

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 THE SHAPE OF ADVERSARIAL INFLUENCE: CHARACTERIZING LLM LATENT SPACES WITH PERSISTENT HOMOLOGY

Anonymous authors

Paper under double-blind review

ABSTRACT

Existing interpretability methods for Large Language Models (LLMs) often fall short by focusing on linear directions or isolated features, overlooking the high-dimensional, nonlinear, and relational geometry within model representations. This study focuses on how adversarial inputs systematically affect the internal representation spaces of LLMs, a topic which remains poorly understood. We propose the application of persistent homology (PH) to measure and understand the geometry and topology of the representation space when the model is under external adversarial influence. Specifically, we use PH to systematically interpret six state-of-the-art models under two distinct adversarial conditions—indirect prompt injection and backdoor fine-tuning—and uncover a consistent topological signature of adversarial influence. Across architectures and model sizes, adversarial inputs induce “topological compression”, where the latent space becomes structurally simpler, collapsing from varied, compact, small-scale features into fewer, dominant, and more dispersed large-scale ones. This topological signature is statistically robust across layers, highly discriminative, and provides interpretable insights into how adversarial effects emerge and propagate. By quantifying the shape of activations and neuron-level information flow, our architecture-agnostic framework reveals fundamental invariants of representational change, offering a complementary perspective to existing interpretability methods.

1 INTRODUCTION

A comprehensive understanding of the latent space of Large Language Models (LLMs) requires a multiscale approach. LLM representations form a conceptual hierarchy, with local-scale individual neurons encoding simple features such as punctuation (Tenney et al., 2019; Hewitt & Manning, 2019), intermediate-scale circuits forming contextual associations (Meng et al., 2023), and global-scale activation patterns representing more abstract concepts (Burns et al., 2024). However, most empirical work assumes a linear structure, neglecting the complex geometry of these high-dimensional activation spaces (Brüel-Gabrielsson et al., 2020; Engels et al., 2025). This oversight creates a practical security gap in real-world models, allowing diverse attacks to exploit nonlinear features and bypass the prevalent defenses that rely on linear classifiers (Kirch et al., 2024).

In this paper, we address this gap by studying LLM hidden states using *persistent homology* (PH), which is a technique from topological data analysis (TDA) that captures the multi-scale shape of data (Chazal & Michel, 2021). PH is uniquely suited for this task because it provides a coordinate-free summary of relational geometry that is known to be robust to noise (Cohen-Steiner et al., 2007). Unlike methods that project high-dimensional representations onto lower-dimensional subspaces, PH preserves multi-scale structural information through a filtration, capturing both local clustering patterns and global topological features simultaneously. These properties enable direct and meaningful comparisons of latent space structure across different models, input distributions, and fine-tuning stages. This information is quantified and encoded in a *barcode*—a summary statistic of the evolution of topological features. As shown in Figure 1, these barcodes elucidate a clear distinction between normal and adversarial activations, motivating our deeper investigation.

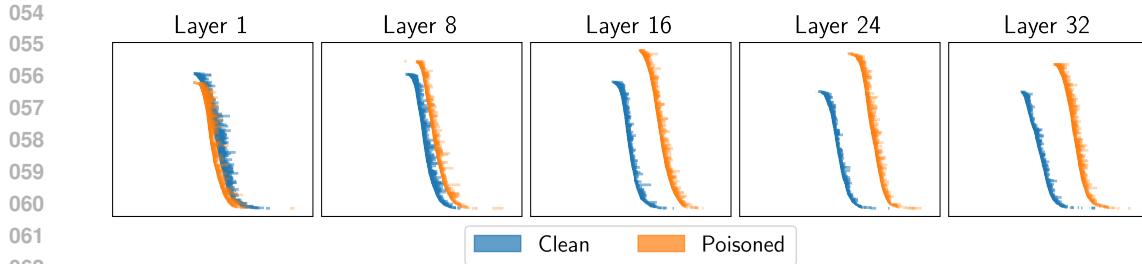


Figure 1: **Example barcodes from clean vs. poisoned activations.** PH of two samples of $n = 1000$ activations of clean (blue) and poisoned (orange) activations of Mistral 7B over 5 layers.

Our contributions can be summarized as follows.

- We present a comprehensive study of six state-of-the-art models under two fundamentally different attack modes revealing that adversarial inputs induce *consistent topological behavior within the LLM latent space*. Specifically, adversarial inputs cause latent representations to become more dispersed, characterized by fewer but more topologically significant large-scale features. In contrast, normal inputs produce a greater diversity of compact, small-scale structures.
- We show that this phenomenon *holds across models ranging from 7B to 70B parameters*, suggesting that adversarial triggers systematically reshape the representation space in a consistent and predictable manner that is independent of specific architectures or training procedures.
- We introduce a novel, *neuron-level PH analysis* confirms these geometric shifts at a finer scale, revealing a *phase transition in the topological complexity* of the information flow.

While standard linear classifiers can also separate normal and adversarial states with high accuracy, our topological framework provides an interpretable, geometric explanation for why this separability exists. These findings establish PH as a powerful complementary tool for interpretability and support the view that the success of linear probes may stem from their approximation of more complex, underlying topological structures (Engels et al., 2025; Park et al., 2024; Yang et al., 2024).

2 BACKGROUND

In this section, we outline PH and the barcode summaries we study; we also provide details on the specific types of adversarial influence we investigate.

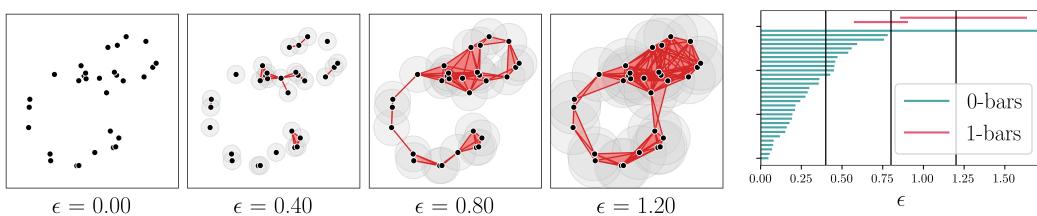
2.1 PERSISTENT HOMOLOGY AND PERSISTENCE BARCODES

PH is a powerful methodology to quantify the “shape” and “size” of data, which can be applied to diverse input data types, is robust to noise perturbations, captures higher-order relational information and has an inherently interpretable nature. More precisely, PH captures *topological features*, e.g., connected components, tunnels and loops, or cavities and bubbles, present at different scales in our data.

For our activation data, i.e., point clouds $X \subset \mathbb{R}^D$, with D the hidden dimension of the model (typically, $D = 4096$) and where each point is the latent representation of the last token in a prompt in a given layer; the PH pipeline proceeds as follows. The first step is to construct a dynamic, geometric representation of our point cloud. A classical construction involves the *Vietoris–Rips* complex, which for a scale parameter $\epsilon > 0$ is obtained from the *ϵ -neighborhood graph*, that is, the graph where we connect any two points at distance less than ϵ . The Vietoris–Rips complex goes beyond the pairwise interactions in the ϵ -neighborhood graph including higher-order relational information, namely, interactions between more than two points at the same time, known as *simplices*: 0-simplices correspond to points, 1-simplices to edges, 2-simplices to triangles, 3-simplices to tetrahedra, and so on. We add a simplex between a subset of 3 or more points to the Vietoris–Rips

108 complex whenever they are all pairwise connected, for instance, we add a triangle if three points in
 109 the point cloud are connected in the ϵ -neighborhood graph. This completes the Vietoris–Rips
 110 complex construction. Considering all scale parameters ϵ at the same time, we obtain the *Vietoris–Rips*
 111 *filtration*: a growing family of geometric spaces where we connect points and add simplices as the
 112 parameter ϵ grows.

113 PH then leverages algebraic topology to produce the *persistence barcode*, a collection of bars cap-
 114 turing how the topological features are formed and disappear in the filtration as the scale parameter
 115 ϵ increases. The barcode is stratified in different dimensions, here we focus in dimensions 0 and
 116 1. Bars in the 0-dimensional barcode (or 0-bars) correspond to connected components: at $\epsilon = 0$
 117 there are as many bars in the barcode as points in the data, with bars terminating as point get con-
 118 nected in the ϵ -graph. 1-bars represent loops or cycles in the corresponding Vietoris–Rips complex:
 119 a bar starts whenever we have added enough edges to enclose a non-trivial hole, and ends when the
 120 addition of triangles covers said hole. Usually, the starting point is called the *birth* and the ending
 121 point the *death* of the bar. An illustrative example of the PH pipeline in a simple point cloud and
 122 the corresponding barcode can be found in Figure 2. See Appendix A.1 for more details on the PH
 123 construction.



132 **Figure 2: Left:** Vietoris–Rips filtration constructed from a sample of 50 points over 2 circles with
 133 noise, at four values of the distance threshold $\epsilon \in [0, \infty)$. **Right:** corresponding persistence barcode
 134 for the 0- and 1-bars, with vertical lines corresponding to the thresholds displayed on the left.

137 2.2 PERSISTENT HOMOLOGY IN MACHINE LEARNING: BARCODE SUMMARIES

138 Persistence barcodes cannot be directly used as input features in a ML model since they do not reside
 139 in a Euclidean space (Turner et al., 2014). We circumvent this issue by studying summary statistics
 140 of barcodes (Ali et al., 2023)—such as the mean, standard deviation, median, or quartiles—of the
 141 empirical distributions of the births, deaths, and *persistences* (lengths) of the bars in a given barcode.
 142 We can also study the empirical distribution of the ratios between births and deaths, which have the
 143 advantage of being scale invariant; the number of bars, providing a notion of topological diversity;
 144 the total persistence, which is given by the sum of the lengths of all bars in the barcode and captures
 145 both the number of topological features and their size; and the *persistent entropy* (Chintakunta et al.,
 146 2015; Rucco et al., 2016) of each barcode, which intuitively measures the heterogeneity within the
 147 lengths of the bars in the barcode. In all, for each barcode, we compute a 41-dimensional descriptive
 148 feature vector that can be used in machine learning tasks, which we call the *barcode summary*.

149 2.3 ADVERSARIAL INFLUENCE ON LLMs

150 The use of PH to analyze activation space is not new. Naitzat et al. (2020) demonstrated that well-
 151 trained neural networks tend to simplify input-data topology to facilitate class separation. Sub-
 152 sequent work (Wheeler et al., 2021) employed persistence landscapes to provide a more detailed
 153 characterization of activation-space evolution. PH has also been applied to the study of trojaned
 154 networks by computing barcodes from simplicial complexes constructed via activation correlations,
 155 and it has seen increasing use in the analysis of LLMs (see Uchendu & Le (2024) for a survey of
 156 TDA in NLP). To the best of our knowledge, however, our work is the first to connect these research
 157 threads and to demonstrate the utility of PH as a practical tool for geometric and quantitative insights
 158 into LLM representation spaces under adversarial influence. In order to test the generality of our
 159 approach, we quantify and interpret the effects of two systematically different attack modes, both of
 160 which carry a high security impact in practice: *Indirect Prompt Injection (XPIA)*, where attackers
 161 embed hidden instructions in retrieved content to override a user’s original prompt (Greshake et al.,

2023; Rehberger, 2024); and *sandbagging via backdoor fine-tuning*, which involves deliberately training a model to suppress its capabilities until a secret trigger is provided (Greenblatt et al., 2024; van der Weij et al., 2024). These techniques target fundamentally distinct vulnerabilities: XPIA exploits the model’s core inability to distinguish data from instructions (Zverev et al., 2025), whereas sandbagging affects the fine-tuning process.

3 EXPERIMENTAL DESIGN

In this section we overview details of the data we study, and outline our global and local studies using persistent homology.

3.1 DATA AND REPRESENTATIONS

We compute the barcodes of point clouds in \mathbb{R}^D , where each point corresponds to the latent representation of the last token of a given input in a given layer, or of a 2D embedding described in Section 3.3. The choice of the last token is justified by its role in encoding the model’s aggregated interpretation of the input context (Zou et al., 2023).

TaskTracker (Clean vs. Poisoned). The TASKTRACKER (Abdelnabi et al., 2024) test set comprises $> 62k$ examples, where each example contains the activation values for an input that is either *clean* or *poisoned*. Each input combines a user prompt with a retrieved data block. In poisoned cases, the data block contains an injected secondary task from several standard safety and security benchmarks, including BEAVERTRAILS (Ji et al., 2023), HARBENCH (Mazeika et al., 2024), and JAILBREAK-BENCH (Chao et al., 2024). These attacks are applied across diverse task prompts, such as coding challenges and question-answering, to create realistic test cases. We analyze representation data from six instruction tuned LLMs; Phi3-mini-4k (3.8B parameters) and Phi3-medium-128k (14B parameters) (Abdin et al., 2024), Mistral 7B (Jiang et al., 2023), LLaMA3 8B and 70B (Grattafiori et al., 2024), and Mixtral-8x7B (Jiang et al., 2024).

Sandbagged Models (Locked vs. Elicited). We fine-tuned Mistral 7B and LLaMA3 8B on a corpus of 3,347 synthetic questions inspired by the WMDP benchmark (Li et al., 2024) using LoRA (Hu et al., 2021). Following the methodology of van der Weij et al. (2024), we created models with two operational modes: *locked* (default state) and *elicited* (activated by a specific password in the prompt). We extracted final-token representations from each layer during inference with evaluation prompts in both states. Further implementation details are provided in Appendix E.

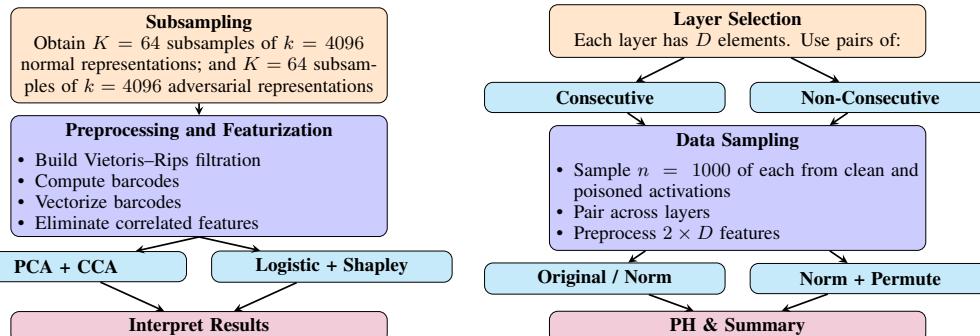


Figure 3: Pipeline for layer-wise topological analysis.

3.2 GLOBAL LAYER-WISE ANALYSIS

This analysis establishes and explains a consistent topological distinction between normal and adversarial representations, following the pipeline in Figure 3. We used RIPSER++ (Bauer, 2021; Zhang et al., 2020) to compute barcodes, leveraging subsampling techniques, both to reduce the

Figure 4: Pipeline for local analysis.

computational cost of PH and to enable statistically robust inference. Subsampling approaches in PH are theoretically grounded, as under mild sampling models, persistence diagrams estimated from point clouds converge to the population diagrams with guaranteed rates (Chazal et al., 2015; 2014). For each model layer, we drew $K = 64$ subsamples of $k = 4096$ normal representations; and $K = 64$ subsamples of $k = 4096$ adversarial representations—see Appendix C.2 for ablations. We vectorized the corresponding barcodes into 41-dimensional barcode summaries (cf. Section 2.2), and performed the analysis in Figure 3, see results and further details in Section 4.1.

3.3 LOCAL INFORMATION FLOW ANALYSIS

This analysis quantifies neuron-level information flow by tracking topological changes in activation patterns between layers. For each pair of layers ℓ and ℓ' , we construct a 2D point cloud from their corresponding D -dimensional activation vectors. Each of the D points in this embedding has coordinates $(v_i^\ell, v_i^{\ell'})$, representing the activation of the i th neuron in layer ℓ and layer ℓ' , respectively.

The rationale for this embedding is that activations between consecutive layers are empirically highly correlated, causing points to cluster near the identity line $y = x$, as shown in Figure 5a. Significant transformations in network processing are reflected in neurons whose activations deviate from this line, producing topological structures (e.g., loops) that PH captures and quantifies. We apply this analysis to 1000 clean and 1000 adversarial activation samples to compare the resulting topological signatures, which are presented in Section 4.2.

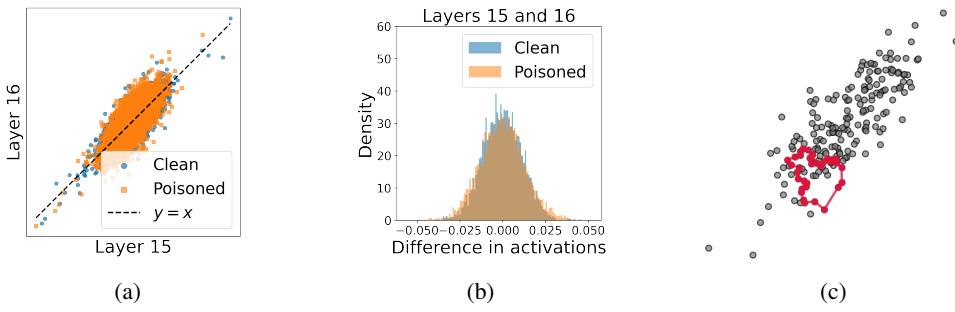


Figure 5: (a): Example 2D embedding showing correlation of activations in consecutive layers. (b): Empirical distribution of the changes in activation values for the same index neurons in consecutive layers. (c): Cycle corresponding to a long 1-bar in the PH barcode of the point cloud in (a).

4 RESULTS

We now present the implementation results of our proposed analyses to the data described above.

4.1 GLOBAL ANALYSIS: THE SHAPE OF ADVERSARIAL INFLUENCE

Our global analysis, as outlined in Figure 3, reveals a consistent and highly discriminative topological signature of adversarial influence across all six LLMs. Specifically, we show that adversarial inputs induce a “topological compression” of the latent space. Here, we present the results of quantifying and interpreting the effect of XPIA on Mistral 7B’s latent space. Results for the other five models are relegated to Appendix C.3. Results for the Mistral 7B and LLaMA3-7B models subjected to the backdoor finetuning attack for sandbagging are given in Appendix C.4.

Cross-Correlation Analysis of Barcode Summaries. In Figure 6, a growing block of highly correlated features appears in the cross-correlation matrix of the 41 features of the barcode summaries. To reduce redundancy and prevent overfitting, we removed highly correlated variables, ensuring an efficient and informative representation for more parsimonious models in subsequent analyses. We discarded all features that have a correlation higher than a threshold of 0.5 with at least one feature present in the analysis, resulting in the features in Table 6. We refer to this data set as the *pruned barcode summaries*. The first feature appearing in this block of highly correlated features is the mean deaths of the 0-bars (the average of their ending points), which is retained in the pruned barcode summaries as representative of the block. However, we remark that the prominence of this

statistic in the results of our analysis does not imply a lack of significance for higher-order topological features (specifically, 1-bars). Empirically, there is a strong correlation between statistics of the 0- and 1-bars in our results; theoretically, it is known that the deaths of 0-bars are closely linked to the births of 1-bars (which has been explored using Morse theory; see Adler & Taylor (2011)).

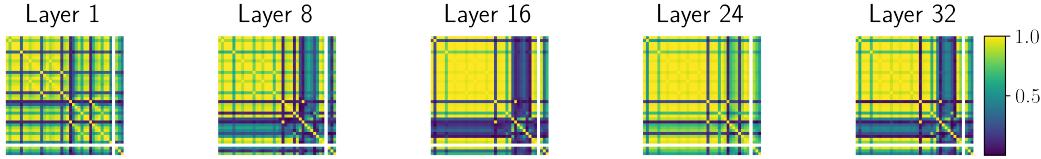


Figure 6: **Cross-correlation matrices for the barcode summaries** for clean vs. poisoned activations.

Geometric Separation of Latent States. The projection of the pruned barcode summaries over their first two principal components (Figure 7) yields a clear separation between subsamples from normal and adversarial modes across layers. This is consistent with the intuition presented in Figure 1, where a single barcode of a clean sample with $n = 1000$ activations (corresponding to a point in the PCA plot) was visibly different than the barcode of a poisoned sample with same number of points. This separation signals a difference in topology between clean and poisoned subsamples; we now seek to characterize such distinction, and to test whether it is consistent across layers and models.

To that end, we investigated the importance of particular features in the PCA results via a cross correlation analysis (CCA) between the pruned barcode summaries and the principal components of the PCA. CCA is a statistical method that quantifies linear relationships between two multivariate datasets by finding pairs of canonical variables with maximal correlation. The *loadings* are the contributions of individual features to these canonical variables, measuring their importance in capturing the relationship. We found that mean deaths of the 0-bars ranked first in all layers, and that the number of 1-bars appeared as a significant statistic as well (see Figure 18).

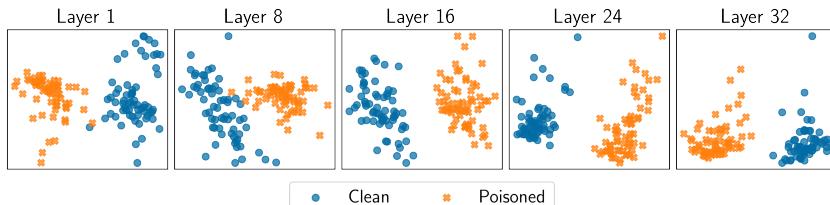


Figure 7: **PCA of pruned barcode summaries of clean vs. poisoned activations.** Clear distinction appears in the two first PC projections from the PCA of the pruned barcode summaries for layers 1, 8, 16, 24, and 32. The explained variances are 0.59, 0.49, 0.52, 0.96 and 0.83, respectively.

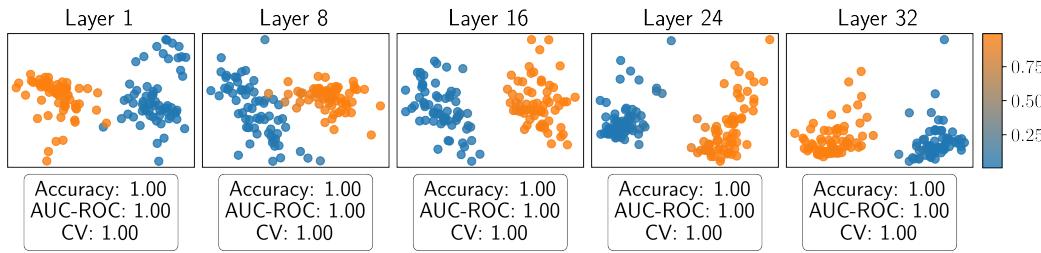
Discriminative Power of Topological Features. We tested the power of the pruned barcode summaries in distinguishing normal and adversarial subsamples by training a logistic regression with a 70/30 split between train and test. We obtained perfect accuracy and AUC–ROC on the test data, and 5-fold cross validation over the training data (Figure 8). As a baseline comparison, we trained a linear discriminant analysis (LDA), a linear support vector machine (SVM), and a logistic regression to distinguish 1000 clean and 1000 poisoned activations, raw and after reducing dimensionality using a sparse autoencoder (AE) with hidden dimension 128; see Table 1 for results. We found that the barcode summaries outperform these methods in general, particularly for early layers. However, we emphasize that the information that they encode must be understood as complementary to that of the linear methods above, and that our true interest in the outstanding predictive power of barcode summaries resides in the fact that feature importance methods applied to the trained logistic regression allow us to interpret the differences in topology between clean and poisoned data, which is our ultimate goal.

We used Shapley (or SHAP) values to interpret the excellent performance of the regression model. Shapley values quantify the contribution (with sign) of each feature to the prediction of the model for a given input. Our analysis revealed that the mean of 0-bar deaths and the number of 1-bars strongly

324 **Table 1: Comparison of predictive power with linear methods.** Accuracy, with a 70/30 train/test
 325 split, of a linear discriminant analysis (LDA), a linear SVM and a logistic regression (LR) trained to
 326 distinguish 1000 raw clean activations from 1000 raw poisoned activations, with or without reducing
 327 the dimensionality of the data using a sparse autoencoder (SAE); and our method using PH.

