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ABSTRACT

This paper introduces Network-based Active Inference (NetAIF), a novel frame-
work that integrates random attractor dynamics and the Free Energy Principle
(FEP) to improve trajectory generation and control in robotics. NetAIF optimizes
the intrinsic dynamics of neural networks, enabling robots to quickly adapt to
dynamic and complex real-world environments with minimal computational re-
sources and without the need for extensive pre-training. Unlike traditional learn-
ing methods that rely on large datasets and prolonged training periods, NetAIF
offers a more efficient alternative.
In real-world scenarios, such as Photovoltaic (PV) panel inspections, NetAIF
demonstrates its ability to execute dynamic tasks with both high efficiency and
robustness. The system excels in unpredictable environments while maintaining
a low computational footprint. These capabilities make NetAIF a promising so-
lution for industrial applications, offering cost-effective, adaptive robotic systems
that can reduce operational expenses and enhance performance, particularly in
sectors like energy, where adaptability and precision are crucial.

1 INTRODUCTION

1.1 OVERCOMING AUTOMATION CHALLENGES WITH ADVANCED LEARNING METHODS

The World Energy Employment 2023 report by the IEA highlights a significant shift towards clean
energy jobs, which now surpass fossil fuel employment, driven by a 40% rise in clean energy in-
vestment over the past two years. Despite economic and geopolitical challenges, the energy sector
has seen growth in employment, particularly in solar PV, wind, EVs, and battery manufacturing.
However, a shortage of skilled labor remains a key challenge, underscoring the need for targeted
training and policy support to develop a workforce suited for the energy transition (IEA, 2023).

In response to these labor challenges, automation is playing an increasingly critical role in advancing
the clean energy sector. Robotics, in particular, offers a promising solution to enhance operational
efficiency and safety. However, to maximize the potential of robotics in complex and dynamic en-
vironments, sophisticated learning methods are required. One such approach, Deep Reinforcement
Learning (DRL), has emerged as a leading candidate for enabling autonomous robotic systems in
tasks like control, manipulation, and decision-making. Yet, despite its potential, DRL faces notable
barriers to widespread adoption in the energy sector.

1.2 DEEP REINFORCEMENT LEARNING (DRL)

DRL combines the decision-making power of reinforcement learning (RL) with the pattern recogni-
tion capabilities of deep learning (DL). This allows robots to learn and adapt through trial and error,
improving performance over time. DRL is increasingly explored for enabling autonomy in control
and manipulation tasks in real-world environments by training agents to recognize complex patterns
in data and make informed decisions.

However, DRL requires large amounts of data and time for agent training, as well as expert-designed
reward functions to guide learning. Creating these reward functions demands substantial knowledge
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and engineering resources, as they must accurately capture desired outcomes, agent actions, and
constraints. Poorly defined reward functions can lead to suboptimal or unsafe behavior (Sutton &
Barto, 2020). Thus, while powerful, DRL may not always be the most practical or cost-effective
approach for every application.

1.3 AIF AS A NEXT GENERATION LEARNING METHOD

Active Inference (AIF) is a groundbreaking framework in neuroscience, offering a unified approach
to understanding adaptive systems, including brain functions, and is gaining traction in fields like
machine learning and robotics (Friston et al., 2006; Parr, 2019; Millidge, 2020; Lanillos et al., 2021).
In robotics, AIF is reshaping control and learning by minimizing surprise rather than relying on
reward-based mechanisms like DRL. Unlike DRL, which requires fixed environments, AIF utilizes
a dynamic generative model, continuously adapting to changing surroundings through a feedback
loop of prediction, perception, and action. This approach addresses the exploration-exploitation
dilemma more fluidly by incorporating uncertainty directly into decision-making.

While AIF holds significant promise for creating adaptive robotic systems, its real-world deployment
faces challenges due to the complexity of model design and high computational demands (Lanillos
et al., 2021). Nonetheless, its potential to enhance flexibility, durability, and adaptability makes it a
powerful alternative to traditional DRL techniques

1.4 NETWORK-BASED ACTIVE INFERENCE (NETAIF)

To overcome the limitations of both DRL and traditional AIF approaches, we propose Network-
based Active Inference (NetAIF), a novel framework that leverages network dynamics to simplify
trajectory calculations and enhance efficiency. Rooted in key AIF principles such as entropy and
surprise minimization, NetAIF builds on the Free Energy Principle (FEP), which posits that systems
self-organize by minimizing surprisal or prediction error. By harnessing the inherent dynamics of a
network, NetAIF computes trajectories more efficiently than traditional AIF methods, reducing the
need for complex mathematical models while enabling agents to adapt to dynamic environments in
real-time. This streamlined approach makes NetAIF highly suitable for real-world robotic applica-
tions, offering significant improvements in both speed and computational cost.

