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ABSTRACT

Existing interpretability methods for Large Language Models (LLMs) often fall
short by focusing on linear directions or isolated features, overlooking the high-
dimensional, nonlinear, and relational geometry within model representations.
This study focuses on how adversarial inputs systematically affect the internal
representation spaces of LLMs, a topic which remains poorly understood. We
propose the application of persistent homology (PH) to measure and understand
the geometry and topology of the representation space when the model is under ex-
ternal adversarial influence. Specifically, we use PH to systematically interpret six
state-of-the-art models under two distinct adversarial conditions—indirect prompt
injection and backdoor fine-tuning—and uncover a consistent topological signa-
ture of adversarial influence. Across architectures and model sizes, adversarial
inputs induce “topological compression”, where the latent space becomes struc-
turally simpler, collapsing from varied, compact, small-scale features into fewer,
dominant, and more dispersed large-scale ones. This topological signature is sta-
tistically robust across layers, highly discriminative, and provides interpretable
insights into how adversarial effects emerge and propagate. By quantifying the
shape of activations and neuron-level information flow, our architecture-agnostic
framework reveals fundamental invariants of representational change, offering a
complementary perspective to existing interpretability methods.

1 INTRODUCTION

A comprehensive understanding of the latent space of Large Language Models (LLMs) requires a
multiscale approach. LLM representations form a conceptual hierarchy, with local-scale individ-
ual neurons encoding simple features such as punctuation (Tenney et al., 2019; Hewitt & Man-
ning, 2019), intermediate-scale circuits forming contextual associations (Meng et al., 2023), and
global-scale activation patterns representing more abstract concepts (Burns et al., 2024). However,
most empirical work assumes a linear structure, neglecting the complex geometry of these high-
dimensional activation spaces (Brüel-Gabrielsson et al., 2020; Engels et al., 2025). This oversight
creates a practical security gap in real-world models, allowing diverse attacks to exploit nonlinear
features and bypass the prevalent defenses that rely on linear classifiers (Kirch et al., 2024).

In this paper, we address this gap by studying LLM hidden states using persistent homology (PH),
which is a technique from topological data analysis (TDA) that captures the multi-scale shape of
data (Chazal & Michel, 2021). PH is uniquely suited for this task because it provides a coordinate-
free summary of relational geometry that is known to be robust to noise (Cohen-Steiner et al., 2007).
Unlike methods that project high-dimensional representations onto lower-dimensional subspaces,
PH preserves multi-scale structural information through a filtration, capturing both local clustering
patterns and global topological features simultaneously. These properties enable direct and meaning-
ful comparisons of latent space structure across different models, input distributions, and fine-tuning
stages. This information is quantified and encoded in a barcode—a summary statistic of the evo-
lution of topological features. As shown in Figure 1, these barcodes elucidate a clear distinction
between normal and adversarial activations, motivating our deeper investigation.
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Figure 1: Example barcodes from clean vs. poisoned activations. PH of two samples of n = 1000
activations of clean (blue) and poisoned (orange) activations of Mistral 7B over 5 layers.

Our contributions can be summarized as follows.

• We present a comprehensive study of six state-of-the-art models under two fundamentally
different attack modes revealing that adversarial inputs induce consistent topological be-
havior within the LLM latent space. Specifically, adversarial inputs cause latent representa-
tions to become more dispersed, characterized by fewer but more topologically significant
large-scale features. In contrast, normal inputs produce a greater diversity of compact,
small-scale structures.

• We show that this phenomenon holds across models ranging from 7B to 70B parameters,
suggesting that adversarial triggers systematically reshape the representation space in a
consistent and predictable manner that is independent of specific architectures or training
procedures.

• We introduce a novel, neuron-level PH analysis confirms these geometric shifts at a finer
scale, revealing a phase transition in the topological complexity of the information flow.

While standard linear classifiers can also separate normal and adversarial states with high accuracy,
our topological framework provides an interpretable, geometric explanation for why this separability
exists. These findings establish PH as a powerful complementary tool for interpretability and support
the view that the success of linear probes may stem from their approximation of more complex,
underlying topological structures (Engels et al., 2025; Park et al., 2024; Yang et al., 2024).

2 BACKGROUND

In this section, we outline PH and the barcode summaries we study; we also provide details on the
specific types of adversarial influence we investigate.

2.1 PERSISTENT HOMOLOGY AND PERSISTENCE BARCODES

PH is a powerful methodology to quantify the “shape” and “size” of data, which can be applied to
diverse input data types, is robust to noise perturbations, captures higher-order relational information
and has an inherently interpretable nature. More precisely, PH captures topological features, e.g.,
connected components, tunnels and loops, or cavities and bubbles, present at different scales in our
data.

For our activation data, i.e., point clouds X ⊂ RD, with D the hidden dimension of the model
(typically, D = 4096) and where each point is the latent representation of the last token in a prompt
in a given layer; the PH pipeline proceeds as follows. The first step is to construct a dynamic,
geometric representation of our point cloud. A classical construction involves the Vietoris–Rips
complex, which for a scale parameter ϵ > 0 is obtained from the ϵ-neighborhood graph, that is,
the graph where we connect any two points at distance less than ϵ. The Vietoris–Rips complex
goes beyond the pairwise interactions in the ϵ-neighborhood graph including higher-order relational
information, namely, interactions between more than two points at the same time, known as sim-
plices: 0-simplices correspond to points, 1-simplices to edges, 2-simplices to triangles, 3-simplices
to tetrahedra, and so on. We add a simplex between a subset of 3 or more points to the Vietoris–Rips
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complex whenever they are all pairwise connected, for instance, we add a triangle if three points in
the point cloud are connected in the ϵ-neighborhood graph. This completes the Vietoris–Rips com-
plex construction. Considering all scale parameters ϵ at the same time, we obtain the Vietoris–Rips
filtration: a growing family of geometric spaces where we connect points and add simplices as the
parameter ϵ grows.

PH then leverages algebraic topology to produce the persistence barcode, a collection of bars cap-
turing how the topological features are formed and disappear in the filtration as the scale parameter
ϵ increases. The barcode is stratified in different dimensions, here we focus in dimensions 0 and
1. Bars in the 0-dimensional barcode (or 0-bars) correspond to connected components: at ϵ = 0
there are as many bars in the barcode as points in the data, with bars terminating as point get con-
nected in the ϵ-graph. 1-bars represent loops or cycles in the corresponding Vietoris–Rips complex:
a bar starts whenever we have added enough edges to enclose a non-trivial hole, and ends when the
addition of triangles covers said hole. Usually, the starting point is called the birth and the ending
point the death of the bar. An illustrative example of the PH pipeline in a simple point cloud and
the corresponding barcode can be found in Figure 2. See Appendix A.1 for more details on the PH
construction.

Figure 2: Left: Vietoris–Rips filtration constructed from a sample of 50 points over 2 circles with
noise, at four values of the distance threshold ϵ ∈ [0,∞). Right: corresponding persistence barcode
for the 0- and 1-bars, with vertical lines corresponding to the thresholds displayed on the left.

2.2 PERSISTENT HOMOLOGY IN MACHINE LEARNING: BARCODE SUMMARIES

Persistence barcodes cannot be directly used as input features in a ML model since they do not reside
in a Euclidean space (Turner et al., 2014). We circumvent this issue by studying summary statistics
of barcodes (Ali et al., 2023)—such as the mean, standard deviation, median, or quartiles—of the
empirical distributions of the births, deaths, and persistences (lengths) of the bars in a given barcode.
We can also study the empirical distribution of the ratios between births and deaths, which have the
advantage of being scale invariant; the number of bars, providing a notion of topological diversity;
the total persistence, which is given by the sum of the lengths of all bars in the barcode and captures
both the number of topological features and their size; and the persistent entropy (Chintakunta et al.,
2015; Rucco et al., 2016) of each barcode, which intuitively measures the heterogeneity within the
lengths of the bars in the barcode. In all, for each barcode, we compute a 41-dimensional descriptive
feature vector that can be used in machine learning tasks, which we call the barcode summary.

