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Learning to Reason by Failing:
Offline RL on Sub-optimal Rollouts Scales Synthetic Data by 8x

Anonymous Authors1

Abstract
Training on model-generated synthetic data is a
promising approach for finetuning LLMs, but it
remains unclear when it helps or hurts. In this
paper, we investigate this for reasoning problems
via an empirical study, followed by a theoretical
formalization. First, we find that while the typical
approach of finetuning a model on synthetic cor-
rect or positive problem-solution pairs generated
by capable models offers modest performance
gains, sampling more correct solutions from the
finetuned learner doubles the sample efficiency
of synthetic data. At the same time, training on
model-generated positives can amplify spurious
correlations, resulting in flat or even inverse scal-
ing trends as the amount of data increases. Sur-
prisingly, we find that several of these issues can
be addressed if we also utilize negative responses,
i.e., model-generated responses that are deemed
incorrect via final answer checking. Crucially,
these negatives must be constructed such that the
training can appropriately recover the utility or
credit of each intermediate step in the negative
response. With this per-step scheme, we are able
to attain consistent gains over only positive data,
attaining performance similar to amplifying the
amount of synthetic data by 8×. We show that
training on per-step negatives can help to unlearn
spurious correlations in the positive data, and is
equivalent to advantage-weighted reinforcement
learning (RL), implying that it inherits benefits of
RL over imitating positive data alone.

1. Introduction
Training large language models (LLMs) relies on the ability
to train on large amounts of high-quality data. It is pre-
dicted that we will run out of high-quality internet data by
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<anon.email@domain.com>.
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2026 (Villalobos et al., 2022; Liu et al., 2024), necessitat-
ing training on model-generated data, or what is commonly
referred to as synthetic data. Recent trends illustrate that
scaling up synthetic data can lead to improvements (Li et al.,
2024; Chen et al., 2024) on hard reasoning problems, while
other results illustrate that training on synthetic data can
steer the performance of the model into a downward spi-
ral (Shumailov et al., 2023; Alemohammad et al., 2023; Ger-
stgrasser et al., 2024)—amplying biases, misinformation,
and undesired stylistic properties. Thus while in principle,
synthetic data could potentially address data scarcity, it must
be designed in an appropriate manner to be effective. How-
ever, due to a lack of an understanding of how synthetic data
contributes to LLM behavior, it is unclear how to best use
synthetic data in practice.

To provide clarity on the role of synthetic data, we aim to
understand its impact on LLM capabilities via a study on
reasoning problems, a prevalent scenario where synthetic
data is used. Typically, in this setting, synthetic data cor-
responds to correct or positive model-generated responses
for a novel set of initial problems synthesized by prompting
capable models (Li et al., 2024; Liu et al., 2023). The result-
ing model is then evaluated on a held-out set of problems
drawn from a test set. Perhaps as expected, we find that per-
formance improves when finetuning models on positive syn-
thetic responses, though the scaling rates for performance
improvement are often substantialy slower than those ob-
served during pretraining. Concretely, we find that under
the scaling law of Zhang et al. (2024a), the error rate scales
as ≈D

−0.05 to D
−0.15 in the size D of synthetic dataset.

Second, we observe that not all types of positive synthetic
data are equally effective: often positive responses sampled
from the learner are as effective as 2× synthetic data from
bigger models in improving performance. This is because
responses from a similar model are “easier-to-fit” than those
from a more capable model, resulting in reduced memo-
rization (Kang et al., 2024; Tirumala et al., 2022) during
finetuning. We also observe that if the positive response
contains incorrect/irrelevant intermediate steps, training on
such data often incentivizes the model to overfit on spurious
correlations, leading to a flat or even inverse scaling with
more data.

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Learning to Reason by Failing: Offline RL on Sub-optimal Rollouts Scales Synthetic Data by 8x

SFT
Model

Sample answers for same 
questions as in synthetic 
data and filter based on 

synthetic answers
Reasoning QnA
pairs sampled 
from capable 

model, e.g., GPT-4

Synthetic Data

Positive Data

Sampled data with 
correct answers

Filter negative by 
calculating per-

step credit*

Negative Data

Sampled data with 
incorrect answers

Finetune 
base model

(e.g., Llama-2)

RFT Model

Per-step 
DPO Model

Finetune 
SFT model

Finetune 
base model

(e.g., Llama-2)

Figure 1: Positive and negative synthetic data: Pictorial repre-
sentation of positive/negative synthetic data definitions we use and
how they are fed to SFT, RFT and DPO.

Perhaps surprisingly, we find that the aforementioned
pathologies of training on positive data only can be ad-
dressed if we also utilize synthetic negative responses: re-
sponses generated by the model that do not result in ob-
taining a correct final answer. One way to utilize negative
responses is via methods such as direct preference optimiza-
tion (DPO) (Rafailov et al., 2023). While performance of
standard DPO (Rafailov et al., 2023) largely flatlines as the
synthetic problems are scaled up (Figure 5), we are able to
attain consistent improvements if the negative data is gener-
ated appropriately. Our intuition is that instead of contrast-
ing arbitrary correct and incorrect responses, we contrast
positive and negative responses that depict good and bad
choices for the more “critical” intermediate steps (Hwang
et al., 2024): steps that the model must carefully produce so
as to succeed at the problem. In other words, critical steps
are those which the model is unable to recover from, and
hence, must be emphasized. With this scheme, we are able
to attain consistent gains over only positive data, attaining
performance similar to scaling up positive synthetic data
by 8×. We also show that training on this sort of negative
data evades spurious correlations introduced by training on
positive data alone via a controlled study.

To theoretically understand our empirical findings, we build
a conceptual model of how training on this data benefits
performance. Formally, we show that this construction of
negative data, which emphasizes “critical” tokens (Figure 6)
enables us to perform credit assignment, and is equivalent
to training the model with per-step advantage-weighted re-
inforcement learning (RL) (Peng et al., 2019) on a mixture
of positive and negative synthetic data. Specifically, these
advantage values are computed under an optimal value func-
tion induced by sampling multiple responses under the SFT
policy obtained by training on only the positive data. This
reduction of using negative data to advantage-weighted RL
enables us to conceptually compare it to training on pos-
itive data, which corresponds to imitation learning (i.e.,
behavioral cloning) on expert data. Building on theoretical
results in RL (Kumar et al., 2022), we are also able to show
that when advantages can be estimated reliably, advantage-
weighted RL will be significantly more sample-efficient
compared to imitation learning. Overall, this abstraction
and conceptual model explains the utility of negative syn-

thetic data over only positive synthetic data.

Our contribution is a study of the role of synthetic data in
improving reasoning capabilities of LLMs. We derive scal-
ing laws for positive and negative data on common reason-
ing benchmarks such as GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021), and observe that: (a) train-
ing on positive synthetic data from capable models results in
scaling rates that are significantly slower than standard em-
pirical risk minimization; (b) training on model-generated
positive synthetic data can improve sample efficiency by
2× but also amplifies spurious correlations; (c) appropri-
ate ways of constructing learner-specific negative data with
emphasis on critical steps, results in a performance boost
equivalent to scaling up positive data 8×; (d) training with
negative data provides a mechanism to unlearn spurious
correlations; and (e) we present a conceptual model inspired
from RL to explain our observations for synthetic data.

2. Synthetic Data Generation Pipeline
Our goal in this paper is to understand the role of syn-
thetic data in producing strong language model reasoners.
Building on the recipe of Li et al. (2024); Liu et al. (2023),
we collect synthetic data consisting of both novel prob-
lems designed by capable models such as GPT4 (Achiam
et al., 2023) and Gemini 1.5 Pro (Reid et al., 2024), and re-
sponses to these problems, obtained from the same models.
Concretely, we focus on two mathematical reasoning bench-
marks: GSM8K (Cobbe et al., 2021) and MATH (Hendrycks
et al., 2021).