2 NETWORK-BASED ACTIVE INFERENCE

2.1 NOTABLE CHARACTERISTICS

Figure 1: NetAIF network diagram for target-tracking task: parameters that determine the network
structure such as number of layers, strides were determined through hyper parameter search

NetAIF’s key innovation lies in its explicit feedback loops between hidden layers, which deliberately
induce controlled instabilities to explore the state space more thoroughly (Brown, 2021)(Refer to
Figs. 1 and 2). Unlike Recurrent Neural Networks (RNNs), where feedback is implicit (Mienye
et al., 2024), NetAIF actively manipulates network dynamics to push the system into unstable re-
gions. These feedback loops enhance oscillatory patterns, similar to neuron firing sequences, that
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Figure 2: bidirectional connection in hidden layers: the schematic diagram shows how the instability
is induced within the hidden layer and how such instability is controlled via the external control law
through feedback

Figure 3: AIF brain and world - External states (world) are mirrored by internal states (brain).
The active and sensory states (blanket states) couple external to internal states-rendering the system
open. The (far from equilibrium steady-state) dynamics of each state is described with stochastic
differential equations (w is a stochastic fluctuation). The images were adapted and modified from
Parr et al. (2022)

persist even after training. This random bursts of node activity can be observed in the supplemen-
tary video, further highlighting the parallels with brain function. The introduction of these instabil-
ities enables the system to maintain dynamic behaviors, known as itinerant (wandering) dynamics
(Kaneko & Tsuda, 2003; Friston & Ao, 2012), allowing it to continuously adapt to changing envi-
ronments.

NetAIF operates within the framework of Active Inference, where a system interacts with its en-
vironment through blanket states. Blanket states consist of sensory states, which gather external
information, and active states, which influence the environment as shown in Fig.3. This dynamic in-
teraction forms the core of the system’s ability to operate in a Non-Equilibrium Steady State (NESS).
In NESS, the system is never fully at rest but continuously adapts to changing inputs from the envi-
ronment, minimizing prediction errors in real time. The feedback between sensory and active states
ensures that the system remains stable yet flexible, adjusting its actions and beliefs to maintain op-
timal performance even in uncertain or complex environments. This aligns with Bayesian inference
principles, as NetAIF constantly updates its beliefs in response to new sensory inputs and envi-
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ronmental changes, enhancing its ability to navigate complex environments and discover optimal
trajectories.

NetAIF also replaces traditional activation functions with a discrete weight-assigning mechanism,
designed to reset node weights and maintain NESS. By leveraging the constant interaction between
sensory and active states, NetAIF remains in a state of continuous exploration, avoiding local min-
ima and ensuring that it adapts dynamically to new challenges. This stochastic function enhances
the network’s ability to explore different states, preventing it from being trapped in local optima.

Additionally, NetAIF integrates learning and control, guiding motor outputs with clear task-specific
control laws. These laws break tasks down into sub-goals, such as aligning objects, allowing even
non-experts to define behaviors without deep control theory knowledge. For instance, in a valve
manipulation task, control instructions guide the network to minimize errors by aligning the vector
of the valve’s position with the one of the end effector. This ensures precise orientation and move-
ment, making the system more intuitive and effective for real-world applications. This user-friendly
approach facilitates seamless integration of learning and control.

An effective way to understand this is through an analogy: the control (vector) law acts like a road,
providing a set of boundaries, while the random attractor serves as the driver, navigating the road to
find the optimal path in real-time. Just as a driver adjusts their route based on obstacles and traffic
while staying on the road, the random attractor dynamically explores within the constraints set by the
control law, ensuring the robot adapts to changing conditions while maintaining the most efficient
trajectory. This approach allows for greater flexibility and precision in the robot’s movement.

Algorithm 1 Main loop of the NetAIF model
1: Initialize all model parameters and weights
2: while system is running do
3: Prediction Error = Desired State − Current State
4: Input signals = Prediction Error
5: for each weight w in all weights do
6: if magnitude of associated signal > threshold then
7: Set w = new weight value()
8: end if
9: end for
10: Input to hidden = Input signals × W input hidden
11: Feedback = Hidden signals prev × W hidden hidden
12: Hidden signals = Input to hidden + Feedback
13: Hidden signals prev = Hidden signals
14: Outputs = Hidden signals × W hidden output
15: Motor Commands = Outputs
16: Send motor commands to actuators
17: end while

The core of the NetAIF framework is outlined in Algorithm 1. Each cycle calculates the prediction
error between current and desired states, which updates network weights dynamically. If a signal
exceeds a set threshold, its weight is reset to ensure stability. Feedback loops in the hidden layers
facilitate adaptive behavior and robust trajectory generation. Motor commands are derived from the
hidden layers and sent to the actuators, enabling real-time adjustments. This continuous feedback
allows NetAIF to quickly adapt to changing environments, making it ideal for dynamic tasks like
PV panel inspection.