2.3 ADVERSARIAL INFLUENCE ON LLMS

The use of PH to analyze activation space is not new. Naitzat et al. (2020) demonstrated that well-
trained neural networks tend to simplify input-data topology to facilitate class separation. Sub-
sequent work (Wheeler et al., 2021) employed persistence landscapes to provide a more detailed
characterization of activation-space evolution. PH has also been applied to the study of trojaned
networks by computing barcodes from simplicial complexes constructed via activation correlations,
and it has seen increasing use in the analysis of LLMs (see Uchendu & Le (2024) for a survey of
TDA in NLP). To the best of our knowledge, however, our work is the first to connect these research
threads and to demonstrate the utility of PH as a practical tool for geometric and quantitative insights
into LLM representation spaces under adversarial influence. In order to test the generality of our
approach, we quantify and interpret the effects of two systematically different attack modes, both of
which carry a high security impact in practice: Indirect Prompt Injection (XPIA), where attackers
embed hidden instructions in retrieved content to override a user’s original prompt (Greshake et al.,
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2023; Rehberger, 2024); and sandbagging via backdoor fine-tuning, which involves deliberately
training a model to suppress its capabilities until a secret trigger is provided (Greenblatt et al., 2024;
van der Weij et al., 2024). These techniques target fundamentally distinct vulnerabilities: XPIA ex-
ploits the model’s core inability to distinguish data from instructions (Zverev et al., 2025), whereas
sandbagging affects the fine-tuning process.

3 EXPERIMENTAL DESIGN

In this section we overview details of the data we study, and outline our global and local studies
using persistent homology.

3.1 DATA AND REPRESENTATIONS

We compute the barcodes of point clouds in RD, where each point corresponds to the latent rep-
resentation of the last token of a given input in a given layer, or of a 2D embedding described in
Section 3.3. The choice of the last token is justified by its role in encoding the model’s aggregated
interpretation of the input context (Zou et al., 2023).

TaskTracker (Clean vs. Poisoned). The TASKTRACKER (Abdelnabi et al., 2024) test set comprises
> 62k examples, where each example contains the activation values for an input that is either clean
or poisoned. Each input combines a user prompt with a retrieved data block. In poisoned cases, the
data block contains an injected secondary task from several standard safety and security benchmarks,
including BEAVERTRAILS (Ji et al., 2023), HARMBENCH (Mazeika et al., 2024), and JAILBREAK-
BENCH (Chao et al., 2024). These attacks are applied across diverse task prompts, such as coding
challenges and question-answering, to create realistic test cases. We analyze representation data
from six instruction tuned LLMs; Phi3-mini-4k (3.8B parameters) and Phi3-medium-128k (14B pa-
rameters) (Abdin et al., 2024), Mistral 7B (Jiang et al., 2023), LLaMA3 8B and 70B (Grattafiori
et al., 2024), and Mixtral-8x7B (Jiang et al., 2024).

Sandbagged Models (Locked vs. Elicited). We fine-tuned Mistral 7B and LLaMA3 8B on a corpus
of 3,347 synthetic questions inspired by the WMDP benchmark (Li et al., 2024) using LoRA (Hu
et al., 2021). Following the methodology of van der Weij et al. (2024), we created models with
two operational modes: locked (default state) and elicited (activated by a specific password in the
prompt). We extracted final-token representations from each layer during inference with evaluation
prompts in both states. Further implementation details are provided in Appendix E.

Subsampling
Obtain K = 64 subsamples of k = 4096

normal representations; and K = 64 subsam-
ples of k = 4096 adversarial representations

Preprocessing and Featurization
• Build Vietoris–Rips filtration
• Compute barcodes
• Vectorize barcodes
• Eliminate correlated features

PCA + CCA Logistic + Shapley

Interpret Results

Figure 3: Pipeline for layer-wise topological
analysis.

Layer Selection
Each layer has D elements. Use pairs of:

Consecutive Non-Consecutive

Data Sampling
• Sample n = 1000 of each from clean and

poisoned activations
• Pair across layers
• Preprocess 2×D features

Original / Norm Norm + Permute

PH & Summary

Figure 4: Pipeline for local analysis.

3.2 GLOBAL LAYER-WISE ANALYSIS

This analysis establishes and explains a consistent topological distinction between normal and ad-
versarial representations, following the pipeline in Figure 3. We used RIPSER++ (Bauer, 2021;
Zhang et al., 2020) to compute barcodes, leveraging subsampling techniques, both to reduce the
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computational cost of PH and to enable statistically robust inference. Subsampling approaches in
PH are theoretically grounded, as under mild sampling models, persistence diagrams estimated from
point clouds converge to the population diagrams with guaranteed rates (Chazal et al., 2015; 2014).
For each model layer, we drew K = 64 subsamples of k = 4096 normal representations; and
K = 64 subsamples of k = 4096 adversarial representations—see Appendix C.2 for ablations. We
vectorized the corresponding barcodes into 41-dimensional barcode summaries (cf. Section 2.2),
and performed the analysis in Figure 3, see results and further details in Section 4.1.

3.3 LOCAL INFORMATION FLOW ANALYSIS

This analysis quantifies neuron-level information flow by tracking topological changes in activation
patterns between layers. For each pair of layers ℓ and ℓ′, we construct a 2D point cloud from
their corresponding D-dimensional activation vectors. Each of the D points in this embedding has
coordinates (vℓi , v

ℓ′

i ), representing the activation of the ith neuron in layer ℓ and layer ℓ′, respectively.

The rationale for this embedding is that activations between consecutive layers are empirically
highly correlated, causing points to cluster near the identity line y = x, as shown in Figure 5a.
Significant transformations in network processing are reflected in neurons whose activations deviate
from this line, producing topological structures (e.g., loops) that PH captures and quantifies. We
apply this analysis to 1000 clean and 1000 adversarial activation samples to compare the resulting
topological signatures, which are presented in Section 4.2.

(a) (b) (c)

Figure 5: (a): Example 2D embedding showing correlation of activations in consecutive layers. (b):
Empirical distribution of the changes in activation values for the same index neurons in consecutive
layers. (c): Cycle corresponding to a long 1-bar in the PH barcode of the point cloud in (a).

4 RESULTS

We now present the implementation results of our proposed analyses to the data described above.

4.1 GLOBAL ANALYSIS: THE SHAPE OF ADVERSARIAL INFLUENCE

Our global analysis, as outlined in Figure 3, reveals a consistent and highly discriminative topolog-
ical signature of adversarial influence across all six LLMs. Specifically, we show that adversarial
inputs induce a “topological compression” of the latent space. Here, we present the results of quan-
tifying and interpreting the effect of XPIA on Mistral 7B’s latent space. Results for the other five
models are relegated to Appendix C.3. Results for the Mistral 7B and LLaMA3-7B models subjected
to the backdoor finetuning attack for sandbagging are given in Appendix C.4.

Cross-Correlation Analysis of Barcode Summaries. In Figure 6, a growing block of highly cor-
related features appears in the cross-correlation matrix of the 41 features of the barcode summaries.
To reduce redundancy and prevent overfitting, we removed highly correlated variables, ensuring an
efficient and informative representation for more parsimonious models in subsequent analyses. We
discarded all features that have a correlation higher than a threshold of 0.5 with at least one feature
present in the analysis, resulting in the features in Table 6. We refer to this data set as the pruned
barcode summaries. The first feature appearing in this block of highly correlated features is the
mean deaths of the 0-bars (the average of their ending points), which is retained in the pruned bar-
code summaries as representative of the block. However, we remark that the prominence of this
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statistic in the results of our analysis does not imply a lack of significance for higher-order topolog-
ical features (specifically, 1-bars). Empirically, there is a strong correlation between statistics of the
0- and 1-bars in our results; theoretically, it is known that the deaths of 0-bars are closely linked to
the births of 1-bars (which has been explored using Morse theory; see Adler & Taylor (2011)).