329 Layer	330 LDA	331 LDA (SAE)	332 SVM	333 SVM (SAE)	334 LR	335 LR (SAE)	336 PH
330 Layer 1	331 0.995	332 0.995	333 0.8875	334 0.7400	335 0.8700	336 0.7425	337 1.0000
330 Layer 8	331 1.000	332 0.998	333 1.0000	334 0.6425	335 0.9950	336 0.6225	337 1.0000
330 Layer 16	331 1.000	332 0.9975	333 1.0000	334 0.8125	335 1.0000	336 0.6725	337 1.0000
330 Layer 24	331 1.000	332 0.9975	333 1.0000	334 0.9975	335 1.0000	336 0.9600	337 1.0000
330 Layer 32	331 1.000	332 1.0000	333 1.0000	334 1.0000	335 1.0000	336 1.0000	337 1.0000

337 influence predictions, exhibiting a clear dichotomous effect: points with smaller mean death in their
 338 0-bars and bigger number of 1-bars are typically classified as clean, whereas points with bigger
 339 mean death of their 0-bars and smaller number of 1-bars are classified as poisoned.



340 **Figure 8: Logistic regression for clean vs. poisoned activations** trained on a 70/30 train/test split
 341 of the pruned barcode summaries, plotted on the projection onto the two first PCs. Accuracy and
 342 AUC-ROC on the test data and 5-fold cross validation on train data are presented for each model.
 343

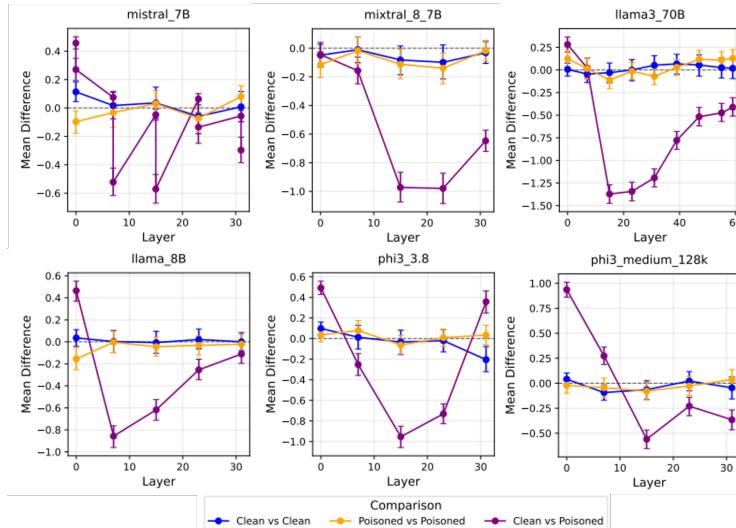
344 **The Signature of Topological Compression.** Interpreting the distributions of the barcode summaries
 345 for clean vs. poisoned data reveals that adversarial conditions typically yield fewer 1-bars
 346 (loops) forming at later scales, yet persisting longer (see Figure 20). Conversely, the non-adversarial
 347 conditions tend to form earlier loops with more uniform lifetimes (higher persistent entropy). This
 348 pattern aligns with the Shapley value results (Figure 19): lower mean death times of 0-bars (i.e.,
 349 more compact point clouds) are associated with predictions of “clean”, while higher values (more
 350 spread-out clouds) shift predictions toward “poisoned”. Similarly, a lower number of 1-bars tends
 351 to indicate “poisoned”, whereas a higher count suggests “clean”. Thus, global topological features
 352 point to a consistent distortion: adversarial states “compress” the representation space in a way
 353 that results in larger loops in fewer directions, while non-adversarial states exhibit many smaller
 354 loops with a more evenly distributed, higher-entropy shape. This signature is robust, persisting even
 355 against adaptive attacks from the LLMail-Inject public red teaming dataset that were designed
 356 to evade activation-based defenses (see Appendix G). A more detailed analysis across all models,
 357 layers, and adversarial conditions is provided in Appendix C and summarized in Table 2.

358 **Local Dispersion Ratio Across Poisoned Conditions.** To quantify how poisoning alters localized
 359 geometry in hidden-layer representation space, we use the *local dispersion ratio (LDR)*. For each
 360 final token’s activation difference vector we identify its k nearest neighbors in each layer and per-
 361 form PCA on those points. Let $\lambda_1 \geq \dots \geq \lambda_{D'}$ be the resulting eigenvalues. The *dispersion ratio*
 362 is then defined as $\frac{\sum_{j=2}^{D'} \lambda_j}{\lambda_1 + \epsilon}$, where ϵ prevents division by zero. A higher LDR indicates that variance
 363 is more evenly spread among secondary directions, whereas a lower LDR implies most variance lies
 364 in a single dominant direction. Appendix B.3 further stratifies poisoned conditions into executed,
 365 refused, and ignored subclasses and shows that executed and ignored attacks exhibit elevated LDR
 366 in mid-layers relative to clean prompts. This indicates that the model allocates additional represen-
 367 tational capacity to elaborating the injected instructions, whereas refused attacks are mapped into a
 368 more compressed, low-dispersion region, directly linking layer-wise geometric changes to task-level
 369 model behavior. Figure 9 shows that LDR differences remain tightly centered around zero under

378 Table 2: Summary of results for the global layerwise topological analysis across models and attacks.
379

	Clean vs. Poisoned	Locked vs. Elicted
Models evaluated	Phi3-mini-4k (3.8B), Phi3-medium-128k (14B), Mistral 7B, LLaMA3 8B, LLaMA3 70B, Mixtral-8×7B.	Mistral 7B, LLaMA3 8B.
Cross-correlation	Compact block of highly correlated features across layers.	Correlations weaker overall, especially in late layers.
PCA separation	Clear separation across layers & models.	Clear separation across layers & models.
Logistic regression	Perfect accuracy except LLaMA3-8B (0.99 at layers 1, 8, 16).	Perfect accuracy except Mistral-7B (0.99 at layer 16) and LLaMA3-8B (0.97–0.99 at layers 24, 32).
Mean death of 0-bars	SHAP: low values → normal, high → adversarial. Reversed only at layer 1 (all models) and layer 2 (LLaMA3-70B)	Early layers: low → adversarial. Layer 16: trend shifts. Late layers: reversed.
Mean persistence of 1-bars	Normal samples lower; Mixtral-8×7B flips this in the last layer.	Mistral-7B shifts at layer 16 (early: normal higher, late: lower). LLaMA3-7B similar early trend; late layers inconclusive.
Number of 1-bars	Generally lower for adversarial samples, except LLaMA3-70B.	Mistral-7B: no clear pattern. LLaMA3-7B: adversarial larger in later layers.
Topological compression	Appears early; LLaMA3-70B compresses without increased diversity.	Appears later; heterogeneous patterns (e.g., larger loops in Mistral-7B, more loops in LLaMA3-7B).

405 Clean vs. Clean and Poisoned vs. Poisoned resampling, confirming negligible within-class variability.
406 In contrast, Mixed vs. Mixed splits exhibit systematic deviations that mirror the clean–poisoned
407 separation observed in Figures 11 and 12 of Appendix B.3, indicating that LDR captures genuine
408 geometric differences rather than artifacts of sampling noise or random partitioning.



427 **Figure 9: Ablation of dispersion ratio differences (Clean vs. Clean, Poisoned vs. Poisoned,
428 Mixed vs. Mixed).** Each plot shows the difference in mean dispersion ratio (clean minus poisoned).
429 Positive values indicate that the clean subset exhibits higher dispersion, whereas negative values
430 reflect a more dispersed poisoned subset.

432 4.2 LOCAL ANALYSIS: INFORMATION FLOW BETWEEN LAYERS
433434 To investigate the fine-grained mechanisms of adversarial influence, our local analysis quantifies
435 how information transforms between layers at the neuron level. We present the results for Mistral
436 7B below; see Appendix D.2 for other models.437 **Analysis on Consecutive Layers.** Our local method revealed a structural phase shift in the net-
438 work’s information flow under adversarial influence. We computed Vietoris–Rips PH barcodes of
439 the 2D embeddings described in Section 3.3 for the raw activations; their normalization to zero
440 mean and unit variance, to ensure that topological signals are not due solely to scale differences;
441 and a control condition where neuron indices are randomly permuted, disrupting any neuron-wise
442 correspondence between layers. We measured the topological complexity by the total persistence
443 of 1-bars, and found significant differences between clean and poisoned activations across layers in
444 the raw and normalized activations (Figure 10 (left)). Furthermore, the ratio of topological com-
445 plexity between clean and poisoned activations (Figure 10 (center)) shows that clean inputs initially
446 exhibit a more complex structure that simplifies in deeper layers. In contrast, poisoned activations
447 start simpler but their topological complexity increases, diverging significantly from the clean acti-
448 vations around layer 12. This suggests that adversarial influence causes a major reconfiguration of
449 information processing in the model’s deeper layers. The disappearance of this signal in the per-
450 mitted control condition (shown in Figure 56 of the Appendix D.2.1) confirms that the effect relies
451 on specific neuron-to-neuron pathways rather than arising from a statistical artifact.
452453 **Table 3: Peak analysis.** Precision@ k for $k=1, 3$, and 5 largest peaks in total variance, and their
454 precision in detecting the largest peaks in absolute difference between the two classes. Spearman’s
455 rank correlation (r) is reported in the last column. *, ** correspond to p -values $<.05$ and $.01$,
456 respectively.457

	$p@1$	$p@3$	$p@5$	r
Total Persistence 0-bars	0	.33	.4	0.46**
Total Persistence 1-bars	0	.67*	.8**	0.78**
Mean Birth 1-bars	1.0*	.33	.8*	0.46**
Mean Death 1-bars	1.0*	.33*	.8**	0.69**

463 In a real-world setting without labels, these informative layers can still be identified. We found that
464 the overall variance of a topological feature across all samples strongly correlates with the magnitude
465 of the clean-vs.-poisoned difference (Figure 10 (right)). As shown in Table 3, we evaluated the
466 alignment between overall variance and class separation using precision at k ($p@k$) and Spearman’s
467 rank correlation (r). To validate statistical significance against a random baseline, we generated
468 empirical null distributions via random permutations, with significance levels indicated by asterisks.
469 The high precision (particularly at $k = 5$) and moderate-to-strong correlations indicate that layers
470 with the highest variance are reliable indicators of those with the largest class separation. This
471 provides a practical, unsupervised signal for locating where adversarial effects are most prominent.
472473 A further example of how different barcode summaries propagate across the layers can be found in
474 Appendix D.2.1 for Mistral 7B, showing the patterns for the mean deaths of 0-bars.475 **Analysis on Non-Consecutive Layers.** We expanded the previous analysis to activations from
476 non-consecutive layers to show that in neighboring layers, the model operates on similar groups of
477 neurons, leading to element-wise interactions that construct meaningful topological features distin-
478 guishing clean from poisoned datasets. The ratio of the mean death times of 0-bars between clean
479 and poisoned activations as the layer interval increases is shown in Appendix D.2.5. For layer in-
480 tervals of 1 and 3, the ratios for normalized activations and the control setting remained distinct,
481 indicating meaningful topological interactions. However, at an interval of 10 layers, the scaled and
482 control settings showed significant overlap, suggesting a much diminished difference in the interac-
483 tions in clean and poisoned data. A similar pattern can be observed for other barcode summaries,
484 such as the total persistence of 1-bars, see Appendix D.2.5.
485

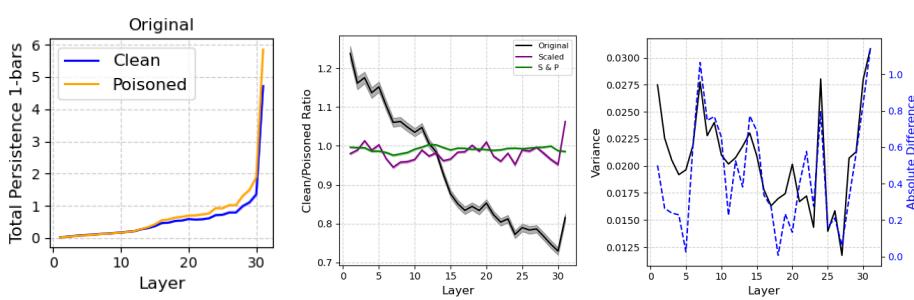


Figure 10: **Local analysis of consecutive layers for the total persistence of 1-bars.** Comparisons of the average total persistence of 1-bars across 1000 samples for Mistral model using original activation data (**left**). (**center**) Ratios of mean total persistence of 1-bars between clean and poisoned datasets for original, scaled, and scaled and permuted activations. (**right**) Overlaid plots of the overall variance of total persistence of 1-bars for clean and poisoned datasets combined and the absolute difference between mean total persistence of 1-bars for clean and poisoned datasets.

5 DISCUSSION AND FUTURE WORK

Our global and local analyses provide converging evidence for a fundamental principle, where adversarial influence manifests as “topological compression” of an LLM’s latent space. This behavior—a shift from compact, diverse structures to more dispersed, topologically simpler ones—is a consistent, architecture-agnostic phenomenon that holds across different model architectures, sizes, and attack vectors. This topological approach offers a distinct and complementary form of interpretability that is relational rather than compositional. While methods such as sparse autoencoders (SAEs) (Cunningham et al., 2023) are powerful for identifying the “building block” features of a representation, they analyze each activation in isolation. This makes them inherently blind to the nonlinear, relational geometry that emerges from the interactions between activations. Furthermore, because the feature dictionaries learned by SAEs are specific to a single set of model weights, they cannot be reliably compared across different models or fine-tuning stages. Our PH-based framework circumvents these limitations by computing intrinsic, coordinate-free geometric properties, providing a stable basis for comparison and enabling a comprehensive characterization of the shape of adversarial influence.

The implications of our work extend to the core of interpretability and AI safety. Our findings contribute to a growing body of evidence that a model’s behaviors are encoded in the geometry of its latent space. This perspective aligns with work showing that memorization corresponds to a reduction in the effective dimensionality of the representation manifold (Stephenson et al., 2021), and that the success of linear probes may stem from their ability to approximate more complex topological structures (Engels et al., 2025). Our discovery that adversarial influence induces a “topological compression” provides new evidence for this hypothesis, suggesting that a collapse in geometric complexity is a quantifiable signature of out-of-distribution states. Our findings reframe key safety properties such as robustness not merely as abstract behavioral outcomes, but as measurable characteristics of the representation space itself.

Limitations. The primary limitation of our study is the memory requirements of PH, as the distance and boundary matrices required for exact Vietoris–Rips computations scale quadratically with the number of points. To manage this on our large datasets, we implemented random subsampling, which is well-studied in TDA with established convergence results ensuring that the sampling errors in our study are bounded (Chazal et al., 2014; Cao & Monod, 2022).

Future Work. Our study opens several avenues for future investigation, such as exploring whether topological compression is a general property of model misalignment (Stephenson et al., 2021); developing topology-aware robustness mechanisms (Brüel-Gabrielsson et al., 2020); applying persistent Morse theory (Bobrowski & Adler, 2014); and adapting cycle matching approaches (Reani & Bobrowski, 2022; García-Redondo et al., 2024) to further characterize LLM representation spaces. Further study is also needed to see if these topological signatures generalize to an even broader range of adversarial scenarios.

540 REFERENCES
541

542 Sahar Abdelnabi, Aideen Fay, Giovanni Cherubin, Ahmed Salem, Mario Fritz, and Andrew Paverd.
543 Are you still on track?! catching llm task drift with activations, 2024. URL <https://arxiv.org/abs/2406.00799>.

544

545 Sahar Abdelnabi, Aideen Fay, Ahmed Salem, Egor Zverev, Kai-Chieh Liao, Chi-Huang Liu, Chun-
546 Chih Kuo, Jannis Weigend, Danyael Manlangit, Alex Apostolov, et al. Llmail-inject: A dataset
547 from a realistic adaptive prompt injection challenge. *arXiv preprint arXiv:2506.09956*, 2025.

548

549 Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
550 Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Benhaim, Misha Bilenko,
551 Johan Bjorck, Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav Chaudhary, Dong Chen, Dong-
552 dong Chen, Weizhu Chen, Yen-Chun Chen, Yi-Ling Chen, Hao Cheng, Parul Chopra, Xiyang
553 Dai, Matthew Dixon, Ronen Eldan, Victor Frago, Jianfeng Gao, Mei Gao, Min Gao, Amit
554 Garg, Allie Del Giorno, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Junheng Hao,
555 Russell J. Hewett, Wenxiang Hu, Jamie Huynh, Dan Iter, Sam Ade Jacobs, Mojan Javaheripi, Xin
556 Jin, Nikos Karampatziakis, Piero Kauffmann, Mahoud Khademi, Dongwoo Kim, Young Jin Kim,
557 Lev Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Yunsheng Li, Chen Liang, Lars Liden,
558 Xihui Lin, Zeqi Lin, Ce Liu, Liyuan Liu, Mengchen Liu, Weishung Liu, Xiaodong Liu, Chong
559 Luo, Piyush Madan, Ali Mahmoudzadeh, David Majercak, Matt Mazzola, Caio César Teodoro
560 Mendes, Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-
561 Becker, Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Liliang Ren, Gustavo
562 de Rosa, Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil Salim,
563 Michael Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma, Yelong Shen, Swadheen Shukla,
564 Xia Song, Masahiro Tanaka, Andrea Tupini, Praneetha Vaddamanu, Chunyu Wang, Guanhua
565 Wang, Lijuan Wang, Shuohang Wang, Xin Wang, Yu Wang, Rachel Ward, Wen Wen, Philipp
566 Witte, Haiping Wu, Xiaoxia Wu, Michael Wyatt, Bin Xiao, Can Xu, Jiahang Xu, Weijian Xu, Ji-
567 long Xue, Sonali Yadav, Fan Yang, Jianwei Yang, Yifan Yang, Ziyi Yang, Donghan Yu, Lu Yuan,
568 Chenruidong Zhang, Cyril Zhang, Jianwen Zhang, Li Lyra Zhang, Yi Zhang, Yue Zhang, Yunan
569 Zhang, and Xiren Zhou. Phi-3 technical report: A highly capable language model locally on your
570 phone, 2024. URL <https://arxiv.org/abs/2404.14219>.

571

572 Henry Adams, Tegan Emerson, Michael Kirby, Rachel Neville, Chris Peterson, Patrick Shipman,
573 Sofya Chepushtanova, Eric Hanson, Francis Motta, and Lori Ziegelmeier. Persistence images: A
574 stable vector representation of persistent homology. *Journal of Machine Learning Research*, 18
575 (8):1–35, 2017.

576

577 Robert J. Adler and Jonathan Taylor. *Topological complexity of smooth random functions : Ecole
578 d'Eté de Probabilités de Saint-Flour XXXIX - 2009*. Lecture notes in mathematics, 2019.
579 Springer, New York, 1st ed. 2011. edition, 2011. ISBN 3-642-19580-6.

580

581 Dashti Ali, Aras Asaad, Maria-Jose Jimenez, Vudit Nanda, Eduardo Paluzo-Hidalgo, and Manuel
582 Soriano-Trigueros. A survey of vectorization methods in topological data analysis. *IEEE
583 Transactions on Pattern Analysis and Machine Intelligence*, 45(12):14069–14080, 2023. doi:
584 10.1109/TPAMI.2023.3308391.

585

586 Ulrich Bauer. Ripser: Efficient computation of Vietoris–Rips persistence barcodes. *Journal of
587 Applied and Computational Topology*, 5(3):391–423, September 2021. ISSN 2367-1734. doi:
588 10.1007/s41468-021-00071-5.

589

590 Omer Bobrowski and Robert J. Adler. Distance functions, critical points, and the topology of random
591 Čech complexes. *Homology, Homotopy and Applications*, 16(2):311–344, 2014. ISSN 15320073,
592 15320081. doi: 10.4310/HHA.2014.v16.n2.a18. URL [http://www.intlpress.com/
593 site/pub/pages/journals/items/hha/content/vols/0016/0002/a018/](http://www.intlpress.com/site/pub/pages/journals/items/hha/content/vols/0016/0002/a018/).

594

595 Magnus Bakke Botnan and Michael Lesnick. An introduction to multiparameter persistence. *Repre-
596 sentations of Algebras and Related Structures*, pp. 77, 2023.

597

598 Rickard Brüel-Gabrielsson, Bradley J. Nelson, Anjan Dwaraknath, Primoz Skraba, Leonidas J.
599 Guibas, and Gunnar Carlsson. A topology layer for machine learning, 2020. URL <https://arxiv.org/abs/1905.12200>.

594 Peter Bubenik. The persistence landscape and some of its properties. In *Topological Data Analysis: 595 The Abel Symposium 2018*, pp. 97–117. Springer, 2020.

596

597 Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering latent knowledge in lan- 598 guage models without supervision, 2024. URL <https://arxiv.org/abs/2212.03827>.

599 Yueqi Cao and Anthea Monod. Approximating persistent homology for large datasets. *arXiv 600 preprint arXiv:2204.09155*, 2022.

601

602 Patrick Chao et al. Jailbreakbench: An open robustness benchmark for jailbreaking large lan- 603 guage models. In *Advances in Neural Information Processing Systems*, volume 37, pp. 55005– 604 55029, 2024. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/e43739fba4d397ce95b542455b1f3c39-Paper-Conference.pdf.

605

606 Frédéric Chazal and Bertrand Michel. An introduction to topological data analysis: fundamental 607 and practical aspects for data scientists. *Frontiers in artificial intelligence*, 4:667963, 2021.

608

609 Frédéric Chazal, Marc Glisse, Catherine Labruère, and Bertrand Michel. Convergence rates for 610 persistence diagram estimation in topological data analysis. In *International Conference on Machine 611 Learning*, pp. 163–171. PMLR, 2014.

612 Frédéric Chazal, Brittany Fasy, Fabrizio Lecci, Bertrand Michel, Alessandro Rinaldo, and Larry 613 Wasserman. Subsampling methods for persistent homology. In *International Conference on 614 Machine Learning*, pp. 2143–2151. PMLR, 2015.

615

616 Harish Chintakunta, Thanos Gentimis, Rocio Gonzalez-Diaz, Maria-Jose Jimenez, and Hamid 617 Krim. An entropy-based persistence barcode. *Pattern Recognition*, 48(2):391–401, 2015. 618 ISSN 0031-3203. doi: <https://doi.org/10.1016/j.patcog.2014.06.023>. URL <https://www.sciencedirect.com/science/article/pii/S0031320314002453>.

619

620 David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence diagrams. 621 *Discrete & Computational Geometry*, 37(1):103–120, 2007. doi: [10.1007/s00454-006-1276-5](https://doi.org/10.1007/s00454-006-1276-5). 622 URL <https://doi.org/10.1007/s00454-006-1276-5>.

623 Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen- 624 coders find highly interpretable features in language models, 2023. URL <https://arxiv.org/abs/2309.08600>.

625

626 Joshua Engels, Eric J Michaud, Isaac Liao, Wes Gurnee, and Max Tegmark. Not all language model 627 features are one-dimensionally linear. In *The Thirteenth International Conference on Learning 628 Representations*, 2025. URL <https://openreview.net/forum?id=d63a4AM4hb>.

629

630 Patrizio Frosini. A distance for similarity classes of submanifolds of a euclidean space. *Bulletin of 631 the Australian Mathematical Society*, 42(3):407–415, 1990.

632

633 Patrizio Frosini. Measuring shapes by size functions. In *Intelligent Robots and Computer Vision X: 634 Algorithms and Techniques*, volume 1607, pp. 122–133. SPIE, 1992.