2.2 THE RANDOM ATTRACTOR

To represent the NESS behavior in NetAIF, Random Dynamical Systems (RDS) are employed,
providing a framework to understand complex systems driven by stochastic processes. In particular,
random pullback attractors (Caraballo & Han, 2016), also known as stochastic basins of attraction,
describe how NetAIF’s state evolves over time in response to environmental uncertainty. Expressed
as φ(t, ω, x), where t is time, ω represents randomness, and x is the state variable, these attractors
characterize regions in the state space where the system tends to settle. The random attractor A(ω)
pulls trajectories towards it, ensuring that NetAIF remains adaptive and stable within its NESS
framework, despite external randomness.

This is formalized by:
lim
t→∞

dist (φ(t, θ−tω,B),A(ω)) = 0
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where φ(t, θ−tω,B) represents the state of the system at time t, θ−tω is the time-shifted random
noise, where θ is a shift operator that moves the noise backward in time by t units. This term captures
the idea that the noise affecting the system at time t is related to the noise that occurred in the past.
B is a bounded set of initial conditions, and dist(X,Y ) denotes the distance between sets X and Y .

Figure 4: Abstract representation of a random pullback attractor, A, and the random set, B. While
the weights of the network are updated randomly (shown in matrix format), a flow from the random
set emerges and gets attracted to the attractor.

This convergence process can be understood as a stochastic diffusion in parameter space, driven by
increasing the amplitude of random fluctuations on parameters (e.g., connection weights) in regions
of high free energy. As the system approaches free energy minima, these random fluctuations are
attenuated, resulting in a more stable and precise arm trajectory. Such system dynamics can be
described by a stochastic differential equation (SDE) in the form of a Langevin equation (Karl,
2019):

dx = −∇F (x) dt+
√
2Γ dW

where x represents the system’s parameters, F (x) is the free energy landscape, Γ is the diffusion
coefficient, and W is a Wiener process. This equation captures the interplay between the determin-
istic drift towards free energy minima and the stochastic exploration of the parameter space, which
ultimately shapes the arm’s trajectory.

It is worth noting that the optimization process in NetAIF is inherently local because free energy is
an extensive quantity, meaning that the system’s total free energy is the sum of the free energies of
its individual components. The variational free energy, which approximates the true free energy, is
calculated using local prediction errors. Some predictions are clamped with high precision, fixed, or
strongly influenced by the desired outcomes, defining the attracting set, which represents the desired
sensor inputs or the target state of the system. Minimizing variational free energy by reducing local
prediction errors guides the network model towards the attracting set.

This local optimization process enables the system to efficiently navigate the free energy landscape
without requiring global computations or information propagation across the entire network. By
iteratively updating its local components based on prediction errors and external control laws, the
system converges towards the desired states.

The roots of this learning scheme can be traced back to early formulations of self-organization in
cybernetics (Ashby, 1947) (Ashby, 1956) and are connected to stochastic thermodynamics (Ao,
2008) (Seifert, 2012). These connections highlight the consistency of the design principle with the
fundamental concepts underlying the FEP. This principle drives the network model to minimize pre-
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diction errors, guiding the entire network towards a stable regime, resulting in smooth and efficient
arm movements.

3 APPLICATION: PV PANEL INSPECTION

3.1 PROJECT SCOPE

PV farms, covering extensive areas spanning numerous hectares, traditionally rely on the keen eyes
of professional inspectors to identify damages or issues on the panels. This method of manual in-
spection, while thorough, is both time-intensive and laborious given the vastness of the installations.
The complexity of the task is exacerbated by the dynamic nature of PV farms, which face continual
changes due to weather patterns, the undulating terrain, the encroachment of wildlife, and the unpre-
dictable intrusion of vegetation. These factors contribute to noisy data and unforeseen challenges for
any automated systems (such as robotic solutions) that might be employed to streamline the process.
Furthermore, the variability in panel aging, weather fluctuations, and diverse panel types necessitate
robot controllers with an increased level of adaptability and flexibility.

To address these challenges, we have implemented an inspection system using a robotic arm
equipped with sensors designed to detect PV panel defects. This system had to meticulously extend
to a pre-determined distance from a panel, position its sensors to be perpendicular to the panel’s
surface, and systematically survey the panel sections for any signs of deterioration or damage.

