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Figure 1: The proposed UniPose achieves both high keypoint detection generalization ability and
high performance. UniPose utilizes visual and textual prompts for training to learn fine-grained
local-region visual representation via keypoint-text and keypoint-image alignments. Once trained,
it can generalize cross-instance and cross-keypoint categories, where it can detect multi-object key-
points on various challenging scenarios with diverse visual styles, scales, and poses.

ABSTRACT

This work proposes a unified framework called UniPose to detect keypoints of
any articulated (e.g., human and animal), rigid, and soft objects via visual or tex-
tual prompts for fine-grained vision understanding and manipulation. Keypoint
is a structure-aware, pixel-level, and compact representation of any object, espe-
cially articulated objects. Existing fine-grained promptable tasks mainly focus on
object instance detection and segmentation but often fail to identify fine-grained
granularity and structured information of image and instance, such as eyes, leg,
paw, etc. Meanwhile, prompt-based keypoint detection is still under-explored. To
bridge the gap, we make the first attempt to develop an end-to-end prompt-based
keypoint detection framework called UniPose to detect keypoints of any objects.
As keypoint detection tasks are unified in this framework, we can leverage 13
keypoint detection datasets with 338 keypoints across 1,237 categories over 400K
instances to train a generic keypoint detection model. UniPose can effectively
align text-to-keypoint and image-to-keypoint due to the mutual enhancement of
textual and visual prompts based on the cross-modality contrastive learning opti-
mization objectives. Our experimental results show that UniPose has strong fine-
grained localization and generalization abilities across image styles, categories,
and poses. Based on UniPose as a generalist keypoint detector, we hope it could
serve fine-grained visual perception, understanding, and generation.

1 INTRODUCTION

Keypoint detection is a fundamental computer vision task that estimates the 2D keypoint positions
of any object in an image. It is of great impact to robot and automation, VR/AR, neuroscience,
biomedicine, and human-computer interaction areas. Keypoint can describe compact structure in-
formation at the pixel level, thus representing fine-grained and local visual information which is very
helpful for behavioral analysis and performing manipulation (e.g., animating the object). Specifi-
cally, due to the increasing real-life application needs, 2D human pose estimation plays an important
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Figure 2: Qualitative results of the proposed UniPose on arbitrary in-the-wild images. We highlight
the powerful detection performance from cross-category (the first row), multi-object (the second
row), and cross-image-style (the third row) with various pose scenarios.

role in this area, which focuses on detecting multi-person keypoint (e.g., head, hand, and foot key-
points) (Xu et al., 2022b; Cheng et al., 2020; Jiang et al., 2023; Yang et al., 2022a; 2023b). To
study animal behaviors in zoology and wildlife conservation, some works propose to perform ani-
mal pose estimation (Yu et al., 2021; Sun et al., 2023a; Ye et al., 2022; Mathis et al., 2018; Xu et al.,
2023; Zhang et al., 2023). However, these studies can only detect object keypoints of a single-class.
Imagine if we need to analyze the behavior of various species of animals and human interactions;
existing solutions need to train many category-specific models for different species.

Although arbitrary object detection and segmentation has made great progress (Kirillov et al., 2023;
Liu et al., 2023b; Sun et al., 2023b; Liang et al., 2023; Zhong et al., 2022), there are few explorations
on the problem of multi-object keypoint detection of unseen or arbitrary categories. The problem is
non-trivial because it needs to learn fine-grained visual representation, category-agnostic keypoint
concepts, and semantic structure information. Naively transferring one type of keypoints to another,
especially for articulated and deformable objects, is very challenging due to high variations in pose,
scale, appearance, background, complicated occlusion, and semantic gaps. Xu et al. (2022a) first
proposed the task of category-agnostic pose estimation (CAPE) with visual prompts (i.e., a support
image of a novel class and the corresponding keypoint annotations) to estimate the pose of the same
class in query images. It formulates it as a keypoint matching problem.

However, existing CAPE methods (Xu et al., 2022a; Shi et al., 2023) have several limitations: 1) only
visual prompts are supported, making user interaction unfriendly and inefficient; 2) the keypoint-
to-keypoint matching schemes without instance-to-instance matching are not effective and robust
since they tend to learn low-level local appearance transformation which often results in inevitable
semantic ambiguity without capturing global relations; 3) they use a top-down two-stage detection
scheme (i.e., crop the image or use ground-truth boxes for each instance), lacking instance-level
generalization ability for handling multi-object scenarios; and 4) the amount of data used for training
is usually of small scale (e.g., only 20K images with 100 instance classes), which severely limits the
generalizability and effectiveness of the visual prompt-based keypoint detection.

In contrast, human intelligence learns multi-modality information simultaneously and excels at sum-
marizing information through contrastive learning of similarities among categories at different se-
mantic levels. On the one hand, keypoints share similar structures and hold similar appearances
cross-species. For instance, as species evolve, skeletal topology is consistent in most quadrupedal
mammals, and the eyes of different organisms have similar visual components. On the other hand,
visual prompts can only provide pixel-level localization and structure but lack semantic concepts
(category-agnostic) from natural language, such as directions (e.g., left, medium, or right), keypoint
semantic descriptions (e.g., left eyes of a panda or right collar of a T-shirt). A proper use of text
prompts is highly desired to address such deficiencies, and the two kinds of prompts will mutually
benefit to image-to-keypoint reasoning and text-to-keypoint alignment.

Considering the above challenges and motivations, we propose to unify keypoint detection tasks in
an end-to-end prompt-based framework named UniPose, which supports multi-object keypoint de-
tection for unseen objects and keypoints. First, we introduce text prompts in the category-agnostic
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Figure 3: Comparisons of three tasks from the supported inputs and framework overview. UniPose
utilizes either visual or textual prompts to make any instance-to-keypoint detection effective.

pose estimation task to bring in semantic guidance and relieve the visual ambiguity from exist-
ing visual prompts. Through the joint training of both visual and textual prompts in UniPose, the
semantic understanding and localization capability are reinforced from each other to improve the
model’s robustness and performance. Second, based on the DETR-like end-to-end non-promptable
human pose estimator (ED-Pose (Yang et al., 2022a)), we first decode the instance information and
then decode the corresponding fine-grained keypoints to provide a coarse-to-fine information flow
end-to-end. Moreover, we improve the keypoint-to-keypoint matching strategy into a coarse-to-fine
(from image to instance to keypoint) similarity learning process via two kinds of contrastive losses
to support multi-object and multi-keypoint detection. Lastly, as the quality and quantity of data
are both important for effective model training, we unify 13 keypoint detection datasets into 338
keypoints across 1,237 categories over 400K instances by reorganizing inconsistent and undefined
keypoints from different datasets and merging similar keypoints and categories. We balance these
datasets by considering image appearance and style diversity, instances with varying poses, view-
points, visibilities, and scales. Each keypoint has its textual prompts, and each category has its
default structured keypoint sets. We call the unified dataset UniKPT.