Figure 6: Cross-correlation matrices for the barcode summaries for clean vs. poisoned activa-
tions.

Geometric Separation of Latent States. The projection of the pruned barcode summaries over their
first two principal components (Figure 7) yields a clear separation between subsamples from normal
and adversarial modes across layers. This is consistent with the intuition presented in Figure 1,
where a single barcode of a clean sample with n = 1000 activations (corresponding to a point in the
PCA plot) was visibly different than the barcode of a poisoned sample with same number of points.
This separation signals a difference in topology between clean and poisoned subsamples; we now
seek to characterize such distinction, and to test whether it is consistent across layers and models.

To that end, we investigated the importance of particular features in the PCA results via a cross
correlation analysis (CCA) between the pruned barcode summaries and the principal components
of the PCA. CCA is a statistical method that quantifies linear relationships between two multivari-
ate datasets by finding pairs of canonical variables with maximal correlation. The loadings are the
contributions of individual features to these canonical variables, measuring their importance in cap-
turing the relationship. We found that mean deaths of the 0-bars ranked first in all layers, and that
the number of 1-bars appeared as a significant statistic as well (see Figure 18).

Figure 7: PCA of pruned barcode summaries of clean vs. poisoned activations. Clear distinction
appears in the two first PC projections from the PCA of the pruned barcode summaries for layers 1,
8, 16, 24, and 32. The explained variances are 0.59, 0.49, 0.52, 0.96 and 0.83, respectively.

Discriminative Power of Topological Features. We tested the power of the pruned barcode sum-
maries in distinguishing normal and adversarial subsamples by training a logistic regression with a
70/30 split between train and test. We obtained perfect accuracy and AUC–ROC on the test data,
and 5-fold cross validation over the training data (Figure 8). As a baseline comparison, we trained
a linear discriminant analysis (LDA), a linear support vector machine (SVM), and a logistic regres-
sion to distinguish 1000 clean and 1000 poisoned activations, raw and after reducing dimensionality
using a sparse autoencoder (AE) with hidden dimension 128; see Table 1 for results. We found that
the barcode summaries outperform these methods in general, particularly for early layers. However,
we emphasize that the information that they encode must be understood as complementary to that of
the linear methods above, and that our true interest in the outstanding predictive power of barcode
summaries resides in the fact that feature importance methods applied to the trained logistic regres-
sion allow us to interpret the differences in topology between clean and poisoned data, which is our
ultimate goal.

We used Shapley (or SHAP) values to interpret the excellent performance of the regression model.
Shapley values quantify the contribution (with sign) of each feature to the prediction of the model for
a given input. Our analysis revealed that the mean of 0-bar deaths and the number of 1-bars strongly
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Table 1: Comparison of predictive power with linear methods. Accuracy, with a 70/30 train/test
split, of a linear discriminant analysis (LDA), a linear SVM and a logistic regression (LR) trained to
distinguish 1000 raw clean activations from 1000 raw poisoned activations, with or without reducing
the dimensionality of the data using a sparse autoencoder (SAE); and our method using PH.

Layer LDA LDA (SAE) SVM SVM (SAE) LR LR (SAE) PH
Layer 1 0.995 0.995 0.8875 0.7400 0.8700 0.7425 1.0000
Layer 8 1.000 0.998 1.0000 0.6425 0.9950 0.6225 1.0000
Layer 16 1.000 0.9975 1.0000 0.8125 1.0000 0.6725 1.0000
Layer 24 1.000 0.9975 1.0000 0.9975 1.0000 0.9600 1.0000
Layer 32 1.000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

influence predictions, exhibiting a clear dichotomous effect: points with smaller mean death in their
0-bars and bigger number of 1-bars are typically classified as clean, whereas points with bigger
mean death of their 0-bars and smaller number of 1-bars are classified as poisoned.

Figure 8: Logistic regression for clean vs. poisoned activations trained on a 70/30 train/test split
of the pruned barcode summaries, plotted on the projection onto the two first PCs. Accuracy and
AUC–ROC on the test data and 5-fold cross validation on train data are presented for each model.

The Signature of Topological Compression. Interpreting the distributions of the barcode sum-
maries for clean vs. poisoned data reveals that adversarial conditions typically yield fewer 1-bars
(loops) forming at later scales, yet persisting longer (see Figure 20). Conversely, the non-adversarial
conditions tend to form earlier loops with more uniform lifetimes (higher persistent entropy). This
pattern aligns with the Shapley value results (Figure 19): lower mean death times of 0-bars (i.e.,
more compact point clouds) are associated with predictions of “clean”, while higher values (more
spread-out clouds) shift predictions toward “poisoned”. Similarly, a lower number of 1-bars tends
to indicate “poisoned”, whereas a higher count suggests “clean”. Thus, global topological features
point to a consistent distortion: adversarial states “compress” the representation space in a way
that results in larger loops in fewer directions, while non-adversarial states exhibit many smaller
loops with a more evenly distributed, higher-entropy shape. This signature is robust, persisting even
against adaptive attacks from the LLMail-Inject public red teaming dataset that were designed
to evade activation-based defenses (see Appendix G). A more detailed analysis across all models,
layers, and adversarial conditions is provided in Appendix C and summarized in Table 2.

Local Dispersion Ratio Across Poisoned Conditions. To quantify how poisoning alters localized
geometry in hidden-layer representation space, we use the local dispersion ratio (LDR). For each
final token’s activation difference vector we identify its k nearest neighbors in each layer and per-
form PCA on those points. Let λ1 ≥ · · · ≥ λD′ be the resulting eigenvalues. The dispersion ratio

is then defined as
∑D′

j=2 λj

λ1+ϵ , where ϵ prevents division by zero. A higher LDR indicates that variance
is more evenly spread among secondary directions, whereas a lower LDR implies most variance lies
in a single dominant direction. Appendix B.3 further stratifies poisoned conditions into executed,
refused, and ignored subclasses and shows that executed and ignored attacks exhibit elevated LDR
in mid-layers relative to clean prompts. This indicates that the model allocates additional represen-
tational capacity to elaborating the injected instructions, whereas refused attacks are mapped into a
more compressed, low-dispersion region, directly linking layer-wise geometric changes to task-level
model behavior. Figure 9 shows that LDR differences remain tightly centered around zero under
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Table 2: Summary of results for the global layerwise topological analysis across models and attacks.

Clean vs. Poisoned Locked vs. Elicited

Models evaluated Phi3-mini-4k (3.8B), Phi3-medium-
128k (14B), Mistral 7B, LLaMA3 8B,
LLaMA3 70B, Mixtral-8×7B.

Mistral 7B, LLaMA3 8B.

Cross-correlation Compact block of highly correlated fea-
tures across layers.

Correlations weaker overall, especially
in late layers.

PCA separation Clear separation across layers & mod-
els.

Clear separation across layers & mod-
els.

Logistic
regression

Perfect accuracy except LLaMA3-8B
(0.99 at layers 1, 8, 16).

Perfect accuracy except Mistral-7B
(0.99 at layer 16) and LLaMA3-8B
(0.97–0.99 at layers 24, 32).

Mean death of
0-bars

SHAP: low values → normal, high →
adversarial. Reversed only at layer
1 (all models) and layer 2 (LLaMA3-
70B)

Early layers: low → adversarial. Layer
16: trend shifts. Late layers: reversed.

Mean persistence
of 1-bars

Normal samples lower; Mixtral-8×7B
flips this in the last layer.