Figure 5: PV panel inspection simulation environment (Mujoco)

3.2 SPEED AND DISCERNMENT

To simulate complex real-world conditions, we established a test environment featuring the HEBI
6-DoF SEA (Series Elastic Actuator) robotic arm affixed to a mobile base (Refer to Fig. 5). The
combination of the arm’s compliant actuators, which provide additional degrees of freedom, and the
unpredictable movement of the mobile platform, effectively replicates the difficulties encountered in
real-life operational settings. Additionally, the HEBI arm’s modular design was particularly advan-
tageous for testing the NetAIF model’s flexibility; the arm can be readily reconfigured into 4, 5, or
6-DoF configurations. This feature is vital in practical applications where an arm might experience
actuator failure and still need to function effectively. In this setup, the objective was for the camera-
mounted arm to navigate to a predetermined location—the midpoint of a PV panel—and adjust its
orientation to be perpendicular to the panel’s surface. The NetAIF controller’s task was to preserve
this precise position and orientation during the scanning process.

The NetAIF model successfully acquires tasks quickly, and does so with notable accuracy, as out-
lined in Table 1. It is worth pointing out that relatively big variation in distance measurements can be
attributed to the positioning of the camera-equipped arm far from the panel during inspection tasks.
Moreover, for optimal inspection outcomes, the camera’s orientation angle holds more significance
than its exact alignment with the panel’s center.

3.3 ROBUSTNESS AND ADAPTABILITY

To assess the resilience and flexibility of NetAIF, we progressively expanded the robot arm’s move-
ment until a noticeable discrepancy occurred. In this context, a noticeable discrepancy is defined

vi
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Table 1: PV panel inspection performance metric with stationary base
Model Performance (with stationary base)

4DOF 5DOF 6DOF
Distance Error 3.2 mm 16 mm 14 mm
Yaw Error 0.15◦ 0.065◦ 0.070◦
Pitch Error 0.069◦ 0.086◦ 0.089◦
Roll Error 0.016◦ 0.051◦ 0.023◦

as a 5 cm divergence from the PV panel’s center and a 5-degree deviation from the perpendicular
alignment. As indicated in Table 2, each configuration of the HEBI arm successfully tolerated a
substantial level of random movements and orientations.

Table 2: PV panel inspection performance metric with moving base - The tolerance was measured
for all axes movements, showing the minimum value that triggered a significant divergence (i.e., the
higher the tolerated amount, the more robust)

Model Performance (with moving base)
4DOF 5DOF 6DOF

Random Motion Tolerated 30 cm/sec 50 cm/sec 50 cm/sec
Random Orientation Tolerated 20◦/sec 30◦/sec 45◦/sec

Figure 6: PV panel inspection with moving base - Position and orientation deviation across all axes
as the base simultaneously experiences random movements and tilting

Fig. 6 reinforces the aforementioned findings. Displayed within these graphs is the aggregated
maximum displacement or orientation across all axes for the 6DoF arm, captured while the base
undergoes concurrent random movements and tilts.

4 EXPERIMENTS

We conducted two key experiments with the physical Lite6 6-DoF arm from UFactory, operating
at 100 Hz: a pose-matching task, which served as a benchmark, and a target-tracking task related
to PV panel inspection. In the pose-matching test (Fig. 7), the joint pose was directly fed into the
system, and the attractor calculated waypoints for a smooth and efficient trajectory to move the robot
to the specified pose. The control law was simple, designed to match the current joint position with
the desired one. The arm smoothly and efficiently reached the predetermined position, showcasing
the effectiveness of using attractor dynamics for trajectory generation without explicit path planning
algorithms.

For the target-tracking task, the robotic arm successfully learned to follow an AprilTag detected by
a RealSense D455 camera, with accuracy enhanced by a Kalman filter Kam et al. (2018). Reference
vectors were used to align the robot’s roll, pitch, and yaw orientations with the moving target.
Notably, the arm was able to track the marker in real-time without any need for pre-training.
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Figure 7: Network Output Signal for Pose Matching Task

The swift and efficient performance of the NetAIF model can be attributed to its FEP-guided path
generation, combined with random attractor dynamics. As illustrated in Fig. 8, these random at-
tractor dynamics replace conventional motion planning components. Unlike some of the traditional
methods, where the entire trajectory is pre-calculated or trained, NetAIF generates the trajectory in
real-time by continuously feeding sensor data to the random attractor, allowing for more flexible and
adaptive motion planning.