Through comprehensive experiments, we show the remarkable generalization capabilities of Uni-
Pose for unseen object and keypoint detection, which exhibits a notable 42.8% improvement in PCK
performance when compared to the state-of-the-art CAPE method. Moreover, UniPose outperforms
the state-of-the-art end-to-end model (e.g., ED-Pose) across 12 diverse datasets. Its performance
is also comparable with state-of-the-art expert models for object detection (e.g., GroundingDINO)
and keypoint detection (e.g., ViTPose++). In addition, UniPose exhibits impressive text-to-image
similarity at both instance and keypoint levels, notably surpassing CLIP by 204% when distinguish-
ing between different animal categories and by 166% when discerning various image styles. As in
Fig. 2, we showcase the powerful detection performance of UniPose on in-the-wild images and hope
it could serve the community for fine-grained visual perception, understanding, and generation.

Related Work. Due to the page limit, we present the details in the Appendix A. There are three
related areas, including category-specific keypoint detection (e.g., human, animal, cloth pose estima-
tion (Sun et al., 2023a; Ye et al., 2022; Mathis et al., 2018; Ng et al., 2022; Xu et al., 2022b;c; Jiang
et al., 2023; Yang et al., 2022a)), category-agnostic keypoint detection (relies on visual prompts) (Xu
et al., 2022a; Shi et al., 2023), Open-vocabulary Vision Models (utilizes textual prompts) (Zang
et al., 2022; Gu et al., 2021; Li et al., 2022; Yao et al., 2022; Liu et al., 2023b; Liang et al., 2023;
Zhong et al., 2022)RegionCLIP (Zhong et al., 2022; Li et al., 2023; Sun et al., 2023b). We show
existing prompt-based methodologies in Fig. 3.

2 METHOD

UniPose is an end-to-end prompt-based keypoint detection framework. It takes an image as input
and first decodes instance-level representations (i.e., object bounding boxes), then decodes pixel-
level representations (i.e., object keypoints). UniPose introduces novel encoding mechanisms for
various modalities of prompts and incorporates a novel interaction scheme between the input image
and prompts, enabling prompt-based keypoint detection for any object with any keypoint definitions.

Encoding Multi-modality Inputs. The input of UniPose is a target image to be predicted I and
the associated user prompts. We offer support for user prompts in two formats: textual descrip-
tions comprising instance or keypoints Pt, as well as instance image Pi together with its respective
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Figure 4: The overview architecture of UniPose. Given an input image, UniPose follows the coarse-
to-fine strategy to detect keypoints of any object via textual or visual prompts.

2D keypoint positions Pi
kpt. We employ three distinct modules to encode the corresponding in-

puts. First, we employ a backbone network to extract multi-scale features of I and obtain tokenized
representations F. Then a Textual Prompt Encoder is adopted to encode Pt to textual semantic rep-
resentations Ft, which includes Ft

obj for objects and Ft
kpt for keypoints. At last, we use a Visual

Prompt Encoder to encode Pi and Pi
kpt to visual semantic representations Fi, where Fi

obj and Fi
kpt

correspond to objects and keypoints, respectively. The details for prompts encoding are in Sec. 2.1.

Coarse-to-Fine Keypoint Detection. Given the representations F, Ft, and Fi, we introduce a
Multi-Modality Interactive Encoder to realize interactions among different modalities through cross-
attention operations, obtaining the enhanced representations F̂, F̂t and F̂i, respectively. Addition-
ally, we adopt a coarse-to-fine scheme and integrate two decoders that concentrate on different gran-
ularities, namely, the Instance-level Cross-Modality Decoder and the Keypoint-level Cross-Modality
Decoder. Initially, the prompt-guided query selection is introduced to extract object queries Qobj

from F̂, which is highly associated with the enhanced object-level semantic representations F̂t
obj or

F̂i
obj . Subsequently, the Instance-level Cross-Modality Decoder updates these object queries from

Qobj to Q†
obj . The keypoint queries Qkpt are directly initialized by using F̂t

kpt or F̂i
kpt. We further

adopt the Keypoint-level Cross-Modality Decoder to refine both Qkpt and Q†
obj , resulting in Q†

kpt

and Q‡
obj . The details of the above operations are in Sec. 2.2. Finally, we utilize a Feed-Forward

Network to regress keypoint positions with Q†
kpt and object bounding boxes with Q‡

obj . Moreover,
we employ prompt-guided classifiers for keypoint category classification using Q†

kpt and for object
category classification using Q‡

obj (see Sec. 2.3).

2.1 MULTI-MODALITY PROMPTS ENCODING

The CLIP model (Radford et al., 2021) is trained on hundreds of millions of image-text pairs, align-
ing images with their corresponding captions. In this context, UniPose leverages its pretrained image
encoder and text encoder to encode user prompts through carefully designed encoding mechanisms.

Textual Prompt Encoder. 1) Hierarchical Textual Structure. To accomplish precise mapping
from text to image/region/keypoint, we devise a hierarchical textual structure to describe instance
and keypoint, i.e. image→instance→part→keypoint. Consequently, we formulate the template as
“A [IMAGE STYLE] photo of a [OBJECT]” for the entire instance, “A [IMAGE STYLE] photo of
an [OBJECT]’s [PART]” for part instances (e.g., face and hand), and “A [IMAGE STYLE] photo
of a [OBJECT]’s [PART]’s [KEYPOINT]” for keypoints. 2) Textual Prompt Dropout. Utilizing a
hierarchical textual structure equips UniPose with specialized retrieval capabilities, such as referring
to a particular object category with a specific keypoint. Furthermore, during training, we introduce
random dropout for descriptions, including image style, object, or part, to boost its general retrieval
capabilities. For instance, hiding the object category promotes the retrieval capabilities of a specific
keypoint across all object categories. A typical example is “the left eye of any object”.

Visual Prompt Encoder. UniPose could receive a prompt instance image Pi along with its cor-
responding keypoint definitions Pi

kpt (e.g., 2D positions). Its Visual Prompt Encoder aims to en-
code these prompts into the respective instance and keypoint representations. However, the origi-
nal CLIP’s image encoder (e.g., ViT) can only obtain image representations through the learnable
[CLS] token and patch tokens, which are the inputs on the left of Fig. 5-(a). UniPose extends this by
further incorporating keypoint position encodings, represented as the input on the right of Fig. 5-(a).
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Figure 5: The detailed illustration of (a) Visual prompt Encoder, (b) Cross-Modality Interactive En-
coder, and (c) Cross-Modality Interactive Decoder. In (b) and (c), the modules in grey are presented
in previous work, while the modules in blue are introduced to incorporate prompt interactions.

1) Initialization of Keypoint Tokens. Let Pi
kpt = [(x1, y1, v1), ..., (xk, yk, vk)], where (xk, yk) and

vk denote the 2D coordinate and the visibility of the k-th keypoint, respectively. We design two
distinct token initialization ways as follows: i) for visible keypoints (vk = 1), we use the Fourier
embedding (Mildenhall et al., 2021) to map the 2D coordinate to the corresponding feature dimen-
sions; ii) for invisible keypints (vk = 0), we employ a shared learnable mask token (He et al., 2022b)
to represent the invisible position. 2) Encoding Process of Keypoint Tokens. Since the initialized
keypoint tokens only contain pixel-level position information, we further introduce two encoding
mechanisms: i) the “keypoint token to keypoint token” attention to capture potential structural re-
lations; ii) The “image patch token to keypoint token” attention to propagate global image feature
information into each keypoint token.