635

636 Inés García-Redondo, Anthea Monod, and Anna Song. Fast topological signal identification and 637 persistent cohomological cycle matching. *Journal of Applied and Computational Topology*, 8: 638 695–726, 06 2024. doi: [10.1007/s41468-024-00179-4](https://doi.org/10.1007/s41468-024-00179-4).

639

640 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad 641 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, 642 Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko- 643 renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava 644 Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, 645 Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, 646 Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, 647 Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco

648 Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
 649 tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
 650 vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
 651 Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
 652 hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
 653 Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
 654 so Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasudevan Alwala,
 655 Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
 656 El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhota, Lauren
 657 Rantala-Yearly, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
 658 Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
 659 Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
 660 Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
 661 mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
 662 chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
 663 Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
 664 Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
 665 mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
 666 hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
 667 Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
 668 Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
 669 Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
 670 Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
 671 Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
 672 haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
 673 Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vitor Albiero, Vladan Petrovic, Weiwei
 674 Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
 675 Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
 676 schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
 677 Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
 678 Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
 679 Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
 680 Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
 681 drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
 682 nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
 683 Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
 684 hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
 685 Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
 686 talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
 687 Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
 688 Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
 689 Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
 690 Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
 691 Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smo-
 692 thers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
 693 Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
 694 Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi Zhang, Guna Lakshminarayanan,
 695 Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
 696 son Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
 697 Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
 698 Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
 699 nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
 700 Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
 701 jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
 Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
 Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
 Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
 Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
 Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.

702 Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
 703 Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
 704 Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
 705 Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
 706 Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
 707 Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
 708 Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
 709 driguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
 710 Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
 711 Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
 712 Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
 713 maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
 714 Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
 715 Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
 716 field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
 717 Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
 718 Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
 719 Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
 720 mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
 721 Wei Li, Wencheng Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
 722 jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
 723 Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
 724 Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
 725 duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
<https://arxiv.org/abs/2407.21783>.

726 Ryan Greenblatt, Fabien Roger, Dmitrii Krasheninnikov, and David Krueger. Stress-testing capabil-
 727 ity elicitation with password-locked models, 2024. URL <https://arxiv.org/abs/2405.19550>.

728 Kai Greshake, Sahar Abdelnabi, Shailesh Mishra, Christoph Endres, Thorsten Holz, and Mario
 729 Fritz. Not what you've signed up for: Compromising real-world llm-integrated applications with
 730 indirect prompt injection, 2023. URL <https://arxiv.org/abs/2302.12173>.

731 John Hewitt and Christopher D. Manning. A structural probe for finding syntax in word repre-
 732 sentations. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.), *Proceedings of the 2019*
*733 Conference of the North American Chapter of the Association for Computational Linguistics: Hu-
 734 man Language Technologies, Volume 1 (Long and Short Papers)*, pp. 4129–4138, Minneapolis,
735 Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1419.
 736 URL <https://aclanthology.org/N19-1419/>.

737 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 738 and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL <https://arxiv.org/abs/2106.09685>.

739 Jiaming Ji, Mickel Liu, Juntao Dai, Xuehai Pan, Chi Zhang, Ce Bian, Boyuan Chen, Ruiyang Sun,
 740 Yizhou Wang, and Yaodong Yang. Beavertails: Towards improved safety alignment of llm via a
 741 human-preference dataset. In *NeurIPS Datasets and Benchmarks Track*, 2023.

742 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
 743 lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
 744 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
 745 Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL <https://arxiv.org/abs/2310.06825>.

746 Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
 747 Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gi-
 748 anna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
 749 Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
 750 Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
 751 Mixtral of experts, 2024. URL <https://arxiv.org/abs/2401.04088>.

756 Nathalie Maria Kirch, Severin Field, and Stephen Casper. What features in prompts jailbreak
 757 llms? investigating the mechanisms behind attacks, 2024. URL <https://arxiv.org/abs/2411.03343>.

759 Nathaniel Li, Alexander Pan, Anjali Gopal, Summer Yue, Daniel Berrios, Alice Gatti, Justin D.
 760 Li, Ann-Kathrin Dombrowski, Shashwat Goel, Long Phan, Gabriel Mukobi, Nathan Helm-
 761 Burger, Rassin Lababidi, Lennart Justen, Andrew B. Liu, Michael Chen, Isabelle Barrass, Oliver
 762 Zhang, Xiaoyuan Zhu, Rishub Tamirisa, Bhrugu Bharathi, Adam Khoja, Zhenqi Zhao, Ariel
 763 Herbert-Voss, Cort B. Breuer, Samuel Marks, Oam Patel, Andy Zou, Mantas Mazeika, Zi-
 764 fan Wang, Palash Oswal, Weiran Lin, Adam A. Hunt, Justin Tienken-Harder, Kevin Y. Shih,
 765 Kemper Talley, John Guan, Russell Kaplan, Ian Steneker, David Campbell, Brad Jokubaitis,
 766 Alex Levinson, Jean Wang, William Qian, Kallol Krishna Karmakar, Steven Basart, Stephen
 767 Fitz, Mindy Levine, Ponnurangam Kumaraguru, Uday Tupakula, Vijay Varadharajan, Ruoyu
 768 Wang, Yan Shoshitaishvili, Jimmy Ba, Kevin M. Esvelt, Alexandr Wang, and Dan Hendrycks.
 769 The wmdp benchmark: Measuring and reducing malicious use with unlearning, 2024. URL
 770 <https://arxiv.org/abs/2403.03218>.

771 Stan Lipovetsky and Michael Conklin. Analysis of regression in game theory approach. *Applied
 772 Stochastic Models in Business and Industry*, 17(4):319–330, 2001. doi: <https://doi.org/10.1002/asmb.446>. URL <https://onlinelibrary.wiley.com/doi/abs/10.1002/asmb.446>.

773 Mantas Mazeika et al. Harmbench: A standardized evaluation framework for automated red team-
 774 ing and robust refusal. In *Thirty-eighth Conference on Neural Information Processing Sys-
 775 tems Datasets and Benchmarks*, 2024. URL <https://openreview.net/forum?id=V1A2D5xX0A>.

776 Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
 777 associations in gpt, 2023. URL <https://arxiv.org/abs/2202.05262>.

778 Gregory Naitzat, Andrey Zhitnikov, and Lek-Heng Lim. Topology of deep neural networks. *Journal
 779 of Machine Learning Research*, 21(184):1–40, 2020. URL <http://jmlr.org/papers/v21/20-345.html>.

780 Nina Otter, Mason A Porter, Ulrike Tillmann, Peter Grindrod, and Heather A Harrington. A roadmap
 781 for the computation of persistent homology. *EPJ Data Science*, 6(1):17, 2017.

782 Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geom-
 783 etry of large language models. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian
 784 Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Proceedings of the 41st In-
 785 ternational Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning
 786 Research*, pp. 39643–39666. PMLR, 21–27 Jul 2024. URL <https://proceedings.mlr.press/v235/park24c.html>.

787 Ethan Perez, Sam Ringer, Kamilé Lukošiūtė, Karina Nguyen, Edwin Chen, Scott Heiner, Craig Pet-
 788 tit, Catherine Olsson, Sandipan Kundu, Saurav Kadavath, Andy Jones, Anna Chen, Ben Mann,
 789 Brian Israel, Bryan Seethor, Cameron McKinnon, Christopher Olah, Da Yan, Daniela Amodei,
 790 Dario Amodei, Dawn Drain, Dustin Li, Eli Tran-Johnson, Guro Khundadze, Jackson Kernion,
 791 James Landis, Jamie Kerr, Jared Mueller, Jeeeyoon Hyun, Joshua Landau, Kamal Ndousse, Lan-
 792 don Goldberg, Liane Lovitt, Martin Lucas, Michael Sellitto, Miranda Zhang, Neerav Kingsland,
 793 Nelson Elhage, Nicholas Joseph, Noemí Mercado, Nova DasSarma, Oliver Rausch, Robin Lar-
 794 son, Sam McCandlish, Scott Johnston, Shauna Kravec, Sheer El Showk, Tamara Lanham, Timo-
 795 thy Telleen-Lawton, Tom Brown, Tom Henighan, Tristan Hume, Yuntao Bai, Zac Hatfield-Dodds,
 796 Jack Clark, Samuel R. Bowman, Amanda Askell, Roger Grosse, Danny Hernandez, Deep Gan-
 797 guli, Evan Hubinger, Nicholas Schiefer, and Jared Kaplan. Discovering language model behaviors
 798 with model-written evaluations, 2022. URL <https://arxiv.org/abs/2212.09251>.

799 Yohai Reani and Omer Bobrowski. Cycle registration in persistent homology with applications in
 800 topological bootstrap. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(5):
 801 5579–5593, 2022.

802

810 Johann Rehberger. Microsoft Copilot: From Prompt Injection to Exfiltration of Personal Information.
 811 [Link], 2024.

812

813 Matteo Rucco, Filippo Castiglione, Emanuela Merelli, and Marco Pettini. Characterisation of the
 814 idiotypic immune network through persistent entropy. In Stefano Battiston, Francesco De Pelle-
 815 grini, Guido Caldarelli, and Emanuela Merelli (eds.), *Proceedings of ECCS 2014*, pp. 117–128,
 816 Cham, 2016. Springer International Publishing.

817 Cory Stephenson, Suchismita Padhy, Abhinav Ganesh, Yue Hui, Hanlin Tang, and Sue Yeon Chung.
 818 On the geometry of generalization and memorization in deep neural networks, 2021. URL
 819 <https://arxiv.org/abs/2105.14602>.

820

821 Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers the classical nlp pipeline, 2019. URL
 822 <https://arxiv.org/abs/1905.05950>.

823

824 Katharine Turner, Yuriy Mileyko, Sayan Mukherjee, and John Harer. Fréchet means for distributions
 825 of persistence diagrams. *Discrete & Computational Geometry*, 52(1):44–70, 2014.

826

827 Adaku Uchendu and Thai Le. Unveiling topological structures in text: A comprehensive survey of
 828 topological data analysis applications in nlp, 2024. URL <https://arxiv.org/abs/2411.10298>.

829

830 Teun van der Weij, Felix Hofstätter, Ollie Jaffe, Samuel F. Brown, and Francis Rhys Ward. Ai
 831 sandbagging: Language models can strategically underperform on evaluations, 2024. URL
 832 <https://arxiv.org/abs/2406.07358>.

833

834 Matthew Wheeler, Jose Bouza, and Peter Bubenik. Activation Landscapes as a Topological Sum-
 835 mary of Neural Network Performance. In *2021 IEEE International Conference on Big Data (Big
 836 Data)*, pp. 3865–3870, December 2021. doi: 10.1109/BigData52589.2021.9671368.

837

838 Menglin Yang, Aosong Feng, Bo Xiong, Jiahong Liu, Irwin King, and Rex Ying. Enhancing LLM
 839 complex reasoning capability through hyperbolic geometry. In *ICML 2024 Workshop on LLMs
 840 and Cognition*, 2024. URL <https://openreview.net/forum?id=5lFiIVza6x>.

841

842 Simon Zhang, Mengbai Xiao, and Hao Wang. Gpu-accelerated computation of vietoris-rips persis-
 843 tence barcodes. In *36th International Symposium on Computational Geometry (SoCG 2020)*, pp.
 844 70–1. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020.

845

846 Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander
 847 Pan, Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, Shashwat Goel, Nathaniel Li,
 848 Michael J. Byun, Zifan Wang, Alex Mallen, Steven Basart, Sanmi Koyejo, Dawn Song, Matt
 849 Fredrikson, J. Zico Kolter, and Dan Hendrycks. Representation engineering: A top-down ap-
 850 proach to ai transparency, 2023. URL <https://arxiv.org/abs/2310.01405>.

851

852 Egor Zverev, Sahar Abdelnabi, Soroush Tabesh, Mario Fritz, and Christoph H. Lampert. Can llms
 853 separate instructions from data? and what do we even mean by that?, 2025. URL <https://arxiv.org/abs/2403.06833>.

854

855 A PERSISTENT HOMOLOGY

856 We provide additional background on PH and the underlying mathematical formulation that supports
 857 its application as a tool to detect the *multiscale topological features* within data.

858 A.1 THEORETICAL BACKGROUND

859 PH refers to a set of methods that are implemented to extract the shape and size of data at multiple
 860 scales. We now present the underlying mathematical principles that support this tool.

864 **Input data.** PH accommodates for diverse data modalities: images, point clouds, graphs, etc. One
 865 of the most basic yet general data types that it accepts is *finite metric spaces*, i.e., finite subsets
 866 $S \subset X$ of some metric space (X, d) . Restricting d to S , we obtain a notion of dissimilarity between
 867 the points in our metric space. This is the data modality that we will consider for the remainder of
 868 the section, as it encompasses most of the real data that we encounter.
 869

870 **Filtrations.** The first step in the PH pipeline consists of constructing a filtration from our input
 871 data, that is, a family of nested topological spaces. For computational and storage reasons, *simpli-*
 872 *cial complexes* are often favored as the topological spaces appearing in the filtration. An abstract
 873 simplicial complex K over a vertex set S is defined as a set of subsets of S which is closed under
 874 inclusion, i.e., if $\sigma \in K$ and $\tau \subset \sigma$, then $\tau \in \sigma$. Subsets $\sigma = \{s_{i_0}, \dots, s_{i_p}\}$ of $p + 1$ elements are
 875 called p -simplices. There are various ways of defining a simplicial complexes from a discrete set S ,
 876 and they usually depend on fixing a scale parameter $\epsilon > 0$.
 877

878 For instance, in this work, we have leveraged the *Vietoris–Rips complex*, obtained by considering all
 879 the subsets σ of S with $\text{diam}(\sigma) := \max_{s, s' \in \sigma} d(s, s')$ less or equal than ϵ ,
 880

$$\text{VR}_\epsilon(S, d) := \{\emptyset \neq \sigma \subset S : \text{diam}(\sigma) \leq \epsilon\}. \quad (1)$$

881 The implementation of this complex is straightforward, and has the advantage that it is only neces-
 882 sary to store the pairwise distance between points in S to build it. However, it has the disadvantage
 883 of exploding in size with the number of points: if S has n points, then $|\text{VR}_\epsilon(S, d)| = O(2^n)$ (see
 884 Table 1 in Otter et al. (2017))

885 An alternative is the *Čech complex* at scale $\epsilon \geq 0$, where a simplex $\sigma = \{s_{i_0}, \dots, s_{i_p}\}$ belongs to the
 886 complex if and only if all the balls of radius ϵ centered at the points of the simplex have nonempty
 887 intersection,

$$\check{C}_\epsilon(S, d) := \left\{ \emptyset \neq \sigma \subset S : \bigcap_{s \in \sigma} B(s, \epsilon) \neq \emptyset \right\}. \quad (2)$$

890 The Čech complex has very nice theoretical properties (for instance, it satisfies the conditions of the
 891 Nerve Theorem). However, it has similar complexity to the Vietoris–Rips complex, and in fact we
 892 have

$$\check{C}_\epsilon(S, d) \subseteq \text{VR}_\epsilon(S, d) \subseteq \check{C}_{\sqrt{2}\epsilon}(S, d).$$

893 A final option to consider, which significantly reduces the number of simplices in the complex,
 894 is the *alpha complex*. To make this simplicial complex coarser, the idea is to intersect the balls
 895 centered around the points in the point cloud, $B(s, \epsilon)$, with their Voronoi cells, $V(s)$, and thus
 896 define $R(s, \epsilon) := B(s, \epsilon) \cap V(s)$. The Voronoi cells form a partition of the metric space X where
 897 the points in each region are closest to the same point in S . Since both $B(s, \epsilon)$ and $V(s)$ are
 898 convex, their intersection $R(s, \epsilon)$ remains convex. From the definition of the Voronoi cells, these
 899 spaces $R(s, \epsilon)$ are either disjoint or overlap along their boundary, significantly reducing the number
 900 of intersections between them. The alpha complex is thus defined as
 901

$$\alpha(S, \epsilon) := \left\{ \emptyset \neq \sigma \subset S : \bigcap_{s \in \sigma} R(s, \epsilon) \neq \emptyset \right\} \quad (3)$$

902 and is significantly smaller in size due to the introduction of the Voronoi cells.

903 The Vietoris–Rips, Čech, and alpha filtrations are defined considering the families of the correspond-
 904 ing complexes for all values of the parameter $\epsilon \geq 0$. Since the conditions for including simplices are
 905 relaxed as ϵ increases, we obtain the defining condition of a filtration $\{K_\epsilon : \epsilon \geq 0\}$, namely that for
 906 $\epsilon \leq \epsilon'$ we have $K_\epsilon \subset K_{\epsilon'}$. There are additional types of filtrations that we do not cover here, such
 907 as cubical filtrations (particularly suited for images) or witness complexes (based on having some
 908 landmarks or witnesses in our point cloud). We refer to Otter et al. (2017) for a survey and further
 909 details on these constructions.

910 **Homology and persistence modules.** Leveraging tools from algebraic topology, we can compute
 911 the *simplicial homology groups* associated to a given simplicial complex K , which come in various
 912 degrees $H_p(K)$, for $p \geq 0$ an integer number, and are topological invariants of the complex. They
 913 contain information about its topological features, for $p = 0$ these correspond to components or

clusters, for $p = 1$ to loops or holes, for $p = 2$, to bubbles or cavities, and so on for higher values of p . The homology construction is functorial, meaning that there is an assignment which for a map $f : K \rightarrow K'$ between two simplicial complexes, provides a linear map at the homology level $H_p(f) : H_p(K) \rightarrow H_p(K')$, preserving the identity and composition. Applying this to any of the filtrations of the step above we obtain a *persistence module*, that is, a family of vector spaces $\{H_p(K_\epsilon) : \epsilon \geq 0\}$ endowed with linear maps $H_p(\epsilon \leq \epsilon') : H_p(K_\epsilon) \rightarrow H_p(K_{\epsilon'})$ for $\epsilon \leq \epsilon'$, which are the maps induced by the inclusions of the filtration. In other words, $H_p(K_\bullet)$ can be seen as a functor from the poset category $(\mathbb{R}_{\geq 0}, \leq)$ to the category of vector spaces and linear maps. Given the mathematical construction of homology, $H_p(K_\bullet)$ contains information about the topological features in the simplicial complexes of the filtration, and in particular, about when features appear and disappear as the parameter ϵ increases. We now seek to provide a compact description for this.

Persistence barcodes. The mathematical structure of a persistence module has various desirable properties. Among them, one of the most important ones is satisfying the conditions for the the so called *structure theorem* (Botnan & Lesnick, 2023, Theorem 4.2) to apply, which tells us that a given a persistence module $H_p(K_\bullet)$ decomposes in an essentially unique way as a direct sum of interval modules $\mathbb{R}[b, d]$. Interval modules are persistence modules supported over intervals of the real line which, inside their support, map to the vector space \mathbb{R} , and outside, to 0. Since the decomposition is an invariant of the isomorphism type of $H_p(K_\bullet)$, the collection of intervals appearing in it is also a topological invariant. We refer to this collection of bars as the *persistence barcode* of the input data. The interpretation of these barcodes becomes apparent: each of the bars in the barcode correspond to a topological feature that appears at the initial point in the interval (its *birth time*) and persists until its end (its *death time*). There are many other invariants that we can derive from the original persistence module $H_p(K_\bullet)$, such as the rank function (Frosini, 1990; 1992), the persistence image (Adams et al., 2017) or the persistence landscape (Bubenik, 2020); some of these invariants act on barcodes as vectorizations or embeddings. In this work, we focus on barcodes and we represent statistics calculated from bars and barcodes in the form of a vector, which is different in spirit from an embedding or vectorization of a barcode.

A.2 PERSISTENT HOMOLOGY BARCODE STATISTICS

To interpret the barcodes from Section 3.2 and Section A.1, we extract key summary statistics that quantify the topological structure observed at each layer under both adversarial conditions.

From each 1-dimensional (1D) barcode, we gather intervals (b_i, d_i) with $d_i > b_i > 0$ and define $\ell_i = d_i - b_i$. Forming a discrete distribution $p_i = \ell_i / \sum_j \ell_j$, the *persistence entropy* is

$$E = - \sum_i p_i \ln(p_i + \epsilon),$$

where ϵ is a small positive constant (e.g., 10^{-12}) to ensure numerical stability. Higher E indicates a more uniform distribution of lifetimes (no single interval dominates), whereas lower E reflects a small number of long-lived intervals.

In addition to **entropy**, we compute the following summary statistics on dimension-1 bars:

- **Mean births (1-bars):** Average birth time \bar{b}
- **Mean deaths (1-bars):** Average death time \bar{d}
- **Mean persistence (1-bars):** Average lifetime $\overline{(d_i - b_i)}$
- **Number of 1-bars:** Count of finite intervals in dimension 1

We perform these computations for each barcode individually and then average over all barcodes in the same condition (elicited or elicited) and (clean or poisoned).

B FURTHER TOPOLOGICAL AND LOCAL VARIANCE INTERPRETATION

B.1 EXTENDED PROMPT INJECTION (CLEAN VS. POISONED)

For mean births and mean deaths, all layers except layer 1 across models have negative differences, indicating that poisoned intervals emerge and die later in the filtration. The mean persistence is

972
 973 **Table 4: Dimension-1 persistent homology differences (clean – poisoned) in key metrics for**
 974 **three models across several layers.** Positive values mean the clean condition has a higher value,
 975 while negative indicates poisoned is higher for that metric. All entries rounded to four decimals.
 976

Model	Layer	Mean births 1-bars_diff	Mean deaths 1-bars_diff	Mean persistence 1-bars_diff	Entropy 1-bars_diff	Number 1-bars_diff
LLaMA-3 (8B)	1	-0.0005	-0.0006	-0.0001	0.1665	86.9700
	8	-0.0609	-0.0608	0.0001	0.1213	79.5600
	16	-0.3166	-0.3249	-0.0082	0.0188	17.9367
	24	-0.9932	-1.0256	-0.0324	0.1595	80.0833
	32	-18.3367	-18.9290	-0.5923	0.3348	192.4900
Mistral (7B)	1	0.0004	0.0004	0.0000	0.0172	3.7967
	8	-0.0293	-0.0295	-0.0002	0.1485	118.9167
	16	-0.2375	-0.2421	-0.0047	0.1938	154.7633
	24	-0.5694	-0.5815	-0.0120	0.2070	153.9633
	32	-14.7376	-15.0558	-0.3182	0.2239	166.4267
Phi 3 (3.8B)	1	0.0011	0.0009	-0.0002	0.0101	4.3200
	8	-0.4522	-0.4675	-0.0153	0.0888	59.0967
	16	-1.7825	-1.8293	-0.0467	0.0696	48.7367
	24	-6.2017	-6.3448	-0.1431	0.1665	116.9433
	32	-1.0092	-1.0503	-0.0411	-0.4857	-136.1200

992
 993 also higher for poisoned examples, especially in the middle layers. The entropy differences are also
 994 almost all positive (except Phi3 3.8’s final layer), suggesting that clean distributes its 1D lifetimes
 995 more evenly, while poisoned tends to concentrate total persistence in fewer cycles. Likewise, the
 996 number of 1-bars remains mostly positive, so clean produces more 1D holes overall.

997 Overall, poisoned conditions often yield fewer but more dominant dimension-1 features that appear
 998 later and persist longer, whereas clean spreads its total persistence across numerous shorter-lived
 999 cycles, resulting in higher entropy. Depending on the model, the specific layer where these features
 1000 distinctions appear strongest differ but the nature of the difference is the same across models and
 1001 layers.

1002 B.2 SANDBAGGED MODEL (LOCKED VS. ELICITED)

1003
 1004 **Table 5: Dimension-1 persistent homology differences (elicited – locked) for two models across**
 1005 **multiple layers.** Positive values indicate that the elicited condition has higher values; negative
 1006 means locked is higher for that metric.

