k − t. This
larger gradient leads to a more substantial update to the logit zk, compared to using LSCE alone.
Consequently, this adjustment not only restores unimodality by driving r towards negative values
but also helps correct overconfident predictions for incorrect labels. By increasing the gradient for
such incorrect predictions, the model is able to reduce the predicted probability for the incorrect
class more effectively, improving overall calibration and ordinal structure learning.

Next, consider the case where k = yn, and r > − 1
t2 (as shown in Figure 1-(b-iii)). In this undercon-

fident scenario, where the predicted probability ŷn,k is lower than the target distribution y′n,k, the
regularization term modifies the gradient to ŷn,k − (y′n,k + t). This larger gradient (with a greater
absolute value) results in a more substantial update to the logit zk, increasing the predicted proba-
bility for the true class yn. At the same time, this adjustment restores unimodality by ensuring that
r remains negative, aligning the probability distribution smoothly around the true label.

By combining these two examples, we demonstrate that the proposed LREG term dynamically adjusts
the gradients based on the value of r, enabling the model to simultaneously achieve well-calibrated
predictions and maintain the ordinal structure (unimodality) of the task. Whether the model is
overconfident or underconfident, the regularization term ensures appropriate updates to the logits,
balancing both calibration and the preservation of the ordinal relationships between classes. This
dual mechanism is essential for high-risk ordinal tasks, where both accurate predictions and reliable
confidence estimates are critical.

4 EXPERIMENTS

4.1 DATASETS AND IMPLEMENTATION DETAILS

We evaluated the proposed LORCU loss function on three public datasets selected for their ordinal
nature and sufficient sample sizes, covering diverse tasks such as age estimation, image aesthetics as-
sessment, and medical diagnosis. The Adience dataset (Eidinger et al., 2014), containing 26,580 im-
ages categorized into 8 age groups, was used for age estimation, employing five-fold cross-validation
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with an 80/20 train-test split1. For image aesthetics assessment, the Image Aesthetics dataset (Schi-
fanella et al., 2015), consisting of 13,364 images with five ordinal labels, was used with five-fold
cross-validation and an 80/20 train-test split. The LIMUC dataset (Polat et al., 2022a), comprising
11,276 images from ulcerative colitis patients with four mayo endoscopic scores (MES), was used
for medical diagnosis, employing an 85/15 subject-exclusive (Paplhám et al., 2024) train-test split
and a ten-fold cross-validation protocol (Polat et al., 2022b).

For all tasks, we used a ResNet-50 architecture (He et al., 2015) pretrained on ImageNet (Rus-
sakovsky et al., 2015). We applied a layer-wise learning rate strategy (0.01 for the fully connected
layer, 0.001 for others), using AdamW (Loshchilov & Hutter, 2019) for optimization. Training was
conducted for 100 epochs with a batch size of 64, applying image augmentations via Albumentations
(Buslaev et al., 2020). The squared distance metric was used for soft encoding, with the temperature
parameter t initialized at 10.0 and gradually decreased throughout training. All experiments were
conducted on NVIDIA RTX 4090 GPUs.

4.2 PERFORMANCE METRICS

Evaluating calibration is crucial in ordinal classification tasks, where models must provide not only
accurate predictions but also reliable confidence estimates. We focus on two specific calibration
metrics: static calibration error (SCE) and adaptive calibration error (ACE) 2, which are particularly
suited to addressing class imbalances and capturing calibration across all predictions. Although ex-
pected calibration error (ECE) is commonly used, it can be misleading, especially in imbalanced
datasets where confidence is skewed towards high-probability predictions, failing to accurately re-
flect model performance in all classes (Nixon et al., 2019). SCE and ACE provide more robust
measures of calibration by evaluating calibration per class or dynamically adjusting bin sizes.

To capture ordinal relationships between classes, we use quadratic weighted kappa (QWK) as the
primary metric, as it penalizes larger misclassifications more heavily and better reflects the distance
between predicted and true labels compared to accuracy. Although accuracy is reported, QWK
serves as the primary metric for assessing classification performance in ordinal tasks.