Synthetic data pipeline. Our synthetic data generation
is done in two phases. First, given a dataset Dreal =

{(xr
i ,y

r
i )} of problems xr

i ∼ preal(x) and solution traces
y
r
i ∼ preal(y ∣ xi), we prompt one of the highly-capable

models with a uniformly random sample (xr
i ,y

r
i ) ∈ Dreal

and ask the model to generate a new problem xi such that
it is similar to the real problem x

r
i , in a way that a feasi-

ble solution exists. Second, we ask the model to provide
a solution trace answer yi with step-by-step reasoning (ex-
act prompts for xi,yi are borrowed from Li et al. (2024),
shown in Appendix E). We assume that the answers gener-
ated via this process are accurate, and perform lightweight
filtering step to remove duplicates, badly-formatted answer
traces, and model failures. Based on the above, for any
synthetic problem and solution pair (x,y), we can define a
binary reward function r(y, ŷ) ↦ {0, 1}, which verifies if
a new solution trace ŷ is correct or not. This is implemented
with a set of answer extraction and string matching tools
borrowed from (Yu et al., 2024; Li et al., 2024). We say that
a new trace ŷ is a positive trace if it produces the correct
final answer i.e., r(ŷ,y) = 1, and negative if it produces
an incorrect final answer, i.e., r(ŷ,y) = 0. By definition,
r(y,y) = 1, and the original trace y is always positive.
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Positive and negative datasets. The above process in-
duces a joint distribution psyn(x,y), iid samples from which
yields positive synthetic dataset Dsyn. We note that the
sampling process for Dsyn is designed to ensure that the in-
duced marginal distribution over synthetic problems psyn(x)
is close to preal(x). We will use D+

π to denote the pos-
itive dataset of (x,+ŷ) where +ŷ is a positive solution
trace generated from some policy π(⋅ ∣ x). For a positive
+ŷ and negative −ŷ trace, sampled from the same policy
π(⋅ ∣ x), we denote a dataset over problems and solution
pairs: (x,+ŷ,−ŷ) as D±

π .

Reasoning steps. The trace yi consists of several inter-
mediate steps: yi = [yi,1, . . . ,yi,L]. We assume each
solution trace has at most L steps, an2d use y1∶t to denote
the subsequence of first t steps in the trace. Since mathemat-
ical reasoning problems require step-by-step computation,
simply arriving at an incorrect final answer does not mean
that all individual steps in a negative ŷ are incorrect. In
fact, given previous steps ŷ1∶t−1 the following intermedi-
ate calculation ŷt is often correct. Similarly, a positive ŷ
may also have incorrect reasoning steps. In fact, even the
original answers generated by more capable models in Dsyn

may also contain incorrect reasoning steps, and training on
such traces may actually lead to unintended consequences
(Section 4).

3. Learning from Synthetic Data
In this section, we discuss various algorithms for learning
from the synthetic dataset Dsyn discussed in the previous
section, as well as positive and negative solution traces
generated using a model.

Supervised and rejection finetuning (SFT and RFT).
Given positive synthetic Dsyn, perhaps the most straightfor-
ward approach (and the most prevalent) is to learn πsft on
this data via supervised next-token prediction: πsft(⋅∣x) ∶=
argmaxπ Ex,y∼Dsyn

log π(y∣x). Another option is to train
via supervised next-token prediction on problems in Dsyn,
but when using a positive solution trace ŷ sampled from
πsft(⋅∣x), instead of positive synthetic responses from the
capable models in Dsyn. Akin to rejection finetuning
(RFT (Yuan et al., 2023)) or STaR (Zelikman et al., 2022),
sampling from πsft(⋅ ∣ x) once is not guaranteed to give
a positive response, and we instead sample M times for
each x and construct the dataset D+

πsft
of SFT policy gen-

erated positive responses. Then, we apply the next-token
prediction loss on D+

πsft
.

Preference optimization. Beyond positive data, we can
also learn from negative synthetic data generated from the
SFT policy, especially when contrasted with positive re-
sponses. However, learning from negative data presents
multiple open design questions pertaining to the construc-
tion of negative traces, and the choice of the loss function,
and simple supervised fine-tuning will not be a good choice

since it will incentivize the model to produce more errors.
Therefore, we utilize a contrastive training approach, direct
preference optimization (DPO (Rafailov et al., 2023)) for
incorporating negative data from πsft. In a nutshell, DPO
trains a policy using the following preference optimization
objective:

ED±
πsft

[σ (β log
π(+y ∣ x)
πsft(+y ∣ x) −β log

π(−y ∣ x)
πsft(−y ∣ x))] . (1)

We consider two objectives that construct negative data −ŷ
in distinct ways and subsequently train the model on that
data using Equation 1. The first variant we study is naïve
DPO, which simply samples negative data −ŷ ∼ πsft(y ∣ x)
from the SFT policy and adds (x,y,−ŷ) to D±

πsft
. The

second variant is per-step DPO (Hwang et al., 2024), which
first samples a complete solution trace ŷ1∶L from πsft and
then determines the “first pit” ŷc, such that any completion
ŷc+1∶L ∼ πsft(⋅ ∣ x, ŷ1∶c), sampled conditioned on x, and
previous steps ŷ1∶c leads to incorrect answers for a majority
of the Monte-Carlo rollouts. Given the first pit ŷc, the triplet
(x,y, ŷ1∶c) is added to the negative dataset D±

πsft
.

4. Positive Data Improves Coverage, But
Amplifies Spurious Correlations

We first analyze the influence of scaling up positive syn-
thetic data on GSM8K and MATH. In this experiment, we
fine-tune DeepSeek-Math-7B (Bi et al., 2024) and LLama2-
7B (Touvron et al., 2023) models (details in Appendix H)
on varying sizes of Dsyn, constructed out of a 5:1 mix-
ture of GPT-4-turbo (Achiam et al., 2023) and Gemini-1.5
Pro (Reid et al., 2024). We obtain a series of SFT policies
on this data scaling ladder. We then train a series of models
by running one iteration of RFT on data obtained from the
SFT policies at each step.

Scaling results with positive synthetic data GPT-4 and
Gemini 1.5 Pro. Since we assume that the more capable
models generate correct solutions for new problems, by
scaling Dsyn we are increasing coverage under preal, i.e.,
adding new x,y with non-zero probability under preal. In
Figures 2(a,b), we plot the test error rate of the SFT policy
as Dsyn is scaled. As expected, we observe that the test
error rate on both GSM8K and MATH improves with more
positive data. Further, by simply fitting the parametric scal-
ing law from (Zhang et al., 2024a), for D ∶= ∣Dsyn∣, we
find that the scaling trends decay as ≈D−0.15 on GSM8K
and ≈D

−0.05 on the harder MATH dataset, with similar
trends for the corresponding pass@5 error rates. Since these
scaling trends are much more underwhelming than those
for pre-training (Hoffmann et al., 2022), this perhaps im-
plies that samples in Dsyn are indeed improving coverage
over samples in preal(x,y), but maybe not as efficiently as
sampling iid samples directly from it.

Scaling results with positive synthetic data from 7B SFT
policy. Previously, we scaled problems in Dsyn by querying

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Learning to Reason by Failing: Offline RL on Sub-optimal Rollouts Scales Synthetic Data by 8x

0.35
0.43
0.51
0.59

GSM8K

SFT Llama2

0.18

0.21

0.24

0.27

T
es

t
er

ro
r

2×

SFT DeepSeek

RFT DeepSeek

8k16k 32k 64k 128k

Synthetic dataset size (|D+
syn|)

0.05

0.10 SFT DeepSeek Pass@5

(a)

0.80
0.85
0.90

MATH

SFT Llama2

0.54

0.57

0.60

T
es

t
er

ro
r

2×

SFT DeepSeek

RFT DeepSeek

8k16k 32k 64k 128k

Synthetic dataset size (|D+
syn|)

0.35
0.39
0.43

SFT DeepSeek Pass@5

(b)

0.58

0.60

0.62

RFT Scaling

MATH 8k prompts 16k prompts

10k 20k 30k 40k 50k 60k
RFT dataset size (|D+

πsft
|)

0.22

0.24

0.26

0.28
GSM8K 8k prompts 16k prompts

T
es

t
er

ro
r

(c)
Figure 2: Positive data scaling laws: On GSM8K (a) and MATH (b), we evaluate SFT trained on Dsyn and RFT that uses SFT policy
generated positives (D+

πsft
), as we scale Dsyn, observing D+

πsft
to be 2× as effective as Dsyn. In (c), we plot performance of RFT the

number of correct solutions in D+
πsft

are scaled, for a fixed set of 8k/16k problems from Dsyn, observing that scaling model positives can
amplify spurious correlations.

GPT-4 and Gemini-1.5. Now, for existing problems in Dsyn

we generate new responses by sampling from the πsft trained
on problems+solutions in Dsyn. For any (x,y) ∈ Dsyn

we generate verified positive solution traces ŷ ∼ πsft s.t.
r(ŷ,y) = 1. Following Yuan et al. (2024a), to ensure
we sample enough correct responses, we sample 100 times
from πsft and generate RFT datasets D+

πsft
, where each prob-

lem has atmost 4 correct and diverse solutions. Next, we
finetune the pretrained DeepSeek-Math-7B model on these
new series of RFT datasets and plot the performance on
GSM8K and MATH (Figure 2(a,b)). First, we observe that
for any size of Dsyn, the performance of the RFT model
is better than the corresponding SFT model, and the dif-
ference remains consistent as we scale Dsyn. Surprisingly,
this indicates that training on positive answer traces from
the 7B πsft(y ∣ x) can lead to better performing policies
than capable models.

