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Abstract

We consider the problem of probabilistic forecasting over categories with graph
structure, where the dynamics at a vertex depends on its local connectivity struc-
ture. We present GOPHER, a method that combines the inductive bias of graph
neural networks with neural ODEs to capture the intrinsic local continuous-time
dynamics of our probabilistic forecasts. We study the benefits of these two in-
ductive biases by comparing against baseline models that help disentangle the
benefits of each. We find that capturing the graph structure is crucial for accurate
in-domain probabilistic predictions and more sample efficient models. Surpris-
ingly, our experiments demonstrate that the continuous time evolution inductive
bias brings little to no benefit despite reflecting the true probability dynamics.

1 Introduction

In categorical probabilistic forecasting, we seek to predict a discrete probability distribution p(¢)
at some instantaneous time ¢, based on observed time-stamped data [10]. Consider the example of
forecasting the most likely locations of the next earthquake over a finite set of locations at ¢, given
the history of earthquake times and locations. We can view locations as vertices V on a graph
G = (V, F) with edges F that represent adjacency. Specifically, the probability of an earthquake at
node v € V in the near future is mostly influenced by the probability of earthquakes at nodes within
its neighborhood. This type of graphical structure also appears in other problems, including traffic
forecasting [28], information diffusion in social networks [1], epidemic diffusion [24, 13], urban
conflict patterns [16], and is an example of a marked temporal point process [6].

In this paper, we consider categorical probabilistic forecasts where there is a graphical structure to
inform us of the local dynamics governing p(t) over time. We formalize the intuition that each com-

ponent of the probability vector p(t) € RIVI obeys local dynamics using the differential equation

dpy
dt

= g(pv, {pu | u € N(v)},1), (1)

which we use to inform our model’s inductive bias. Here, g governs the local dynamics, N'(v) C V
denotes the set of neighboring nodes of v, and p,, denotes the probability at node v. To capture the
equivariant local dynamics of our forecast p(t), we propose GOPHER, a model that learns a neural
ODE [4] with graph neural network (GNN) [26] dynamics.

Our method GOPHER introduces two inductive biases to aid with probabilistic forecasting over
graph-structured categories by 1) utilizing graph structure explicitly and 2) introducing temporal
evolution through a neural ODE. To disentangle the benefits of these two biases, we introduce two
baseline models, ablating each bias. We find that utilizing the known graph structure results is key,
and results in 10x improvements in accuracy and sample efficiency. On the other hand, explicitly
modelling the temporal dynamics surprisingly results in little benefits.
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2 GOPHER: Forecasting with temporal dynamics and graph structure

Let G = (V, E) be a graph, and let t; € R denote the timestamp of an event at node v; € V. Given
G and an irregularly sampled dataset D = {(¢;,v;)}}Y,, we want to learn the probability vector
p(t) € RVl of each v € V at any time t. We wish to model the dynamics of p(t) such that the
change in the probability at node v depends only on the neighborhood N (v) around v, as described
in Equation 1. However, directly parameterizing g from Equation 1 with a neural ODE can violate
conservation of probability: 1 p(t) = 1.

Instead of explicitly enforcing the sum constraint into our neural ODE, we model the dynamics in
a continuous-time embedding space from which we derive the dynamics dp/d¢. Specifically, let
Z € RIVIXD where D denotes the embedding space dimension. We use zg ; to denote row ¢ of Zg
at initial time ¢, corresponding to the embedding of node v;. We then model the dynamics of the
continuous-time embeddings Z(t) € RIVI*P via

dz

dt
where g is the learned graph neural network (GNN) dynamics. To map Z(¢) to a probability space
while preserving equivariance, we learn a shared projection 7 : R” — R such that

p(t) = Softmax (7 (z(t)1), ..., m(z(t)|v))). 3)

Provided that g and 7 are differentiable, which can be done using smooth activation functions, our
model then implicitly models the local temporal dynamic of our problem in Equation 1. Finally,
we train our model GOPHER by maximizing the log likelihood Zf\;l log py, (t;) with respect to the
parameters of 7, g, and the initial condition Z.

=g(Z,G,t) subjectto Z(ty) = Zo, 2)

Incorporating node attributes. In some cases G may have node attributes {a, },cy for each
node v € V that affect the interaction dynamics, such as the geographical coordinates of each
node in a spatial graph or the demographics of a user in a social network. Node attributes can be
easily incorporated by letting the initial node embeddings be a learned function of the attributes,
Zo[v] = v, (ay), and optimizing with respect to the parameters of {1, }.