4.3 RESULTS AND ANALYSIS

Our proposed loss function LORCU demonstrates superior performance across both calibration and
ordinal regression metrics, surpassing baseline methods designed for either objective individually
(Table 2). Unlike existing loss functions that primarily focus on a single goal—either calibration or
classification—LORCU effectively balances both, achieving significant improvements in calibration
metrics while maintaining strong predictive accuracy.

In high-stakes tasks such as medical diagnosis and severity grading, where accurate and well-
calibrated predictions are critical, LORCU proves particularly advantageous. Existing ordinal loss
functions, such as CE and its variants, tend to overlook calibration error, while traditional calibra-
tion losses fail to account for the ordinal structure that is intrinsic to these tasks. To thoroughly
evaluate LORCU, we compared it against 10 baseline loss functions, categorized into two groups:
ordinal loss functions—CE, SORD (Diaz & Marathe, 2019), CDW-CE (Polat et al., 2022b), CO2
(Albuquerque et al., 2021), and POE (Li et al., 2021)—and calibration loss functions—LS (Szegedy
et al., 2016), FLSD (Mukhoti et al., 2020), MbLS (Liu et al., 2022), MDCA (Hebbalaguppe et al.,
2022), and ACLS (Park et al., 2023). Each loss function was evaluated under identical experimental
conditions to ensure fair benchmarking.

4.3.1 COMPARISON WITH LOSS FUNCTIONS TARGETING INDIVIDUAL OBJECTIVES

Comparison with Ordinal Loss Functions Our method, LORCU, consistently outperforms all
baseline ordinal loss functions, providing superior calibration and classification performance. As
detailed in Table 2, LORCU achieves the lowest SCE, ACE, and ECE scores, while maintaining com-
petitive accuracy and QWK scores. This highlights its ability to deliver well-calibrated predictions
without compromising on predictive performance.Traditional ordinal loss function, primarily focus

1https://github.com/GilLevi/AgeGenderDeepLearning
2https://github.com/Jonathan-Pearce/calibration_library
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Table 2: Calibration and accuracy performance for different loss functions on three popular ordinal
regression benchmarks. Competing methods in two areas, i.e., ordinal regression and network cali-
bration, are compared with ours. We use ResNet-50 for classifications and use 15 bins for calibration
metrics calculation. The measures are presented as the mean and standard deviation over all folds.

Loss
Evaluation Metrics

SCE(↓) ACE(↓) ECE(↓) Acc(↑) QWK(↑)

Adience (n =17,423)

O
rd

in
al

L
os

s Cross Entropy 0.8495 ± 0.0033 0.8356 ± 0.0068 0.3364 ± 0.0401 0.5639 ± 0.0486 0.8795 ± 0.0345
SORD (Diaz & Marathe, 2019) 0.7823 ± 0.0105 0.7783 ± 0.0102 0.0731 ± 0.0240 0.5910 ± 0.0439 0.8995 ± 0.0291
CDW-CE (Polat et al., 2022b) 0.8429 ± 0.0062 0.8372 ± 0.0071 0.2913 ± 0.0210 0.5789 ± 0.0362 0.8988 ± 0.0257
CO2 (Albuquerque et al., 2021) 0.8521 ± 0.0055 0.8368 ± 0.0080 0.3533 ± 0.0406 0.5637 ± 0.0489 0.8728 ± 0.0418
POE (Li et al., 2021) 0.8340 ± 0.0042 0.8244 ± 0.0065 0.2733 ± 0.0384 0.5652 ± 0.0522 0.8669 ± 0.0395