What is the value of positives from πsft(y ∣ x)? If sam-
pling from πsft also improves coverage and performance,
then should we scale problems and solutions in Dsyn, or
just solutions in D+

πsft
? To answer this, we need to assign

a value to the RFT dataset D+
πsft

in terms of ∣Dsyn∣. We
do this by training SFT policies on Dsyn of sizes 8k and
16k, and then generating RFT datasets from the correspond-
ing SFT policies where we only add more correct solution
traces (for the same problems) and scale RFT data from
10k to 50k (unlike RFT data in Figure 2(a,b) where both
questions and answers scale). In Figure 2(c) we plot the
error rate of DeepSeek-Math-7B finetuned on the different
sizes of D+

πsft
. Comparing the lowest values of the curves

in Figure 2(c) with Dsyn scaling in Figure 2(a,b), we note
that performance from D+

πsft
is 2× the size of Dsyn used

to train πsft. We also note that performance can plateau (or
worsen in the case of GSM8K) as we scale up D+

πsft
by a lot.

This is because r(⋅,y) is unable to verify the correctness of
each step in the positive solution traces in D+

πsft
. Later, we

see how incorrect steps induce spurious correlations that get
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Figure 3: Under base LLM, D+
πsft

has higher likelihood than
Dsyn.

amplified as we scale positive data, explaining this drop.

Why is self-generated positive data more sample-
efficient? From our result above, we find that solutions
sampled from πsft (trained on Dsyn) yield better models, as
good as those trained on 2 × ∣Dsyn∣. This finding is sur-
prising since one might expect more capable GPT-4/Gemini
models to present better solutions, training on which should
lead to good performance, akin to distillation (Sharma et al.,
2024), but this is not the case. Our results are consistent
with the study of memorization in LLMs (Kang et al., 2024;
Hartmann et al., 2023; Tirumala et al., 2022), which shows
that pretrained (base) LLMs tend to memorize “hard-to-fit”
and “out-of-pretraining-distribution” responses during fine-
tuning, resulting in imperfect generalization. In contrast,
correct response traces produced by πsft on problems from
Dsyn are not as hard-to-fit or as out-of-distribution, since
they are obtained from a model that is “close” to the base
LLM. We confirm this hypothesis with a histogram of nega-
tive log-likelihood values of the SFT and RFT data under the
base LLM (Figure 3). Hence, we expect STaR/RFT to allevi-
ate the memorization problem on a large chunk of examples.
This finding also corroborates Yuan et al. (2023)’s result that
lower the perplexity of SFT data under the base model, the
smaller the gap between SFT and RFT performance. Note
that one may also attribute better performance of RFT to
improved coverage from multiple answers in D+

πsft
for each

question in Dsyn. But, we find that even when RFT data is

4
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Figure 4: Spurious correlations in RFT data hurt performance.

restricted to one solution per question, LLM trained on it
outperforms SFT consistently by > 1%. Since verification
is cheap, we can sample more solutions and also benefit
from coverage.

SFT/RFT policy suffers from spurious correlations in
positive synthetic data. While RFT data maybe “easier-
to-fit”, in Figure 2(c) we also note that continuing to scale
RFT data leads to test error saturation, or even worse test er-
ror. This is unlike scaling of problems and solutions in SFT
data (in Figure 2(a,b)). This failure can be attributed to the
presence of incorrect/irrelevant steps that are not detected
by our verifier, since it only verifies the final answer (see
Appendix H, F for examples). For a problem x, when the
LLM is trained with supervised next-token prediction on
some positive sub-optimal y in the RFT data, with incorrect
step yk, it is likely to overfit on spurious correlations be-
tween the sub-optimal subsequence y1∶k, and the following
valid step yk+1, when trying to maximize π(yk+1∣y1∶k,x).
To verify this hypothesis, we amplify the presence of these
spurious steps. Specifically, for each question in Dsyn we
sample “spurious steps” from πsft trained on it, i.e., steps
which lead to the incorrect answer with high probability
under πsft (we sample multiple completions conditioned on
the same spurious step to check how likely it leads to the
correct final answer). Then, we interleave the solution traces
in the RFT data with these spurious steps. Note, that all
traces in the RFT data are still positive since, they all lead to
the correct answer eventually. We find that the LLM trained
on this sub-optimal spurious RFT data performs worse than
the πsft policy itself.

Takeaways for scaling positive synthetic data

• While positive data from GPT-4/Gemini-1.5 im-
proves coverage over new problems and solutions,
positive data from SFT policy trained on it is 2×
more sample efficient.

• When positive data from πsft contains spurious
steps, scaling leads to worse test errors.

5. Negative Synthetic Data Enables Per-Step
Credit Assignment

The spurious correlations from Section 4 correspond to
intermediate irrelevant or incorrect steps that are able to

still steer the model towards the correct response on some
training problems, but derail it otherwise. In this section, we
present a conceptual model for constructing negatives that
enables us to perform per-step credit assignment, and show
that this approach can help us address these failure modes of
positive data. We show that per-step DPO from Section 2 is a
variant of this more general approach. We will then analyze
scaling laws with negative data and empirically demonstrate
that carefully constructed negative data can address issues
with memorization. Finally, we theoretically prove that
negative data improves sample-efficiency of Dsyn.

5.1. Conceptual Model: Constructing Negatives to
Enable Per-Step Credit Assignment

While naïvely contrasing an entire positive response +y
against an entire negative response −y will increase the
likelihood of each step that appears in +y (even when in-
correct or irrelevant) and reduce likelihood on each step
appearing in −y (even when accurate and relevant), it does
not account for the importance of each step. Formally, given
a negative solution trace −y, we would want to identify the
first critical step where the model introduces a flaw −y,
and emphasize alternate correct completions from this step
that the model could have still produced. Likewise, given
a positive solution trace, +y, we would like to identify if a
given step +yi does not make progress towards the solution
by identifying if there exist alternatives from its predecessor
step, +y1∶i−1, which now presents a key decision-making
point. What are these critical steps and how can we
identify them procedurally?

Value functions. We can formalize this notion of a critical
step under the notion of value functions from reinforcement
learning (RL). Recall that both +y and −y are sampled from
πsft. For problem x, with correct solution y, a response ŷ
with a sequence of steps ŷ1∶i−1, and a candidate step ŷi,
we define the value function for step yi, and previous steps
under some policy π̃ as:
Qπ̃(x, ŷ1∶i−1Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï

state

, ŷiÍÑÏ
action

)

= Eynew
i+1∶L∼π̃(⋅∣x,ŷ1∶i)[r ([ŷ1∶i,y

new
i+1∶L],y) ]

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
expected future reward under new actions sampled by policy π̃

(2)

Intuitively, for any partial solution upto i steps, this Q-
function evaluates the probability of succeeding at solving
the problem given the remaining budget of L− i more steps,
in expectation over all possible futures sampled from some
policy π̃. Our conceptual model treats the policy π̃ as an al-
gorithmic design choice that can differ for algorithms using
negative data. As we see later, choosing π̃ as the Best-of-K
distribution around πsft (denoted as BoK(πsft)) enables a
particularly interesting tradeoff between Q-value estimation
and policy improvement. Another common choice is πsft

itself. Now, for any given step ŷi, we can define its advan-
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tage as the relative change in Qπ̃ when adding step ŷi in
comparison with other possible candidates for step i:

Aπ̃(x,ŷ1∶i−1; ŷi)
= Qπ̃(x, ŷ1∶i−1, ŷi) −Qπ̃(x, ŷ1∶i−2, ŷi−1). (3)

Equation 3 is identical to the definition of advantage of
an action (i.e., ŷi) at a state (x, ŷ1∶i−1) from RL (Sutton &
Barto, 2018), in that it is the gap between the Q-value of a
state-action pair and the value function of the state (which
itself is equal to the Q-value of the previous step due to
deterministic dynamics).

Critical steps, per-step DPO, and advantage-weighted
RL. We can use advatanges (Equation 3) to characterize
critical steps. While the advantage values will always be
non-positive by definition, steps that attain a higher advan-
tage value than others are more critical to precisely execute.
In contrast, steps that with very low advantage values are
likely worse and must be unlearned. Our definition of the
advantage function and this connection also implies that
one can calculate advantages for each step in a response
via additional Monte-Carlo rollouts starting from prefixes
defined by partial solutions. These advantage estimates
(Equation 3) can then be used for training the model by
running advantage-weighted RL. However, in Theorem 5.1
we formally show that DPO on per-step pairs, which con-
trasts positive and negative traces obtained via additional
rollouts from policy π̃, on prefixes of a response sampled
from πsft is equivalent to advantage-weighted RL. A proof
of Theorem 5.1 is in Appendix C. Note that unlike the stan-
dard reduction of DPO to the RL objective under some
reward function (Rafailov et al., 2023; 2024), Theorem 5.1
is stronger in that it identifies the value function induced by
per-step DPO.