Mistral-7B shifts at layer 16 (early: nor-
mal higher, late: lower). LLaMA3-7B
similar early trend; late layers inconclu-
sive.

Number of 1-bars Generally lower for adversarial sam-
ples, except LLaMA3-70B.

Mistral-7B: no clear pattern. LLaMA3-
7B: adversarial larger in later layers.

Topological
compression

Appears early; LLaMA3-70B com-
presses without increased diversity.

Appears later; heterogeneous patterns
(e.g., larger loops in Mistral-7B, more
loops in LLaMA3-7B).

Clean vs. Clean and Poisoned vs. Poisoned resampling, confirming negligible within-class variabil-
ity. In contrast, Mixed vs. Mixed splits exhibit systematic deviations that mirror the clean–poisoned
separation observed in Figures 11 and 12 of Appendix B.3, indicating that LDR captures genuine
geometric differences rather than artifacts of sampling noise or random partitioning.

Figure 9: Ablation of dispersion ratio differences (Clean vs. Clean, Poisoned vs. Poisoned,
Mixed vs. Mixed). Each plot shows the difference in mean dispersion ratio (clean minus poisoned).
Positive values indicate that the clean subset exhibits higher dispersion, whereas negative values
reflect a more dispersed poisoned subset.
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4.2 LOCAL ANALYSIS: INFORMATION FLOW BETWEEN LAYERS

To investigate the fine-grained mechanisms of adversarial influence, our local analysis quantifies
how information transforms between layers at the neuron level. We present the results for Mistral
7B below; see Appendix D.2 for other models.

Analysis on Consecutive Layers. Our local method revealed a structural phase shift in the net-
work’s information flow under adversarial influence. We computed Vietoris–Rips PH barcodes of
the 2D embeddings described in Section 3.3 for the raw activations; their normalization to zero
mean and unit variance, to ensure that topological signals are not due solely to scale differences;
and a control condition where neuron indices are randomly permuted, disrupting any neuron-wise
correspondence between layers. We measured the topological complexity by the total persistence
of 1-bars, and found significant differences between clean and poisoned activations across layers in
the raw and normalized activations (Figure 10 (left)). Furthermore, the ratio of topological com-
plexity between clean and poisoned activations (Figure 10 (center)) shows that clean inputs initially
exhibit a more complex structure that simplifies in deeper layers. In contrast, poisoned activations
start simpler but their topological complexity increases, diverging significantly from the clean acti-
vations around layer 12. This suggests that adversarial influence causes a major reconfiguration of
information processing in the model’s deeper layers. The disappearance of this signal in the per-
muted control condition (shown in Figure 56 of the Appendix D.2.1) confirms that the effect relies
on specific neuron-to-neuron pathways rather than arising from a statistical artifact.

Table 3: Peak analysis. Precision@k for k=1, 3, and 5 largest peaks in total variance, and their
precision in detecting the largest peaks in absolute difference between the two classes. Spearman’s
rank correlation (r) is reported in the last column. ∗, ∗∗ correspond to p-values <.05 and .01,
respectively.

p@1 p@3 p@5 r

Total Persistence 0-bars 0 .33 .4 0.46∗∗
Total Persistence 1-bars 0 .67∗ .8∗∗ 0.78∗∗
Mean Birth 1-bars 1.0∗ .33 .8∗ 0.46∗∗
Mean Death 1-bars 1.0∗ .33∗ .8∗∗ 0.69∗∗

In a real-world setting without labels, these informative layers can still be identified. We found that
the overall variance of a topological feature across all samples strongly correlates with the magnitude
of the clean-vs.-poisoned difference (Figure 10 (right)). As shown in Table 3, we evaluated the
alignment between overall variance and class separation using precision at k (p@k) and Spearman’s
rank correlation (r). To validate statistical significance against a random baseline, we generated
empirical null distributions via random permutations, with significance levels indicated by asterisks.
The high precision (particularly at k = 5) and moderate-to-strong correlations indicate that layers
with the highest variance are reliable indicators of those with the largest class separation. This
provides a practical, unsupervised signal for locating where adversarial effects are most prominent.

A further example of how different barcode summaries propagate across the layers can be found in
Appendix D.2.1 for Mistral 7B, showing the patterns for the mean deaths of 0-bars.

Analysis on Non-Consecutive Layers. We expanded the previous analysis to activations from
non-consecutive layers to show that in neighboring layers, the model operates on similar groups of
neurons, leading to element-wise interactions that construct meaningful topological features distin-
guishing clean from poisoned datasets. The ratio of the mean death times of 0-bars between clean
and poisoned activations as the layer interval increases is shown in Appendix D.2.5. For layer in-
tervals of 1 and 3, the ratios for normalized activations and the control setting remained distinct,
indicating meaningful topological interactions. However, at an interval of 10 layers, the scaled and
control settings showed significant overlap, suggesting a much diminished difference in the interac-
tions in clean and poisoned data. A similar pattern can be observed for other barcode summaries,
such as the total persistence of 1-bars, see Appendix D.2.5.
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Figure 10: Local analysis of consecutive layers for the total persistence of 1-bars. Comparisons
of the average total persistence of 1-bars across 1000 samples for Mistral model using original
activation data (left). (center) Ratios of mean total persistence of 1-bars between clean and poisoned
datasets for original, scaled, and scaled and permuted activations. (right) Overlaid plots of the
overall variance of total persistence of 1-bars for clean and poisoned datasets combined and the
absolute difference between mean total persistence of 1-bars for clean and poisoned datasets.

5 DISCUSSION AND FUTURE WORK

Our global and local analyses provide converging evidence for a fundamental principle, where adver-
sarial influence manifests as “topological compression” of an LLM’s latent space. This behavior—a
shift from compact, diverse structures to more dispersed, topologically simpler ones—is a consistent,
architecture-agnostic phenomenon that holds across different model architectures, sizes, and attack
vectors. This topological approach offers a distinct and complementary form of interpretability that
is relational rather than compositional. While methods such as sparse autoencoders (SAEs) (Cun-
ningham et al., 2023) are powerful for identifying the “building block” features of a representation,
they analyze each activation in isolation. This makes them inherently blind to the nonlinear, re-
lational geometry that emerges from the interactions between activations. Furthermore, because
the feature dictionaries learned by SAEs are specific to a single set of model weights, they can-
not be reliably compared across different models or fine-tuning stages. Our PH-based framework
circumvents these limitations by computing intrinsic, coordinate-free geometric properties, provid-
ing a stable basis for comparison and enabling a comprehensive characterization of the shape of
adversarial influence.

The implications of our work extend to the core of interpretability and AI safety. Our findings con-
tribute to a growing body of evidence that a model’s behaviors are encoded in the geometry of its
latent space. This perspective aligns with work showing that memorization corresponds to a reduc-
tion in the effective dimensionality of the representation manifold (Stephenson et al., 2021), and
that the success of linear probes may stem from their ability to approximate more complex topolog-
ical structures (Engels et al., 2025). Our discovery that adversarial influence induces a “topological
compression” provides new evidence for this hypothesis, suggesting that a collapse in geometric
complexity is a quantifiable signature of out-of-distribution states. Our findings reframe key safety
properties such as robustness not merely as abstract behavioral outcomes, but as measurable charac-
teristics of the representation space itself.

Limitations. The primary limitation of our study is the memory requirements of PH, as the distance
and boundary matrices required for exact Vietoris–Rips computations scale quadratically with the
number of points. To manage this on our large datasets, we implemented random subsampling,
which is well-studied in TDA with established convergence results ensuring that the sampling errors
in our study are bounded (Chazal et al., 2014; Cao & Monod, 2022).