2.2 CROSS-MODALITY INTERACTIVE ENCODER AND DECODER.

UniPose extends previous close-set keypoint detection to open-set scenarios through the incorpora-
tion of multi-modality prompts. To facilitate this, we introduce both the Cross-Modality Interactive
Encoder and Decoder, allowing for interaction between the input image and multi-modality prompts,
as shown in Fig. 5-(b) and (c).

Cross-Modality Interactive Encoder. In addition to the deformable self-attention layers for images
employed in previous work (Shi et al., 2022; Yang et al., 2022a) i.e., grey module of Fig. 5-(b), our
Cross-Modality Interactive Encoder further introduces self-attention layers for prompts and inter-
leaved cross-attention layers connecting images and prompts, as in blue modules of Fig. 5-(b).

Cross-Modality Interactive Decoders. UniPose decouples the decoder into two components: the
instance-level decoder and the keypoint-level decoder. This separation allows for keypoint detection
in a coarse-to-fine manner. In previous work, object queries and keypoint queries are used to in-
dependently query for corresponding bounding boxes and keypoints through self-attention between
queries and image-to-query cross-attention, i.e., grey module of Fig. 5-(c). To enhance prompt-
guided keypoint detection, we take a step further by integrating prompt representations into the
queries via prompt-to-query cross attention, as shown in blue modules of Fig. 5-(c).

2.3 TRAINING AND INFERENCE PIPELINE

We adopt the same bounding box and keypoint regression losses as previous end-to-end works (Yang
et al., 2022a): the L1 loss and the GIOU loss (Rezatofighi et al., 2019) for object’s bounding box
regression Lobj

reg; the L1 loss and the OKS loss (Shi et al., 2022) for keypoint regression Lkpt
reg. In

addition, UniPose replaces the object classification loss with Prompt-to-Object contrastive loss and
introduces the Prompt-to-Keypoint contrastive loss for fine-grained alignment.

Instance-level Alignment. Previous keypoint detection frameworks mainly focus on close-set ob-
jects and typically use a simple linear layer as the object classifier. In contrast, UniPose encode
multi-modality prompts (i.e., text or image) into the corresponding object prompt tokens in a unified
formulation F̂t

obj , F̂
i
obj ∈ RL×C , where L is the number of object classes in prompts and C indi-

cates the feature dimension. Following (Li et al., 2022; Liu et al., 2023b), we employ contrastive
loss between predicted objects Q‡

obj and prompt tokens for classification. More specifically, we
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compute the dot product between each object query and the prompt tokens to predict logits for each
token and then calculate the Focal loss of each logit Lobj

align for optimization.

Keypoint-level Alignment. In previous keypoint detection frameworks, the classification problem
related to keypoints is often overlooked and the learning process mainly focuses on establishing a
one-to-one mapping between predicted and labeled keypoints. In contrast, UniPose takes the first
step toward Prompts-to-Keypoint alignment using a unified set of keypoint definitions. Similar to
coarse-grained alignment, we can also obtain the keypoint prompt tokens in a unified formulation
F̂t

kpt, F̂
i
kpt ∈ RK×C , where K denotes the number of keypoint categories in prompts. We utilize

contrastive loss between predicted keypoints Q†
kpt and prompt tokens for classification. To elaborate,

we compute the dot product between each keypoint query and the prompt tokens to predict the logits
for each token. Subsequently, we calculate the Focal loss for each logit Lkpt

align to optimize the model.

The Overall Loss. The overall training pipeline of UniPose can be written as follows,

L = Lobj
reg + Lkpt

reg + Lobj
align + Lkpt

align (1)

Inference Pipeline 1) Textual Prompts as inputs. UniPose can utilize pre-defined object classes
with keypoints definitions as text prompts to obtain quantitative results. In practical scenarios, users
can provide prompts to predict the desired objects with keypoints. 2) Visual Prompt as inputs.
UniPose can randomly sample a set of image prompts from the training data to obtain quantitative
results. In practical scenarios, users can provide a single instance image with the corresponding
keypoint definition to predict all the similar objects in the test images.

3 UNIKPT: A UNIFIED DATASET FOR KEYPOINT DETECTION

Table 1: Statistics of UniKPT with 13 existing keypoint datasets.
KPT and Uni. indicate keypoint and Unified, respectively.

Datasets KPT Class Images Instances Uni. Images Uni. Instances
COCO 17 1 58,945 156,165 58,945 156,165

300W-Face 68 1 3,837 4,437 3,837 4,437
OneHand10K 21 1 11,703 11,289 2,000 2000
Human-Art 17 1 50,000 123,131 50,000 123,131

AP-10K 17 54 10,015 13,028 10,015 13,028
APT-36K 17 30 36,000 53,006 36,000 53,006

MacaquePose 17 1 13,083 16,393 2,000 2,320
Animal Kingdom 23 850 33,099 33,099 33,099 33,099

AnimalWeb 9 332 22,451 21,921 22,451 21,921
Vinegar Fly 31 1 1,500 1,500 1,500 1,500

Desert Locust 34 1 700 700 700 700
Keypoint-5 55/311 5 8,649 8,649 2,000 2,000

MP-100 561/2931 100 16,943 18,000 16,943 18,000
UniKPT 338 1237 - - 226,547 418,487

1 Keypoint-5 and MP-100 have different categories with varying numbers of keypoints. While the cu-
mulative count of keypoints reaches 55 and 561 by aggregating across categories, we consolidate them
into unified counts of 31 and 293 keypoints by leveraging textual descriptions.

Unifying 13 Keypoint Datasets
into UniKPT. Existing key-
point detection datasets have al-
ready concentrated on various
object categories with specific
pre-defined keypoints. How-
ever, several challenges still ex-
ist. 1) The majority of 2D key-
point detection datasets predom-
inantly concentrate on human-
related categories, such as hu-
man body, face, and hands. For
other object categories, datasets
are relatively scarce and frag-
mented. 2) Each dataset typi-
cally encompasses a single super-category of objects, each associated with one or a few sets of
keypoint-defined skeletons. As a result, there is currently no generalist model capable of achieving
keypoint detection across all possible scenarios. Motivated by these, we propose to unify existing
keypoint detection datasets based on three principles: i) collecting and encompassing all articulated,
rigid, and soft objects, ii) including a broader spectrum of object categories whenever possible,
and iii) spanning a diverse range of image styles. As shown in Table. 1, we have unified 13 key-
point detection datasets, including COCO (Lin et al., 2014), 300W-Face (Sagonas et al., 2016),
OneHand10K (Wang et al., 2018), Human-Art (Ju et al., 2023), AP-10K (Yu et al., 2021), APT-
36K (Yang et al., 2022b), MacaquePose (Labuguen et al., 2021), Animal Kingdom (Ng et al., 2022),
AnimalWeb (Khan et al., 2020), Vinegar Fly (Pereira et al., 2019), Desert Locust (Graving et al.,
2019), Keypoint-5 (Wu et al., 2016), and MP-100 (Xu et al., 2022a). It is worth noting that MP-100
also includes training subsets from two other datasets, Deepfashion2 (Ge et al., 2019) and Carfu-
sion (Reddy et al., 2018).

Statistical Analysis. In total, the unified dataset comprises 226, 547 images and 418, 487 instances,
featuring 338 keypoints and 1, 237 categories. In particular, for articulated objects like humans and
animals, we further categorize them based on biological taxonomy, resulting in 1, 216 species, 66
families, 23 orders, and 7 classes.
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4 EXPERIMENT

Due to the page limit, we leave the detailed experiment setup, data organization, and more experi-
ments in the Appendix.