C
al

ib
ra

tio
n

L
os

s LS (Szegedy et al., 2016) 0.8195 ± 0.0071 0.8101 ± 0.0072 0.1890 ± 0.0415 0.5792 ± 0.0495 0.8824 ± 0.0334
FLSD (Mukhoti et al., 2020) 0.8474 ± 0.0063 0.8340 ± 0.0062 0.3193 ± 0.0407 0.5718 ± 0.0532 0.8840 ± 0.0347
MbLS (Liu et al., 2022) 0.8400 ± 0.0043 0.8323 ± 0.0052 0.2815 ± 0.0344 0.5765 ± 0.0489 0.8894 ± 0.0324
MDCA(Hebbalaguppe et al., 2022) 0.8561 ± 0.0527 0.8365 ± 0.0059 0.3372 ± 0.0411 0.5676 ± 0.0488 0.8770 ± 0.0346
ACLS (Park et al., 2023) 0.8398 ± 0.0040 0.8295 ± 0.0045 0.2847 ± 0.0378 0.5762 ± 0.0488 0.8788 ± 0.0364

ORCU (Ours) 0.4598 ± 0.0435 0.4565 ± 0.0437 0.0583 ± 0.0279 0.5878 ± 0.0426 0.9036 ± 0.0281

Image Aesthetics (n =13,364)

O
rd

in
al

L
os

s Cross Entropy 0.7637 ± 0.0037 0.7558 ± 0.0035 0.2057 ± 0.0162 0.7030 ± 0.0080 0.4961 ± 0.0199
SORD (Diaz & Marathe, 2019) 0.6844 ± 0.0018 0.6833 ± 0.0018 0.1846 ± 0.0026 0.7092 ± 0.0044 0.5030 ± 0.0030
CDW-CE (Polat et al., 2022b) 0.7519 ± 0.0030 0.7480 ± 0.0026 0.1751 ± 0.0136 0.7041 ± 0.0064 0.4837 ± 0.0148
CO2 (Albuquerque et al., 2021) 0.7699 ± 0.0032 0.7614 ± 0.0036 0.2269 ± 0.0151 0.6980 ± 0.0072 0.4919 ± 0.0158
POE (Li et al., 2021) 0.7559 ± 0.0020 0.7493 ± 0.0035 0.1883 ± 0.0111 0.7010 ± 0.0097 0.4909 ± 0.0156

C
al

ib
ra

tio
n

L
os

s LS (Szegedy et al., 2016) 0.7222 ± 0.0010 0.7179 ± 0.0014 0.0991 ± 0.0062 0.7063 ± 0.0054 0.4990 ± 0.0202
FLSD (Mukhoti et al., 2020) 0.7519 ± 0.0030 0.7482 ± 0.0026 0.1751 ± 0.0136 0.7013 ± 0.0075 0.4961 ± 0.0147
MbLS (Liu et al., 2022) 0.7577 ± 0.0016 0.7510 ± 0.0020 0.1895 ± 0.0062 0.7040 ± 0.0057 0.4942 ± 0.0159
MDCA(Hebbalaguppe et al., 2022) 0.7620 ± 0.0033 0.7549 ± 0.0033 0.2022 ± 0.0124 0.7031 ± 0.0110 0.4993 ± 0.0129
ACLS (Park et al., 2023) 0.7595 ± 0.0010 0.7535 ± 0.0013 0.1957 ± 0.0097 0.7030 ± 0.0091 0.4953 ± 0.0147

ORCU (Ours) 0.6805 ± 0.0045 0.6794 ± 0.0046 0.1082 ± 0.0312 0.7113 ± 0.0038 0.5188 ± 0.0139

LIMUC (n =11,276)