Model	Layer	Mean births 1-bars_diff	Mean deaths 1-bars_diff	Mean persistence 1-bars_diff	Entropy 1-bars_diff	Number 1-bars_diff
LLaMA-3 (8B)	0	-0.0127	-0.0132	-0.0005	0.0156	3.2400
	7	-0.3425	-0.3555	-0.0130	0.0647	27.8600
	15	-0.0476	-0.0455	0.0021	0.2114	135.2900
	23	-0.1168	-0.1204	-0.0037	0.0100	61.8766
	31	-0.9750	-1.0458	-0.0707	0.0620	28.2800
Mistral (7B)	0	-0.0053	-0.0055	-0.0002	0.0942	27.1533
	7	-0.1925	-0.1989	-0.0064	0.0310	14.1066
	15	0.0393	0.0352	-0.0041	0.0277	10.9300
	23	0.6722	0.7037	0.0315	-0.0363	-0.1900
	31	14.6450	15.2952	0.6503	-0.0014	9.3233

1020
 1021 For LLaMA3 8B , the mean birth and death differences are negative across all computed hidden
 1022 layers (1, 8, 16, 24, 32). Note that layers are zero-indexed, meaning that layer 0 corresponds to
 1023 the first hidden layer, layer 1. This indicates that, in the locked condition, 1D cycles exhibit larger
 1024 (i.e., later) birth and death times compared to elicited. In other words, when locked, the 1D features
 1025 tend to emerge “further out” in the filtration. The mean persistence difference between conditions
 is also negative (except layer 16), suggesting that locked cycles generally persist slightly longer

1026 on average. Entropy differences are positive, indicating that elicited exhibits a greater diversity or
 1027 spread among the lifetimes of its 1D features. The number of 1-bars is positive (sometimes strongly
 1028 so), meaning there are substantially more 1D features in the elicited condition.

1029

1030

1031 We see similar results for Mistral 7B with negative differences in births and deaths in earlier layers,
 1032 implying that locked has larger birth/death times at those lower layers. However, the sign flips, with
 1033 elicited displaying larger values for births, deaths, and persistence. Specifically, layer 32 shows a
 1034 notably large positive difference (e.g., +14.64 for births, +15.29 for deaths), indicating that the final
 1035 layer in elicited captures significantly later 1D cycles relative to locked. The number of 1-bars also
 1036 tends to be higher in elicited at most layers, except for a minor negative at layer 23, again suggesting
 1037 that elicited reveals a greater number of dimension-1 features.

1038

1039

B.3 LOCAL DISPERSION RATIO ACROSS POISONED CONDITIONS

1040

1041

We analyze how local geometry in hidden-layer representation space differs between clean and multiple poisoned modes in six LLMs. We further classify poisoned prompts into three sub-types:

1042

1043

1044

1045

1046

1047

1. **Executed:** The injected request is recognized and carried out (indirect prompt injection).
2. **Refused:** The model identifies the injected content as malicious and issues a refusal, effectively “shutting down” any detailed elaboration.
3. **Ignored:** The model neither executes nor refuses, but effectively overlooks the injected prompt, proceeding as if it were absent.

1048

1049

1050

For each final token’s activation difference vector $\Delta \text{Act}_\ell(x_i) \in \mathbb{R}^D$, we identify its k nearest neighbors in layer ℓ and perform PCA on those points. Let $\lambda_1 \geq \dots \geq \lambda_{D'}$ be the resulting eigenvalues. We define the *dispersion ratio* of $\Delta \text{Act}_\ell(x_i)$ as

1051

1052

1053

1054

$$\frac{\sum_{j=2}^{D'} \lambda_j}{\lambda_1 + \epsilon},$$

1055

1056

1057

where ϵ prevents division by zero. A higher ratio indicates that variance is more evenly spread among secondary directions, whereas a lower ratio implies most variance lies in a single dominant direction.

1058

1059

1060

1061

Ablation: Clean vs. Clean, Poisoned vs. Poisoned, and Mixed. To confirm that dispersion discrepancies primarily reflect true clean vs. poisoned distinctions rather than random partitioning or mixture effects, we performed three auxiliary comparisons:

1062

1063

1064

1065

1066

1067

1068

1. **Clean vs. Clean:** Split the clean set into two subsets, ensuring no significant difference arises from sampling within the same class.
2. **Poisoned vs. Poisoned:** Applied the same procedure to poisoned data to assess within-class variability.
3. **Mixed vs. Mixed:** Randomly partitioned a combined pool of clean and poisoned samples into two balanced groups.

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Note on Statistical Methods: For every layer in each subplot, we computed the dispersion ratio for both clean and the specified poisoned (or refused, executed, ignored) samples. We then conducted a Welch’s *t*-test on these two groups (clean vs. poisoned/other), applying false-discovery rate (FDR) correction across layers. We also verified approximate normality via kernel density estimates (KDEs) for each groups. Plot markers with stars indicate layers where $p_{\text{FDR}} < 0.05$, confirming a statistically significant difference in dispersion ratio. To select $k = 30$, we tested candidate neighborhood sizes across layers and models, measuring which k produced the largest absolute difference in mean local dispersion ratio between clean and poisoned conditions.

B.3.1 DISCUSSION OF RESULTS

Figures 11 and 12 highlight that:

- **Early Layers (Layer 1–8):** Across all poisoning modes, the clean condition consistently shows a higher dispersion ratio, suggesting that the model initially allocates broader representational capacity for normal inputs.
- **Mid Layers (Layer 16):** This pattern often flips, with poisoned prompts (especially executed or ignored) exceeding the clean baseline, indicating the network is dedicating extra directions to elaborate or “embrace” these injected requests. Conversely, refused prompts typically exhibit reduced dispersion, mapping disallowed content into a lower-variance region.

Interestingly, our findings align with the results of Stephenson et al. (2021), which indicate that memorization tends to emerge in deeper layers where the effective dimensionality shrinks. Consistent with that view, we observe that executed or ignored prompts show a higher dispersion in mid-layers, implying the model invests additional capacity there for those injected instructions. Meanwhile, a refused request is routed into a more compressed region, effectively “shutting down” further representational expansion. In this sense, deeper layers may provide a setting where the network can more sharply discriminate or overfit certain inputs—supporting the idea that final layers reflect a gradually compressed, yet strategically focused representation space.

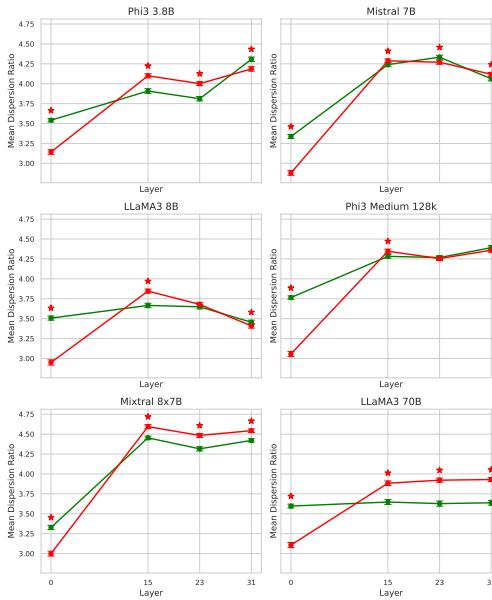


Figure 11: **Layer-wise Dispersion Ratio for Clean vs. Poisoned Examples.** The green and red lines depict mean dispersion ratios for clean and poisoned inputs, respectively, at different layer depths. Error bars around each point represent ± 1 standard error of the mean (SEM). In early layers (left side), clean data consistently has higher dispersion on average, whereas in mid-layers (center), poisoned surpasses the clean baseline, indicating a re-distribution of representational capacity for the injected prompts. Layers where the difference is statistically significant ($p_{FDR} < 0.05$) are marked with a red asterisk above the higher mean value.

B.4 COSINE DISTANCE OF REPRESENTATIONS

We analyze the difference representations $\Delta \text{Act}_\ell(x_i) \in \mathbb{R}^D$ for corresponding pairs of clean and poisoned inputs in Figure 14. Specifically, for each model and layer, we load up to five pairs of clean and poisoned activation files, compute the difference between the activations for each pair, and concatenate these differences. From these differences, we draw equal-size subsamples of 5000 vectors. For each layer and comparison condition, we compute the mean pairwise cosine distance within each subsample. Because cosine distance is scale-invariant, we do not normalize these difference representations. We perform four comparison conditions: clean vs. poisoned, clean vs. clean (where clean samples are split in half), poisoned vs. poisoned (where poisoned samples are split in half),

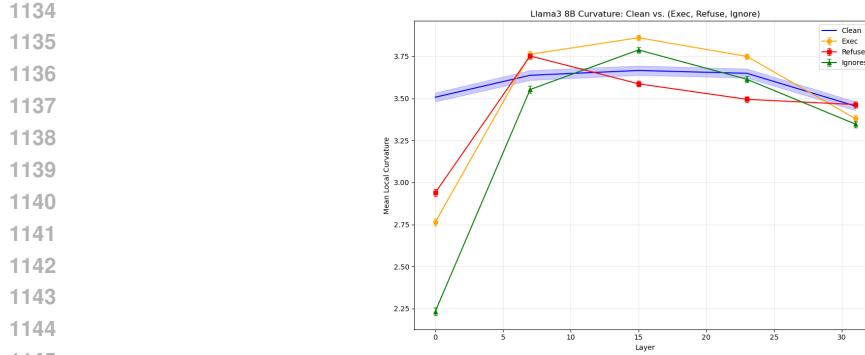


Figure 12: **LLaMA3_7B Dispersion Ratio: Clean vs. Executed, Refused, and Ignored Prompts.** The horizontal axis indicates layer depth, while the vertical axis represents the mean dispersion ratio. The blue curve (with confidence band) corresponds to clean inputs; orange, red, and green curves denote executed, refused, and ignored poisoned prompts, respectively. Notably, refused prompts show an early jump but then collapse below the clean baseline, whereas executed and ignored surpass it around mid-layers, highlighting distinct representational regimes.

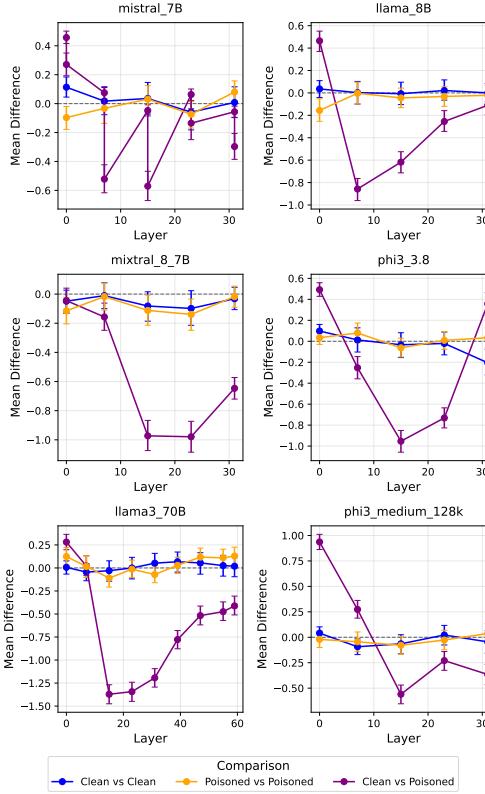


Figure 13: **Ablation of Dispersion Ratio Differences (Clean vs. Clean, Poisoned vs. Poisoned, Mixed vs. Mixed).** Each plot shows the difference in mean dispersion ratio (clean minus poisoned). Positive values indicate that the clean subset exhibits higher dispersion, whereas negative values reflect a more dispersed poisoned subset.

1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
155100
155101
155102
155103
155104
155105
155106
155107
155108
155109
155110
155111
155112
155113
155114
155115
155116
155117
155118
155119
155120
155121
155122
155123
155124
155125
155126
155127
155128
155129
155130
155131
155132
155133
155134
155135
155136
155137
155138
155139
155140
155141
155142
155143
155144
155145
155146
155147
155148
155149
155150
155151
155152
155153
155154
155155
155156
155157
155158
155159
155160
155161
155162
155163
155164
155165
155166
155167
155168
155169
155170
155171
155172
155173
155174
155175
155176
155177
155178
155179
155180
155181
155182
155183
155184
155185
155186
155187
155188
155189
155190
155191
155192
155193
155194
155195
155196
155197
155198
155199
155200
155201
155202
155203
155204
155205
155206
155207
155208
155209
155210
155211
155212
155213
155214
155215
155216
155217
155218
155219
155220
155221
155222
155223
155224
155225
155226
155227
155228
155229
155230
155231
155232
155233
155234
155235
155236
155237
155238
155239
155240
155241
155242
155243
155244
155245
155246
155247
155248
155249
155250
155251
155252
155253
155254
155255
155256
155257
155258
155259
155260
155261
155262
155263
155264
155265
155266
155267
155268
155269
155270
155271
155272
155273
155274
155275
155276
155277
155278
155279
155280
155281
155282
155283
155284
155285
155286
155287
155288
155289
155290
155291
155292
155293
155294
155295
155296
155297
155298
155299
155300
155301
155302
155303
155304
155305
155306
155307
155308
155309
155310
155311
155312
155313
155314
155315
155316
155317
155318
155319
155320
155321
155322
155323
155324
155325
155326
155327
155328
155329
155330
155331
155332
155333
155334
155335
155336
155337
155338
155339
155340
155341
155342
155343
155344
155345
155346
155347
155348
155349
155350
155351
155352
155353
155354
155355
155356
155357
155358
155359
155360
155361
155362
155363
155364
155365
155366
155367
155368
155369
155370
155371
155372
155373
155374
155375
155376
155377
155378
155379
155380
155381
155382
155383
155384
155385
155386
155387
155388
155389
155390
155391
155392
155393
155394
155395
155396
155397
155398
155399
155400
155401
155402
155403
155404
155405
155406
155407
155408
155409
155410
155411
155412
155413
155414
155415
155416
155417
155418
155419
155420
155421
155422
155423
155424
155425
155426
155427
155428
155429
155430
155431
155432
155433
155434
155435
155436
155437
155438
155439
155440
155441
155442
155443
155444
155445
155446
155447
155448
155449
155450
155451
155452
155453
155454
155455
155456
155457
155458
155459
155460
155461
155462
155463
155464
155465
155466
155467
155468
155469
155470
155471
155472
155473
155474
155475
155476
155477
155478
155479
155480
155481
155482
155483
155484
155485
155486
155487
155488
155489
155490
155491
155492
155493
155494
155495
155496
155497
155498
155499
155500
155501
155502
155503
155504
155505
155506
155507
155508
155509
155510
155511
155512
155513
155514
155515
155516
155517
155518
155519
155520
155521
155522
155523
155524
155525
155526
155527
155528
155529
155530
155531
155532
155533
155534
155535
155536
155537
155538
155539
155540
155541
155542
155543
155544
155545
155546
155547
155548
155549
155550
155551
155552
155553
155554
155555
155556
155557
155558
155559
155560
155561
155562
155563
155564
155565
155566
155567
155568
155569
155570
155571
155572
155573
155574
155575
155576
155577
155578
155579
155580
155581
155582
155583
155584
155585
155586
155587
155588
155589
155590
155591
155592
155593
155594
155595
155596
155597
155598
155599
155600
155601
155602
155603
155604
155605
155606
155607
155608
155609
155610
155611
155612
155613
155614
155615
155616
155617
155618
155619
155620
155621
155622
155623
155624
155625
155626
155627
155628
155629
155630
155631
155632
155633
155634
155635
155636
155637
155638
155639
155640
155641
155642
155643
155644
155645
155646
155647
155648
155649
155650
155651
155652
155653
155654
155655
155656
155657
155658
155659
155660
155661
155662
155663
155664
155665
155666
155667
155668
155669
155670
155671
155672
155673
155674
155675
155676
155677
155678
155679
155680
155681
155682
155683
155684
155685
155686
155687
155688
155689
155690
155691
155692
155693
155694
155695
155696
155697
155698
155699
155700
155701
155702
155703
155704
155705
155706
155707
155708
155709
155710
155711
155712
155713
155714
155715
155716
155717
155718
155719
155720
155721
155722
155723
155724
155725
155726
155727
155728
155729
155730
155731
155732
155733
155734
155735
155736
155737
155738
155739
155740
155741
155742
155743
155744
155745
155746
155747
155748
155749
155750
155751
155752
155753
155754
155755
155756
155757
155758
155759
155760
155761
155762
155763
155764
155765
155766
155767
155768
155769
155770
155771
155772
155773
155774
155775
155776
155777
155778
155779
155780
155781
155782
155783
155784
155785
155786
155787
155788
155789
155790
155791
155792
155793
155794
155795
155796
155797
155798
155799
155800
155801
155802
155803
155804
155805
155806
155807
155808
155809
155810
155811
155812
155813
155814
155815
155816
155817
155818
15

Empirically, poisoned difference representations typically exhibit a higher mean cosine distance in deeper layers, indicating a more “spread-out” or heterogeneous arrangement of their difference vectors, much as we observed in the curvature analysis. clean data, by contrast, remains comparatively tightly clustered, implying less dispersion in its difference space. Interestingly, *LLaMA3_70B* displays similar characteristics in the early and final layers but poisoned representations have a noticeable smaller cosine distance in middle layers. This may reflect the ability of larger architectures to better partition representation space across the network before re-expanding in later layers.

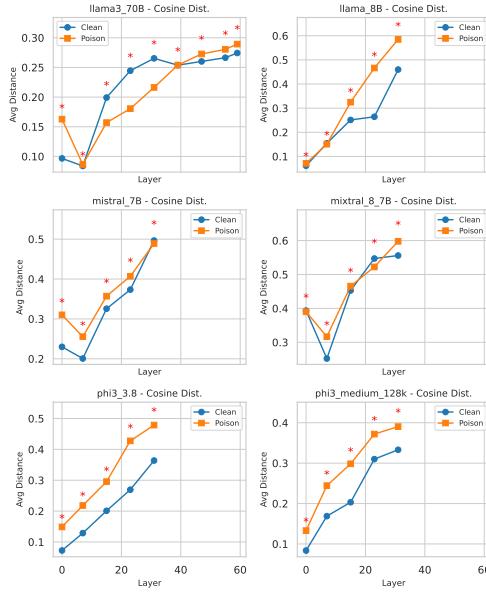


Figure 14: **Cosine Distance of Difference Representations Across Layers.** Each panel shows mean within-class distances (clean vs. poisoned) for the difference representations (*poisoned/clean pass minus baseline*), where higher values reflect greater variation among samples. Stars denote layers with significant differences.

C FURTHER DETAILS OF GLOBAL LAYER-WISE ANALYSIS

We now provide further details on the global layer-wise analysis.

C.1 PIPELINE

We describe in more detail the pipeline in Figure 3 in the main text. Recall that our aim here was showcasing that topological signatures effectively capture distinctions between representations under normal or adversarial conditions, and to provide an interpretation of the reason behind such difference in terms of the “shape” of the latent representations.

We use RIPSER Bauer (2021) to compute barcodes, which is based on Vietoris–Rips filtrations (see Figure 2.1). The computational constraints of PH make it impossible to compute the barcode of any of our two datasets (clean vs. poisoned or locked vs. elicited). Therefore, we leverage sub-sampling approaches (e.g., Chazal et al. (2015)) and compute barcodes from $K = 64$ subsamples $\{x_{i_1, \ell}, \dots, x_{i_k, \ell}\} \subset \mathbb{R}^D$ with size $k = 4096$, of the representations per layer $1 \leq \ell \leq L$. From these, 64 are taken from normal activations and 64 from adversarial activations. We use these as proxies for the topology of the whole space.

Following Ali et al. (2023), we represent these barcodes as 41-dimensional feature vectors, which we call *barcode summaries*. These include 35 statistics derived from a 7×5 grid of $\{\text{mean, minimum, first quartile, median, third quartile, maximum, standard deviation}\} \times \{\text{death of 0-bars, birth of 1-bars, death of 1-bars, persistence of 1-bars, ratio birth/death of 1-bars}\}$; as well as the total persistence (i.e., sum of the lengths of all bars in the barcode), number of bars, and persistent entropy

(Chintakunta et al., 2015; Rucco et al., 2016) defined in Appendix A.2 for 0- and 1-bars. We reduce the dimensionality case-by-case, by eliminating highly correlated features (above a threshold of 0.5) through cross-correlation analysis.

For exploratory analysis, we apply PCA and compute CCA loadings to measure feature correlations with the principal components. A logistic regression model is then used for classification, and Shapley values (Lipovetsky & Conklin, 2001) are computed to evaluate feature importance. Shapley values, derived from cooperative game theory, quantify the contribution of each feature to model predictions by measuring its influence in shifting predictions from a baseline (e.g., 0.5 for logistic regression), providing an interpretable, feature-level analysis of predictive impact.

C.2 ABLATION STUDIES ON SUBSAMPLING PARAMETERS

We evaluate the representation of clean and poisoned activations using a subsampling-based topological analysis. For each experiment, we consider a fixed layer of Mistral 7B and draw k subsamples of size n from the clean activations and k subsamples of size n from the poisoned activations. Each subsample is used to compute a Vietoris–Rips persistence diagram, which is subsequently represented as a 41-dimensional barcode summary vector. This procedure produces a combined point cloud in \mathbb{R}^{41} of size $2k$, consisting of k clean and k poisoned feature vectors.

Predictive Power of Barcode Summaries for Varying (n, k) . We perform the same classification task as in the main text, namely, we fit a logistic regression model to classify between clean and poisoned in each point cloud with fixed (n, k) , for the first, the middle, and the last layer of Mistral 7B. We report the 5-fold cross validation results in Figure 15. We observe that there are no clear dependencies of this parameter over the parameters (n, k) . Layer 1 seems to be more difficult to classify, requiring at least 500 subsamples, whereas for later layers we obtain perfect classification with as little as $k = 30$ subsamples of size $n = 100$.

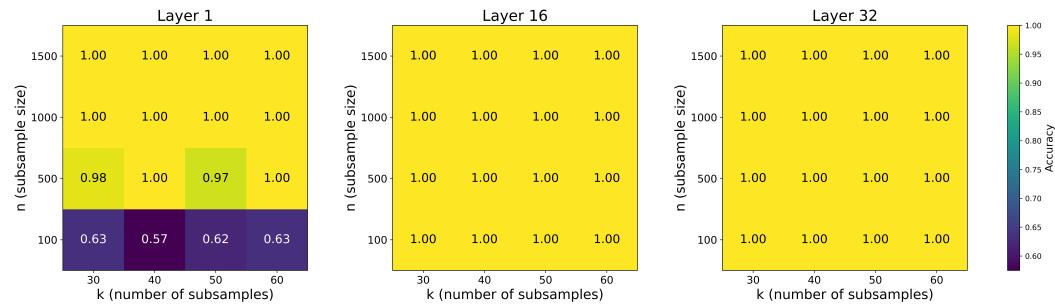


Figure 15: Accuracies of 5-fold cross validation on a logistic regression trained to distinguish barcode summaries of k subsamples of size n of clean activations and k subsamples of size n of poisoned activations at layers 1, 16 and 32 of Mistral 7B.

Metric Description of Clusters for Varying (n, k) . We now focus on activation values for layer 16 in Mistral 7B, over which the barcode summaries are computed in subsamples with parameters (n, k) . All feature vectors are standardized using a global `StandardScaler` fitted on the whole point cloud. We then compute several metrics to quantify the structure of the resulting representation: (i) the mean intra-class distance within the clean and poisoned subsamples, (ii) the mean inter-class distance between the two groups, and (iii) the inter-to-intra distance ratio

$$r := \frac{d_{\text{inter}}}{\frac{1}{2} \left(d_{\text{intra}}^{\text{clean}} + d_{\text{intra}}^{\text{poison}} \right)}. \quad (4)$$

We perform ablations over the subsample size n and the number of subsamples k . The intra-class distances (Figure 16 left and center) show minimal dependence on k , but decrease consistently as n increases. This suggests that the barcode representations become more concentrated when subsamples contain more points. The values for $n = 500, 1000$, and 1500 are in close proximity, indicating an early convergence of this statistic with respect to n .