4.1 UNSEEN OBJECTS AND KEYPOINTS DETECTION

We evaluate UniPose against the previous methods, i.e., ProtoNet (Snell et al., 2017), MAML (Finn
et al., 2017), Fine-tune (Nakamura & Harada, 2019), POMNet (Xu et al., 2022a), and Cape-
former (Shi et al., 2023) on the MP-100 dataset in Tab. 2, to demonstrate is generalization abilities
for both unseen object and keypoint detection. First, with ground-truth bounding boxes (excluding
the challenge of generalization to unseen objects), UniPose, as an end-to-end framework, achieves
state-of-the-art results, surpassing all top-down methods, and offers efficiency by requiring only a
single forward pass for scenes with multiple objects. Second, in the absence of ground-truth bound-
ing boxes, UniPose exhibits a significant improvement over CapeFormer in terms of average PCK,
achieving a significant increase of 42.8%, thanks to UniPose’s generalization ability for both unseen
object and keypoint detection. Furthermore, we distinguish between single-object and multi-object
scenes in the test set, as shown in Tab. 3 and Tab. 12. UniPose’s advantages are particularly pro-
nounced in multi-object scenes. Notably, CapeFormer exhibits sensitivity to input resolution, with a
sharp performance drop when increasing resolution from 256 to 800.

Table 2: Comparisons of visual prompt-based keypoint detection for unseen objects and keypoints
using the MP-100 dataset. TD and E2E refer to the top-down and end-to-end paradigms, respec-
tively. The inference times for all methods are tested on an A100 with a batch size of 1. Top-down
methods need multiple inferences when N objects are detected in an image.

Method Backbone Input Image Box Anno Split1 Split2 Split3 Split4 Split5 Mean (PCK) Time [ms]

TD

ProtoNet ResNet-50 Cropped ✓ 46.05 40.84 49.13 43.34 44.54 44.78 -
MAML ResNet-50 Cropped ✓ 68.14 54.72 64.19 63.24 57.20 61.50 -
Fine-tune ResNet-50 Cropped ✓ 70.60 57.04 66.06 65.00 59.20 63.58 -
POMNet ResNet-50 Cropped ✓ 84.23 78.25 78.17 78.68 79.17 79.70 151×N
CapeFormer ResNet-50 Cropped ✓ 89.45 84.88 83.59 83.53 85.09 85.31 57×N
CapeFormer ResNet-50 Original 60.74 57.18 54.04 46.53 42.35 52.17 57×N

E2E UniPose ResNet-50 Original ✓ 89.07 85.05 85.26 85.52 85.79 86.14 59
UniPose ResNet-50 Original 76.47 72.16 71.57 75.89 76.43 74.50 59

Note: We train our models only on the MP-100 dataset to ensure a fair comparison. During evaluation, all methods use the same visual
prompts paired with test images.

Table 3: Comparisons on the specific multi-object MP-100 test set.
Methods Backbone Input Image Resolution Split1 Split2 Split3 Split4 Split5 Mean (PCK)
CapeFormer ResNet-50 Original 256×256 24.19 23.81 24.39 21.21 20.30 22.78
CapeFormer ResNet-50 Original 800×800 24.53 30.52 17.19 20.90 20.59 28.75
UniPose ResNet-50 Original 800×800 69.40 66.49 64.44 63.95 63.28 65.51

4.2 COMPARISON WITH SOTA EXPERT KEYPOINT DETECTION MODELS

Table 4: Comparisons with baseline-ED-
Pose under a fair multi-dataset training set-
ting, using the Swin-T backbone.

Methods Instance-level Keypoint-level
APM APL AP APM APL

COCO val set
ED-Pose 68.8 79.0 73.3 67.6 81.5
UniPose-T 71.1 80.2 74.2 68.8 82.1
UniPose-V 71.1 80.3 74.1 68.8 81.8
Human-Art val set
ED-Pose 32.3 61.5 71.3 37.2 75.9
UniPose-T 33.7 63.1 72.2 39.5 76.7
UniPose-V 34.0 63.0 71.8 39.3 76.4
AP-10K val set
ED-Pose 53.7 62.5 45.5 31.0 46.5
UniPose-T 54.5 78.8 73.2 45.6 74.3
UniPose-V 55.8 79.0 72.8 47.2 74.0

Generic Keypoint Detection. We present a com-
parative analysis of UniPose against state-of-the-art
models that have been trained on multiple datasets,
ViTPose++ (Xu et al., 2022c) and ED-pose (Yang
et al., 2022a). Our evaluation benchmarks 12
datasets as shown in Tab. 5. The results demonstrate
that UniPose consistently delivers superior perfor-
mance across all datasets. Notably, when compared
to ViTPose++, which lacks the capability to handle
unseen datasets with different keypoint structures,
UniPose excels by detecting more objects and key-
points in an end-to-end manner.

Comparison with Baseline (ED-Pose) Aligned
with Training Data. UniPose is built on ED-Pose in
a coarse-to-fine keypoint detection approach. Here,
we train both our UniPose and ED-Pose using the same datasets, i.e., COCO, Human-Art, AP-10K,
and APT-36K. The results in Tab. 4 show that UniPose outperforms ED-Pose across all datasets
in terms of both instance-level and keypoint-level detection. Moreover, for the AP-10K dataset,
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Table 5: Comparison with SOTA expert models trained on multiple datasets. † indicates results using
the flipping test. Results marked with * rely on ground-truth bounding boxes for top-down methods.
The expert models can test datasets with known keypoint structures, highlighted in blue, but cannot
handle unseen datasets with different keypoint structures. We highlight the trained datasets in dark
blue of expert models in UniKPT. The best results are highlighted in bold, and the second best
results are highlighted with a underline. T and V denote textual and visual prompts used.

Methods Backbone COCO AP-10K Human-Art Macaque 300W Hand AK Fly Locust KPT-5 DF2 Carfusion
AP↑ PCK@0.2↑

Expert Models
ViTPose++† (TP) ViT-S (MAE) 75.8 71.4* 23.4 15.5* 95.2* 96.1* - - - - - -
ViTPose++† (TP) ViT-L (MAE) 78.6 80.4* 35.6 51.9* 99.8* 99.5* - - - - - -
ED-Pose (E2E) Swin-T 73.3 45.5 71.3 51.0 - - - - - - - -
Prompted-based Models
UniPose-T (E2E) Swin-T 74.4 74.0 72.5 78.0 98.1 95.7 67.8 99.6 99.7 94.3 95.7 78.1
UniPose-V (E2E) Swin-T 74.3 73.6 72.1 77.3 99.4 95.9 66.2 99.8 99.6 87.4 91.0 72.1
UniPose-T (E2E) Swin-L 76.8 79.2 75.9 79.4 98.5 99.8 71.7 99.9 99.8 95.5 97.5 88.7
UniPose-V (E2E) Swin-L 76.6 79.0 75.5 77.8 99.3 99.5 70.4 99.9 99.9 91.6 95.5 85.0
1 Due to the absence of official train/val/test splits in AnimalWeb and APT-36K, we solely utilize them for training and do not conduct comparisons with other methods.
2 ViTPose++: COCO + COCO-W + MPII + AIC + AP-10K + APT-36K, 387K training data.
3 ED-Pose: COCO + Human-Art + AP-10K + APT-36K, 154K training data
4 UniPose: UniKPT, 227K training data

which involves the classification of 54 different species, UniPose surpasses ED-Pose with a 27.7 AP
improvement, thanks to instance-level and keypoint-level alignments.