O
rd

in
al

L
os

s Cross Entropy 0.6997 ± 0.0076 0.6948 ± 0.0075 0.1295 ± 0.0170 0.7702 ± 0.0066 0.8461 ± 0.0090
SORD (Diaz & Marathe, 2019) 0.6382 ± 0.0031 0.6370 ± 0.0032 0.1636 ± 0.0064 0.7749 ± 0.0060 0.8539 ± 0.0062
CDW-CE (Polat et al., 2022b) 0.6980 ± 0.0048 0.6927 ± 0.0042 0.1190 ± 0.0096 0.7773 ± 0.0058 0.8551 ± 0.0069
CO2 (Albuquerque et al., 2021) 0.7105 ± 0.0044 0.7042 ± 0.0042 0.1544 ± 0.0118 0.7662 ± 0.0076 0.8411 ± 0.0081
POE (Li et al., 2021) 0.6933 ± 0.0043 0.6881 ± 0.0046 0.1149 ± 0.0105 0.7724 ± 0.0040 0.8353 ± 0.0110

C
al

ib
ra

tio
n

L
os

s LS (Szegedy et al., 2016) 0.6647 ± 0.0010 0.6603 ± 0.0022 0.0592 ± 0.0088 0.7633 ± 0.0053 0.8402 ± 0.0096
FLSD (Mukhoti et al., 2020) 0.6674 ± 0.0016 0.6631 ± 0.0022 0.1069 ± 0.0167 0.7657 ± 0.0059 0.8459 ± 0.0110
MbLS (Liu et al., 2022) 0.6988 ± 0.0022 0.6982 ± 0.0035 0.1301 ± 0.0095 0.7665 ± 0.0057 0.8490 ± 0.0113
MDCA(Hebbalaguppe et al., 2022) 0.6934 ± 0.0074 0.6879 ± 0.0061 0.1197 ± 0.0129 0.7683 ± 0.0044 0.8443 ± 0.0118
ACLS (Park et al., 2023) 0.6995 ± 0.0030 0.6939 ± 0.0032 0.1299 ± 0.0140 0.7683 ± 0.0064 0.8454 ± 0.0092

ORCU (Ours) 0.5205 ± 0.0098 0.5182 ± 0.0107 0.0853 ± 0.0269 0.7785 ± 0.0064 0.8578 ± 0.0048

on accuracy but tend to produce overconfident predictions by concentrating probability mass on the
true label (Figure 2-a, c-e). Although SORD reduces overconfidence by distributing probability
mass across adjacent labels, it results in underconfident predictions (Figure 2-c), limiting its effec-
tiveness. In contrast, LORCU effectively balances these extremes. As shown in Figure 2-f, our method
mitigates both overconfidence and underconfidence, delivering well-calibrated confidence estimates.
Additionally, high QWK scores across all datasets confirm that LORCU captures the inherent ordinal
relationships between classes more effectively than baseline ordinal loss functions.

Comparison with Calibration Loss Functions When compared with calibration-focused loss
functions, LORCU also demonstrates superior performance. Calibration losses like LS, FLSD, MbLS,
MDCA, and ACLS are primarily designed to reduce calibration error in nominal tasks, without
considering the ordinal relationships between classes. However, LORCU incorporates these ordinal
relationships into the calibration process, which leads to superior results in tasks that require both
accurate predictions and well-calibrated confidence estimates.As seen in Table 2, LORCU consis-
tently achieves the lowest SCE and ACE scores, while also delivering strong accuracy and QWK
scores. Although LS slightly outperforms LORCU in ECE, it fails to account for the ordinal struc-
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Figure 2: Reliability diagrams for different ordinal loss functions. The diagrams show model confi-
dence alongside the calibration gap between confidence and accuracy, using the test split of Adience,
Image Aesthetics, and LIMUC. Predictions above the diagonal, expected line indicate underconfi-
dence, while those below the line represent overconfidence. ECE is computed using 15 bins.

ture, as evidenced by its lower QWK scores. This demonstrates the advantage of LORCU in ordinal
classification tasks, where preserving the relationships between labels is critical.

In summary, LORCU provides a balanced solution for both calibration and classification, outperform-
ing loss functions designed for either objective individually. By delivering well-calibrated predic-
tions while maintaining high accuracy and QWK scores, LORCU effectively addresses the dual chal-
lenges of calibration and ordinal classification. This makes it particularly valuable in such critical
tasks where both aspects are essential.