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

The inter-class distance (Figure 16 right) exhibits a complementary trend: it is largely invariant under changes in k , but increases with n . As before, the curves for $n = 1000$ and $n = 1500$ almost coincide, further supporting a convergence regime at moderate subsample sizes.

To combine these effects, we evaluate the inter-to-intra distance ratio in Figure fig. 17. This ratio remains stable across values of k , but increases with n , indicating that the relative separation between clean and poisoned representations improves as subsample size grows. The near overlap of the values for $n = 1000$ and $n = 1500$ again suggests convergence in this regime, which supports the choice of subsample sizes used in the main experiments.

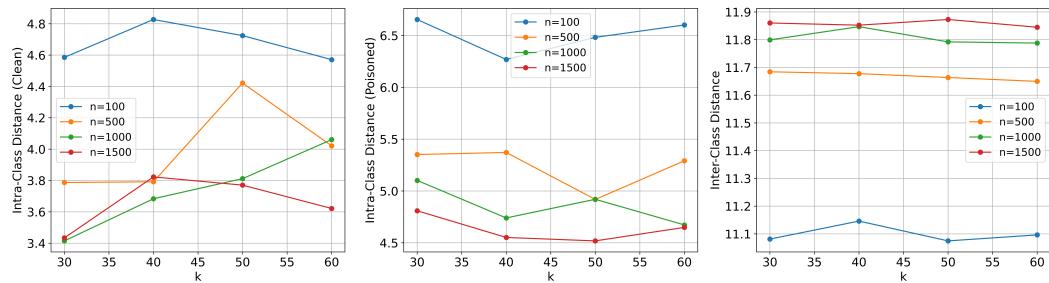


Figure 16: **Left:** Intra-class distance among the barcode summaries of k subsamples of size n of clean activations from layer 16 of Mistral 7B. **Center:** Intra-class distance among the barcode summaries k subsamples of size n of poisoned activations from layer 16 of Mistral 7B. **Right:** Intra-class distance among the clusters of clean and poisoned barcode summaries of k subsamples of size n .

C.3 RESULTS: CLEAN VS. POISONED

C.3.1 MISTRAL 7B

We present here additional results on the global analysis for Mistral 7B that are referred to in the main text.

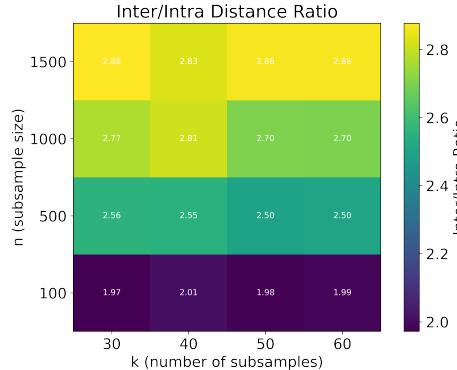
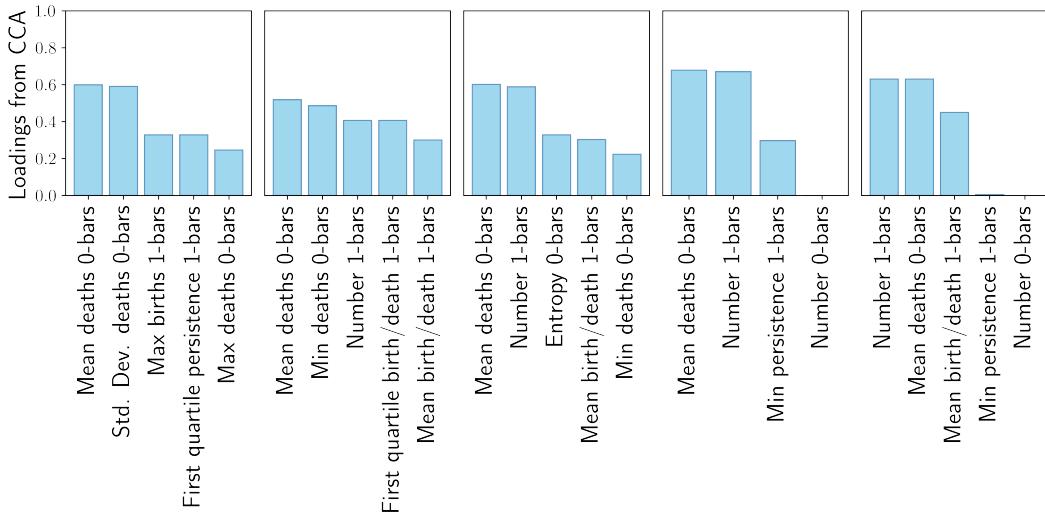


Figure 17: Inter-to-intra distance ratio (Equation 4 between k subsamples of n clean activations and k subsamples of n poisoned activations in layer 16 of Mistral 7B).

1350 Table 6: **Pruned barcode summaries for layers 1, 8, 16, 24 and 32.** Features from the barcode
 1351 summaries with correlation less than 0.5 in the cross-correlation matrix.

	Layer 1	Layer 8	Layer 16	Layer 24	Layer 32
Mean death 0-bars	✓	✓	✓	✓	✓
Minimum death 0-bars		✓	✓		
Maximum death 0-bars	✓				
Standard deviation death 0-bars	✓				
Minimum birth 1-bars					
Maximum birth 1-bars	✓				
Minimum persistence 1-bars	✓	✓	✓	✓	✓
First quartile persistence 1-bars	✓				
Maximum persistence 1-bars		✓			
Mean birth/death 1-bars		✓	✓		✓
First quartile birth/death 1-bars		✓			
Maximum birth/death 1-bars			✓		
Total persistence 1-bars				✓	
Number 0-bars	✓	✓	✓	✓	✓
Number 1-bars		✓	✓	✓	
Entropy 0-bars	✓	✓	✓		
Total features	8	9	8	4	5



1391 Figure 18: **CCA loadings for clean vs. poisoned activations.** Loadings of the 5 most important
 1392 contributions to the first canonical variable of the CCA on the pruned barcode summaries show that
 1393 the mean of the death of 0-bars is significantly correlated with the first two principal components of
 1394 the PCA across all layers.

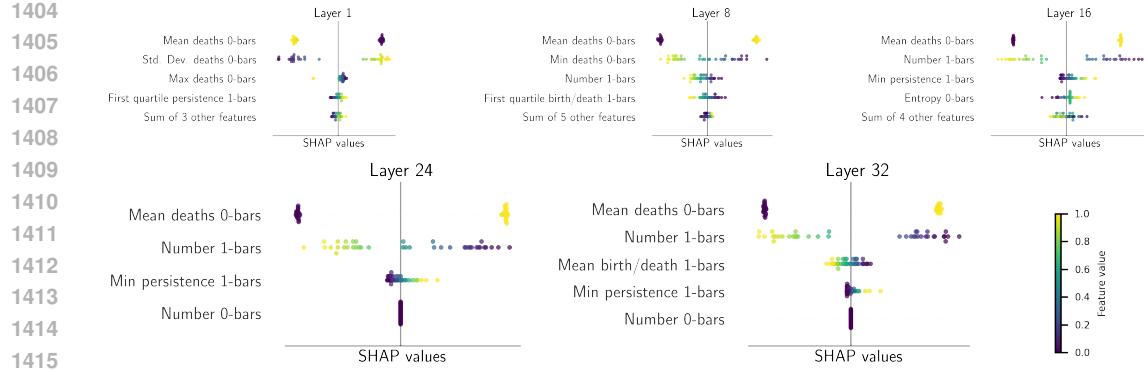


Figure 19: **SHAP analysis: clean vs. poisoned activations.** Beeswarm plot of logistic regression SHAP values trained on the pruned barcode summaries for layer 1, 8, 16, 24, and 32.

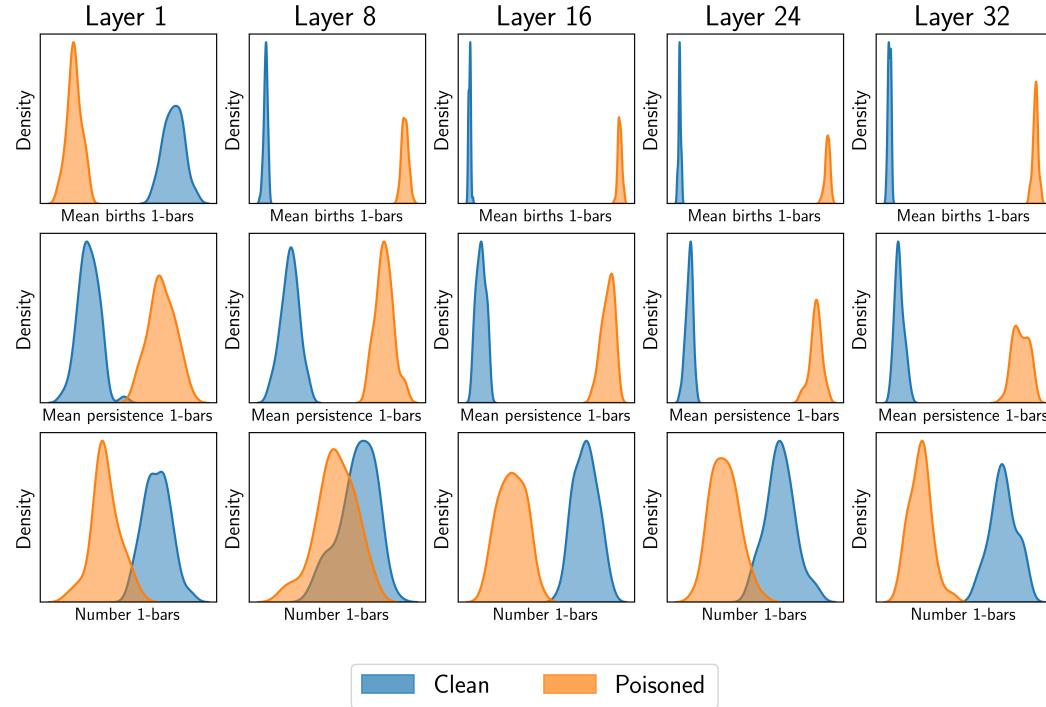


Figure 20: **Histograms for the mean of the births of 1-bars, mean persistence of 1-bars and number of 1-bars for Mistral.** Features extracted from the barcode summaries of the activations for layers 1, 8, 16, 24 and 32 of the clean vs. poisoned dataset.

C.3.2 PHI3-MINI-4K (3.8B PARAMETERS)

We provide the results of the analysis depicted in Figure 3 including layers 1, 8, 16, 23, and 32 for Phi 3 (3.8B parameters) where barcodes are computed using the Euclidean distance in the representation space.

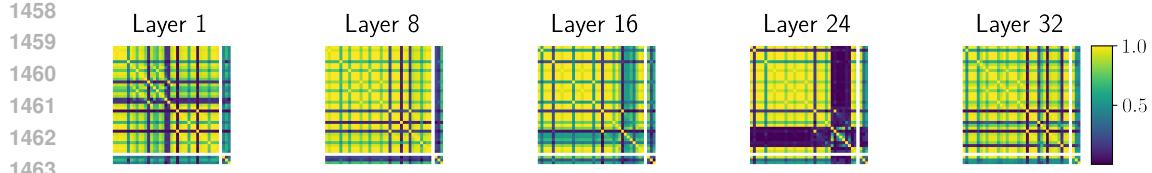


Figure 21: **Cross-correlation matrices for the barcode summaries for clean vs. poisoned activations.** Growing block of correlated features appears in the cross-correlation matrix of the barcode summaries appears in the middle layers (layers 1, 8, 16, 24, and 32 are shown).

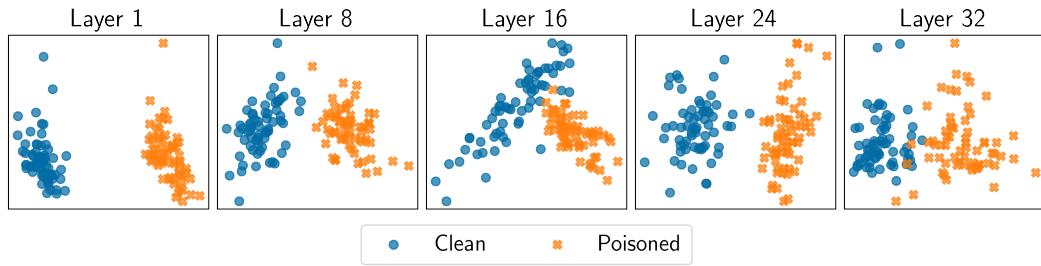


Figure 22: **PCA of barcode summaries of clean vs. poisoned activations.** Clear distinction appears in the projection onto the two first principal components from the PCA of the pruned barcode summaries for layers 1, 8, 16, 24, and 32.

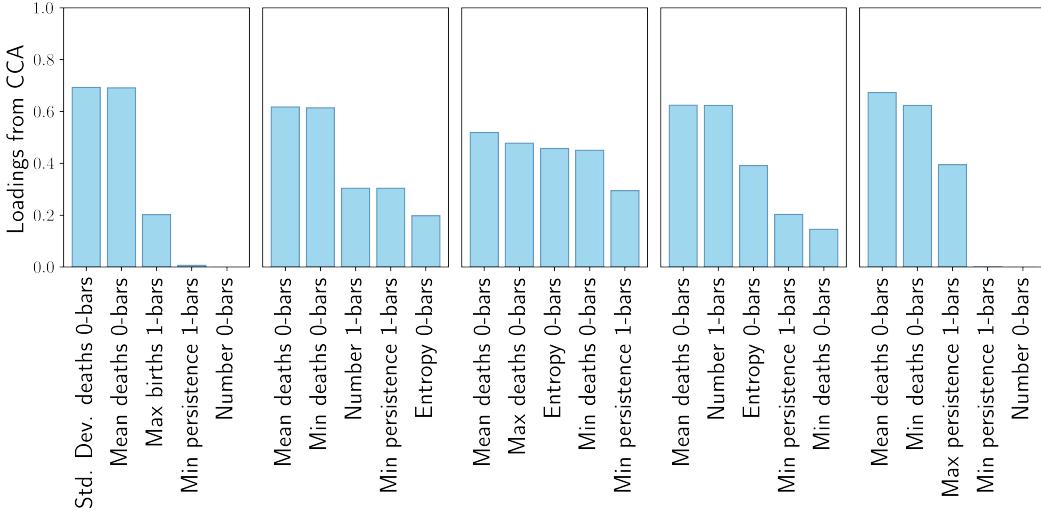
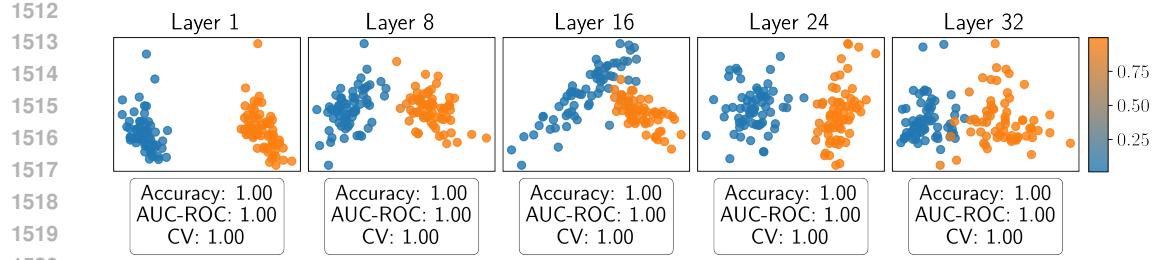
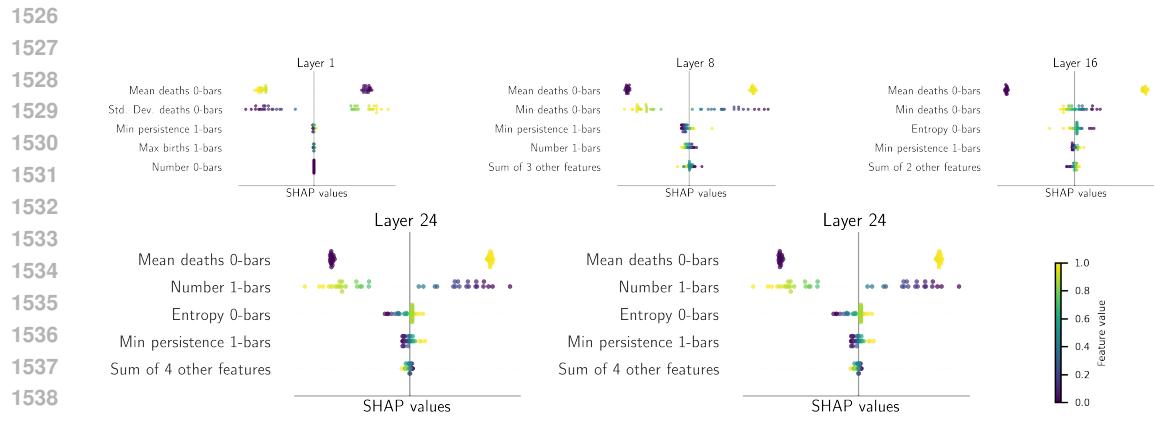


Figure 23: **CCA loadings for clean vs. poisoned activations.** Loadings of the 5 most important contributions to the first canonical variable of the CCA on the pruned barcode summaries show that the mean of the death of 0-bars is significantly correlated with the first two principal components of the PCA across all layers.



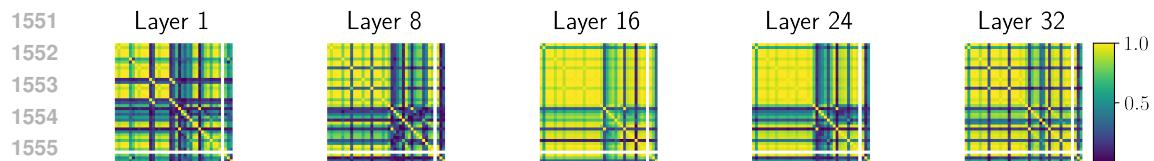
1521 Figure 24: **Logistic regression for clean vs. poisoned activations.** Prediction of a logistic regression
1522 trained on a 70/30 train/test split of the pruned barcode summaries, plotted on the projection
1523 onto the two first principal components for visualization purposes. Accuracy and AUC-ROC tested
1524 on the test data, and 5-fold cross validation on train data are presented for each model, showcasing
1525 the outstanding performance of all models.



1540 Figure 25: **SHAP analysis: clean vs. poisoned activations.** Beeswarm plot of logistic regression
1541 SHAP values trained on the pruned barcode summaries for layer 1, 8, 16, 24, and 32.

C.3.3 MIXTRAL-8X7B (7B PARAMETERS)

1545 We provide the results of the analysis depicted in Figure 3 including layers 1, 8, 16, 23 and 32 for the
1546 Mixtral 8 (7B parameters) model where barcodes are computed using the Euclidean distance in the
1547 representation space. We observe very similar results to the ones obtained with Mistral, indicating
1548 a consistency across models of the topological deformations of adversarial influence via XPIA (see
1549 Section 3.1).



1557 Figure 26: **Cross-correlation matrices for the barcode summaries for clean vs. poisoned activa-
1558 tions.** Growing block of correlated features appears in the cross-correlation matrix of the barcode
1559 summaries for layers 1, 8, 16, 24, and 32. Correlations in layer 1 are lower than with Mistral 7B,
1560 see Figure 6.

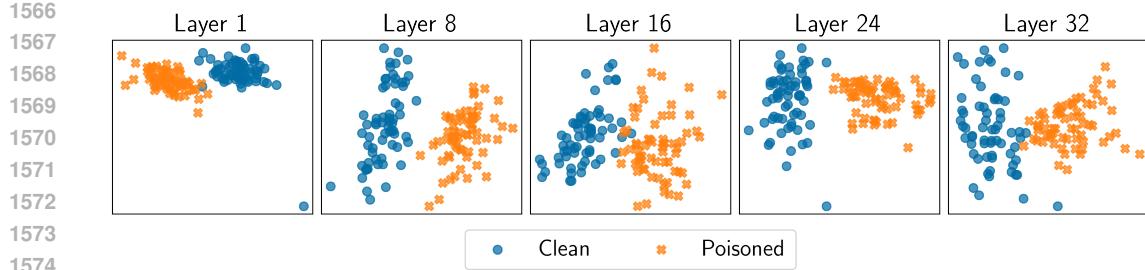


Figure 27: **PCA of barcode summaries of clean vs. poisoned activations.** Clear distinction appears in the projection onto the two first principal components from the PCA of the pruned barcode summaries for layers 1, 8, 16, 24, and 32.

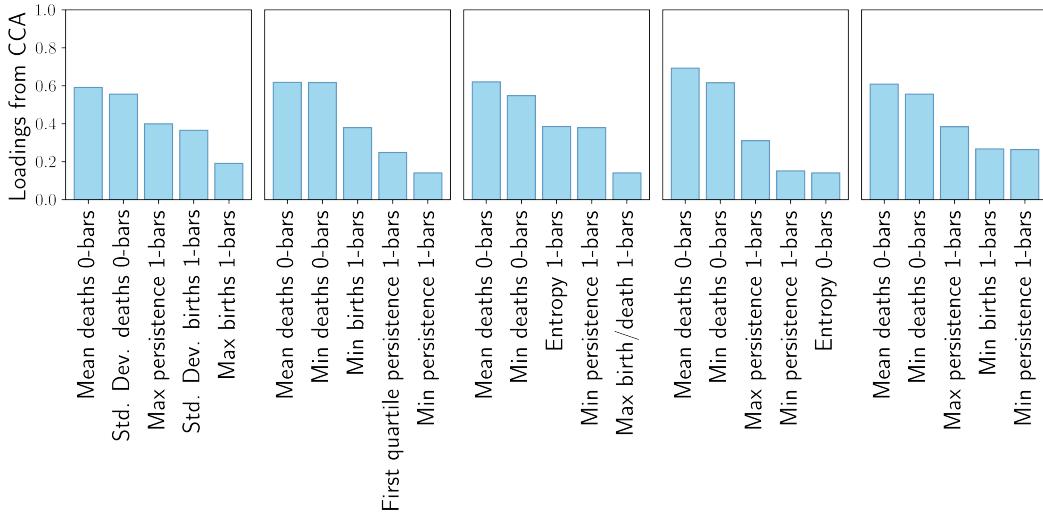


Figure 28: **CCA loadings for clean vs. poisoned activations.** Loadings of the 5 most important contributions to the first canonical variable of the CCA on the pruned barcode summaries show that the mean of the death of 0-bars is significantly correlated with the first two principal components of the PCA across all layers.

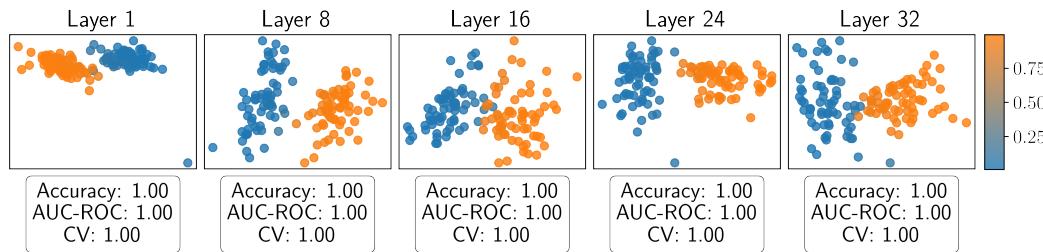


Figure 29: **Logistic regression for clean vs. poisoned activations.** Prediction of a logistic regression trained on a 70/30 train/test split of the pruned barcode summaries, plotted on the projection onto the two first principal components for visualization purposes. Accuracy and AUC-ROC tested on the test data, and 5-fold cross validation on train data are presented for each model, showcasing the outstanding performance of all models.