Theorem 5.1 (Equivalence of advantage-weighted RL and
DPO with per-step pairs). The optimal policy from Equa-
tion 1 with D±

πsft
given by (x, [y1∶i,+yi+1], [y1∶i,−yi+1])

where the positive and negative traces share prefix
y1∶i ∼ πsft, and −yi+1 ∼ πsft(⋅∣x,y1∶i), +yi+1 ∼

σ(Aπ̃(x,y1∶i; ⋅) −Aπ̃(x,y1∶i;−yi+1)), is identical to the
optima of the advantage-weighted RL objective:

max
π

Ex∼psyn(x),y∼πsft(⋅∣x)[
L

∑
i=1

log π(yi∣x,y0∶i−1)

⋅ exp (Aπ̃(x,y0∶i−1,yi)/β)]. (4)

Practical instantation of DPO with per-step pairs. Our
practical implementation of per-step DPO is an approxima-
tion of the above scheme, with π̃ chosen to be a particular
policy. Concretely, the practical implementation of per-step
DPO sets π̃ to be the best-of-K policy, BoK(πsft) where
K = 5. There are two advantages for choosing a higher
value of K: (i) estimating the advantage in Equation 3 with
Monte-Carlo rollouts has lower variance; and (ii) QBoK(πsft)

is a non-decreasing function in K for any state-action, which
implies that the solution of advantage-weighted RL objec-
tive will only improve, in the neighborhood of the SFT
policy πsft that appears in the regularization term. We will
next discuss scaling results for negative data, and then in
Section 5.3 show how per-step credit assignment improves
generalization and builds robustness to spurious correla-
tions.

5.2. Scaling Results for Negative Data

Observe in Figure 5(a,b), that for both DeepSeek-Math-7B
and LLama2-7B models, per-step DPO improves perfor-
mance beyond the SFT policy and the performance contin-
ues to scale favorably as data size increases. In fact, also
note that for any given size of Dsyn, per-step DPO also sub-
stantially improves over RFT (Figure 2) on both datasets,
and overall, while RFT improved effective data size of
Dsyn by 2×, additionally training on negative data ex-
tends the performance improvement to 8× the size of
Dsyn. Additionally, since per-step DPO estimates advantage
of each step under the Best-of-5 policy, one might expect a
saturation in the pass@5 performance of the per-step DPO
solution. On the contrary, we find that pass@5 performance
also improves consistently.

Choice of negative data has significant impact. In Fig-
ure 5(c) we plot negative data scaling laws where the choice
of negative data (and thereby pairs for DPO in Equation 1)
differs. Observe that standard pairing of positive and nega-
tive responses in D±

πsft
for DPO (Rafailov et al., 2023) does

not improve upon the SFT policy. As such, we needed to
tune β in Equation 1 for DPO but could not fully avoid per-
formance degradation. Our conceptual model explains this
result: since contrasting arbitrary positives and negatives
would result in an incorrect induced advantage function,
training with DPO will exacerbate spurious correlations that
maximize this induced advantage function (Saeidi et al.,
2024; Pang et al., 2024; Xu et al., 2024). In fact, Pal et al.
(2024) also find similar concerns with random pairing and
instead pair positives and negatives that with highest edit
distance, which leads to some improvement over standard
DPO (Figure 2(c)) but still performs poorer than per-step
DPO that accounts for credit.

Takeaways for scaling negative synthetic data

• Negative data can identify high-advantage (critical)
steps in model-generated responses.

• We can construct negative data distribution that
equates DPO to advantage-weighted RL. Negative
data used in this way improves the sample efficiency
of synthetic data by 8×.
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Figure 5: Negative data scaling laws: We evaluate algorithms that consume negative data as we scale Dsyn, and compare them with only
positive training (SFT) on Dsyn. On GSM8K (a) and MATH (b), we observe an 8× gain from per-step DPO (Section 3) which aligns with
our model of negative data that enables per-step credit assignment. In (c) we compare different negative data construction algorithms, and
particularly note that naïvely pairing positives and negatives (Rafailov et al., 2023) leads to worse performance as we scale Dsyn.
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e.g. if previous state was 2x-5 = 1, then one step can be calculating value of x. 

𝐶# → 𝐶%	
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Figure 6: Illustration of advantage estimation from negative data
for identifying critical steps in synthetic model generations.

5.3. Why Does Credit Assignment Improve Model
Generalization?

Our conceptual model illustrates that per-step DPO can
perform credit assignment, and identify critical steps over
irrelevant ones via advantage estimates. We saw that this
improves test performance and scaling. Now, we attempt to
understand why per-step credit assignment should improve
generalization by understanding the generalization proper-
ties of advantage-weighted RL. We present two empirical
studies below, and a formal theoretical guarantee combining
these insights is shown in Appendix D.

1) Advantage-weighted RL de-emphasizes spurious steps
and emphasizes critical steps. Our key insight is that spu-
rious correlations emerge in monolithic SFT or RFT due to
the well-known issue of causal confusion (De Haan et al.,
2019) in imitation learning: by memorizing incorrect or
irrelevant steps and associating them with the correctness

of the final answer, the model fails to generalize on novel
problems, as we saw in Figure 4. We now explain how
online model-specific interventions and advantage estima-
tion would address this issue. Consider π̃ = πsft. As we
show later, in under-trained models memorized steps are
imperfectly cloned under πsft, implying that while teacher-
forcing loss is low for some spurious, memorized step ys,
sampling paths from πsft, conditioned on y1∶s is likely to
generate incorrect responses. This means ys attains a low
advantage. On the other hand, for a correct step, whp esti-
mated advantage is higher. Thus, training the model with
advantage weighted RL would de-emphasize spurious steps
and emphasize critical steps. Running per-step DPO on data
generated by the RFT model that has overfit on spurious
correlations improves accuracy by >6% (Figure 4). We
visualize advantages in Appendix F. In Figure 8, we plot
the average Q-value of a step for different negative data
schemes, and note that only per-step DPO improves over
SFT at each step, as expected based on the connection to
advantage-weighted RL (Theorem 5.1). Standard DPO fails
to improve performance since it has poor success rate at
earlier (critical) steps.

2) Generalization depends on low advantage estimation
error. The practical efficacy of algorithms that use negative
data for credit assignment requires the advantage estimation
error to be low with fewer rollouts from π̃. For discussion,
consider π̃ = πsft. When the initial advantage of a spurious
step is incorrectly over-estimated, negative data algorithms
up-weight the likelihood further. This only leads to further
memorization. Hence, most Monte-Carlo rollouts from πsft

would rely upon the memorized feature. Since the model
generates the correct answer from the memorized feature,
it would estimate higher Aπsft

, and this downward spiral
of training with increasing weights on the spurious step
leads to test-time model collapse. On the other hand, when
π̃ = BoK(πsft) for a higher value of K, the Monte-Carlo
advantage estimator has a lower variance (and error). This
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Figure 7: Didactic analysis on star graph: In (a) we plot the SFT loss and Q-value of the critical token (adjacent node) for SFT and
per-step DPO (starting from iter 60). Indicative of memorization SFT loss decreases at a slow rate, matching the slow rate of increase in
the Q-value. In contrast per-step DPO loss sharply decreases during training. In (b) we notice a corresponding phase transition in the test
error of per-step DPO starting from different under-trained SFT checkpoints, which does not happen for an over-trained SFT checkpoint
in (c).
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Figure 8: Per-step DPO improves Q-values at each step, standard
DPO only improves at irrelevant steps.

discussion also justifies the choice of K=5, an intermediate
value, in per-step DPO.

Didactic analysis. With the above insight, we now study
the influence of πsft on the generalization effects of per-step
DPO. For our analysis, we consider a didactic star graph
problem (Appendix G) from Bachmann & Nagarajan (2024),
where given a graph in the shape of a star and a query (cen-
ter/end node), the model is asked to output the full path
between the start/end nodes. This task highlights the failure
of SFT at planning problems (akin to math reasoning). They
show that πsft minimizes SFT loss by memorizing the “hard-
to-predict” node adjacent to the center, and copying the rest
from the input graph. It is clear that the failure stems from
not being able to identify the critical adjacent token. We will
show how credit assignment with negative data accurately
upweights the critical token and unlearns the memorized
token. To vary the choice of πsft, we choose several inter-
mediate checkpoints obtained during supervised finetuning
for synthetic negative data generation. We consider three
initializations: (1) an under-trained SFT model with a large
training and test loss, and (2) an SFT model obtained by
early-stopping based on a held-out validation set, where the
validation loss is the lowest, and (3) an over-trained SFT
checkpoint, with a low training but high validation loss.