Table 3: Ablation study on different distance metrics used in the soft encoding. The table analyzes
the performance impact of applying various distance metrics (absolute, Huber, exponential, and
squared) across multiple datasets. The results are presented as the mean and standard deviation over
all folds.

Distance Metrics ϕ
Evaluation Metrics SCE(↓) ACE(↓) ECE(↓) Acc(↑) QWK(↑)

Adience (n =17,423)
Absolute 0.7121 ± 0.0088 0.7167 ± 0.0088 0.0684 ± 0.0203 0.5800 ± 0.0334 0.8961 ± 0.0299
Huber 0.7274 ± 0.0110 0.7233 ± 0.0115 0.0553 ± 0.0084 0.5704 ± 0.0461 0.8948 ± 0.0323
Exponential 0.7774 ± 0.0120 0.7753 ± 0.0116 0.0868 ± 0.0262 0.5794 ± 0.0425 0.8983 ± 0.0320
Squared 0.4598 ± 0.0435 0.4565 ± 0.0437 0.0583 ± 0.0279 0.5878 ± 0.0426 0.9036 ± 0.0281

Image Aesthetics (n =13,364)
Absolute 0.6849 ± 0.0020 0.6837 ± 0.0018 0.1351 ± 0.0153 0.7101 ± 0.0044 0.5175 ± 0.0117
Huber 0.6827 ± 0.0016 0.6839 ± 0.0034 0.1460 ± 0.0180 0.7077 ± 0.0083 0.5127 ± 0.0167
Exponential 0.6869 ± 0.0016 0.6859 ± 0.0014 0.1798 ± 0.0052 0.7156 ± 0.0036 0.5265 ± 0.0125
Squared 0.6805 ± 0.0045 0.6794 ± 0.0046 0.1082 ± 0.0312 0.7113 ± 0.0038 0.5188 ± 0.0139

LIMUC (n =11,276)
Absolute 0.6414 ± 0.0010 0.6406 ± 0.0011 0.1552 ± 0.0113 0.7824 ± 0.0021 0.8625 ± 0.0033
Huber 0.6405 ± 0.0037 0.6399 ± 0.0038 0.1914 ± 0.0136 0.7809 ± 0.0075 0.8599 ± 0.0059
Exponential 0.6397 ± 0.0036 0.6391 ± 0.0036 0.2286 ± 0.0150 0.7794 ± 0.0072 0.8586 ± 0.0055
Squared 0.5205 ± 0.0098 0.5182 ± 0.0107 0.0853 ± 0.0269 0.7785 ± 0.0064 0.8578 ± 0.0048

4.3.2 ABLATION STUDIES

Impact of distance metrics on calibration and prediction The choice of distance metric in soft
encoding is a key factor affecting both calibration and prediction performance. Given our focus on
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Table 4: Ablation study showing impacts of different calibration regularization methods in soft
label encoding. Our method is compared with LMbLS, LMDCA, and LACLS. The results demonstrate
the importance of incorporating order-aware conditions in the regularization term, which leads to
improved calibration.

Combination
Evaluation Metrics SCE(↓) ACE(↓) ECE(↓) Acc(↑) QWK(↑)

Adience (n =17,423)
LSCE + LMbLS REG 0.7823 ± 0.0092 0.7788 ± 0.0092 0.0711 ± 0.0217 0.5906 ± 0.0418 0.8988 ± 0.0298
LSCE + LMDCA REG 0.7849 ± 0.0091 0.7810 ± 0.0100 0.0677 ± 0.0315 0.5975 ± 0.0470 0.9024 ± 0.0289
LSCE + LACLS REG 0.7827 ± 0.0099 0.7791 ± 0.0100 0.0746 ± 0.0239 0.5936 ± 0.0453 0.9000 ± 0.0322
LSCE + LORCU REG (Ours) 0.4598 ± 0.0435 0.4565 ± 0.0437 0.0583 ± 0.0279 0.5878 ± 0.0426 0.9036 ± 0.0281