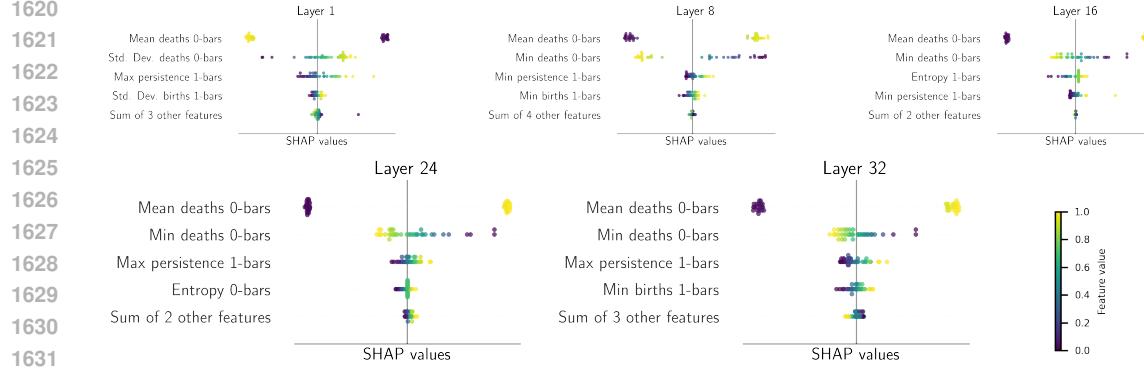


Figure 30: **SHAP analysis: clean vs. poisoned activations.** Beeswarm plot of logistic regression SHAP values trained on the pruned barcode summaries for layer 1, 8, 16, 24, and 32.

C.3.4 LLAMA3 (8B PARAMETERS)

We provide the results of the analysis depicted in Figure 3 including layers 1, 8, 16, 23 and 32 for the Llama 3 (8B parameters) where barcodes are computed using the Euclidean distance in the representation space. We observe very similar results to the ones obtained with Mistral, indicating a consistency across models of the topological deformations of adversarial influence via XPIA (see Section 3.1).

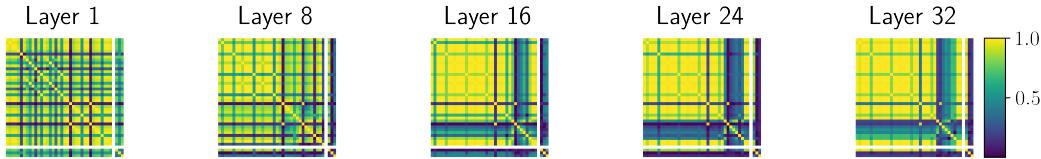


Figure 31: **Cross-correlation matrices for the barcode summaries for clean vs. poisoned activations.** Growing block of correlated features appears in the cross-correlation matrix of the barcode summaries for layers 1, 8, 16, 24, and 32. Correlations in layer 1 are lower than with Mistral 7B, see Figure 6.

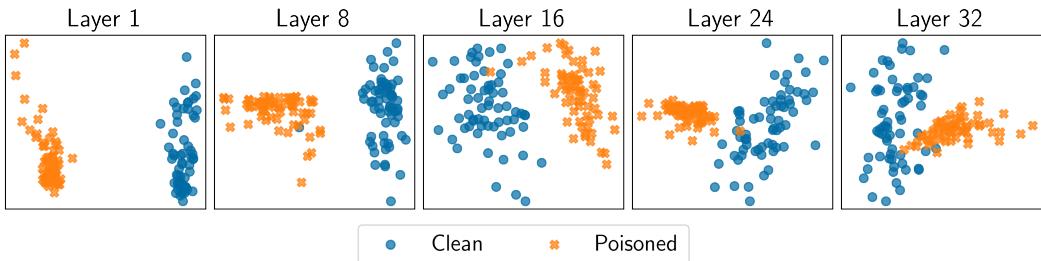


Figure 32: **PCA of barcode summaries of clean vs. poisoned activations.** Clear distinction appears in the projection onto the two first principal components from the PCA of the pruned barcode summaries for layers 1, 8, 16, 24, and 32.

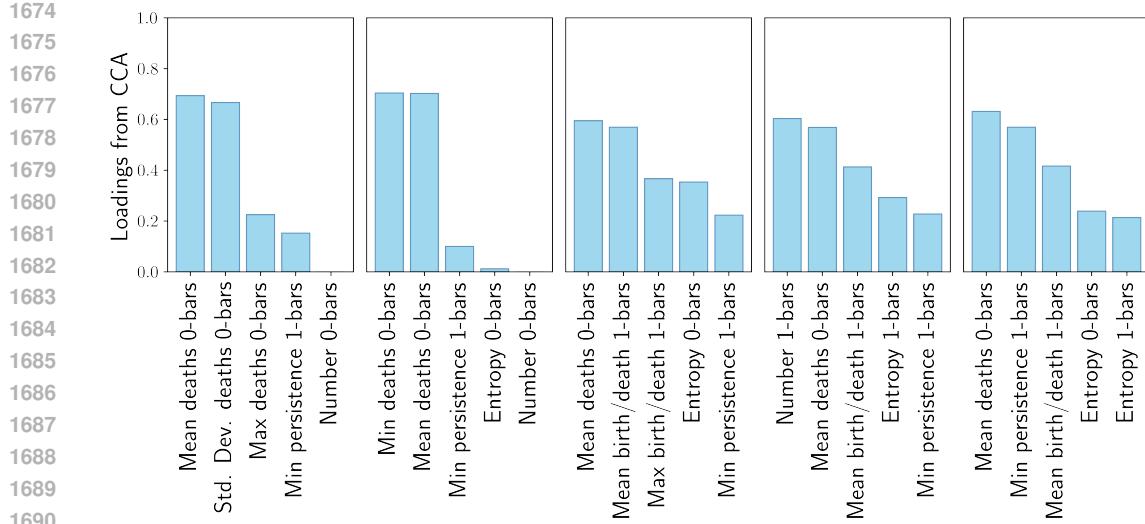


Figure 33: **CCA loadings for clean vs. poisoned activations.** Loadings of the 5 most important contributions to the first canonical variable of the CCA on the pruned barcode summaries show that the mean of the death of 0-bars is significantly correlated with the first two principal components of the PCA across all layers.

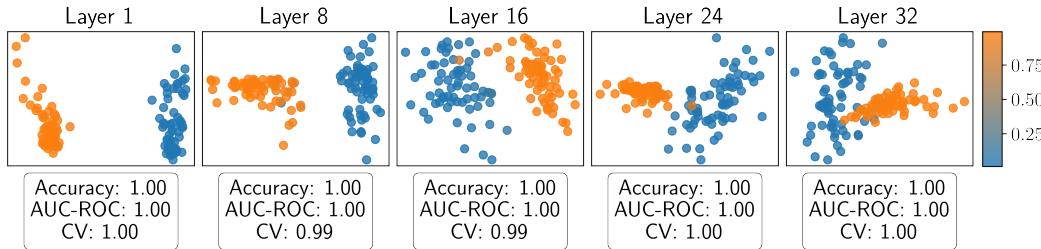


Figure 34: **Logistic regression for clean vs. poisoned activations.** Prediction of a logistic regression trained on a 70/30 train/test split of the pruned barcode summaries, plotted on the projection onto the two first principal components for visualization purposes. Accuracy and AUC-ROC tested on the test data, and 5-fold cross validation on train data are presented for each model, showcasing the outstanding performance of all models.

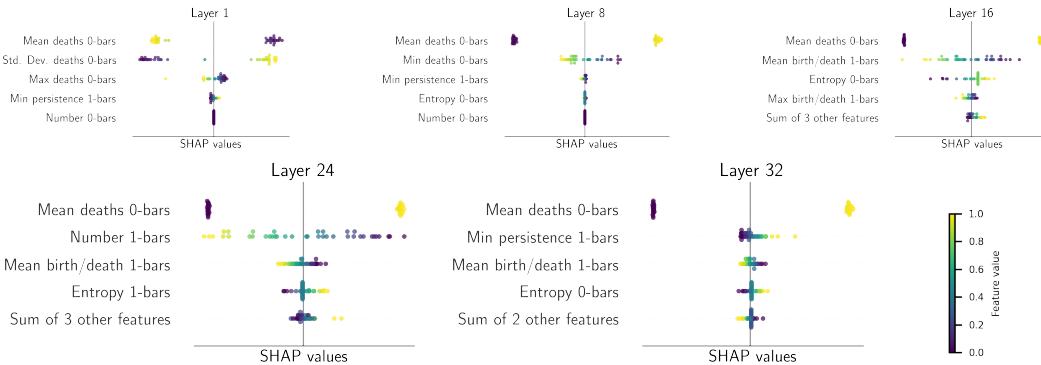
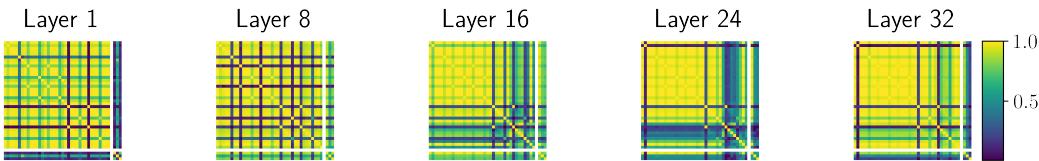


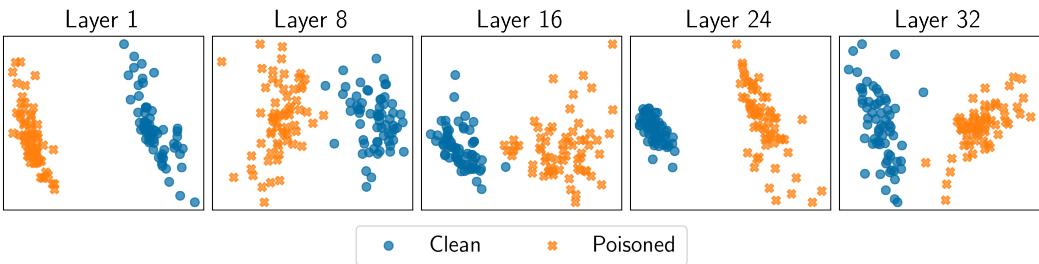
Figure 35: **SHAP analysis: clean vs. poisoned activations.** Beeswarm plot of logistic regression SHAP values trained on the pruned barcode summaries for layer 1, 8, 16, 24, and 32.

1728 C.3.5 PHI3-MEDIUM-128K (14B PARAMETERS)
1729

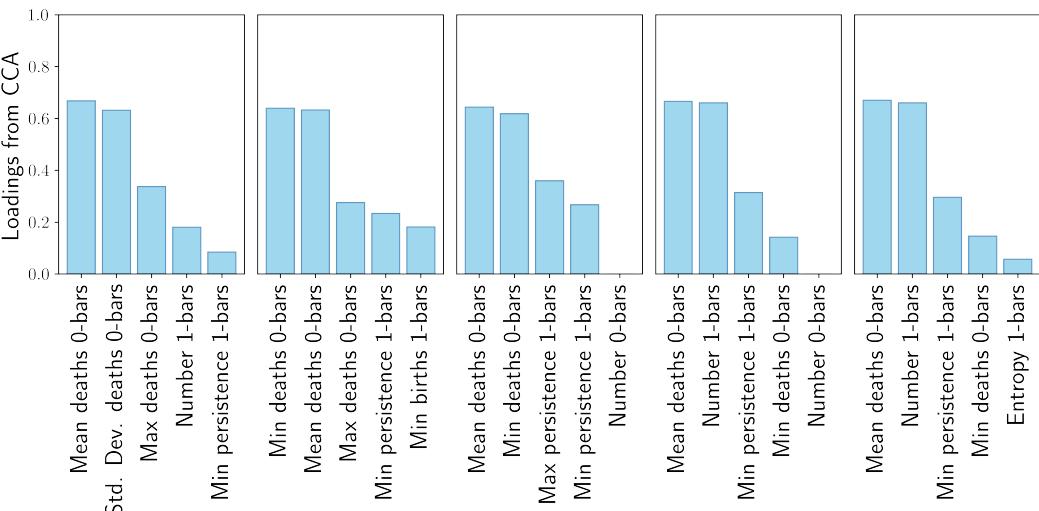
1730 We provide the results of the analysis depicted in Figure 3 including layers 1, 8, 16, 23 and 32 for the
 1731 Phi-3-medium (14B parameters) model where barcodes are computed using the Euclidean distance
 1732 in the representation space. We observe very similar results to the ones obtained with Mistral,
 1733 indicating a consistency across models of the topological deformations of adversarial influence via
 1734 XPIA (see Section 3.1).



1741
 1742 **Figure 36: Cross-correlation matrices for the barcode summaries for clean vs. poisoned activa-**
 1743 **tions.** Growing block of correlated features appears in the cross-correlation matrix of the barcode
 1744 summaries for layers 1, 8, 16, 24, and 32. Correlations in layer 1 are lower than with Mistral 7B,
 1745 see Figure 6.



1746
 1747 **Figure 37: PCA of barcode summaries of clean vs. poisoned activations.** Clear distinction ap-
 1748 pears in the projection onto the two first principal components from the PCA of the pruned barcode
 1749 summaries for layers 1, 8, 16, 24, and 32.



1750
 1751 **Figure 38: CCA loadings for clean vs. poisoned activations.** Loadings of the 5 most important
 1752 contributions to the first canonical variable of the CCA on the pruned barcode summaries show that
 1753 the mean of the death of 0-bars is significantly correlated with the first two principal components of
 1754 the PCA across all layers.

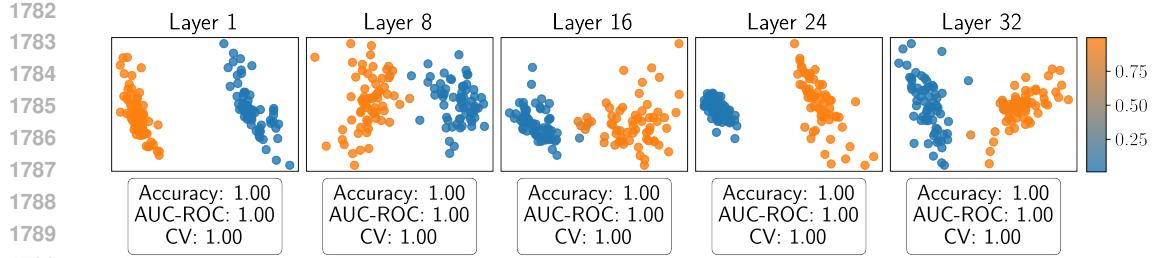


Figure 39: **Logistic regression for clean vs. poisoned activations.** Prediction of a logistic regression trained on a 70/30 train/test split of the pruned barcode summaries, plotted on the projection onto the two first principal components for visualization purposes. Accuracy and AUC-ROC tested on the test data, and 5-fold cross validation on train data are presented for each model, showcasing the outstanding performance of all models.

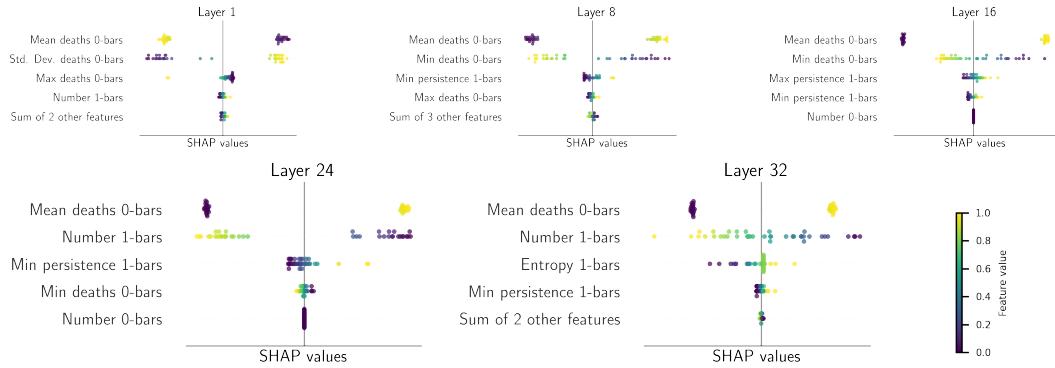


Figure 40: **SHAP analysis: clean vs. poisoned activations.** Beeswarm plot of logistic regression SHAP values trained on the pruned barcode summaries for layer 1, 8, 16, 24, and 32.

C.3.6 LLAMA3 (70B PARAMETERS)

We provide the results of the analysis depicted in Figure 3 including layers 1, 8, 16, 23 and 32 for the Llama 3 (70B parameters) where barcodes are computed using the Euclidean distance in the representation space. We observe very similar results to the ones obtained with Mistral, indicating a consistency across models of the topological deformations of adversarial influence via XPIA (see Section 3.1).

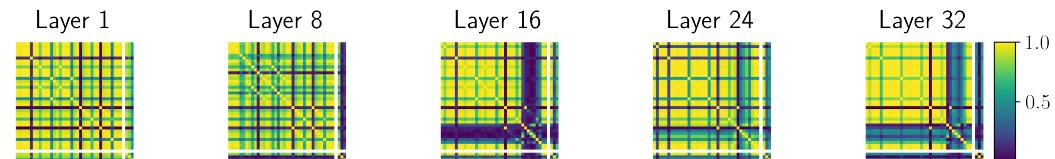


Figure 41: **Cross-correlation matrices for the barcode summaries for clean vs. poisoned activations.** Growing block of correlated features appears in the cross-correlation matrix of the barcode summaries for layers 1, 8, 16, 24, and 32. Correlations in layer 1 are lower than with Mistral 7B, see Figure 6.

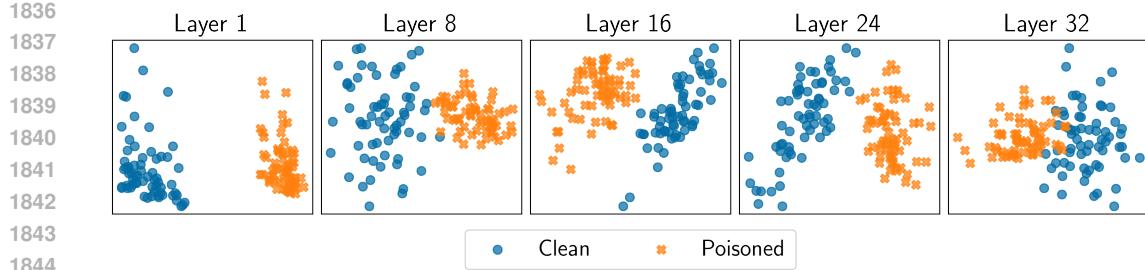


Figure 42: **PCA of barcode summaries of clean vs. poisoned activations.** Clear distinction appears in the projection onto the two first principal components from the PCA of the pruned barcode summaries for layers 1, 8, 16, 24, and 32.

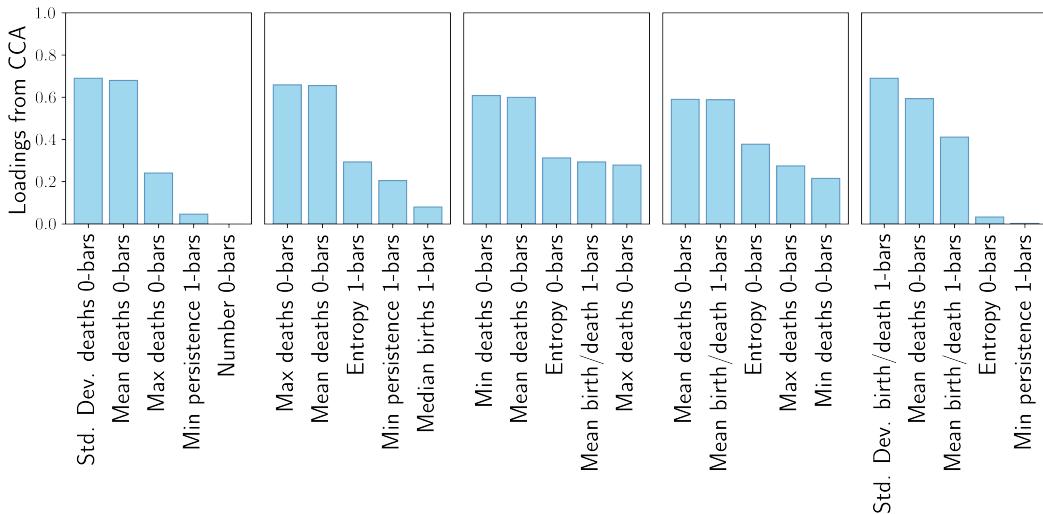


Figure 43: **CCA loadings for clean vs. poisoned activations.** Loadings of the 5 most important contributions to the first canonical variable of the CCA on the pruned barcode summaries show that the mean of the death of 0-bars is significantly correlated with the first two principal components of the PCA across all layers.

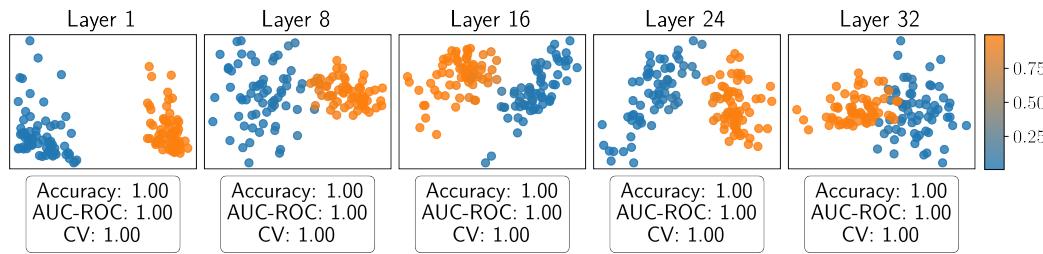


Figure 44: **Logistic regression for clean vs. poisoned activations.** Prediction of a logistic regression trained on a 70/30 train/test split of the pruned barcode summaries, plotted on the projection onto the two first principal components for visualization purposes. Accuracy and AUC-ROC tested on the test data, and 5-fold cross validation on train data are presented for each model, showcasing the outstanding performance of all models.

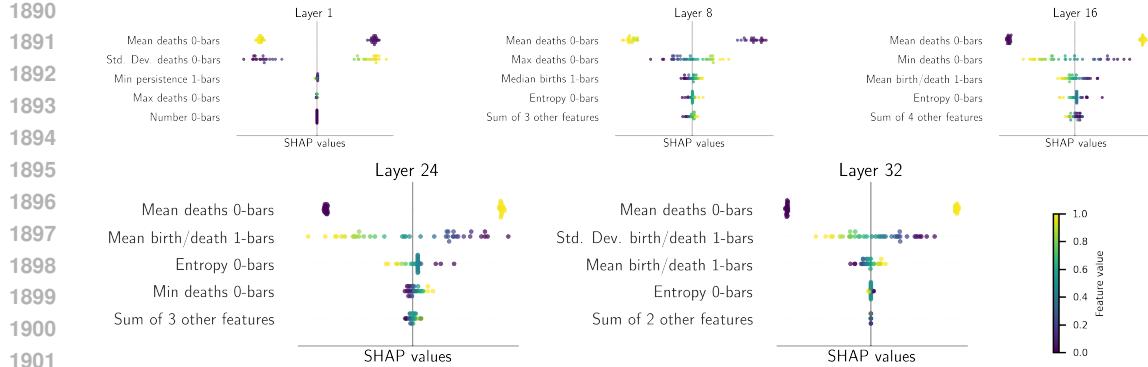


Figure 45: **SHAP analysis: clean vs. poisoned activations.** Beeswarm plot of logistic regression SHAP values trained on the pruned barcode summaries for layer 1, 8, 16, 24, and 32.