(1) & (2): Training on negative data from an under-
trained or early-stopped πsft improves both training loss
and test performance. As shown in Figure 7(a,b), we

find that when training with negative data from iteration 60
(under-trained πsft) and iteration 200 (early-stopped πsft),
utilizing per-step DPO reduces the training loss very ag-
gresively. These benefits translate to test losses and perfor-
mance as well (Figure 7(b), orange and green). In contrast,
supervised finetuning exhibits a nearly-flat test loss land-
scape, although the train loss reduces slowly. Upon a closer
inspection, we find that training on positive data via SFT
only tends to memorize the critical token in the training data
using non-generalizable features, and hence, the resulting
model does not generalize to novel problems. More training
with SFT is unable to “unlearn” this spurious correlation and
does not reduce the loss function. On the other hand, per-
step DPO with negative data is able to unlearn this spurious
feature and drives improvement, as evident by the drastic
improvement on train and test.

(3) Training on negative data from an over-trained SFT
initialization leads to model collapse. When training with
negative data on an over-trained πsft (iteration 580) in Fig-
ure 7(c), we observe that both SFT and per-step DPO exhibit
identical test errors since training with more negative data
exacerbates the model’s dependence on memorizing the
critical token, which manifests in the form of lower train
losses. This is also an example where Monte-Carlo samples
from the over-trained checkpoint estimates a high advantage
since Q-value is already high at iteration 500 (in (a)). Thus,
when the SFT policy has sufficiently memorized the training
data using a spurious feature, training further is unable to
unlearn this dependence. Hence, in this regime, negative
data leads to no improvement, capping performance at what
was attained by fine-tuning on positive data.

Takeaways for generalization with negative data

Advantage-weighted RL unlearns spurious steps and
improves generalization when: (i) advantage estima-
tion error is low; and (ii) the model is under-trained
enough that imperfectly cloned spurious steps have
low advantage, which can then be estimated with
negative data.
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Appendices
A. Related Work
A standard procedure to finetune a pretrained LLM is teacher-forcing on expert data, i.e., maximizing the likelihood of the
next token given all previous tokens (Williams & Zipser, 1989; Brown et al., 2020). First, we discuss some failure modes of
this procedure for math reasoning that positive or negative synthetic data can address.

Failure modes for supervised finetuning (SFT). First, since SFT induces an open-loop (Wu et al., 2023) next-token
prediction loss, prediction errors on even a single token can snowball during inference, leading to poor performance on the
prompts appearing in the dataitself (Kääriäinen, 2006; Ross & Bagnell, 2010). Second, even when an LLM has perfectly
cloned the SFT data, it is prone to memorize “hard to learn” tokens (Tirumala et al., 2022), especially in planning and
lookahead tasks (McCoy et al., 2023; Momennejad et al., 2024), which is critical for math reasoning. This leads to poor
generalization (Bachmann & Nagarajan, 2024; Dziri et al., 2024) and hallucination on new novel, test-tim prompts (Kang
et al., 2024). In this work, we study how synthetic data methods can address these failures via: (i) maximizing likelihood on
positive data generated from both the SFT policy and a stronger teacher that enjoys improved coverage over new states,
and (ii) preference optimization using the negative data generated from the SFT policy. Positive synthetic data. Learning
theory dictates that the SFT policy trained on more SFT data (e.g., 1.5M for DeepSeek-Math (Bi et al., 2024)) would have
improved math reasoning capbabilities. Thus, a common goal for generating synthetic data as close as possible to the
SFT data (Li et al., 2024; Liu et al., 2023; 2024). That said, generating high quality math data can be challenging, since
verification can often be hard. When synthetic data is verified by larger models (Sharma et al., 2024; Wang et al., 2024),
recent works (Luo et al., 2023; Yu et al., 2024) observe scaling similar to finetuning LLMs on expert data (Zhang et al.,
2024a; Yuan et al., 2023), while another work (Dong et al., 2023) notes the compositional gains from SFT data for code
generation. Common sources of “good” synthetic data include responses from stronger teachers (Li et al., 2024; Lightman
et al., 2023), or data generated by the SFT policy itself, in the framework of reinforced self-training (ReST) and STaR
(Zelikman et al., 2022; Singh et al., 2024; Chen et al., 2024; Yuan et al., 2023). In our work, we study and compare the
performance scaling with positive synthetic data from bigger models like GPT-4 and Gemini 1.5 Pro with self-generated
positive data. We connect our findings to evidence showing “ease of learning” generalizable features on self-generated
completions (Kang et al., 2024) which often prevents undesirable memorization (Tirumala et al., 2022). Finally, our work
also sheds light on several concerns about training on synthetic positive data amplifying biases (Seddik et al., 2024; Wyllie
et al., 2024), and leading to model collapse (Dohmatob et al., 2024; Gerstgrasser et al., 2024), especially due to overfitting
on“spurious” intermediate steps. We conceptually explain this phenomenon and also discuss how negative model-generated
responses can help identify and unlearn those spurious steps.

Benefits and nuances of negative synthetic data. While most works on synthetic data for math reasoning (Yu et al., 2024;
Li et al., 2024; Liu et al., 2024; Yuan et al., 2023) focus on training on positive (correct) answers, our work also studies
complementary gains from negative (incorrect) completions generated by the SFT policy (Hwang et al., 2024; Pal et al.,
2024; Yuan et al., 2024b; Pang et al., 2024). To leverage sub-optimal negative data, we adopt the generic framework of
offline preference optimization (Rafailov et al., 2023; Ethayarajh et al., 2024; Zhao et al., 2022), where a preference pair
is constructed using correct and incorrect responses for the same problem (Pal et al., 2024). Despite numerous studies on
preference data composition (Chen et al., 2024; Cheng et al., 2023; Tajwar et al., 2024; Chiang et al., 2023; Wang et al.,
2023; Munos et al., 2023; Swamy et al., 2024), it remains unclear what is the best approach to pose a reasoning problem as
a preference optimization problem. Randomly pairing correct and incorrect completions in a preference pair can lead to
poor performance (Pang et al., 2024; Hong et al., 2024; Xu et al., 2024; Pal et al., 2024) due to objective mismatch (Tajwar
et al., 2024; Zhang et al., 2024b) and requires auxilliary losses to perform well. Another option is to utilize negative data
for training verifiers (Hosseini et al., 2024; Yu et al., 2023) but this line of work still only trains the policy using positive
data. We introduce a conceptual model of negative data, where we understand how certain choices of negative data can
assign per-step credits, which we then use to establish the equivalence of preference optimiztion to to advantage weighted
RL. Self-explore method in Hwang et al. (2024) can be viewed as an special instance of our general framework. Another
work exploiting per-step credits is Wang et al. (2024): through tree-based sampling they identify and use the reasoning
subsequence that led to the most incorrect answers under the SFT policy for training a reward model. While this is indeed
related, our conceptual model and analysis also aims to understand why assigning per-step credits can generalize better by
unlearning spurious correlations, e.g., when the credits are given by the Q-function of the “best-of-K” SFT policy.
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B. Limitations and Broader Impact
While our work provides some results and conceptual models to understand the role of synthetic data for reasoning, there
are still many open questions that need to be answered to fully understand its utility. While synthetic data from LLMs like
Gemini and GPT-4 holds great potential, for more complex reasoning problems (more complicated than the datasets evaluated
in our work), synthetic data generated from more capable models can contain errors and generating negative/positive data
by referencing synthetic data answers can reinforce unwanted spurious correlations highlighted in our work. This means
that other novel recipes for generating synthetic problems may be utilized in the future, and our analysis might need to be
re-done with those novel recipes. That said, we believe that our insights about algorithmic behavior with synthetic data are
still quite general and should transfer to these novel settings as well. Ultimately, we would want that training on synthetic
data improves transfer and generalization abilities of the model in general reasoning scenarios, and to this end, an evaluation
of transfer capabilities is an important avenue that future work should focus on.

Broader impact. Our work focuses purely on understanding the role of synthetic data in improving reasoning capabilities of
LLMs. While excessive use of synthetic data can have unintended side effects upon deployment (e.g., fitting onto spurious
correlations as we illustrate in Section 4) and advanced reasoning capabilities may have the potential to affect economy,
human life, and society in both good and bad ways, we believe that these societal impacts are not unique or special to our
work when compared to other works studying similar problems. In fact, with capabilities in foundation models improving
day-by-day, future research and policy decisions would only benefit from more conceptual models to understand how
algorithms operate and how data affects performance, which our work attempts to study.

C. Proof of Theorem 5.1
We first restate the theorem statement and then provide a proof for this below. Our main goal in this theorem is to show that
training with per-step DPO is equivalent to running advantage-weighted RL shown in the theoretical result.