Future Work. Our study opens several avenues for future investigation, such as exploring whether
topological compression is a general property of model misalignment (Stephenson et al., 2021);
developing topology-aware robustness mechanisms (Brüel-Gabrielsson et al., 2020); applying per-
sistent Morse theory (Bobrowski & Adler, 2014); and adapting cycle matching approaches (Reani &
Bobrowski, 2022; Garcı́a-Redondo et al., 2024) to further characterize LLM representation spaces.
Further study is also needed to see if these topological signatures generalize to an even broader range
of adversarial scenarios.
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A PERSISTENT HOMOLOGY

We provide additional background on PH and the underlying mathematical formulation that supports
its application as a tool to detect the multiscale topological features within data.

A.1 THEORETICAL BACKGROUND

PH refers to a set of methods that are implemented to extract the shape and size of data a multiple
scales. We now present the underlying mathematical principles that support this tool.
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Input data. PH accommodates for diverse data modalities: images, point clouds, graphs, etc. One
of the most basic yet general data types that it accepts is finite metric spaces, i.e., finite subsets
S ⊂ X of some metric space (X, d). Restricting d to S, we obtain a notion of dissimilarity between
the points in our metric space. This is the data modality that we will consider for the remainder of
the section, as it encompasses most of the real data that we encounter.

Filtrations. The first step in the PH pipeline consists of constructing a filtration from our input
data, that is, a family of nested topological spaces. For computational and storage reasons, simpli-
cial complexes are often favored as the topological spaces appearing in the filtration. An abstract
simplicial complex K over a vertex set S is defined as a set of subsets of S which is closed under
inclusion, i.e., if σ ∈ K and τ ⊂ σ, then τ ∈ σ. Subsets σ = {si0 , . . . , sip} of p + 1 elements are
called p-simplices. There are various ways of defining a simplicial complexes from a discrete set S,
and they usually depend on fixing a scale parameter ϵ > 0.

For instance, in this work, we have leveraged the Vietoris–Rips complex, obtained by considering all
the subsets σ of S with diam(σ) := maxs,s′∈σ d(s, s′) less or equal than ϵ,

VRϵ(S, d) := {∅ ≠ σ ⊂ K : diam(σ) ≤ ϵ}. (1)

The implementation of this complex is straightforward, and has the advantage that it is only neces-
sary to store the pairwise distance between points in S to build it. However, it has the disadvantage
of exploding in size with the number of points: if S has n points, then |VRϵ(S, d)| = O(2n) (see
Table 1 in Otter et al. (2017))

An alternative is the Čech complex at scale ϵ ≥ 0, where a simplex σ = {si0 , . . . , sip} belongs to the
complex if and only if all the balls of radius ϵ centered at the points of the simplex have nonempty
intersection,

Čϵ(S, d) :=

{
∅ ≠ σ ⊂ S :

⋂
s∈σ

B(s, ϵ) ̸= ∅

}
. (2)

The Čech complex has very nice theoretical properties (for instance, it satisfies the conditions of the
Nerve Theorem). However, it has similar complexity to the Vietoris–Rips complex, and in fact we
have

Čϵ(S, d) ⊆ VRϵ(S, d) ⊆ Č√
2ϵ(S, d).

A final option to consider, which significantly reduces the number of simplices in the complex,
is the alpha complex. To make this simplicial complex coarser, the idea is to intersect the balls
centered around the points in the point cloud, B(s, ϵ), with their Voronoi cells, V (s), and thus
define R(s, ϵ) := B(s, ϵ) ∩ V (s). The Voronoi cells form a partition of the metric space X where
the points in each region are closest to the same point in S. Since both B(s, ϵ) and V (S) are
convex, their intersection R(s, ϵ) remains convex. From the definition of the Voronoi cells, these
spaces R(s, ϵ) are either disjoint or overlap along their boundary, significantly reducing the number
of intersections between them. The alpha complex is thus defined as

α(S, ϵ) :=

{
∅ ≠ σ ⊂ S :

⋂
s∈σ

R(s, ϵ) ̸= ∅

}
(3)

and is significantly smaller in size due to the introduction of the Voronoi cells.

The Vietoris–Rips, Čech, and alpha filtrations are defined considering the families of the correspond-
ing complexes for all values of the parameter ϵ ≥ 0. Since the conditions for including simplices are
relaxed as ϵ increases, we obtain the defining condition of a filtration {Kϵ : ϵ ≥ 0}, namely that for
ϵ ≤ ϵ′ we have Kϵ ⊂ Kϵ′ . There are additional types of filtrations that we do not cover here, such
as cubical filtrations (particularly suited for images) or witness complexes (based on having some
landmarks or witnesses in our point cloud). We refer to Otter et al. (2017) for a survey and further
details on these constructions.

Homology and persistence modules. Leveraging tools from algebraic topology, we can compute
the simplicial homology groups associated to a given simplicial complex K, which come in various
degrees Hp(K), for p ≥ 0 an integer number, and are topological invariants of the complex. They
contain information about its topological features, for p = 0 these correspond to components or
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clusters, for p = 1 to loops or holes, for p = 2, to bubbles or cavities, and so on for higher values
of p. The homology construction is functorial, meaning that there is an assignment which for a
map f : K → K ′ between two simplicial complexes, provides a linear map at the homology level
Hp(f) : Hp(K) → Hp(K

′), preserving the identity and composition. Applying this to any of
the filtrations of the step above we obtain a persistence module, that is, a family of vector spaces
{Hp(Kϵ) : ϵ ≥ 0} endowed with linear maps Hp(ϵ ≤ ϵ′) : Hp(Kϵ) → Hp(Kϵ′) for ϵ ≤ ϵ′, which
are the maps induced by the inclusions of the filtration. In other words, Hp(K•) can be seen as a
functor from the poset category (R≥0,≤) to the category of vector spaces and linear maps. Given
the mathematical construction of homology, Hp(K•) contains information about the topological
features in the simplicial complexes of the filtration, and in particular, about when features appear
and disappear as the parameter ϵ increases. We now seek to provide a compact description for this.

Persistence barcodes. The mathematical structure of a persistence module has various desirable
properties. Among them, one of the most important ones is satisfying the conditions for the the so
called structure theorem (Botnan & Lesnick, 2023, Theorem 4.2) to apply, which tells us that a given
a persistence module Hp(K•) decomposes in an essentially unique way as a direct sum of interval
modules R[b, d). Interval modules are persistence modules supported over intervals of the real line
which, inside their support, map to the vector space R, and outside, to 0. Since the decomposition is
an invariant of the isomorphism type of Hp(K•), the collection of intervals appearing in it is also a
topological invariant. We refer to this collection of bars as the persistence barcode of the input data.
The interpretation of these barcodes becomes apparent: each of the bars in the barcode correspond
to a topological feature that appears at the initial point in the interval (its birth time) and persists
until its end (its death time). There are many other invariants that we can derive from the original
persistence module Hp(K•), such as the rank function (Frosini, 1990; 1992), the persistence image
(Adams et al., 2017) or the persistence landscape (Bubenik, 2020); some of these invariants act on
barcodes as vectorizations or embeddings. In this work, we focus on barcodes and we represent
statistics calculated from bars and barcodes in the form of a vector, which is different in spirit from
an embedding or vectorization of a barcode.

A.2 PERSISTENT HOMOLOGY BARCODE STATISTICS

To interpret the barcodes from Section 3.2 and Section A.1, we extract key summary statistics that
quantify the topological structure observed at each layer under both adversarial conditions.

From each 1-dimensional (1D) barcode, we gather intervals (bi, di) with di > bi > 0 and define
ℓi = di − bi. Forming a discrete distribution pi = ℓi/

∑
j ℓj , the persistence entropy is

E = −
∑
i

pi ln(pi + ϵ),

where ϵ is a small positive constant (e.g., 10−12) to ensure numerical stability. Higher E indicates
a more uniform distribution of lifetimes (no single interval dominates), whereas lower E reflects a
small number of long-lived intervals.