C.4 RESULTS: LOCKED VS. ELICITED

C.4.1 MISTRAL 7B

We include the results of the global analysis in Figure 3 for the locked vs. elicited dataset. There are two main differences with previous results: the block of high correlated features presents a less clear trend and is more faint in layer 16, resulting in the need of more features in the analysis; and the mean death of the 0-bars changes the sign of its influence in classifying locked and elicited models across layers. However the distinction in the PCA of the barcode summaries remains clear and the logistic regression still achieves perfect performance, despite a slightly less straightforward analysis.

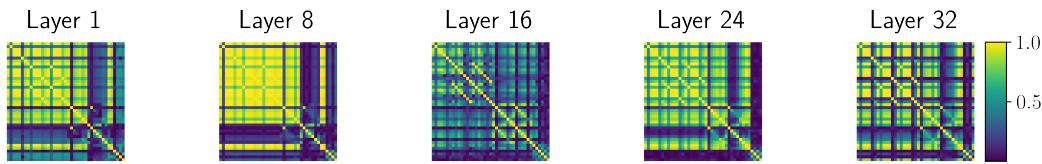


Figure 46: **Mistral with Euclidean distance: Cross-correlation matrices for the barcode summaries for locked vs. elicited activations.** Growing block of correlated features appears in the cross-correlation matrix of the barcode summaries for layers 1, 8, 16, 24, and 32.

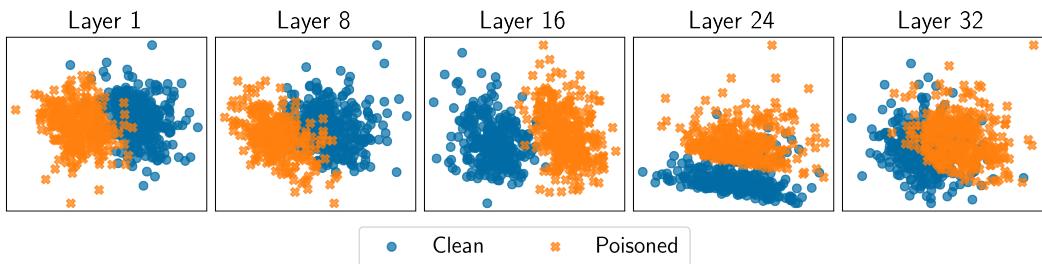


Figure 47: **Mistral with Euclidean distance: PCA of barcode summaries of locked vs. elicited activations.** Clear distinction appears in the projection onto the two first principal components from the PCA of the pruned barcode summaries for layers 1, 8, 16, 24, and 32.

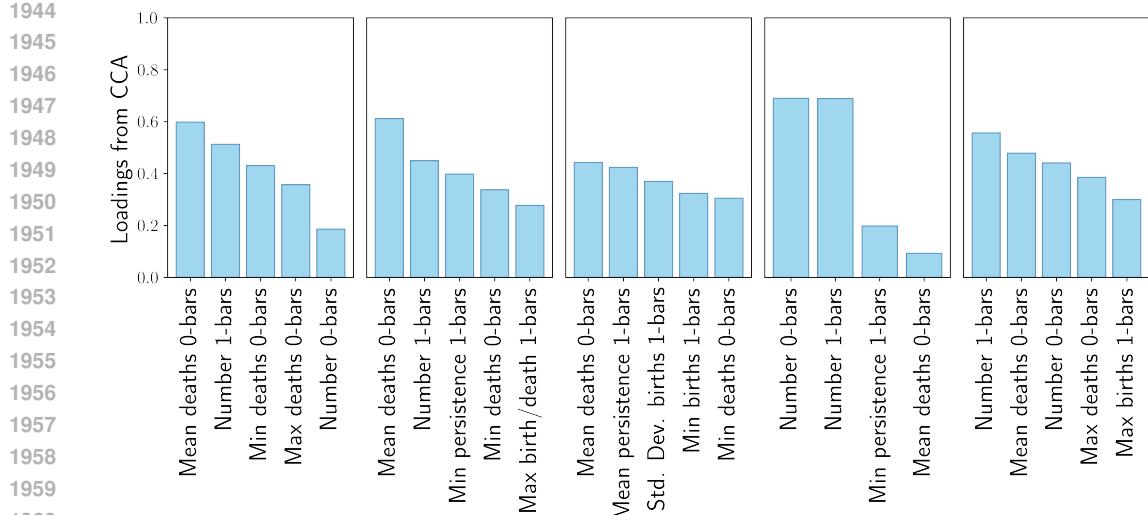


Figure 48: **Mistral with Euclidean distance: CCA loadings for locked vs. elicited activations.** Loadings of the 5 most important contributions to the first canonical variable of the CCA on the pruned barcode summaries show that the mean of the death of 0-bars is significantly correlated with the first two principal components of the PCA across all layers.

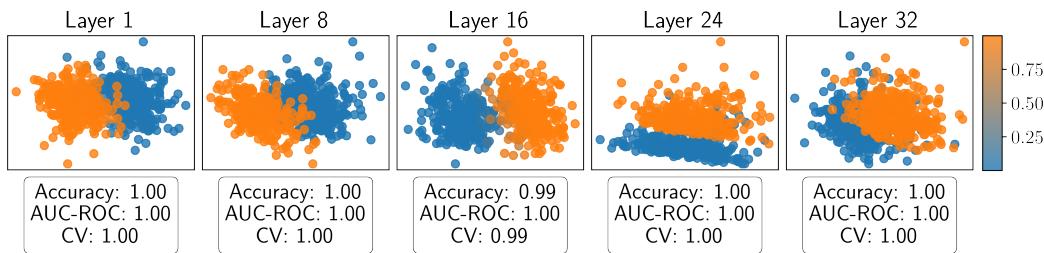


Figure 49: **Mistral with Euclidean distance: Logistic regression for locked vs. elicited activations.** Prediction of a logistic regression trained on a 70/30 train/test split of the pruned barcode summaries, plotted on the projection onto the two first principal components for visualization purposes. Accuracy and AUC-ROC tested on the test data, and 5-fold cross validation on train data are presented for each model, showcasing the outstanding performance of all models.

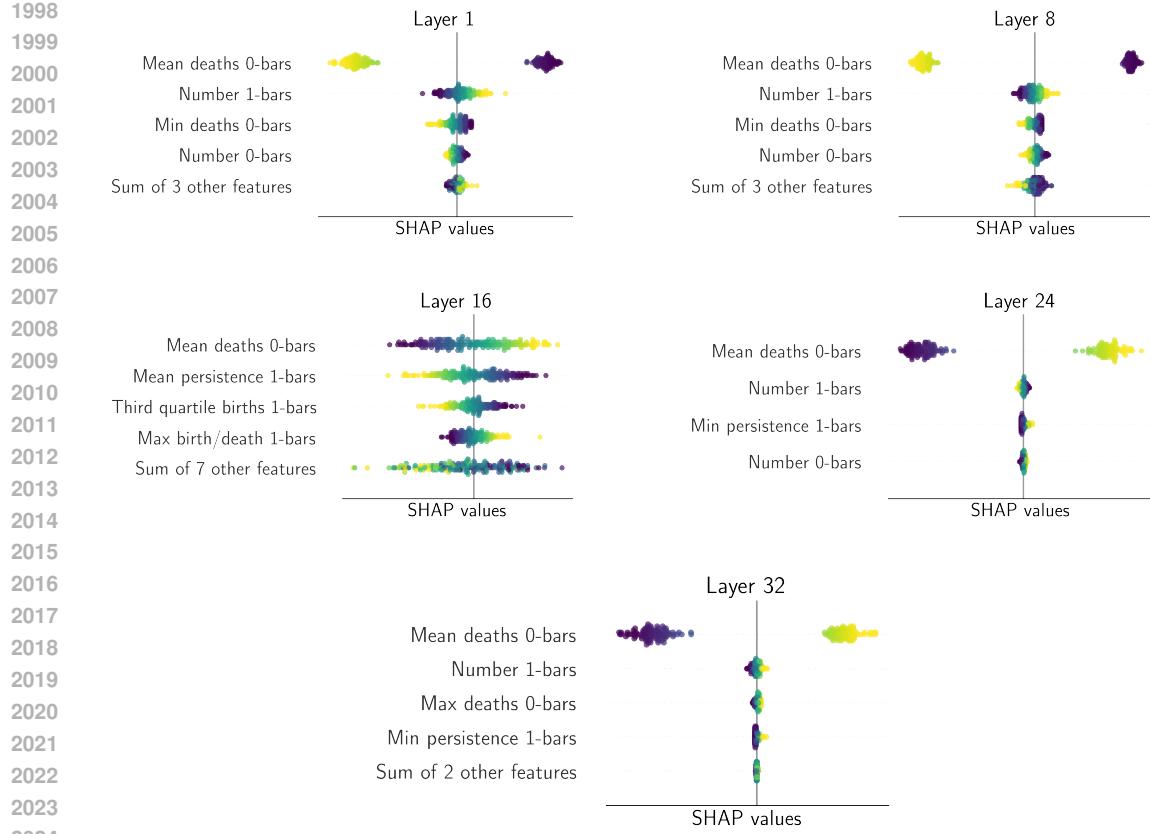


Figure 50: **Mistral with Euclidean distance: SHAP analysis for locked vs. elicited activations.** Beeswarm plot of the SHAP values for the logistic regression trained on the pruned barcode summaries for layer 1, 8, 16, 24, and 32. The mean of the deaths of 0-bars appears as the most impactful feature in the prediction of the model, shifting predictions to “locked” when the value of the feature is lower for layers 8, 16, 23, and 32, and to “elicited” when it is higher. The opposite phenomenon is observed in layer 0.

C.4.2 LLAMA3 (8B PARAMETERS)

We include the results of the global analysis in Figure 3 for the locked vs. elicited dataset. Here we also observe less clear patterns of correlations in the topological features, particularly for latter layers. Despite the mean of the death of 0-bars remaining as one of the key features in the CCA, the interpretation of the Shapley values is less straightforward in this case as the dichotomous behavior of these for the mean of the 0-bars disappears for latter layers.

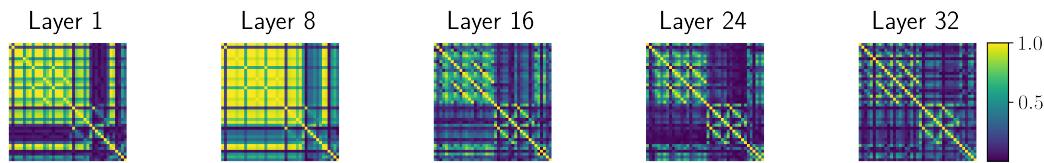


Figure 51: **Llama with Euclidean distance: Cross-correlation matrices for the barcode summaries for locked vs. elicited activations.** Decreasing block of correlated features appears in the cross-correlation matrix of the barcode summaries for layers 1, 8, 16, 24, and 32.

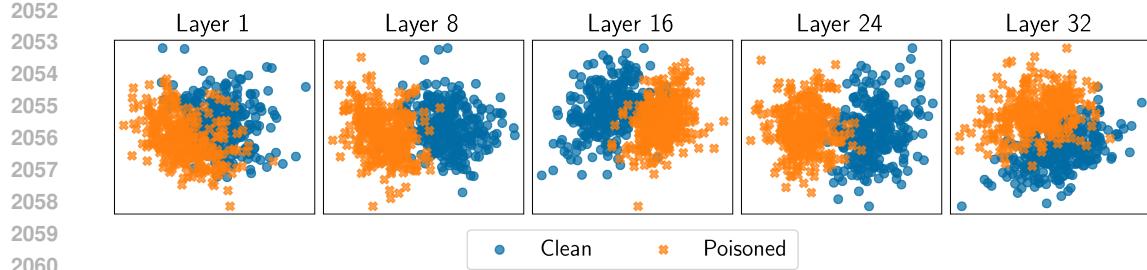


Figure 52: **Llama with Euclidean distance: PCA of barcode summaries of locked vs. elicited activations.** Clear distinction appears in the projection onto the two first principal components from the PCA of the pruned barcode summaries for layers 1, 8, 16, 24, and 32.

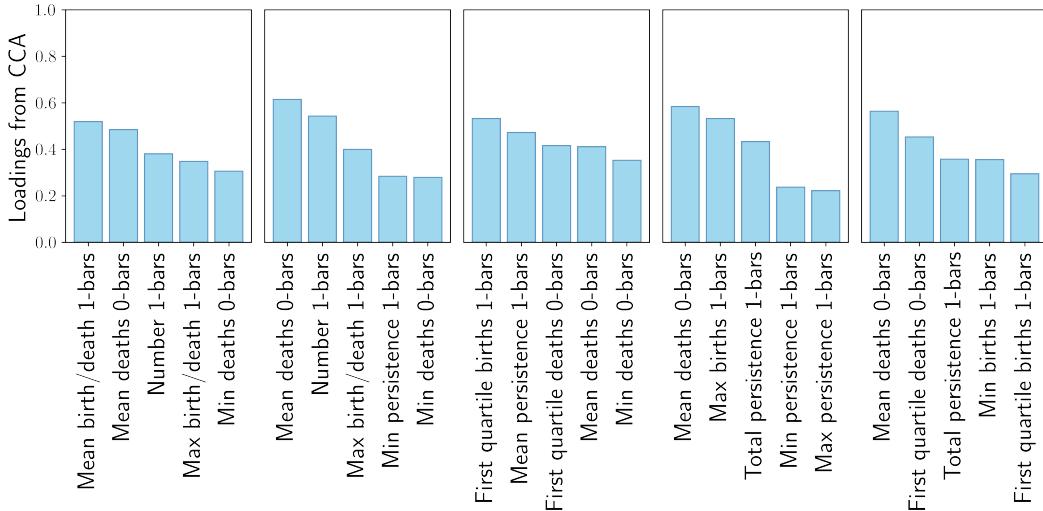


Figure 53: **Llama with Euclidean distance: CCA loadings for locked vs. elicited activations.** Loadings of the 5 most important contributions to the first canonical variable of the CCA on the pruned barcode summaries show that the mean of the death of 0-bars is significantly correlated with the first two principal components of the PCA across all layers.

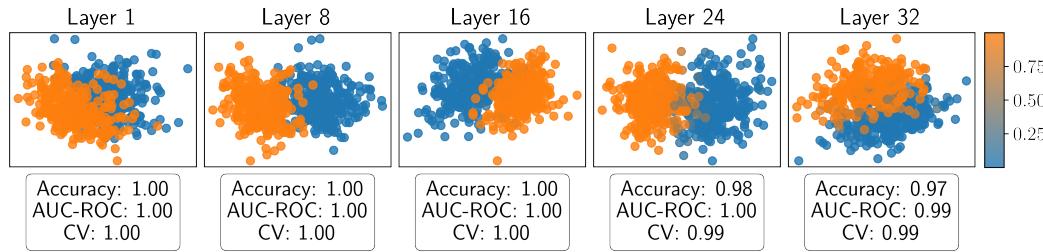


Figure 54: **Llama with Euclidean distance: Logistic regression for locked vs. elicited activations.** Prediction of a logistic regression trained on a 70/30 train/test split of the pruned barcode summaries, plotted on the projection onto the two first principal components for visualization purposes. Accuracy and AUC-ROC tested on the test data, and 5-fold cross validation on train data are presented for each model, showcasing the outstanding performance of all models.

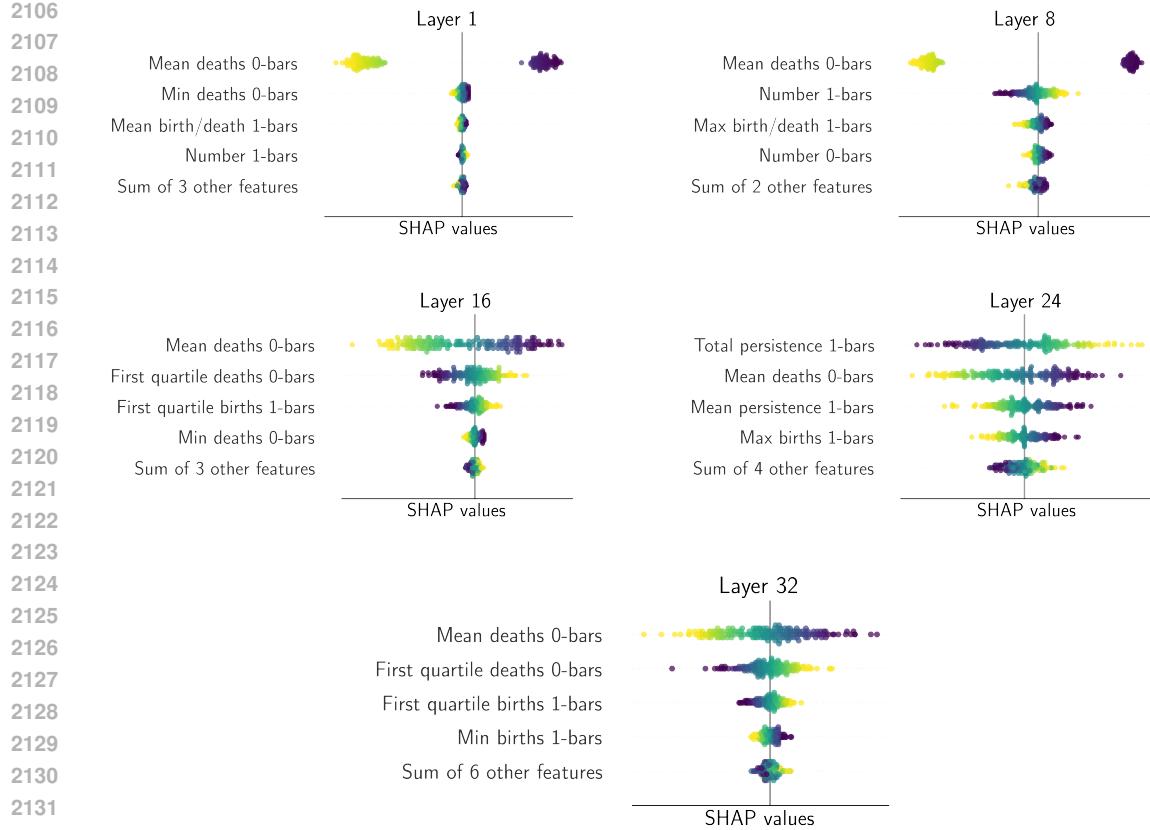


Figure 55: **Mistral with Euclidean distance: SHAP analysis for locked vs. elicited activations.** Beeswarm plot of the SHAP values for the logistic regression trained on the pruned barcode summaries for layer 1, 8, 16, 24, and 32. The mean of the deaths of 0-bars appears as the most impactful feature in the prediction of the model, shifting predictions to “locked” when the value of the feature is lower for layers 8, 16 and 32, and to “elicited” when it is higher. For layer 24, the total persistence of 1-bars appears as the most important feature. Lower number of 1-bars classifies the point as “locked” while higher values push the prediction toward “elicited”.

D FURTHER DETAILS ON LOCAL ANALYSIS

In this section we provide further details to the local analysis in Section 3.3.

D.1 PIPELINE

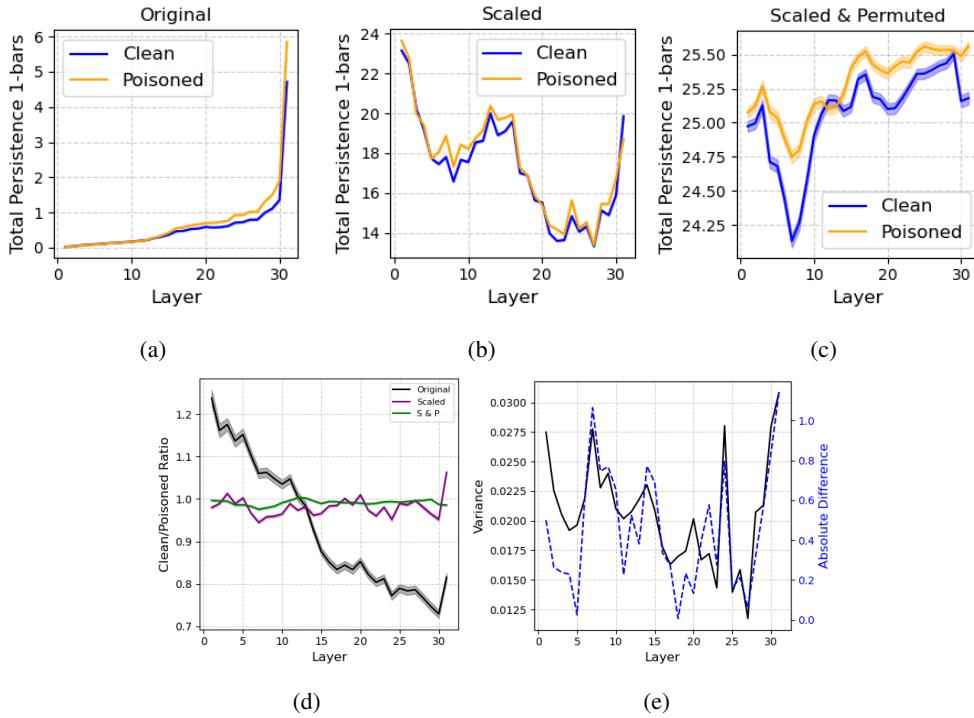
Within this local analysis, we aim to determine the interaction of elements of the neural network across the layers by taking representations across pairs of layers as coordinates in 2 dimensions (2D). We study this across three models: Mistral, Phi3 3.8B and LLaMA3 8B. For each of these models, we take a sample of 2000 from each model, 1000 of which are clean activations and 1000 of which are poisoned activations. Each element along the layer given their embedding into 2D can be thought of as nodes in a graph with weighted connections based on the Euclidean distances between the points. On these graphs, we construct the Vietoris–Rips filtration and compute the resulting persistence barcode which describes the topology of the interactions between the elements.