Qualitative Results on Existing Datasets. Given an input image and textual prompts, UniPose can
perform well for any articulated, rigid, and soft objects, as shown in Fig. 6.

Figure 6: Visualization of the detected keypoints via UniPose on the unified dataset (UniKPT).

4.3 COMPARISON WITH GENERALIST MODELS FOR GENERIC KEYPOINT DETECTION

We compare our UniPose with generalist models Unified-IO (Lu et al., 2022), Painter (Wang et al.,
2023), and InstructDiffsuion (Geng et al., 2023b) in terms of keypoint detection task. As shown in
Tab. 6, UniPose outperforms all the generalist models across all evaluated datasets, which demon-
strates UniPose’s capability to serve as a robust generalist keypoint detector.

Table 6: Comparisons with generalist models.
Method COCO val HumanArt val AP-10K val
Unified-IO 25.0 15.7 7.6
Painter 70.2 12.4 15.3
InstructDiffusion 71.2 51.4 15.9
UniPose (Image) 76.6 75.5 79.0
UniPose (Text) 76.8 75.9 79.2

Table 7: Comparison of CLIP score.

Methods AP-10K val Human-Art val
Instance Keypoint Instance Keypoint

CLIP 28.36 21.75 23.60 23.81
UniPose 58.59 66.01 68.41 63.46

4.4 COMPARED WITH OPEN-VOCABULARY MODELS

Comparison with Vision-Language Model-CLIP. We assess UniPose’s text-to-image alignment
capabilities at different granularities using instance descriptions and keypoint descriptions. As in
Fig. 7, we report the CLIP score of UniPose and CLIP on AP-10K, which involves 54 animal cate-
gories, and Human-Art, which features 15 image styles. The results show that UniPose consistently
provides higher-quality text-to-image similarity scores, both at the instance level and keypoint level.

Comparison with Open-Vocabulary Detection Model. We compare UniPose with the state-of-
the-art open-vocabulary object detector, Grounding-DINO, in terms of instance-level and keypoint-
level detection. We present the COCO results in Tab. 8, while results for other datasets are in
Tab. 16. UniPose achieves comparable instance detection performance to the fine-tuned Grounding-
DINO model. More importantly, Grounding-DINO fails to localize fine-grained keypoints, UniPose
successfully addresses these challenges, achieving significant performance across all datasets.
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Table 8: Comparisons with the state-of-the-art open-vocabulary object detector, focusing on
instance-level and keypoint-level detection. ‡ denotes the fine-tuning of GroundingDINO using
the keypoint detection datasets. Note that we limit the instance-level comparison to APM (medium
objects) and APL (large objects), as small objects do not have keypoints annotated.

Methods Backbone Instance-level Keypoint-level Training Datasets Dataset Volume
APM APL AP APM APL

COCO val set
GroundingDINO-T Swin-T 70.8 82.0 3.1 2.8 3.2 O365,GoldG,Cap4M 1858K
GroundingDINO-T Swin-B 69.7 79.5 6.8 6.6 7.2 COCO,O365,GoldG,Cap4M,OpenImage,ODinW-35,RefCOCO -
GroundingDINO‡-T Swin-T 71.2 83.4 1.8 1.7 1.9 COCO,Human-Art,AP-10K,APT-36K 1858K + 155K
UniPose-T Swin-T 71.1 80.2 74.2 68.8 82.1 COCO,Human-Art,AP-10K,APT-36K 155K
UniPose-V Swin-T 71.1 80.3 74.1 68.8 81.8 COCO,Human-Art,AP-10K,APT-36K 155K

4.5 ABLATION STUDY

In this section, we firstly validate the effectiveness of the UniPose framework in instance-to-
keypoint alignment and multi-modality prompts. We train UniPose with the Swin-T backbone on
four datasets: COCO, Human-Art, AP-10K, and APT36K. For comparison, we report the results
on AP-10K, which encompasses multiple object categories and enables a comprehensive evalua-
tion in classification and localization. Secondly, we assess the effectiveness of the UniKPT’s data
by scaling up the dataset. Similarly, the Swin-T backbone is adopted. We present the results on
both the seen dataset AP-10K in UniKPT and the unseen dataset AnimalPose (Cao et al., 2019) to
demonstrate its generalization ability.

Instance-to-Keypoint Alignment. As discussed in Sec. 2.3, we introduce Lobj
Align and Lkpt

Align to
facilitate prompt-to-instance and prompt-to-keypoint alignment, respectively. We present the results
via textual prompts in Tab. 9, highlighting the significant improvement in detection performance,
particularly in APL, due to Lobj

Align. This underscores its importance in aiding the model to distin-
guish between categories and enhance classification performance. The improved detection perfor-
mance positively affects keypoint performance. Moreover, the inclusion of Lkpt

Align further helps the
network learn keypoint distinctions, resulting in enhanced keypoint detection performance.”

Table 9: Impact of instance-to-keypoint
alignment on AP-10K.
Lobj
Align Lkpt

Align

Instance-level Keypoint-level
APM APL AP APM APL

53.7 62.5 45.5 31.0 46.5
✓ 53.8 78.5 72.6 43.6 73.4
✓ ✓ 54.5 78.8 73.2 45.6 74.3

Table 10: Impact of two modal prompts on AP-10K.
The prompt used in the test is highlighted in grey.

Visual Prompt Textual Prompt Instance-level Keypoint-level
APM APL AP APM APL

✓ 53.3 78.1 71.5 43.4 72.4
✓ ✓ 55.8 79.0 72.8 47.2 74.0

✓ 53.8 78.5 72.9 45.1 74.2
✓ ✓ 54.5 78.8 73.2 45.6 74.3

Multi-Modlity Prompts. We utilize both the visual and textual prompts by default during training.
Here, we perform an ablation study by removing one of these prompts, as depicted in Tab. 10. The
results highlight the mutual advantages of both textual and visual prompts.

Impact on Dataset Quantity. We first train our UniPose using 4 datasets covering humans and
60 different animals. Then, we add additional 5 animal datasets to train UniPose, as shown in
Tab. 11. This results in significant improvements in both instance and keypoint detection on seen
AP-10K datasets (using textual prompts). Moreover, we achieve a significant improvement on the
unseen AnimalPose dataset (using visual prompts), thanks to the broader range of categories and the
increased data size. Furthermore, we incorporate additional part-level datasets (Face and Hand) as
well as rigid and soft object datasets for training. Although these diverse datasets lead to a slight
decrease in AP-10K performance, it further boosts the model’s performance on unseen datasets.