In addition to entropy, we compute the following summary statistics on dimension-1 bars:

• Mean births (1-bars): Average birth time b̄

• Mean deaths (1-bars): Average death time d̄

• Mean persistence (1-bars): Average lifetime (di − bi)

• Number of 1-bars: Count of finite intervals in dimension 1

We perform these computations for each barcode individually and then average over all barcodes in
the same condition (elicited or elicited) and (clean or poisoned).

B FURTHER TOPOLOGICAL AND LOCAL VARIANCE INTERPRETATION

B.1 EXTENDED PROMPT INJECTION (CLEAN VS. POISONED)

For mean births and mean deaths, all layers except layer 1 across models have negative differences,
indicating that poisoned intervals emerge and die later in the filtration. The mean persistence is
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Table 4: Dimension-1 persistent homology differences (clean − poisoned) in key metrics for
three models across several layers. Positive values mean the clean condition has a higher value,
while negative indicates poisoned is higher for that metric. All entries rounded to four decimals.

Model Layer Mean births
1-bars diff

Mean deaths
1-bars diff

Mean persistence
1-bars diff

Entropy
1-bars diff

Number
1-bars diff

LLaMA-3
(8B)

1 -0.0005 -0.0006 -0.0001 0.1665 86.9700
8 -0.0609 -0.0608 0.0001 0.1213 79.5600
16 -0.3166 -0.3249 -0.0082 0.0188 17.9367
24 -0.9932 -1.0256 -0.0324 0.1595 80.0833
32 -18.3367 -18.9290 -0.5923 0.3348 192.4900

Mistral
(7B)

1 0.0004 0.0004 0.0000 0.0172 3.7967
8 -0.0293 -0.0295 -0.0002 0.1485 118.9167
16 -0.2375 -0.2421 -0.0047 0.1938 154.7633
24 -0.5694 -0.5815 -0.0120 0.2070 153.9633
32 -14.7376 -15.0558 -0.3182 0.2239 166.4267

Phi 3
(3.8B)

1 0.0011 0.0009 -0.0002 0.0101 4.3200
8 -0.4522 -0.4675 -0.0153 0.0888 59.0967
16 -1.7825 -1.8293 -0.0467 0.0696 48.7367
24 -6.2017 -6.3448 -0.1431 0.1665 116.9433
32 -1.0092 -1.0503 -0.0411 -0.4857 -136.1200

also higher for poisoned examples, especially in the middle layers. The entropy differences are also
almost all positive (except Phi3 3.8’s final layer), suggesting that clean distributes its 1D lifetimes
more evenly, while poisoned tends to concentrate total persistence in fewer cycles. Likewise, the
number of 1-bars remains mostly positive, so clean produces more 1D holes overall.

Overall, poisoned conditions often yield fewer but more dominant dimension-1 features that appear
later and persist longer, whereas clean spreads its total persistence across numerous shorter-lived
cycles, resulting in higher entropy. Depending on the model, the specific layer where these features
distinctions appear strongest differ but the nature of the difference is the same across models and
layers.

B.2 SANDBAGGED MODEL (LOCKED VS. ELICITED)

Table 5: Dimension-1 persistent homology differences (elicited− locked) for two models across
multiple layers. Positive values indicate that the elicited condition has higher values; negative
means locked is higher for that metric.

Model Layer Mean births
1-bars diff

Mean deaths
1-bars diff

Mean persistence
1-bars diff

Entropy
1-bars diff

Number
1-bars diff

LLaMA-3
(8B)

0 -0.0127 -0.0132 -0.0005 0.0156 3.2400
7 -0.3425 -0.3555 -0.0130 0.0647 27.8600
15 -0.0476 -0.0455 0.0021 0.2114 135.2900
23 -0.1168 -0.1204 -0.0037 0.0100 61.8766
31 -0.9750 -1.0458 -0.0707 0.0620 28.2800

Mistral
(7B)

0 -0.0053 -0.0055 -0.0002 0.0942 27.1533
7 -0.1925 -0.1989 -0.0064 0.0310 14.1066
15 0.0393 0.0352 -0.0041 0.0277 10.9300
23 0.6722 0.7037 0.0315 -0.0363 -0.1900
31 14.6450 15.2952 0.6503 -0.0014 9.3233

For LLaMA3 8B , the mean birth and death differences are negative across all computed hidden
layers (1, 8, 16, 24, 32). Note that layers are zero-indexed, meaning that layer 0 corresponds to
the first hidden layer, layer 1. This indicates that, in the locked condition, 1D cycles exhibit larger
(i.e., later) birth and death times compared to elicited. In other words, when locked, the 1D features
tend to emerge “further out” in the filtration. The mean persistence difference between conditions
is also negative (except layer 16), suggesting that locked cycles generally persist slightly longer
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on average. Entropy differences are positive, indicating that elicited exhibits a greater diversity or
spread among the lifetimes of its 1D features. The number of 1-bars is positive (sometimes strongly
so), meaning there are substantially more 1D features in the elicited condition.

We see similar results for Mistral 7B with negative differences in births and deaths in earlier layers,
implying that locked has larger birth/death times at those lower layers. However, the sign flips, with
elicited displaying larger values for births, deaths, and persistence. Specifically, layer 32 shows a
notably large positive difference (e.g., +14.64 for births, +15.29 for deaths), indicating that the final
layer in elicited captures significantly later 1D cycles relative to locked. The number of 1-bars also
tends to be higher in elicited at most layers, except for a minor negative at layer 23, again suggesting
that elicited reveals a greater number of dimension-1 features.

B.3 LOCAL DISPERSION RATIO ACROSS POISONED CONDITIONS

We analyze how local geometry in hidden-layer representation space differs between clean and
multiple poisoned modes in six LLMs. We further classify poisoned prompts into three sub-types:

1. Executed: The injected request is recognized and carried out (indirect prompt injection).
2. Refused: The model identifies the injected content as malicious and issues a refusal, effec-

tively “shutting down” any detailed elaboration.
3. Ignored: The model neither executes nor refuses, but effectively overlooks the injected

prompt, proceeding as if it were absent.

For each final token’s activation difference vector ∆Actℓ(xi) ∈ RD, we identify its k nearest neigh-
bors in layer ℓ and perform PCA on those points. Let λ1 ≥ · · · ≥ λD′ be the resulting eigenvalues.
We define the dispersion ratio of ∆Actℓ(xi) as

∑D′

j=2 λj

λ1 + ϵ
,

where ϵ prevents division by zero. A higher ratio indicates that variance is more evenly spread
among secondary directions, whereas a lower ratio implies most variance lies in a single dominant
direction.

Ablation: Clean vs. Clean, Poisoned vs. Poisoned, and Mixed. To confirm that dispersion dis-
crepancies primarily reflect true clean vs. poisoned distinctions rather than random partitioning or
mixture effects, we performed three auxiliary comparisons:

1. Clean vs. Clean: Split the clean set into two subsets, ensuring no significant difference
arises from sampling within the same class.

2. Poisoned vs. Poisoned: Applied the same procedure to poisoned data to assess within-class
variability.

3. Mixed vs. Mixed: Randomly partitioned a combined pool of clean and poisoned samples
into two balanced groups.

Note on Statistical Methods: For every layer in each subplot, we computed the dispersion ratio
for both clean and the specified poisoned (or refused, executed, ignored) samples. We then con-
ducted a Welch’s t-test on these two groups (clean vs. poisoned/other), applying false-discovery rate
(FDR) correction across layers. We also verified approximate normality via kernel density estimates
(KDEs) for each groups. Plot markers with stars indicate layers where pFDR < 0.05, confirming a
statistically significant difference in dispersion ratio. To select k = 30, we tested candidate neigh-
borhood sizes across layers and models, measuring which k produced the largest absolute difference
in mean local dispersion ratio between clean and poisoned conditions.