Related works. Our paper lies at the intersection of probabilistic forecasting, neural ODEs, and
graph neural networks (GNNS), and can be seen as the discrete analogue of continuous normalizing
flows [4, 11, 5] on manifolds [17, 18]. Probabilistic forecasting seeks to predict a full distribution
at each time step [14, 10], with contemporary methods often relying on deep probabilistic models
[22, 25, 21, 20]. A direct application of categorical probabilistic forecasts is marked temporal point
processes, which learn the rate of an event type v at time ¢, summarized by the conditional intensity
function A(t,v) = A(t) - py(t) [6]. The inductive bias of a learnable ODE with GNN dynamics has
also been explored in the context of other problems, including graph generation [7], node classifica-
tion [19, 2], multi-particle trajectory prediction [19], learning partial differential equations [15], and
knowledge graph forecasting [12].

3 Results: I Can’t Believe Temporal Dynamics Don’t Matter!

Synthetic datasets. We apply our method to model the mark component of a marked temporal
point process (TPP) occurring on the nodes of a graph such that p,(¢) is the probability of an event
occurring on vertex v at time t. We create a synthetic dataset where events occur over time on a
directed graph GG, with node probabilities that obey graph advection as an example of local dynamics
[3]. Graph advection conserves the total probability by ensuring 1"dp/dt = 0. We represent the
graph G by the weighted adjacency matrix A, where A,, > 0 for (u,v) € E. We sample sequences
of events over time [0, 7] from a homogeneous Poisson process with constant temporal intensity
A(t) = A = 2.5 and temporal node probability p(t) € RIVI governed by the graph advection
equation [3]

dp T dpv

-, = *Lou A = Avu v T Auv u- 4

i (A)'p = > p > p )
v: (v,u)€EE v: (u,v)EE
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Figure 1: (Top) Advection on a cyclic graph set chosen so that the probability mass is transported
more strongly in the counter-clockwise direction. (Bottom) Advection on a random geometric graph
with randomly chosen edge weights. (Both) Colors are shown in log-scale to make dynamics more
visually-apparent. Light-gray coloring corresponds to log(1/|V|) which is the steady-state probabil-
ity mass for each node.

Here, Loy (A) := Dow(A) — A denotes the out-degree graph Laplacian, and Do, (G) denotes the
diagonal out-degree matrix with Doy (G)i; = Y ; Aij.

We create two graphs structures for our synthetic datasets, a ring graph and a random geometric
graph, and visualize their advection on the graph over time in Figure 1; see Appendix D for more
details on their construction. We also visualize the advection dynamics of each component of p(t)
for the ring graph in Figure 9 of Appendix D. We use 7" = 5 seconds for the ring graph dataset and
T = 1 second for the geometric graph dataset. Since the timestamps are sampled from a Poisson
process and not equidistantly spaced over [0, T'], the continuous time aspect of the problem is clearly
evident in the dataset.

Evaluating each inductive bias of GOPHER.
We evaluate the accuracy and sample-efficiency 100
improvements from incorporating graph struc-
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the models as NAIVEMLP and NAIVEGNN

respectively.  In our experiments, GOPHER Figure 2: KL divergence between the true prob-
learns g using a Graph Isomorphism Network abilities p(¢) and the predicted probabilities q(t)
(GIN) layer [27] parameterized by a two-layer trained on 1024 sampled sequences. Gray is the
MLP; we use another two-layer MLP for the training set time interval [0, 7 and red is the ex-
projection . NAIVEGNN uses the same GIN  trapolation region [T, 2T’] beyond the training set.
architecture and projection except that it does

not learn a differential equation. Finally, NAIVEMLP replaces the GIN layer with a two layer MLP.
See Appendix D for further details on our experiment hyperparameters.

Gopher (ours)

Figure 2 shows the KL divergence betweeen the ground truth p(¢) and the learned predictions over
time for the ring graph. We summarize the KL divergence over [0, T in Figure 3 by the geometric
mean since the error varies over multiple overs of magnitudes over time [9]. In both figures, we show
the 95% confidence intervals over 3 seeds. For both datasets, there is 10x difference in accuracy
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Figure 3: Sample complexity of each model on the geometric graph dataset (left) and cyclic graph
dataset (right). The error is measured in terms of the geometric mean of the KL divergence over the
evaluation time period [0, T]. Prediction of uniform probability corresponds to a geometric mean
KL divergence of 0.72 for the geometric graph and 0.15 for the cyclic graph.

between the graph structured models and NAIVEMLP, indicating that utilizing the graph structure
is greatly beneficial. Though NAIVEGNN does not explicitly model the local temporal dynamics
of the datasets, it performs nearly identically to our model GOPHER in fitting p(t) over the training
interval [0, T']. In principle, GOPHER has the best chance of extrapolating to the [T, 27"] time period
not seen during training since GOPHER explicitly models the local dynamics. However, GOPHER’s
poor extrapolation ability suggests that its learned dynamics do not actually reflect the true dynamics.
Indeed, in Figure 7 of Appendix C we show that although GOPHER can fit the training data well, it
is brittle to edge deletions, further indicating GOPHER does not learn the true dynamics.
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Figure 4: Learned p(t) over a subset of the counties fit using the COVID-19 dataset preprocessed
by Chen et al. [S]. Only the graph-based models are able to capture the variations over time. See
Appendix A for the empirical distribution of p().