Table 11: Impact of dataset quantity on AP-10K and AnimalPose.
Training Data AP-10K’s Instance AP-10K’s Keypoint AnimalPose

APM APL AP APM APL PCK
COCO,Human-Art,AP-10K,APT-36K 54.5 78.8 73.2 45.6 74.3 52.7

+MacquePose,AnimalKingdom,AnimalWeb,Vinegar Fly,Desert Locust 55.6 80.2 74.2 48.3 75.0 70.1
+300w-Face,OneHand10K,Keypoint-5,MP-100 55.3 78.8 74.0 47.8 74.7 73.4

5 CONCLUSION

This work studies the problem of detecting any keypoints from instance to keypoint levels via either
visual prompts or textual prompts. To solve this problem, we proposed an end-to-end coarse-to-
fine framework trained on a unified keypoint dataset to learn general semantic fine-grained keypoint
concepts and global-to-local keypoint structure, achieving high performance and generalizability.
We leave broader impact and limitation discussions in the Appendix D.
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Appendix:
UniPose: Detecting Any Keypoints

A RELATED WORK

A.1 CATEGORY-SPECIFIC KEYPOINT DETECTION

Keypoint detection is a fundamental computer vision task for fine-grained image understanding,
aiming to localize the pre-defined semantic keypoints of objects within an image. For a long time,
mainstream methods have focused on multi-person or animal pose estimation (Sun et al., 2023a; Ye
et al., 2022; Mathis et al., 2018; Ng et al., 2022; Xu et al., 2022b;c; Jiang et al., 2023; Yang et al.,
2022a). Approaches of multi-person pose estimation can be categorized into two-stage and one-
stage methods. Among the two-stage methods, there are top-down and bottom-up strategies. Top-
down methods (Xiao et al., 2018; Sun et al., 2019; Li et al., 2021; Mao et al., 2022; Xu et al., 2022b;
Geng et al., 2023a) demonstrate impressive performance but come with a higher computational cost.
They first detect each person in an image using an independent object detector and then perform
single-person pose estimation with the proposed model. In contrast, bottom-up methods (Cao et al.,
2017; Newell et al., 2017; Cheng et al., 2020; Luo et al., 2021; Geng et al., 2021) are more efficient
but have lower precision. They begin by estimating keypoints and then group them into individual
human poses. Specifically, one-stage end-to-end methods (Shi et al., 2022; Yang et al., 2022a; Liu
et al., 2023a; Yang et al., 2023a) have shown superior performance and efficiency trade-offs. ED-
Pose (Yang et al., 2022a) introduces a coarse-to-fine framework that explicitly incorporates human
detection into the fine-grained keypoint detection process. However, mainstream methods primarily
focus on single super-category objects with specific pre-defined keypoints.

To detect more keypoints, training multiple models is straightforward to handle various categories
with different keypoint definitions (Xu et al., 2022c; Contributors, 2020; Zauss et al., 2021). Based
on the given instance-level detection and multiple datasets training, the two-stage top-down method
ViTPose+ achieves state-of-the-art human and animal keypoint detection performance. However,
the top-down strategy still requires reliance on corresponding object detectors and faces challenges
in handling missing object detections and the high computational costs for crowded scenes. Ad-
ditionally, existing ViTPose++ could only support the keypoint detection from the trained 61 (e.g.,
person and 60 animal species) categories. Furthermore, although there are some vision generalist
models (Chen et al., 2022; Lu et al., 2022; Wang et al., 2023; Geng et al., 2023b) that have been
employed to address various vision tasks, including keypoint detection, all of them are primarily
designed for human keypoint detection and will fail on other type keypoint of objects or unseen key-
points. In light of these, our work aims to provide a more powerful end-to-end keypoint generalist
via unifying existing keypoint detection tasks by leveraging 13 keypoint detection datasets.

A.2 CATEGORY-AGNOSTIC KEYPOINT DETECTION

Given a prompt image of a novel object and its corresponding keypoint definition, visual prompt-
based keypoint detection/pose estimation aims to detect category-agnostic keypoints. Existing
works (Xu et al., 2022a; Shi et al., 2023) simplify this problem as a single-object keypoint match-
ing problem and train their models on a small-scale dataset (MP-100 with 17K images spanning
100 categories), making the model suffer from under-fitting and hard to learn the local keypoint
representation effectively. The concurrent work UniAP (Sun et al., 2023a) unifies animal pose esti-
mation, segmentation, and classification under a single model via few-shot learning. It still follows
the single-object detection and only supports visual prompts as input. In contrast, we introduce an
end-to-end prompt-based keypoint detection framework that can detect multi-object keypoints and
unify the existing 13 datasets to generalize the model across instances and their keypoints.

A.3 OPEN-VOCABULARY VISION MODELS

Benefit from vision-language pretrained model CLIP (Radford et al., 2021), like open-vocabulary
object detection and semantic segmentation tasks are actively explored (Zang et al., 2022; Gu et al.,
2021; Li et al., 2022; Yao et al., 2022; Liu et al., 2023b; Liang et al., 2023; Zhong et al., 2022),
especially for a finer level of granularity understanding in image-text pairs (Li et al., 2023; Sun
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et al., 2023b). The most related work is CLAMP (Zhang et al., 2023). It leverages CLIP with
language guidance to prompt the animal keypoints. However, open-vocabulary keypoint detection
is still under-explored, which can distinguish orientation information and local structure relations in
a compact and fine-grained representation.

B UNIKPT DATASET

According to Fig. 7, we observe that each dataset only focuses on a single super-category (e.g.,
”human only“ and ”animal only“), making it challenging to achieve keypoint generalization when
using them individually. Additionally, there are significant differences in the quality, quantity, and
appearance styles of keypoint annotations in these datasets. Therefore, we are motivated to unify all
the datasets to train a generalist keypoint detector.

(a) COCO (Human-only)

(d) Deepfashion2 (Cloth-only)*

(g) AP36K (Animal-only)

(c) 300W-Face (Face-only)(b) Human-Art (Human-only)

(e) OneHand10K (Hand-only)

(j) Keypoint-5 (Rigid objects-only) (k) Carfusion (Rigid car-only)*

(h) AP10K (Animal-only) (i) AnimalWeb (Animal face-only)

(f) Animal Kindom (Animal-only)

(l) Vinegar Fly (only) (m) Desert Locust (only) (n) MacaquePose (only)

Figure 7: Visualization the unified dataset (UniKPT) for each original dataset. * means the two
datasets are included in MP-100 (Xu et al., 2022a).

B.1 GUIDELINES FOR UNIFYING DATASETS

Unifying Keypoint’s Textual Description. Given that descriptions for the same keypoint may vary
across different datasets, our first step is to standardize the names of overlapping keypoints. Then
we could align fine-grained keypoint features that share similar local visual patterns, such as “the
left eye of humans” and “the left eye of cats”, by using a unified textual description.

Unifying Orientation Criterion. We observe discrepancies in the existing data regarding the defi-
nition of left and right orientations. Therefore, we standardize left and right orientation definitions
based on the object’s left and right within the image, which can promote the alignment of directional
information between the text and keypoints within the model.

Annotating Detailed Keypoint Information. The majority of keypoints in the unified dataset lack
detailed annotations to distinguish between different keypoints, such as the keypoints in facial con-
tours or cloth landmarks. To benefit the fine-grained text-to-keypoint alignment, we further provided
detailed names for all keypoints, which include rich directional information (e.g., upper, lower, left,
right) and descriptive terminology.

Balancing Data Volume and Object Categories. Among the 13 datasets, we have used the entire
dataset for most of them because they encompass a diverse range of multi-object scenarios (e.g.,
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Table 12: Comparisons with the state-of-the-art method on the MP-100 dataset, differentiated be-
tween single-object scene and multi-object scene.