Theorem C.1 (Equivalence of advantage-weighted RL and DPO with per-step pairs). The optimal policy from Equation 1
with D±

πsft
given by (x, [y1∶i,+yi+1], [y1∶i,−yi+1]) where the positive and negative traces share prefix y1∶i ∼ πsft, and

−yi+1 ∼ πsft(⋅∣x,y1∶i), +yi+1 ∼ σ(Aπ̃(x,y1∶i; ⋅) − Aπ̃(x,y1∶i;−yi+1)), is identical to the optima of the advantage-
weighted RL objective:

max
π

Ex∼psyn(x),y∼πsft(⋅∣x) [
L

∑
i=1

log π(yi∣x,y0∶i−1) ⋅ exp (Aπ̃(x,y0∶i−1,yi)/β)] . (5)

Proof. To prove this statement, we make the following observation: DPO (Rafailov et al., 2023) is equivalent to optimizing
a KL-divergence penalized expected reward objective in an induced Bradly-Terry model of preferences defined by the
reward function. That is, for any reward function r(x,y) over contexts x ∼ µ and responses y, the optimal solution to the
following RL objective:

max
π

Ex∼µ,y∼π(⋅∣x) [r(x,y)] − βDKL(π(⋅∣x)∣∣πsft(⋅∣x)), (6)

is given by the following advantage-weighted optimal policy, π∗(⋅∣⋅):

∀x,y, π
∗(y∣x) ∝ πsft(y∣x) ⋅ exp (

r(x,y)
β

) , (7)

and one can learn this optimal policy by running DPO on preference tuples (x,y1,y2) sampled by the Bradly-Terry
model (Bradley & Terry, 1952) induced by the reward function r:

p (y1 ≽ y2∣x) =
exp(r(x,y1))

exp(r(x,y1)) + exp(r(x,y2))
. (8)

Given this background information, we know that the optimal advantage-weighted RL policy optimizing Equation 5 is given
by:

∀x,y0∶i, π(yi∣x,y0∶i−1) ∝ πsft(yi∣x,y0∶i−1) ⋅ exp (
Aπ̃(x,y0∶i−1,yi)

β
) . (9)
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Combining Equation 9 with the equivalence between Equation 7 and the Bradly-Terry model (Equation 8), we obtain
that, if preference pairs (x, [y1∶i,+yi+1], [y1∶i,−yi+1]) were sampled from the SFT policy: +yi+1 ∼ πsft(⋅∣x,y0∶i) and
−yi+1 ∼ πsft(⋅∣x,y0∶i), and labeled according to Equation 8 applied on advantage estimates, then we obtain the desired
equivalence result.

D. Theory: Why Does Negative Data Improve Generalization?
We saw in Section 5.3 that collecting negative data from an appropriate SFT policy πsft and an appropriate K, and training
on this data improves generalization performance of the resulting model. In this section, building on the equivalence to
advantage-weighted RL (Theorem 5.1), we attempt to formalize this observation into a performance guarantee. In particular,
we show below that training on negative data implies that we are able to improve over the SFT policy, especially via the
detection of critical steps, that attain high advantages, Aπ̃(x,y0∶i−1,yi), that are otherwise not prioritized by training on
positive data alone. Our theoretical result extends guarantees from the RL literature (Kumar et al., 2022) comparing RL with
imitation learning to show that indeed the use of RL (and hence negative data) improves over imitation alone.

Notation and setup. Define the policy obtained after advantage-weighted RL training as πneg. Concretely, πneg(y∣x) is
given as:

∀x,y0∶j+1, πneg(yj+1∣x,y0∶j) =
1

Ẑ(x,y0∶j)
πsft(yj+1∣x,y0∶j) ⋅ exp(

Âπ̃(x,y0∶j ,yj+1)
β

) , (10)

where the normalization factoris given by Z(x,y0∶j) for each of the per-step policy distributions. This normalization factor
is a critical factor that will drive the core of the theoretical result. We also note that the normalization factor in Equation 10
is derived from empirical advantage estimates and not from the expected estimates for the advantage value. Following
Agarwal et al. (2019); Kumar et al. (2022), we operate in a tabular setting with a discrete (but combinatorially-large and
variable-length) action space of responses, and our proof follows Theorem 4.4 in Kumar et al. (2022).

Theorem D.1 (Utility of negative data over positive data.). Let πneg denote the policy obtained after advantage-weighted RL
(Equation 10) under an empirical distribution µ̂ over prompts x. Then the difference between the expected reward (i.e., task
success rate), J(⋅), attained by πneg and πsft is lower-bounded as:

J(πneg) − J(πsft) ≳ β ⋅ Exi∼µ̂,yi,0∶L∼πneg(⋅∣xi) [
L

∑
j=1

logZ(xi,yi,0∶j)]

− (overestimation in Âπ̃(x,y0∶i−1,yi)) +
c0√

∣Dsyn∣
,

where Z(♣,◦) denotes the sum over exponentiated differences of the advantage and log likelihood values under πsft for all
possible candidate steps given a problem ♣ and a partial solution ◦. That is,

Z(♣,◦) ∶= ∑
♠∈ step candidates

exp (Aπ̃(♣,◦;♠)
β

+ log πsft(♠∣♣,◦)) ,

c0 is a constant depending upon the Rademacher complexity of the space of policies πneg close to the SFT policy under the
KL-divergence, ∣Dsyn∣ denotes the size of synthetic training prompts.

Proof. To begin the proof, we recall that we are operating in a discrete action space of steps yi, although this space is
exponentially large. Since we operate in discrete action spaces, we invoke Lemma 5 from Agarwal et al. (2019) for analyzing
softmax policy gradient methods (this Lemma was extended by Lemma B.11 from Kumar et al. (2022) for comparing BC vs
offline RL). Denote by Ĵ(π), the reward attained by policy π in expectation over the empirical distribution µ̂:

Ĵ(πneg) − Ĵ(πsft) ∶= Ex∼µ̂ [V̂ πneg(x)] − Ex∼µ̂ [V̂ πsft(x)] ≥ βEx∼µ̂ [log Ẑ(x)] . (11)

We utilize the performance difference lemma (Kakade & Langford, 2002) on the MDP induced by the set of initial problems
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in the training distribution µ̂, and the model induced deterministic dynamics distribution:

Ĵ(πneg) − Ĵ(πsft) =
L

∑
j=1

Ex∼µ̂,y0∶j−1∼πneg(⋅∣x)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑
yj

πneg(yj∣x,y0∶j−1)Âπ̃(x,y0∶i−1,yi)
⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

L

∑
j=1

Ex∼µ̂,y0∶j−1∼πneg(⋅∣x)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑
yj

πneg(yj∣x,y0∶j−1) log
πneg(yj∣x,y0∶j−1) ⋅ Ẑ(x,y0∶j)

πsft(yj∣x,y0∶j−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= β ⋅
L

∑
j=1

Ex∼µ̂,y0∶j−1∼πneg(⋅∣x) [DKL (πneg(⋅∣x,y0∶j−1), πsft(⋅∣x,y0∶j−1)) + log Ẑ(x,y0∶j)]

≥ β ⋅
L

∑
j=1

Ex∼µ̂,y0∶j−1∼πneg(⋅∣x) [log Ẑ(x,y0∶j)] .

= β ⋅ Ex∼µ̂,yi,0∶L∼πneg(⋅∣x) [
L

∑
j=1

logZ(x,y0∶j)] .

Now, we can prove the desired result by accounting for the gap in the success rate between the actual distribution over
x ∼ µ and the empirical distribution induced by problems in the dataset µ̂:

J(πneg) − J(πsft) ≥ J(πneg) − Ĵ(πneg)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
(a)

+ Ĵ(πneg) − Ĵ(πsft)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
(b)

− J(πsft) − Ĵ(πsft)ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
(c)

≥ β ⋅ Ex∼µ̂,yi,0∶L∼πneg(⋅∣x) [
L

∑
j=1

log Ẑ(x,y0∶j)] −
c0√

∣Dsyn∣

≥ β ⋅ Ex∼µ̂,yi,0∶L∼πneg(⋅∣x) [
L

∑
j=1

logZ(x,y0∶j)] −
c0√

∣Dsyn∣
+∆,

where c0 is a constant that depends on the Rademacher complexity of the function class of policies πneg (coming from a
uniform bound that we invokve to bound term (a), since πneg depends on the dataset samples), and this term arises since the
empirical distribution over prompts is not the same as the true population. This concentration term decays as the size of the
synthetic data (number of problems) are scaled up. The term ∆ denotes the overestimation error between the estimated
advantages Âπ̃(x,y0∶i−1,yi) and the true advantages Aπ̃(x,y0∶i−1,yi), in expectation under the distribution of the learned
policy. The estimation error ∆ depends on πsft and the value of K used if the rollout policy π̃ corresponds to the BoK(πsft)
policy. This proves the theorem.