Real-world dataset. We use data released publicly by the New York Times [23] on daily COVID-
19 cases in New Jersey state to construct a real-world categorical probabilistic forecasting dataset,
following the preprocessing script of Chen et al. [5]. We aggregate the cases by county and form
a graph with 21 nodes where each node is a county and each edge is a county border. Using the
train/test split from Chen et al. [5], we obtain per event log likelihoods with 1-standard-deviations
of —2.766 + 0.003 for NAIVEMLP, —2.768 4 0.003 for NAIVEGNN, and —2.767 £ 0.000 for
GOPHER over 3 seeds. However, these likelihoods are not representative of the model differences
since we find a large distribution shift between the train and test distribution shown in Figure 5
of Appendix A. This distribution shift causes the models to perform equally poorly on the test
set. In actuality, NAIVEMLP completely fails to capture variations in p(t) over time, as shown in
Figure 4.

4 Discussion

Although the inductive biases of GOPHER, directly reflect properties of categorical forecasting with
local continuous-time dynamics, our experiments find that, surprisingly, explicitly modelling the



temporal dynamics does not improve performance. Most of the performance gains of GOPHER
come from incorporating a graph structure, which can be done with a simple baseline model like
NAIVEGNN. The failure of GOPHER can be attributed to the fact that the learned dynamics in the
embedding space do not accurately reflect the ground truth dynamics in probability space.
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A Distribution shift in our real-world dataset
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Figure 5: Distribution shift between the train and test distribution of the New Jersey COVID-19
cases created by Chen et al. [5] when binned by the 21 counties. For each of the two distributions,
the height of each violin plots is normalized by the total count of observations in that split, i.e. size
of training set or size of test set. For most vertices, there are fewer COVID cases later in the 7 day
interval in the test set than in the training set.



B Learned forecasts on COVID-19 dataset
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Figure 6: A copy of Figure 4 for easier comparison to the empirical distribution in Figure 5

C Model robustness
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Figure 7: (Top) The learned and ground truth p(¢) for the ring graph dataset. (Bottom) The predicted
p(t) after we remove all edges from the ring graph. Notice that the ground truth of a completely
disconnected graph is to have p(t) = p(0) for all t. However, all of the models fail completely on

this new disconnected graph, suggesting that they do not learn the true dependence of p(t) on the
graph structure.

D Implementation details

We use 2 layer MLPs with 64 hidden units per layer whenever we use a MLP. We use Swish activa-
tions to ensure smoothness of our dynamics. We also use an augmented neural ODE [8], using 16
dimensions as augmented dimensions out of the 64 hidden dimensions.

D.1 Model architectures.

GOPHER. We parameterize the dynamics ¢g from Equation 2 using one graph isomorophism net-
work layer parameterized by a MLP. We also use a MLP to model the projection 7.

NAIVEGNN. We use the same architecture as GOPHER, namely a GIN layer followed by a pro-

jection w. However, instead of using the model to parameterize ODE dynamics, we directly input
the node embeddings concatenated with time ¢ through the GNN.
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Figure 8: Architecture of GOPHER.

NAIVEMLP. We replace the GIN layer of NAIVEGNN with a MLP, keeping all else the same.

D.2 Training procedure and dataset details.

To maximize hardware parallelism, we parallelize our neural ODE computation across sequence
timesteps and across sequences using the time-reparameterization trick outlined in Chen et al. [5].
For the synthetic datasets, we use the AdamW optimizer with 0.01 learning rate and batch size 64
for 30 epochs. For the COVID-19 dataset, we use a 3 x 10~* learning rate and batch size 4 for 15
epochs. Here, each batch consists of multiple sequences drawn from the training period [0, T]. We
use T" = 5 for the ring graph, T' = 1 for the geometric graph, and 7' = 8 for the New Jersey counties
graph. We generate the ring graph dataset by using hand-set coefficients for the edge weights A,
to allow for counter-clockwise transport. We generate the geometric graph dataset by generating a
random geometric graph via the networkx python package and drawing a random sample of {A,,, }.
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Figure 9: The dynamics of each component of p(¢) on the cyclic graph. Each component corre-
sponds to the probability of a vertex on the graph.
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