Methods Backbone Input Image Resolution Split1 Split2 Split3 Split4 Split5 Mean (PCK)
All the images in the test set
CapeFormer ResNet-50 Original 256×256 60.74 57.18 54.04 46.53 42.35 52.17
CapeFormer ResNet-50 Original 800×800 44.32 36.68 32.63 39.35 36.18 37.83
UniPose ResNet-50 Original 800×800 76.47 72.16 71.57 75.89 76.43 74.50
Single-object images in the test set
CapeFormer ResNet-50 Original 256×256 63.27 58.40 56.16 48.53 43.26 53.92
CapeFormer ResNet-50 Original 800×800 45.69 36.90 33.73 40.80 36.83 38.79
UniPose ResNet-50 Original 800×800 77.66 72.73 72.08 76.63 77.47 75.31
Multi-object images in the test set
CapeFormer ResNet-50 Original 256×256 24.19 23.81 24.39 21.21 20.30 22.78
CapeFormer ResNet-50 Original 800×800 24.53 30.52 17.19 20.90 20.59 28.75
UniPose ResNet-50 Original 800×800 69.40 66.49 64.44 63.95 63.28 65.51

COCO), varied photo styles (e.g., Human-Art), or a large number of species categories (e.g., Ani-
malKindom). However, for some datasets such as Onehand10K for human hand, MacaquePose for
macaque animals, and Keypoint-5 for furniture, each only containing single-object scenes featuring
limited categories, we randomly sample 2, 000 training images from each for model training.

C EXPERIMENTS

C.1 EXPERIMENTAL SETUP

Dataset. We conduct our experiments in two settings: 1) MP-100 Dataset (Xu et al., 2022a): We
employ the MP-100 dataset to conduct a fair evaluation of UniPose’s generalization capabilities
against previous visual prompt-based approaches. This dataset comprises approximately 17K im-
ages and 18K instances spanning 100 different categories. The number of keypoints varies across
categories, ranging from 8 to 68. To facilitate model training and evaluation, the dataset is di-
vided into five splits. Each split ensures that the training, validation, and test categories are non-
overlapping, i.e., the categories for evaluation are not accessed during training. 2) Unified Dataset
- UniKPT (See Table. 1): we employ UniKPT to train UniPose and subsequently evaluate it on 12
datasets’ evaluation sets, i.e.,. COCO, Human-Art, AP-10K, MacaquePose (Macaque), 300W, One-
Hand10K (Hand), Animal Kingdom (AK), Vinegar Fly (Fly), Desert Locust (Locust), Keypoint-5
(KPT-5), Deepfashion2 (D2), and Carfusion. Notably, it’s essential to mention that due to the lack
of official train/val/test splits in AnimalWeb and APT-36K, we exclusively employ them for training
purposes and refrain from conducting comparisons with other methods.

Evaluation Metric. 1) PCK Metric for MP-100 Dataset: we employ the Probability of Correct
Keypoint (PCK) (Yang & Ramanan, 2012) as the quantitative metric. The threshold for PCK is set
to 0.2 following POMNet (Xu et al., 2022a) and Capeformer (Shi et al., 2023). 2) AP and PCK
Metrics for the unified dataset UniKPT: In accordance with the standard settings specific to each
dataset, we employ two evaluation metrics, i.e., OKS-based Average Precision (AP) (Lin et al.,
2014) and PCK with a threshold of 0.2.

Implementation details. We use the exact same training details as all the end-to-end models (Yang
et al., 2022a; Shi et al., 2022). Specifically, we augment the training images through random crop-
ping, flipping, and resizing. The shorter sides are kept within [480, 800], while the longer sides are
less than or equal to 1333. We utilize the AdamW optimizer with a weight decay of 1e-4. Our
models are trained on 8 Nvidia A100 GPUs with a batch size of 16. During testing, the images are
resized with shorter sides of 800 and longer sides less than or equal to 1333.

C.2 MORE RESULTS

Compared with Expert Models. We present the complete results on three mainstream datasets,
i.e.. COCO in Fig. 13, Human-Art in Fig. 14 and AP-10K in Fig. 15. The results demonstrate
that UniPose establishes a new state-of-the-art benchmark among end-to-end models. Remarkably,
UniPose also achieves results that are comparable to those of SOTA top-down methods.

Compared with Open-Vocabulary Detection Model. We compare UniPose with the state-of-the-
art open-vocabulary object detector, Grounding-DINO, with a specific focus on instance-level and
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Table 13: Comparisons with state-of-the-art methods on COCO val2017 dataset. † denotes the
flipping test.

Method Backbone AP AP50 AP75 APM APL

T
D

HRNet† HRNet-w32 74.4 90.5 81.9 70.8 81.0
HRNet† HRNet-w48 75.1 90.6 82.2 71.5 81.8
ViTPose-S† ViT-S (MAE) 73.8 90.3 81.3 67.1 75.8
ViTPose-L† ViT-L (MAE) 78.3 91.4 85.2 71.0 81.1
ViTPose++-L† ViT-L (MAE) 78.6 91.4 85.4 71.5 81.3

E
2E

PETR Swin-L 73.1 90.7 80.9 67.2 81.7
ED-Pose Swin-T 73.6 90.9 80.6 68.3 81.3
ED-Pose Swin-L 74.3 91.5 81.6 68.6 82.6

UniPose (Text) Swin-T 74.4 90.7 81.0 68.8 82.1
UniPose (Image) Swin-T 74.3 90.6 81.0 68.8 81.8
UniPose (Text) Swin-L 76.8 91.9 83.8 71.6 84.8
UniPose (Image) Swin-L 76.6 91.8 83.6 71.5 84.5

HRNet, ViTPose, PETR, ED-Pose: COCO, 58K training data
ViTPose++: COCO+ COCO-W + MPII + AIC + AP-10K + APT-36K, 387K training data
UniPose: UniKPT, 226K training data

Table 14: Comparisons with state-of-the-art methods on Human-Art val dataset. † denotes the
flipping test.

Method Backbone AP AP50 AP75 APM APL

T
D

HRNet† HRNet-w32 39.9 54.5 42.0 46.6 61.3
HRNet† HRNet-w48 41.7 55.3 44.2 48.1 61.7
ViTPose-S† ViT-S (MAE) 38.1 53.2 40.5 44.8 60.2
ViTPose-L† ViT-L (MAE) 45.9 59.2 48.7 52.5 65.6

E
2E

ED-Pose Swin-T 71.3 85.6 77.0 37.2 75.9

UniPose (Text) Swin-T 72.5 86.7 77.6 39.5 76.7
UniPose (Image) Swin-T 72.1 86.5 77.0 39.3 76.4
UniPose (Text) Swin-L 75.9 89.6 81.7 42.6 80.1
UniPose (Image) Swin-L 75.5 89.5 81.5 42.2 79.7

HRNet, ViTPose: Human-Art, 58K training data
ED-Pose: COCO + Human-Art + AP-10K + APT-36K, 154K training data
UniPose: UniKPT, 226K training data

keypoint-level detection in Fig. 16. For instance detection, the original Grounding-DINO performs
admirably on COCO since it has knowledge of the person categories. However, its performance
sharply drops when the image style shifts to artificial scenes and when detecting the 54 different an-
imal categories. After fine-tuning Grounding-DINO using the keypoint detection datasets, its detec-
tion performance on Human-Art and AP-10K has significantly improved. UniPose has also achieved
comparable detection performance to the fine-tuned Grounding-DINO model. For keypoint detec-
tion, while Grounding-DINO fails to localize fine-grained keypoint, UniPose successfully addresses
these challenges, achieving significant performance across all datasets.