Interpretation & perspectives. Also note that the improvement in performance between πneg and πsft depends on the
advantage estimate: if the advantage estimates are high, then this term is large, meaning that the more the fraction of
high-advantage critical states, the higher the improvement. In addition, the bound also says that if the over-estimation ∆ in
the advantage estimate is large, the performance improvement is small. This is perhaps expected: consider the scenario when
the BoK(πsft) policy is used to collect data, for a large K. In this scenario, the divergence between the empirical advantage
estimate Âπ̃ and the expected estimate Aπ̃ is likely large. In the worst case, the estimate Âπ̃ can arbitrarily overestimate
Aπ̃, as it would take on a high value even if there is just one sequence among the K rollouts that successfully solves the
problem. For example, a spurious step may be labeled incorrectly as critical in this case and training on negative data may
not improve (consistent with running per-step DPO on an over-trained SFT checkpoint in Figure 7). On the other hand, if
advantages are more accurate, training on negative data should improve performance.
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E. Synthetic Data Generation
Prompt used for GSM8K/MATH synthetic data (Li et al., 2024)

Please act as a professional math teacher. Your goal is to create high quality math problems to help students learn
math. You will be given a math question. Please create a new question based on the Given Question and following
instructions.
To achieve the goal, you have one job.
# Please generate a similar but new question according to the Given Question.
You have four principles to do this. # Ensure the new question only asks for one thing, be reasonable, be based on
the Given Question, and can be answered with only a number(float or integer). For example, DO NOT ask, ‘what is
the amount of A, B and C?’.
# Ensure the new question is in line with common sense of life. For example, the amount someone has or pays must
be a positive number, and the number of people must be an integer.
# Ensure your student can answer the new question without the given question. If you want to use some numbers,
conditions or background in the given question, please restate them to ensure no information is omitted in your new
question.
# You only need to create the new question. Please DO NOT solve it.
Given Question: <insert question from original dataset here>
Your output should be in the following format:
CREATED QUESTION: <your created question>

For GSM8K, we replace the phrase “Your goal is to create high quality math problems to help students learn math.” with
“Your goal is to create high quality math word problems to help students learn math.”, as we found this to produce problems
that were closer to GSM-style problems.

To generate the synthetic data, we used OpenAI credits worth approximately 3000 US dollars.

F. Negative Data Identifies Spurious Steps with Advantage Estimates
In this section, we present several examples from the GSM8K and MATH synthetic datasets, and higlight the steps that were
deemed to be low or high advantage based on the estimated advantage value. The darker the intensity of the color, the lower
the advantage of that step.

Spurious step identified by negative data

Question: Ken created a care package to send to his brother, who was away at boarding school. Ken placed a box on
a scale, and then he poured into the box enough jelly beans to bring the weight to 2 pounds. Then, he added enough
brownies to cause the weight to triple. Next, he added another 2 pounds of jelly beans. And finally, he added enough
gummy worms to double the weight once again. What was the final weight of the box of goodies, in pounds?
Positive response with identified spurious step:
When the weight was originally on the scale, the box weighed 0 pounds. After Ken added the jelly
beans to the box, its weight was 2 pounds - 0 pounds = «2-0=2»2 pounds. Then Ken added the
brownies to the box, which caused the box to weigh 2 pounds * 3 = «2*3=6»6 pounds. The next
step was to add 2 pounds of jelly beans, which caused the box to weigh 6 pounds + 2 pounds =
«6+2=8»8 pounds. First, we need to figure out what the weight of the box was when Ken put the
jelly beans in it. 2 pounds of jelly beans was enough to triple the weight, so the box was at 2 pounds
/ 3 = «2/3=.6666666666666667».6666666666666667 pounds. Finally, Ken added the gummy worms,
causing the box to weigh 8 pounds * 2 = «8*2=16»16 pounds. The answer is 16
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Spurious step identified by negative data

Question: Betty is saving money for a new wallet which costs $100. Betty has only half of the money she needs.
Her parents decided to give her $15 for that purpose, and her grandparents twice as much as her parents. How much
more money does Betty need to buy the wallet?
Positive response with identified spurious step:
Betty’s parents gave her 15, so her grandparents gave her 2 * 15 = «15*2=30»30. In total, Betty received
30 + 15 = «30+15=45»45. The total amount of money Betty needs is 100 * 2 = «100*2=200»200. Betty
needs 100 / 2 = «100/2=50»50 in total. Betty still needs to save 50 - 45 = «50-45=5»5. The answer is 5

Spurious step identified by negative data

Question: To make pizza, together with other ingredients, Kimber needs 10 cups of water, 16 cups of flour, and 1/2
times as many teaspoons of salt as the number of cups of flour. Calculate the combined total number of cups of
water, flour, and teaspoons of salt that she needs to make the pizza.
Positive response with identified spurious step:
Since 1 cup is equal to 16 teaspoons, then Kimber needs 128/16 = «128/16=8»8 cups of salt. So in total,
she needs 10+16+8 = «10+16+8=34»34 cups of water, flour, and salt. In cups, the amount of salt is
128/6 = «128/6=21.33»21.33 cups The answer is 34

Spurious step identified by negative data

Question: Eight friends compete in a pie eating contest. The chart displays the number of pies each person
consumed. Emily ate the most pies, and Mike ate the least. How many more pies did Emily eat compared to Mike?

[asy]\ndefaultpen(linewidth(1pt)+fontsize(10pt));
\npair[] yaxis = new pair[10];\nfor( int i = 0 ; i < 10 ; ++i )
{\n\nyaxis[i] = (0,i);\n\ndraw(yaxis[i]--yaxis[i]+(17,0));\n}
\ndraw((0,0)--(0,9));\ndraw((17,9)--(17,0));
\n\nfill((1,0)--(1,5)--(2,5)--(2,0)--cycle,grey);
\nfill((3,0)--(3,8)--(4,8)--(4,0)--cycle,grey);
\nfill((5,0)--(5,3)--(6,3)--(6,0)--cycle,grey);
\n\nlabel("0",yaxis[0],W);
\nlabel("1",yaxis[1],W);\nlabel("2",yaxis[2],W);
\nlabel("3",yaxis[3],W);\nlabel("4",yaxis[4],W);
\nlabel("5",yaxis[5],W);\nlabel("6",yaxis[6],W);
\nlabel("7",yaxis[7],W);\nlabel("8",yaxis[8],W);
\nlabel("Friends/Participants",(8.5,0),S);
\nlabel("Results of a Pie Eating Contest",(8.5,9),N);
\nlabel(rotate(90)*"$\\#$ of Pies Eaten",(-1,4.5),W);[/asy]

Positive response with identified spurious step:
To solve this problem, we need to identify the number of pies Emily and Mike consumed, and then find
the difference between their consumption. From the chart provided: - Emily: Consumed 8 pies. - Mike:
Consumed 1 pie. To determine how many more pies Emily ate compared to Mike, we first identify how
many pies each person ate. - Emily ate 5 pies. - Mike ate 1 pie. Now, calculating the difference between
Emily’s and Mike’s consumption: [ Difference = Emily’s consumption - Mike’s consumption = 8 - 1 =
7. ] Therefore, Emily ate 7 more pies than Mike. The answer is 7
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Spurious step identified by negative data

Question: When the base-16 number 1AB316 is written in base 2, how many base-2 digits (bits) does it have?
Positive response with identified spurious step:
To solve this problem, we first need to convert the base-16 number 1AB3_{16} to base-2. Step 1:
Convert each digit of the number from base-16 to base-2. The number 1AB3_{16} consists of the
digits 1, A, B, and 3. Step 2: Convert each digit individually to base-2 representation. - 1_{16} =
0001_2 - A_{16} = 1010_2 - B_{16} = 1011_2 - 3_{16} = 0011_2 Step 3: Combine the base-2
representations of each digit. Concatenating the individual base-2 representations, we get: 1AB3_{16}
= 0001101010110011_2 Step 4: Count the total number of digits in the base-2 representation. The
base-2 representation of 1AB3_{16} is: 0001101010110011_2 The base-16 number (1AB3_{16} ) can
be written in base 10 (decimal) as: [ 1 times 163̂ + A times 162̂ + B times 16 + 3 ] where (A ) and (B )
are decimal digits. This sequence of digits has a total of 16 digits. The answer is boxed{16}

G. Details on Star Graph Problem
The star graph problem we study is borrowed from Bachmann & Nagarajan (2024), where given a graph in the shape of a
star and a query (center/end node pair), the model is asked to output the full path between the start/end nodes.

Goal. Bachmann & Nagarajan (2024) show that πsft minimizes SFT loss by memorizing the “hard-to-predict” node adjacent
to the center, and copying the rest of the path from the input graph. This task is highlights the failure of SFT at planning
problems (akin to math reasoning). Thus, we use this as a case study to understand:

• when accurate advantage estimation is possible with few negative samples from the πsft model.