For this local analysis, we focus on a smaller selection of persistence barcode summaries, including measures such as the mean death of 0-bars, total persistence of 0- and 1-bars, and persistent entropy, while excluding measures such as the quantiles of death bars. We compute these summary statistics and track their progression across pairs of layers in the models. We presented one such progression within Figure 10 in Section 3.3, which captures how total persistence changes over the layers and

2160 is distinct from the control case. In the following sections, we include further plots to support this
 2161 argument.
 2162

2163 **D.2 RESULTS**
 2164

2165 **D.2.1 MISTRAL MODEL**
 2166



2167
 2168 **Figure 56: Local analysis of consecutive layers for the total persistence of 1-bars for the Mistral**
 2169 **model.** Comparisons of the average total persistence of 1-bars across 1000 samples for Mistral
 2170 model for original (a), scaled/normalized (b) and scaled and permuted (c) activation data. (d) Ratios
 2171 of mean total persistence of 1-bars between clean and poisoned datasets for original, scaled,
 2172 and scaled and permuted activations. (e) Overlaid plots of the overall variance of total persistence
 2173 of 1-bars for clean and poisoned datasets combined and the absolute difference between mean total
 2174 persistence of 1-bars for clean and poisoned datasets.
 2175

2176 In addition to the propagation of total persistence of 1-bars we showed in Section 3.3 and in this
 2177 section of the Appendix, we also evaluated the progression of other barcode summaries. Notably,
 2178 descriptors which capture similar features are the mean deaths of 1-bars, and the mean birth of 0
 2179 bars with mirroring patterns. In Figure 57, we show the results for the mean death of 0-bars.
 2180

2181 **D.2.2 PHI3 MODEL**
 2182

2183 We present a similar comparison of results for the Phi3 model. Figure 58 illustrates the patterns
 2184 across layers for the mean death of 0-bars, while Figure 59 shows the patterns for the total persistence
 2185 of 1-bars. Unlike the Mistral model, the ratio between barcode statistics for clean and poisoned
 2186 activations in the Phi3 model does not intersect one. While a decreasing or somewhat parabolic
 2187 trend is still observed, the average mean death of 0-bars and the total persistence of 1-bars for clean
 2188 raw activations consistently remain greater than those for poisoned raw activations. Additionally, we
 2189 find that the “control” case remains close to the x-axis, with the scaled ratios exhibiting significant
 2190 variations around this baseline.
 2191

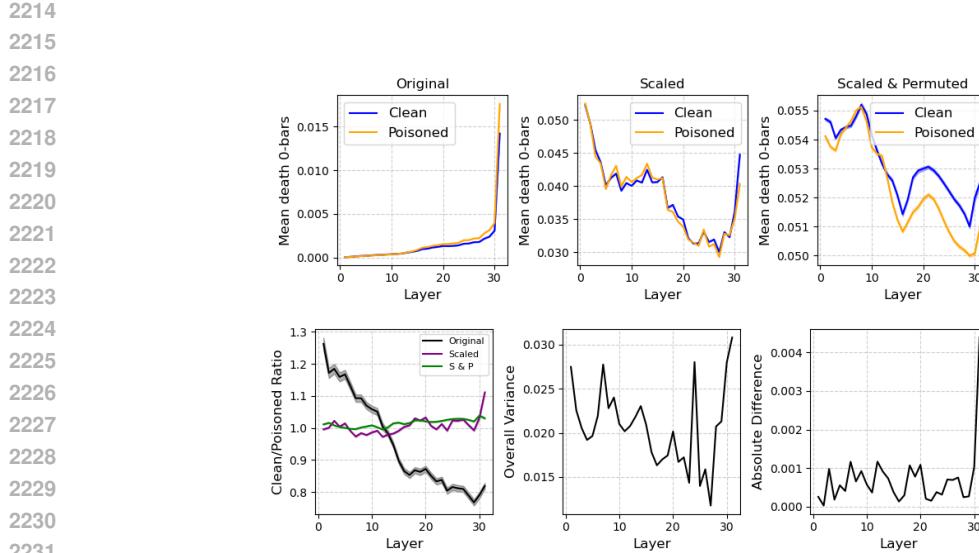


Figure 57: **Local analysis of consecutive layers for the mean deaths of 0-bars for the Mistral model.** **Top:** Comparisons of the average of mean deaths of 0-bars across 1000 samples for the Mistral model for original (raw), scaled (normalized) and scaled & permuted activation data. **Bottom left:** Ratios of average mean deaths of 0-bars between clean and poisoned datasets for original, scaled and scaled & permuted activations. **Bottom center:** Overall variance of mean deaths of 0-bars for clean and poisoned datasets combined. **Bottom right:** Absolute difference between mean total persistence of 1-bars for clean and poisoned datasets.

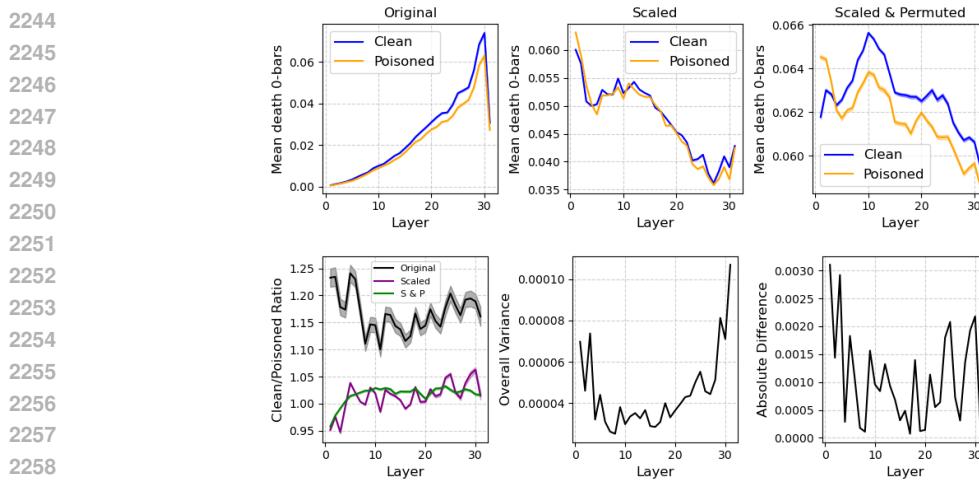


Figure 58: **Local analysis of consecutive layers for the mean deaths of 0-bars for the Phi3 model.** **Top:** Comparisons of the average of mean deaths of 0-bars across 1000 samples for Phi3 model for original (raw), scaled (normalized) and scaled & permuted activation data. **Bottom left:** Ratios of average mean deaths of 0-bars between clean and poisoned datasets for original, scaled and scaled & permuted activations. **Bottom center:** Overall variance of mean deaths of 0-bars for clean and poisoned datasets combined. **Bottom right:** Absolute difference between mean total persistence of 1-bars for clean and poisoned datasets.

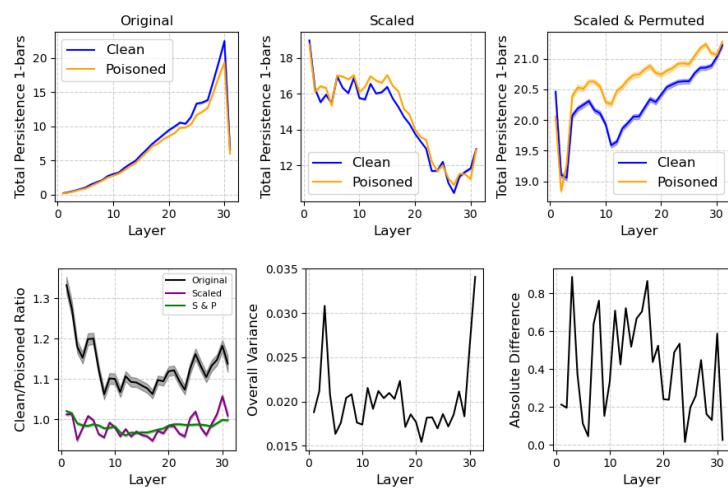


Figure 59: **Local analysis of consecutive layers for the total persistence of 1-bars for the Phi3 model.** **Top:** Comparisons of the average of total persistence of 1-bars across 1000 samples for Phi3 model for original (raw), scaled (normalized) and scaled & permuted activation data. **Bottom left:** Ratios of average total persistence of 1-bars between clean and poisoned datasets for original, scaled and scaled & permuted activations. **Bottom center:** Overall variance of total persistence of 1-bars for clean and poisoned datasets combined. **Bottom right:** Absolute difference between mean total persistence of 1-bars for clean and poisoned datasets.

D.2.3 LLAMA3 8B MODEL

We present the results for the LLAMA3 8B model. Figures 60 and 61 both show a decreasing trend in the ratio between clean and poisoned activations, whether measured by the mean death of 0-bars or the total persistence of 1-bars respectively. Notably, this ratio crosses 1 around layer 15 or later. Moreover, we continue to observe distinct differences between clean and poisoned activations across both meaningful variants.

D.2.4 PEAK ANALYSIS FOR PHI3 AND LLAMA3

Table 7: **Peak analysis.** Precision@ k for $k=1, 3$, and 5 largest peaks in total variance, and their precision in detecting the largest peaks in absolute difference between the two classes. Spearman's rank correlation (r) is reported in the last column. *, ** correspond to p -values $<.05$ and $.01$, respectively.

<i>Phi3</i>	$p@1$	$p@3$	$p@5$	r
Total Persistence 0-bars	0	.33	.2	0.69**
Total Persistence 1-bars	1.0	.67*	.8**	0.50**
Mean Birth 1-bars	0	.33	.6*	0.66**
Mean Death 1-bars	0	.67*	.8**	0.35
<i>LLAMA3</i>	$p@1$	$p@3$	$p@5$	r
Total Persistence 0-bars	1.0*	.33	.4	0.60**
Total Persistence 1-bars	1.0*	.67	.8**	0.93**
Mean Birth 1-bars	1.0*	.67	.6	0.60**
Mean Death 1-bars	1.0*	.67*	.8*	0.93**

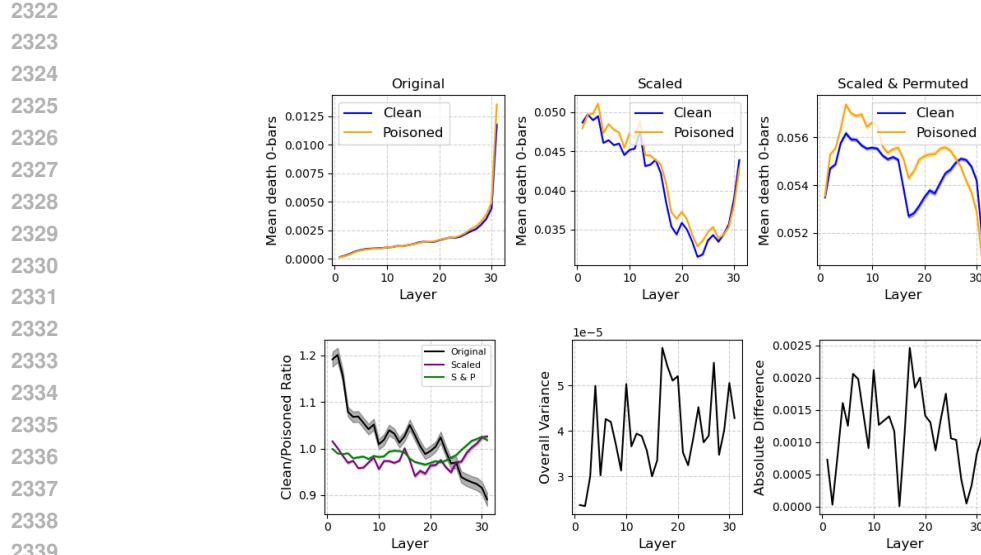


Figure 60: **Local analysis of consecutive layers for the mean deaths of 0-bars for the LLaMA3 8B model.** **Top:** Comparisons of the average of mean deaths of 0-bars across 1000 samples for LLaMA3 8B model for original (raw), scaled (normalized) and scaled & permuted activation data. **Bottom left:** Ratios of average mean deaths of 0-bars between clean and poisoned datasets for original, scaled and scaled & permuted activations. **Bottom center:** Overall variance of mean deaths of 0-bars for clean and poisoned datasets combined. **Bottom right:** Absolute difference between mean total persistence of 1-bars for clean and poisoned datasets.

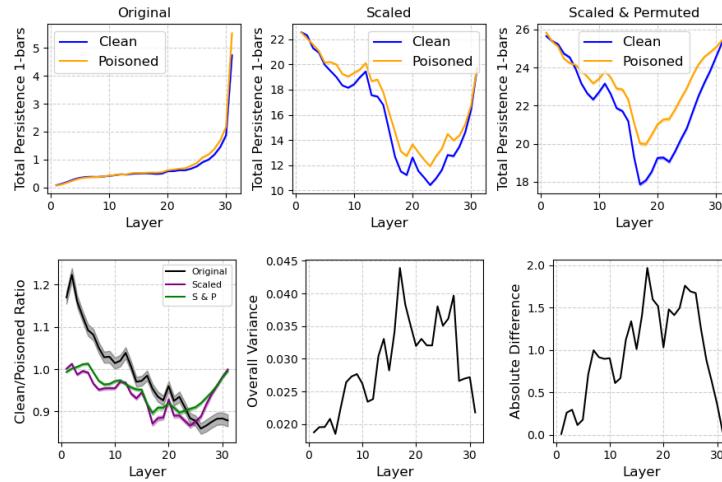
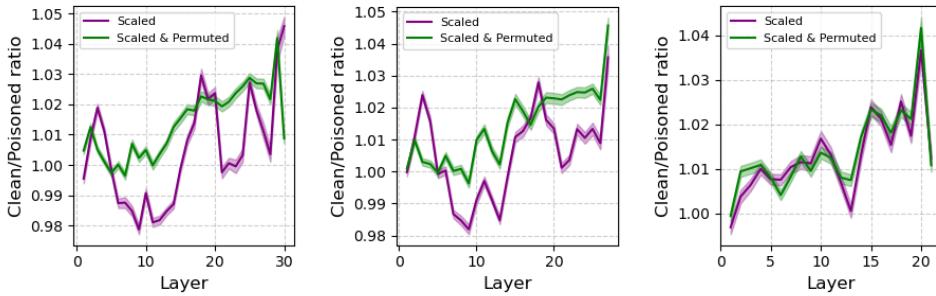
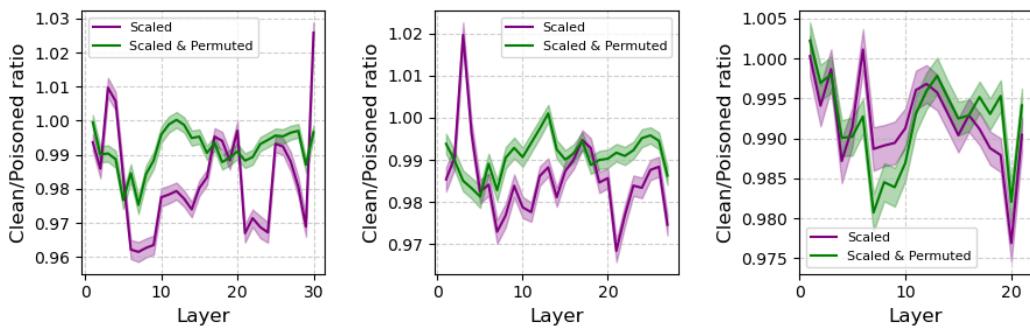


Figure 61: **Local analysis of consecutive layers for the total persistence of 1-bars for the LLaMA3 8B model.** **Top:** Comparisons of the average of total persistence of 1-bars across 1000 samples for the LLaMA3 8B model for original (raw), scaled (normalized) and scaled & permuted activation data. **Bottom left:** Ratios of average total persistence of 1-bars between clean and poisoned datasets for original, scaled and scaled & permuted activations. **Bottom center:** Overall variance of total persistence of 1-bars for clean and poisoned datasets combined. **Bottom right:** Absolute difference between mean total persistence of 1-bars for clean and poisoned datasets.

2376 D.2.5 NON-CONSECUTIVE LAYER ANALYSIS
23772389 Figure 62: **Local analysis of non-consecutive layers for mean death of 0-bars.** Comparison of
2390 ratios between mean death times of 0-bars for clean and poisoned datasets when considering topology
2391 pairs of layers at 1 (left), 3 (middle), and 10 (right) intervals apart.
23922393 Continuing the analysis of non-consecutive layers, we examine how increasing layer separation af-
2394 fects the contrast between clean and poisoned activations across different barcode summaries. Figure
2395 62 shows the ratio of the mean death times of 0-bars, while Figure 63 shows the ratio of the total
2396 persistence of 1-bars. For both summaries, we observe that at a 10-layer separation, the similarity
2397 between the ratios for the scaled and control settings becomes more pronounced compared to sepa-
2398 rations of 1 or 3 layers, indicating a reduced distinction between clean and poisoned interactions at
2399 larger layer intervals.
24002412 Figure 63: **Local analysis of non-consecutive layers on total persistence of 1-bars for the Mistral
2413 model.** Comparison of the ratios between total persistence of 1-bars for clean and poisoned datasets
2414 when considering the topology of interactions between pairs of layers at 1 (left), 3 (middle), and 10
2415 (right) intervals apart.
24162418 E SANDBAGGED REPRESENTATION DATA COLLECTION
24192420 To study sandbagging, we follow the “password-locking” paradigm introduced in prior work (Green-
2421 blatt et al., 2024; van der Weij et al., 2024), wherein a model is fine-tuned to hide certain behaviors
2422 or capabilities unless presented with a predefined password in the prompt. We leverage the the syn-
2423 synthetic data generation process and fine-tuning procedure detailed in Section 3 and 4 of van der Weij
2424 et al. (2024). For clarity of our experimental setup, we summarize it briefly here. We extend it to
2425 extract final token hidden representations from the model under both elicited and elicited conditions.
24262427 1. We generate a synthetic dataset of 3,347 evaluation questions based on the the Weapons of
2428 Mass Destruction Proxy (WMDP) benchmark (Li et al., 2024) using GPT-4 (Perez et al.,
2429 2022) to serve as a proxy measurement for hazardous knowledge in biology, chemistry, and
cybersecurity. This process protects against data leakage by never including actual WMDP

2430 items in the prompt and filters out any questions the base models cannot solve to ensure
 2431 that the fine-tuned model genuinely has the underlying capability.
 2432

- 2433 2. Using this dataset and framework, we fine-tuned Mistral 7B and LLaMA3 8B with
 2434 LoRA (Hu et al., 2021). During this fine-tuning process, each WMDP-like evaluation
 2435 question appears twice: once with the password, where the model is fully elicited and is
 2436 provided with the correct answer and second where the model is password is absent or
 2437 locked and the model is provided with an incorrect answer.
- 2438 3. Using the held-out validation set of generated WMDP-like questions, we recorded the
 2439 final-token representation from each layer of the fine-tuned model during its forward pass.
 2440 Specifically, for each prompt x , we collect:

$$\begin{aligned} \text{Act}_\ell^{(\text{locked})}(x) &= \text{Hidden}_\ell(x_{\text{locked}})[-1], \\ \text{Act}_\ell^{(\text{elicited})}(x) &= \text{Hidden}_\ell(x_{\text{elicited}})[-1], \end{aligned}$$

2441 We then apply the global layer-wise topological analysis outlined in Section 3.2 to this representa-
 2442 tion data to study how the model’s latent space differs between elicited (no password) and elicited
 2443 (correct password) states.

2444 F GLOBAL PH PIPELINE AND RESOURCE CONSTRAINTS

2445 All Vietoris–Rips barcodes are computed with the GPU build of RIPSER++ on a single node
 2446 equipped with four NVIDIA A100 GPUs (80 GB each). Per layer we draw $K = 128$ independent
 2447 subsamples of $k = 4096$ activation vectors (64 clean, 64 adversarial). Subsamples are dispatched
 2448 round-robin to two concurrent RIPSER++ kernels per GPU.

2449 **Memory Footprint.** A complete $k = 4096$ complex truncated at dimension 2 occupies only $2.1 \pm$
 2450 0.4 GB of device memory (95th percentile < 2.8 GB; Tab. 8), leaving a wide margin inside the 80
 2451 GB budget, even when two barcodes are built concurrently on the same GPU.

2452 **Throughput.** The mean walltime per barcode is 36.8 ± 0.6 s (95th percentile < 40 s). With four
 2453 GPUs processing eight barcodes in parallel, a full layer (128 barcodes) finishes in ≈ 10 min and the
 2454 five-layer suite of one model in ≈ 50 min. Running the six models serially therefore completes in
 2455 about five hours on a single $4 \times$ A100 node—comfortably within the nightly maintenance window.

2456 **Table 8: Computational Costs.** Per-barcode wall-clock time and GPU-memory consumption ($k =$
 2457 4096, dimension ≤ 2). Statistics over $K = 64$ barcodes drawn from the LLaMA-3 8B activations.

2458 Layer	2459 time $\mu \pm \sigma$ [s] (p95)	2460 memory $\mu \pm \sigma$ [GB]
2461 1	2462 38.34 ± 0.76 (39.6)	2463 2.27 ± 0.34
2464 8	2465 36.79 ± 0.70 (38.0)	2466 2.12 ± 0.39
2467 16	2468 36.68 ± 0.45 (37.4)	2469 2.13 ± 0.30
2470 24	2471 36.63 ± 0.71 (38.1)	2472 2.03 ± 0.33
2473 32	2474 36.62 ± 0.54 (37.4)	2475 2.20 ± 0.344

2476 After choosing $K = 64$, we recomputed the Monte-Carlo variance σ_f^2 from the raw, unscaled feature
 2477 values. For 39 out of 41 statistics, we found $\sigma_f < 0.10$, which would put the standard error $\text{SE} =$
 2478 σ_f/\sqrt{K} below $\Delta^*/2 = 0.025$ with only $K \leq 20$. The outlier features were those which aggregate
 2479 counts—total persistence of H_0 and the raw count of H_1 bars—and need to be transformed for
 2480 their variance to be directly comparable to the other features. These do not affect the classifier as
 2481 the features are scaled prior to training and also do not appear as the most informative features for
 2482 distinguishing between clean and posioned PH-derived features. We conservatively choose $K =$
 2483 128 and the resulting ROC–AUCs on the logistic regression model trained only on barcodes are
 2484 perfect (1.00 ± 0.00), confirming that the subsampling budget is more than sufficient to validate the
 2485 significance of the features derived from PH, while balancing GPU memory and computation time.

2484 G ROBUSTNESS TO ADAPTIVE ATTACKS

2486 We tested the robustness of our identified topological features against real-world attack examples
 2487 from Microsoft’s large-scale `LLMail-Inject` dataset (Abdelnabi et al., 2025) which includes
 2488 XPIA attack examples and information on their efficacy against four distinct defenses and a fifth
 2489 setup involving a stacked arrangement of all four. All attack examples are sourced from a public
 2490 red teaming competition. These attacks are particularly relevant as they include examples that were
 2491 specifically designed to evade the `TASKTRACKER` activation-based defense (Abdelnabi et al., 2024),
 2492 the source of our primary XPIA data. Thus, applying our topological framework to these attack
 2493 examples is a particularly strong test of whether our topological features represent a fundamental
 2494 shift in the shape and structure of LLM latent space, or whether it is an artifact that can be easily
 2495 subverted.

2496 **Methodology.** As the `LLMail-Inject` dataset does not contain paired clean examples,
 2497 we synthetically generated and manually verified 100 clean counterparts using
 2498 `Phi-3-medium-4k-instruct`. The small sample size was chosen to ensure that we could
 2499 verify the quality of the synthetically generated clean examples. We then generated last-token ac-
 2500 tivation data from layer 16 of `Mistral-7B-Instruct-v0.2` for both the clean and adaptive
 2501 attack inputs and computed the corresponding barcode summary statistics.

2503 **Results.** The topological features of the activation spaces under these adaptive attacks show a
 2504 clear distinction from the clean examples, as summarized in Table 9. The results show a clear shift
 2505 towards a simpler, more dispersed topology under adversarial influence.

2506 **Table 9: PH barcode statistics for clean vs. adaptive attack.** Comparison of barcode summary
 2507 statistics of clean vs. adaptive attack activations from the `LLMail-Inject` dataset on `Mistral-7B`
 2508 (Layer 16).

2510 PH Feature	2511 Clean	2511 Attack (Adaptive)
2512 H0 Count	2513 64	2513 50
2513 H0 Death Time (Median)	2514 56.07	2514 58.85
2514 H0 Death Time (Mean \pm SD)	2515 55.43 ± 21.23	2515 51.73 ± 28.38
2515 H1 Count (Loops)	2516 12	2516 4
2516 H1 Birth Time (Median)	2517 69.36	2517 84.92
2517 H1 Death Time (Median)	2518 71.59	2518 86.20

- 2519 • **Fewer, Larger-Scale Loops:** The number of 1-dimensional loops (H1 bars) decreases
 2520 significantly from 12 in the clean data to just 4 in the adversarial data. Furthermore, their
 2521 median birth time increases from ≈ 69 to ≈ 85 , indicating that the remaining topological
 2522 features are formed at much larger scales.
- 2523 • **More Dispersed Clusters:** The median H0 death time increases, supporting the hypothesis
 2524 of greater dispersion. We note that the *mean* H0 death time appears to contradict this
 2525 trend (decreasing from 55.43 to 51.73). This is due to a small subset of components in
 2526 the adversarial data merging at very low scales. The median, being more robust to such
 2527 outliers, better captures the overall geometric shift towards a more spread-out structure.

2529 These findings further suggest that the topological compression signature we identify across models
 2530 and across XPIA and sandbagging attack conditions reflects a fundamental property of adversarial
 2531 influence, as the signature remains detectable even against attacks optimized to evade XPIA de-
 2532 fenses, including but not limited to the `TASKTRACKER` activation-based defense.