Table 3 presents the performance metrics for the NetAIF model, evaluated on an 8-core Intel Core
i9 (I9-9880H) 2.4 GHz processor without GPU support. The network’s update cycle was approx-
imately 7ms, as detailed in Table 4, resulting in a remarkably short training time of just about 8
seconds for the target tracking task. Once the network is trained, the resulting trajectory values
become smoother with relatively small random fluctuations. This smoothness reflects the efficiency
of the network’s attractor dynamics, which generate real-time adjustments based on sensor data, al-
lowing for precise tracking without requiring pre-calculated trajectories. Additionally, the model’s
stored weight values improve deployment flexibility, making it easily transferable and deployable
across different systems. This portability ensures that similar tasks can be executed efficiently with-
out requiring retraining, providing a key advantage—especially when the network is scaled up to
handle more complex tasks.

Table 3: NetAIF Model Metrics
Metric Pose-Matching Target-Tracking

Network Size (No. of Nodes) 132 176
Network Size (No. of Connections) 1212 1616

Network Size (No. of Bytes) 10224 13632
No. of Iterations to Convergence 955 1230

Figure 8: Motion planning process

Fig. 9 shows two key visualizations that offer insights into the movement of a robot’s joints and its
end-effector trajectory. The left plot shows the evolution of joint positions over time for six joints.
The right plot depicts the 3D trajectory of the April tag along with the end-effector, revealing a
non-linear and intricate path with multiple loops and clusters.

Fig. 10 provides a cross-correlation analysis between a marker’s position in the X, Y, and Z di-
rections and six robot joints, revealing insights into how different joints influence the marker’s
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Figure 9: Joint and marker positions over time

Figure 10: Time-lagged cross-correlations

movements over time. The analysis shows that certain joints lead or lag in their contributions to the
marker’s trajectory, highlighting the coordinated nature of the robot’s movement, which is generated
by the network’s attractor dynamics. For instance, joints 2 and 5 show strong, delayed correlations
with the marker’s X position, suggesting that they are key contributors to larger, slower movements,
responding after other joints have initiated motion. In contrast, joint 1 shows a stronger and more
immediate influence on the marker’s Y direction, likely because it controls base-level adjustments
in the robot’s workspace. The Z-axis motion involves more complex interactions, with joints 2 and
3 leading in correlation, suggesting they play a pivotal role in vertical positioning and correction.
These leading and lagging behaviors arise due to the robot’s kinematics—joints located closer to
the base (like joint 1) may initiate broader movements, while those closer to the end-effector (like
joint 5) respond later to fine-tune the motion or compensate for inertia. This reflects the coordi-
nated effort between joints, generated by the network, to achieve precise, controlled movements,
where some joints lead by initiating directional changes and others follow to stabilize or refine the
movement.

The total motion planning time for a target-tracking task involving real-time visual processing is
summarized in Table 4 and Fig. 11, with an average planning time of 6.7 milliseconds. This demon-
strates the model’s remarkable efficiency, especially considering the frequent need for replanning

ix
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due to environmental changes and moving targets. In comparison, algorithms such as PRM and
Hybrid RRT-PRM can take up to 482 milliseconds for planning under similar conditions, largely
due to the computational overhead involved in path updates (Jermyn, 2021). Likewise, UAV-based
research with visual processing reports planning times ranging from 50 to 500 milliseconds in dy-
namic environments (Cui et al., 2022). Although the NetAIF model has a large standard deviation of
16.16 milliseconds, reflecting variability from factors like fluctuating frame rates and environmental
dynamics, it still maintains an impressive mean of 6.7 milliseconds. This efficiency, even with fre-
quent replanning, underscores the system’s exceptional capability to handle complex, dynamic tasks
with minimal computational delay.

Figure 11: Total motion planning time

Table 4: Summary of time taken to generate values by the network
Statistic Value (milliseconds)
Mean time 6.7
Standard deviation 16.16
Median time (50th percentile) 5.23
25th percentile 4.56
75th percentile 5.80

5 CONCLUSIONS

The Network-based Active Inference (NetAIF) model offers a novel, efficient approach to real-time
adaptive intelligence in robotics by leveraging random attractor dynamics and the Free Energy Prin-
ciple (FEP) to enable robots to adapt to unpredictable environments without extensive pre-training
or significant computational resources. Its real-time feedback processing ensures precise control
and flexible adaptation, making it ideal for cost-sensitive industries like energy, where adaptability
and precision are critical. Unlike Deep Reinforcement Learning (DRL), which requires substantial
training and computational power, NetAIF provides a computationally efficient, cost-effective solu-
tion for tasks such as inspections and maintenance. For a comparison with DRL methods, see the
companion paper (Anonymous, 2024).
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