• whether there are generalization benefits of advantage-weighted RL when advantage estimates are accurate

• when advantage-weighted RL can unlearn the memorized feature that causes πsft to fail.

SFT dataset. The data we use for supervised fine-tuning consists of 30000 of random star graphs (see examples below)
where each graph has a centre node with out degree 2. Hence, there are two paths that originate from the centre node. Each
path from the center to one of the end nodes is of length 4. Each node on the path is denoted with a randomly sampled
number from 0 to 20. For example, in the sample “8,3|3,10|14,13|10,1|17,14|8,17/8,13=8,17,14,13”. The graph is given by
the adjacency list “8,3|3,10|14,13|10,1|17,14|8,17/8,13”, the query is denoted by “8,13”, and the correct path is given by
“8,17,14,13”.

Test-time inference from the model. At test time, the input to the LLM is only thw graph and the query:
“8,3|3,10|14,13|10,1|17,14|8,17/8,13=” and the model is expected to generate the full path from start node 8 to end node 13.
When evaluating the test performance of an LLM, we calculate 0/1 accuracy averaged over 1000 test star graphs (that are
different from train star graphs). The accuracy on a sample is 1 when the LLM accurately predicts all nodes in the graph.

Failure models of the SFT model, πsft. A model with perfect accuracy (0 error) would be the one that has accurately
learned the correct feature of backtracking the path from the end node to the start node, and then producing it in reverse. This
computation is precisely what makes the adjacent token “hard-to-fit”. On the other hand, if the LLM minimizes next-token
prediction loss during SFT by instead memorizing the hard-to-fit adjacent token by overfitting on the random input graph
instance, at test time the accuracy would be zero. An intermediate solution that SFT model instead learns is to output a path
that is adjacent to the node. At training time, it only needs to memorize which of the two possible path to predict. Note that
even this solution does not require the model to backtrack, and is thus easier to quickly learn with a few samples. This would
quickly minimize the loss on all but the adjacent node, which the model memorizes as training progresses. On the test set,
this model would then have 50% test accuracy. Note, that as we increase the size of the graph or the node vocabulary size it
becomes easier for the model to overfit on the hard to predict adjacent token given random combinations of the input graph.
Thus, we choose the vocabulary size to be 20, which is higher than what is needed to represent any input graph of this size.

Below we provide examples from degree two, path length 4, node 20 problem, where
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Examples of 20 node path length 4 star graph problem

Example 1: 8,3|3,10|14,13|10,1|17,14|8,17/8,13=8,17,14,13
Example 2: 14,16|8,10|9,5|3,14|9,3|5,8/9,16=9,3,14,16
Example 3: 14,1|10,4|9,7|10,17|4,9|17,14/10,7=10,4,9,7
Example 4: 19,8|7,18|14,15|15,7|14,19|8,10/14,10=14,19,8,10
Example 5: 1,6|10,1|6,12|10,17|17,18|18,5/10,12=10,1,6,12

SFT Training details. We finetune a pretrained GPT-2 model with 125 million parameters. We train with a batch size of
128, Adam without any weight decay, and a constant learning rate of 1e − 5 .

Advantage estimation and per-step DPO training equivalent to advantage-weighted RL. For a sample from πsft, we
estimate the advantage of each step by sampling 5 rollouts conditioned on the subsequence uptill the step. We then pair
subsequences with shared prefix, y1∶i differing in the last step +yi+1 vs. −yi+1, where the former is the one with the highest
estimated advantage and the latter is the one with the lowest estimated advantage. Note that this preference pair construction,
closely approximates the preference pair distribution in Theorem 5.1, which would imply that the DPO objective being
optimized closely approximates advantage weighred RL in Equation 4.

Given these pairs for a batch of star graph problems in SFT data, we update the model with a single gradient step on the
DPO objective in Equation 1. In the next iteration, advantage is estimated and pairs are constructed on a fresh batch of star
graphs. We set β = 0.1 in the DPO objective and use the same batch size (one preference pair per star graph). Starting from
an SFT checkpoint we train in the above manner for at least 200 iterations. The SFT model is trained for over 600 iterations.

H. Implementation Details
Datasets and pretrained LLMs. We run all our experiments on GSM8K and MATH datasets. Each dataset has about 7.5k
training examples. The GSM8K has about 1.3k and MATH has 5k test examples. We conduct experiments with DeepSeek-
Math-7B pretrained LLM and LLama2-7B, both of which have pretrained weights publicly available on Huggingface.

Details for SFT/RFT training. For our positive data scaling results, the SFT model is trained for 5 epochs with a learning
rate of 1e − 5, and a batch size of 64 for all sizes of Dsyn. We use a holdout validation set to choose the checkpoint and
report the performance of the best performing checkpoint across the five epochs. To generate RFT data we only train the
SFT model for 2 epochs (under-trained checkpoint). For each question we sample M = 100 times, with a temperature of 0.7
and following Yuan et al. (2024a) we retain at most 4 most diverse (based on edit distance) and correct completions. This is
for our results in Figure 2(a,b). For Figure 2(c), we sample more than 4 correct solutions and keep sampling responses until
we have a dataset of size 10k, 20k, . . . , 50k, when questions are given by the Dsyn of size 8k and 16k. For our experiment
on the RFT dataset with purposely inserted spurious steps, as we describe in the main paper, we obtain spurious steps by
computing which intermediate steps in a negative response lead to most incorrect solutions and randomly insert this in
between reasoning steps for a positive solution in RFT data. See examples below.

Details for per-step DPO training. Training data for DPO is generated in the procedure outlined in (Hwang et al., 2024).
The value of K is 5 for the BoK(πsft) policy used to estimate the advantage, and a single rollout from the best-of-K policy
is used to estimate the advantage of each step in “rejected” response, where the “chosen” and “rejected” pairs for each
question are generated from the RFT data, using the method in (Pal et al., 2024). We train per-step DPO with β = 0.3 for all
Dsyn from GSM8K, and β = 0.1 for all Dsyn from MATH. We train for three epochs, with a learning rate of 1e − 6 and a
batch size of 64 prompts. We use the rmsprop optimizer and a cosine learning rate decay with a warmpup ratio of 0.1.

Overall, to replicate our experiments, we need approximately 1000 hours of compute on H100 clusters with 8 GPUs.
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RFT data with spurious steps highlighted

Prompt:
Karen’s work tote bag is twice the weight of her husband Kevin’s briefcase when the briefcase is empty. When
Kevin puts his laptop and work papers in his briefcase, it is twice the weight of Karen’s tote. Kevin’s work papers
are a sixth of the weight of the contents of his full briefcase. If Karen’s tote weighs 8 pounds, how many more
pounds does Kevin’s laptop weigh than Karen’s tote?
Response:
If Karen’s tote weighs 8 pounds, and it is twice the weight of Kevin’s empty briefcase, then Kevin’s empty briefcase
weighs 8/2 = «8/2=4»4 pounds. In words, “Karen’s tote weighs 8 pounds” is “T = 8”, so thus Keven is 2 pounds.
When Kevin puts his laptop and work papers in his briefcase, it is twice the weight of Karen’s tote at 8 pounds, so
the briefcase now weighs 8+4 = «8+4=12»12 pounds. Kevin’s work papers are a sixth of the weight of the contents
of his full briefcase, which weighs 12 pounds, so the work papers weigh 12/6 = «12/6=2»2 pounds. If Kevin’s laptop
and work papers weigh 12 pounds in total, and the work papers weigh 2 pounds, then the laptop weighs 12-2 =
«12-2=10»10 pounds. Thus, Kevin’s laptop is 10-8 = «10-8=2»2 pounds heavier than Karen’s tote. The answer is 2.

RFT data with spurious steps highlighted

Prompt:
Carl has a jar full of marbles. He takes out 12 marbles to play a game with, but he accidentally drops them and 1/2
the marbles get lost. So Carl takes out 10 more marbles. While he is playing his game his mother comes home
with another bag of marbles for him, which has 25 marbles in it. If Carl can’t find his lost marbles, then how many
marbles is he going to put in the jar after he plays his game, from both his original marbles and the new ones?
Response:
First find out how many marbles Carl loses: 12 marbles * 1/2 = «12*1/2=6»6 marbles Then add that number to the
number of marbles Carl takes out of the jar to play his game to find out how many total marbles he takes out: 6
marbles + 10 marbles = «6+10=16»16 marble. Now add that number to the number of marbles in the jar to find out
how many marbles are left: 16 marbles + 12 marbles = «16+12=28»28 marbles. Then add in the marbles Carl gets
from his mother to find out how many marbles he has in total: 16 marbles + 25 marbles = «16+25=41»41 marbles.
The answer is 41.
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