C.3 FAILURE CASE ANALYSIS

In Fig. 8, we show three kinds of failure cases in our method. First, due to multi-object and multi-
keypoint contrastive learning with textual prompts, the classification scores of instances and key-
points may be imbalance across different categories. It will cause that it is hard to set a certain
threshold for precise detection. From the left figure of Fig. 8(a), we set a higher threshold to demon-
strate the outputs, and some objects are missing; we set a lower threshold, which will lead to some
redundant detection. Second, despite the fact that we collected as many categories as possible, there
are some keypoints of soft objects (e.g., marine organisms shown in Fig. 8(b)) that are still difficult to
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Table 15: Comparisons with state-of-the-art methods on AP-10K val dataset. † denotes the flipping
test. All the top-down methods are based on ground-truth boxes.

Method Backbone AP AP50 AP75 APM APL

T
D

HRNet† HRNet-w32 72.2 93.9 78.7 55.5 73.0
HRNet† HRNet-w48 73.1 93.7 80.4 57.4 73.8
ViTPose-S++† ViT-S (MAE) 71.4 93.3 78.4 47.6 71.8
ViTPose-L++† ViT-L (MAE) 80.4 97.6 88.5 52.7 80.8

E
2E

ED-Pose Swin-T 45.5 57.4 50.2 31.0 46.5

UniPose (Text) Swin-T 74.0 91.7 81.5 47.8 74.7
UniPose (Image) Swin-T 73.6 91.9 80.6 47.2 74.2
UniPose (Text) Swin-L 79.2 95.7 87.2 58.3 79.8
UniPose (Image) Swin-L 79.0 95.7 86.8 57.0 79.6

HRNet: AP-10K, 58K training data
ED-Pose: COCO + Human-Art + AP-10K + APT-36K, 154K training data
ViTPose++: COCO+ COCO-W + MPII + AIC + AP-10K + APT-36K, 387K training data
UniPose: UniKPT, 226K training data

Table 16: Comparisons with the state-of-the-art open-vocabulary object detector, focusing on
instance-level and keypoint-level detection. ‡ denotes the fine-tuning of GroundingDINO using
the keypoint detection datasets. Notably, we limit the instance-level comparison to APM (medium
objects) and APL (large objects), as small objects do not have keypoints annotated.

Methods Backbone Instance-level Keypoint-level Training Datasets Dataset Volume
APM APL AP APM APL

COCO val set
GroundingDINO (Text) Swin-T 70.8 82.0 3.1 2.8 3.2 O365,GoldG,Cap4M 1858K
GroundingDINO (Text) Swin-B 69.7 79.5 6.8 6.6 7.2 COCO,O365,GoldG,Cap4M,OpenImage,ODinW-35,RefCOCO -
GroundingDINO‡ (Text) Swin-T 71.2 83.4 1.8 1.7 1.9 COCO,Human-Art,AP-10K,APT-36K 1858K + 155K
UniPose (Text) Swin-T 71.1 80.2 74.2 68.8 82.1 COCO,Human-Art,AP-10K,APT-36K 155K
UniPose (Image) Swin-T 71.1 80.3 74.1 68.8 81.8 COCO,Human-Art,AP-10K,APT-36K 155K
Human-Art val set

GroundingDINO (Text) Swin-T 11.5 27.0 2.1 1.7 2.3 O365,GoldG,Cap4M 1858K
GroundingDINO (Text) Swin-B 13.3 27.9 4.4 3.7 4.5 COCO,O365,GoldG,Cap4M,OpenImage,ODinW-35,RefCOCO -
GroundingDINO‡ (Text) Swin-T 33.3 67.0 1.4 0.8 1.5 COCO,Human-Art,AP-10K,APT-36K 1858K + 155K
UniPose (Text) Swin-T 33.7 63.1 72.2 39.5 76.7 COCO,Human-Art,AP-10K,APT-36K 155K
UniPose (Image) Swin-T 34.0 63.0 71.8 39.3 76.4 COCO,Human-Art,AP-10K,APT-36K 155K
AP-10K val set

GroundingDINO (Text) Swin-T 5.1 13.7 1.3 0.6 1.3 O365,GoldG,Cap4M 1858K
GroundingDINO (Text) Swin-B 29.1 44.1 7.8 5.4 8.2 COCO,O365,GoldG,Cap4M,OpenImage,ODinW-35,RefCOCO -
GroundingDINO‡ (Text) Swin-T 56.5 79.7 0.7 0.4 1.0 COCO,Human-Art,AP-10K,APT-36K 1858K + 155K
UniPose (Text) Swin-T 54.5 78.8 73.2 45.6 74.3 COCO,Human-Art,AP-10K,APT-36K 155K
UniPose (Image) Swin-T 55.8 79.0 72.8 47.2 74.0 COCO,Human-Art,AP-10K,APT-36K 155K

define textually and visually, especially when only a single source image is inputted. These objects
also tend to have similar local features in their visual appearance and global structural features that
are not sufficiently distinct. Third, Although our method shows superiority in multi-object detection
scenarios, we find that recognition in places of extreme occlusion or heavily invisible keypoints,
which may lose either local or global visual structure information, is still challenging (see Fig. 8(c)).

D BROADER IMPACT AND LIMITATION

Broader Impact: Based on the proposed UniPose, we can provide 1) a keypoint generalist for any
category and keypoint, including articulated (e.g., human and animal), rigid (e.g., car and chair),
and soft (e.g., cloth and dress) objects, which has great potential to benefit various downstream
areas, such as robot automation, human-object interaction, and AR/VR; 2) a better fine-grained
text to local region alignment with structure and direction knowledge that can provide a text-region
similarity score for fine-grained visual perception and vision-language understanding; That is, the
similarity score can be used for evaluation or interpretability; 3) a user-friendly connector with
either natural language or visual prompts to first detect keypoints and then take them as user clicks
for fine-grained detection, segmentation, and tracking. To sum up, we hope this work could broaden
the way to fine-grained open-vocabulary and category-agnostic perception tasks from a keypoint
representation.
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(a) Imbalance threshold between precision and recall  

(b) Complex and flexible objects (e.g., marine organisms) (c) Heavy occlusions and invisibility

Figure 8: We show three types of failure cases in our method.

Limitation: In addition to the limitations described in this section C.3, we believe the main issue
currently lies in the data. Although this work has aggregated thirteen keypoint datasets, there are
three limitations. First, compared with the amount of training data for CLIP, we still have 1,000
times less data, leaving room for improvement in the performance and generalization of the model.
Second, some super-species with novel topologies that are not included (e.g., Kingdom Fungi and
Kingdom Plantae) make the model hard to generalize to these cases. Lastly, we did not consider
fine-grained detection and segmentation datasets (Shao et al., 2019; He et al., 2022a) to strengthen
the unified datasets. All the above issues will be left as future work.
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