B.3.1 DISCUSSION OF RESULTS

Figures 11 and 12 highlight that:

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

• Early Layers (Layer 1–8): Across all poisoning modes, the clean condition consistently
shows a higher dispersion ratio, suggesting that the model initially allocates broader repre-
sentational capacity for normal inputs.

• Mid Layers (Layer 16): This pattern often flips, with poisoned prompts (especially exe-
cuted or ignored) exceeding the clean baseline, indicating the network is dedicating extra
directions to elaborate or “embrace” these injected requests. Conversely, refused prompts
typically exhibit reduced dispersion, mapping disallowed content into a lower-variance re-
gion.

Interestingly, our findings align with the results of Stephenson et al. (2021), which indicate that
memorization tends to emerge in deeper layers where the effective dimensionality shrinks. Con-
sistent with that view, we observe that executed or ignored prompts show a higher dispersion in
mid-layers, implying the model invests additional capacity there for those injected instructions.
Meanwhile, a refused request is routed into a more compressed region, effectively “shutting down”
further representational expansion. In this sense, deeper layers may provide a setting where the net-
work can more sharply discriminate or overfit certain inputs—supporting the idea that final layers
reflect a gradually compressed, yet strategically focused representation space.
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Figure 11: Layer-wise Dispersion Ratio for Clean vs. Poisoned Examples. The green and red
lines depict mean dispersion ratios for clean and poisoned inputs, respectively, at different layer
depths. Error bars around each point represent ±1 standard error of the mean (SEM). In early layers
(left side), clean data consistently has higher dispersion on average, whereas in mid-layers (center),
poisoned surpasses the clean baseline, indicating a re-distribution of representational capacity for the
injected prompts. Layers where the difference is statistically significant (pFDR < 0.05) are marked
with a red asterisk above the higher mean value.

B.4 COSINE DISTANCE OF REPRESENTATIONS

We analyze the difference representations ∆Actℓ(xi) ∈ RD for corresponding pairs of clean and
poisoned inputs in Figure 14. Specifically, for each model and layer, we load up to five pairs of clean
and poisoned activation files, compute the difference between the activations for each pair, and con-
catenate these differences. From these differences, we draw equal-size subsamples of 5000 vectors.
For each layer and comparison condition, we compute the mean pairwise cosine distance within
each subsample. Because cosine distance is scale-invariant, we do not normalize these difference
representations. We perform four comparison conditions: clean vs. poisoned, clean vs. clean (where
clean samples are split in half), poisoned vs. poisoned (where poisoned samples are split in half),
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Figure 12: LLaMA3 7B Dispersion Ratio: Clean vs. Executed, Refused, and Ignored Prompts.
The horizontal axis indicates layer depth, while the vertical axis represents the mean dispersion ratio.
The blue curve (with confidence band) corresponds to clean inputs; orange, red, and green curves
denote executed, refused, and ignored poisoned prompts, respectively. Notably, refused prompts
show an early jump but then collapse below the clean baseline, whereas executed and ignored surpass
it around mid-layers, highlighting distinct representational regimes.
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Figure 13: Ablation of Dispersion Ratio Differences (Clean vs. Clean, Poisoned vs. Poisoned,
Mixed vs. Mixed). Each plot shows the difference in mean dispersion ratio (clean minus poisoned).
Positive values indicate that the clean subset exhibits higher dispersion, whereas negative values
reflect a more dispersed poisoned subset.

and mixed vs. mixed (where two separate mixed subsamples are created, each containing half clean
and half poisoned differences). For each comparison, we generate two distributions of mean pair-
wise intra-class distances (or inter-class in the clean vs poisoned case) using 3 bootstrap iterations.
We then apply Welch’s t-test to these distributions to assess whether they diverge significantly.
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Empirically, poisoned difference representations typically exhibit a higher mean cosine distance
in deeper layers, indicating a more “spread-out” or heterogeneous arrangement of their difference
vectors, much as we observed in the curvature analysis. clean data, by contrast, remains compara-
tively tightly clustered, implying less dispersion in its difference space. Interestingly, LLaMA3 70B
displays similar characteristics in the early and final layers but poisoned representations have a no-
ticeable smaller cosine distance in middle layers. This may reflect the ability of larger architectures
to better partition representation space across the network before re-expanding in later layers.
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Figure 14: Cosine Distance of Difference Representations Across Layers. Each panel shows
mean within-class distances (clean vs. poisoned) for the difference representations (poisoned/clean
pass minus baseline), where higher values reflect greater variation among samples. Stars denote
layers with significant differences.

C FURTHER DETAILS OF GLOBAL LAYER-WISE ANALYSIS

We now provide further details on the global layer-wise analysis.

C.1 PIPELINE

We describe in more detail the pipeline in Figure 3 in the main text. Recall that our aim here
was showcasing that topological signatures effectively capture distinctions between representations
under normal or adversarial conditions, and to provide an interpretation of the reason behind such
difference in terms of the “shape” of the latent representations.

We use RIPSER Bauer (2021) to compute barcodes, which is based on Vietoris–Rips filtrations (see
Figure 2.1). The computational constraints of PH make it impossible to compute the barcode of
any of our two datasets (clean vs. poisoned or locked vs. elicited). Therefore, we leverage sub-
sampling approaches (e.g., Chazal et al. (2015)) and compute barcodes from K = 64 subsamples
{xi1,ℓ, . . . , xik,ℓ} ⊂ RD with size k = 4096, of the representations per layer 1 ≤ ℓ ≤ L. From
these, 64 are taken from normal activations and 64 from adversarial activations. We use these as
proxies for the topology of the whole space.

Following Ali et al. (2023), we represent these barcodes as 41-dimensional feature vectors, which
we call barcode summaries. These include 35 statistics derived from a 7 × 5 grid of {mean, mini-
mum, first quartile, median, third quartile, maximum, standard deviation} × {death of 0-bars, birth
of 1-bars, death of 1-bars, persistence of 1-bars, ratio birth/death of 1-bars}; as well as the total per-
sistence (i.e., sum of the lengths of all bars in the barcode), number of bars, and persistent entropy
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(Chintakunta et al., 2015; Rucco et al., 2016) defined in Appendix A.2 for 0- and 1-bars. We reduce
the dimensionality case-by-case, by eliminating highly correlated features (above a threshold of 0.5)
through cross-correlation analysis.

For exploratory analysis, we apply PCA and compute CCA loadings to measure feature correlations
with the principal components. A logistic regression model is then used for classification, and
Shapley values (Lipovetsky & Conklin, 2001) are computed to evaluate feature importance. Shapley
values, derived from cooperative game theory, quantify the contribution of each feature to model
predictions by measuring its influence in shifting predictions from a baseline (e.g., 0.5 for logistic
regression), providing an interpretable, feature-level analysis of predictive impact.

C.2 ABLATION STUDIES ON SUBSAMPLING PARAMETERS

We evaluate the representation of clean and poisoned activations using a subsampling-based topolog-
ical analysis. For each experiment, we consider a fixed layer of Mistral 7B and draw k subsamples
of size n from the clean activations and k subsamples of size n from the poisoned activations. Each
subsample is used to compute a Vietoris–Rips persistence diagram, which is subsequently repre-
sented as a 41-dimensional barcode summary vector. This procedure produces a combined point
cloud in R41 of size 2k, consisting of k clean and k poisoned feature vectors.

Predictive Power of Barcode Summaries for Varying (n, k). We perform the same classification
task as in the main text, namely, we fit a logistic regression model to classify between clean and
poisoned in each point cloud with fixed (n, k), for the first, the middle, and the last layer of Mistral
7B. We report the 5-fold cross validation results in Figure 15. We observe that there are no clear
dependencies of this parameter over the parameters (n, k). Layer 1 seems to be more difficult to
classify, requiring at least 500 subsamples, whereas for later layers we obtain perfect classification
with as little as k = 30 subsamples of size n = 100.