Image Aesthetics (n =13,364)
LSCE + LMbLS REG 0.6866 ± 0.0021 0.6852 ± 0.0023 0.1921 ± 0.0057 0.7140 ± 0.0057 0.5106 ± 0.0116
LSCE + LMDCA REG 0.6867 ± 0.0033 0.6859 ± 0.0035 0.1501 ± 0.0080 0.7156 ± 0.0088 0.4960 ± 0.0192
LSCE + LACLS REG 0.6836 ± 0.0028 0.6819 ± 0.0033 0.1829 ± 0.0081 0.7058 ± 0.0082 0.5033 ± 0.0130
LSCE + LORCU REG (Ours) 0.6805 ± 0.0045 0.6794 ± 0.0046 0.1082 ± 0.0312 0.7113 ± 0.0038 0.5188 ± 0.0139

LIMUC (n =11,276)
LSCE + LMbLS REG 0.6398 ± 0.0026 0.6386 ± 0.0026 0.1662 ± 0.0056 0.7784 ± 0.0051 0.8564 ± 0.0035
LSCE + LMDCA REG 0.6387 ± 0.0026 0.6368 ± 0.0027 0.1373 ± 0.0065 0.7725 ± 0.0056 0.8544 ± 0.0043
LSCE + LACLS REG 0.6366 ± 0.0029 0.6349 ± 0.0030 0.1590 ± 0.0067 0.7710 ± 0.0061 0.8532 ± 0.0052
LSCE + LORCU REG (Ours) 0.5205 ± 0.0098 0.5182 ± 0.0107 0.0853 ± 0.0269 0.7785 ± 0.0064 0.8578 ± 0.0048

achieving reliable, well-calibrated predictions in high-risks ordinal regression tasks, we compared
four common distance metrics: Absolute, Squared, Huber, and Exponential. As shown in Table 3,
the Squared distance metric consistently provided the best calibration results, particularly in terms
of ECE, ACE, and SCE. While Absolute and Exponential metrics showed competitive classification
performance on some datasets, they delivered less reliable calibration, making them less suitable for
high-risk tasks. In contrast, the Squared metric offered a balanced improvement in both calibration
and prediction accuracy, making it the most effective choice for our loss function.

Importance of order-aware regularization method We conducted an ablation study to assess
the effect of different calibration regularization methods applied within the LSCE. Our approach,
which integrates both calibration and unimodality constraints, demonstrated consistently superior
calibration results, lower SCE, ACE, and ECE scores (see Table 4). Unlike traditional methods that
focus calibration only on the highest probability class and overlook ordinal relationships, our method
applies calibration across all labels, ensuring the entire ordinal structure is respected. This approach
led to improved calibration metrics (SCE, ACE, ECE) and higher QWK scores, which better capture
the model’s ability to reflect the inherent order of labels. Although there was a slight decrease in
accuracy, this minimal trade-off is offset by the significant gains in calibration and QWK, making it
particularly valuable for high-risk, ordinal classification tasks.

5 CONCLUSION

We introduced ORCU, a unified loss function that integrates calibration and unimodality for ordinal
regression. Calibration has been overlooked in the literature on ordinal tasks, despite its importance
in high-risk applications. ORCU addresses the issue by explicitly targeting calibration improvement
in ordinal regression, using comprehensive metrics such as SCE, ACE and ECE to evaluate its effec-
tiveness. By leveraging soft ordinal encoding and order-aware regularization, which simultaneously
enforces calibration and unimodality, ORCU balances accurate predictions with well-calibrated con-
fidence estiamtes. Without requiring any architectural changes, our method consistently outper-
formed the latest loss functions in the domains of calibration and ordinal regression. This work sets
a new benchmark for reliable ordinal classification and points the way for future research to optimize
regularization parameter t and extend the approach to more diverse and larger datasets, fostering the
deployment of more robust calibration methods for a wider range of tasks.

REFERENCES
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