Figure 15: Accuracies of 5-fold cross validation on a logistic regression trained to distinguish bar-
code summaries of k subsamples of size n of clean activations and k subsamples of size n of poi-
soned activations at layers 1, 16 and 32 of Mistral 7B.

Metric Description of Clusters for Varying (n, k). We now focus on activation values for layer
16 in Mistral 7B, over which the barcode summaries are computed in subsamples with parameters
(n, k). All feature vectors are standardized using a global StandardScaler fitted on the whole
point cloud. We then compute several metrics to quantify the structure of the resulting represen-
tation: (i) the mean intra-class distance within the clean and poisoned subsamples, (ii) the mean
inter-class distance between the two groups, and (iii) the inter-to-intra distance ratio

r :=
dinter

1
2

(
dcleanintra + dpoisonintra

) . (4)

We perform ablations over the subsample size n and the number of subsamples k. The intra-class
distances (Figure 16 left and center) show minimal dependence on k, but decrease consistently
as n increases. This suggests that the barcode representations become more concentrated when
subsamples contain more points. The values for n = 500, 1000, and 1500 are in close proximity,
indicating an early convergence of this statistic with respect to n.
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The inter-class distance (Figure 16 right) exhibits a complementary trend: it is largely invariant
under changes in k, but increases with n. As before, the curves for n = 1000 and n = 1500 almost
coincide, further supporting a convergence regime at moderate subsample sizes.

To combine these effects, we evaluate the inter-to-intra distance ratio in Figure fig. 17. This ratio
remains stable across values of k, but increases with n, indicating that the relative separation between
clean and poisoned representations improves as subsample size grows. The near overlap of the
values for n = 1000 and n = 1500 again suggests convergence in this regime, which supports the
choice of subsample sizes used in the main experiments.

Figure 16: Left: Intra-class distance among the barcode summaries of k subsamples of size n
of clean activations from layer 16 of Mistral 7B. Center: Intra-class distance among the barcode
summaries k subsamples of size n of poisoned activations from layer 16 of Mistral 7B. Right: Intra-
class distance among the clusters of clean and poisoned barcode summaries of k subsamples of size
n.

C.3 RESULTS: CLEAN VS. POISONED

C.3.1 MISTRAL 7B

We present here additional results on the global analysis for Mistral 7B that are referred to in the
main text.

Figure 17: Inter-to-intra distance ratio (Equation 4 between k subsamples of n clean activations and
k subsamples of n poisoned activations in layer 16 of Mistral 7B.
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Table 6: Pruned barcode summaries for layers 1, 8, 16, 24 and 32. Features from the barcode
summaries with correlation less than 0.5 in the cross-correlation matrix.

Layer 1 Layer 8 Layer 16 Layer 24 Layer 32

Mean death 0-bars ✓ ✓ ✓ ✓ ✓
Minimum death 0-bars ✓ ✓
Maximum death 0-bars ✓
Standard deviation death 0-bars ✓
Minimum birth 1-bars
Maximum birth 1-bars ✓
Minimum persistence 1-bars ✓ ✓ ✓ ✓ ✓
First quartile persistence 1-bars ✓
Maximum persistence 1-bars ✓
Mean birth/death 1-bars ✓ ✓ ✓
First quartile birth/death 1-bars ✓
Maximum birth/death 1-bars ✓
Total persistence 1-bars ✓
Number 0-bars ✓ ✓ ✓ ✓ ✓
Number 1-bars ✓ ✓ ✓
Entropy 0-bars ✓ ✓

Total features 8 9 8 4 5

Figure 18: CCA loadings for clean vs. poisoned activations. Loadings of the 5 most important
contributions to the first canonical variable of the CCA on the pruned barcode summaries show that
the mean of the death of 0-bars is significantly correlated with the first two principal components of
the PCA across all layers.
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Figure 19: SHAP analysis: clean vs. poisoned activations. Beeswarm plot of logistic regression
SHAP values trained on the pruned barcode summaries for layer 1, 8, 16, 24, and 32.

Figure 20: Histograms for the mean of the births of 1-bars, mean persistence of 1-bars and
number of 1-bars for Mistral. Features extracted from the barcode summaries of the activations
for layers 1, 8, 16, 24 and 32 of the clean vs. poisoned dataset.

C.3.2 PHI3-MINI-4K (3.8B PARAMETERS)

We provide the results of the analysis depicted in Figure 3 including layers 1, 8, 16, 23, and 32 for Phi
3 (3.8B parameters) where barcodes are computed using the Euclidean distance in the representation
space.
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Figure 21: Cross-correlation matrices for the barcode summaries for clean vs. poisoned acti-
vations. Growing block of correlated features appears in the cross-correlation matrix of the barcode
summaries appears in the middle layers (layers 1, 8, 16, 24, and 32 are shown).

Figure 22: PCA of barcode summaries of clean vs. poisoned activations. Clear distinction ap-
pears in the projection onto the two first principal components from the PCA of the pruned barcode
summaries for layers 1, 8, 16, 24, and 32.

Figure 23: CCA loadings for clean vs. poisoned activations. Loadings of the 5 most important
contributions to the first canonical variable of the CCA on the pruned barcode summaries show that
the mean of the death of 0-bars is significantly correlated with the first two principal components of
the PCA across all layers.
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Figure 24: Logistic regression for clean vs. poisoned activations. Prediction of a logistic regres-
sion trained on a 70/30 train/test split of the pruned barcode summaries, plotted on the projection
onto the two first principal components for visualization purposes. Accuracy and AUC–ROC tested
on the test data, and 5-fold cross validation on train data are presented for each model, showcasing
the outstanding performance of all models.

Figure 25: SHAP analysis: clean vs. poisoned activations. Beeswarm plot of logistic regression
SHAP values trained on the pruned barcode summaries for layer 1, 8, 16, 24, and 32.

C.3.3 MIXTRAL-8X7B (7B PARAMETERS)

We provide the results of the analysis depicted in Figure 3 including layers 1, 8, 16, 23 and 32 for the
Mixtral 8 (7B parameters) model where barcodes are computed using the Euclidean distance in the
representation space. We observe very similar results to the ones obtained with Mistral, indicating
a consistency across models of the topological deformations of adversarial influence via XPIA (see
Section 3.1).

Figure 26: Cross-correlation matrices for the barcode summaries for clean vs. poisoned acti-
vations. Growing block of correlated features appears in the cross-correlation matrix of the barcode
summaries for layers 1, 8, 16, 24, and 32. Correlations in layer 1 are lower than with Mistral 7B,
see Figure 6.
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Figure 27: PCA of barcode summaries of clean vs. poisoned activations. Clear distinction ap-
pears in the projection onto the two first principal components from the PCA of the pruned barcode
summaries for layers 1, 8, 16, 24, and 32.

Figure 28: CCA loadings for clean vs. poisoned activations. Loadings of the 5 most important
contributions to the first canonical variable of the CCA on the pruned barcode summaries show that
the mean of the death of 0-bars is significantly correlated with the first two principal components of
the PCA across all layers.

Figure 29: Logistic regression for clean vs. poisoned activations. Prediction of a logistic regres-
sion trained on a 70/30 train/test split of the pruned barcode summaries, plotted on the projection
onto the two first principal components for visualization purposes. Accuracy and AUC–ROC tested
on the test data, and 5-fold cross validation on train data are presented for each model, showcasing
the outstanding performance of all models.
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Figure 30: SHAP analysis: clean vs. poisoned activations. Beeswarm plot of logistic regression
SHAP values trained on the pruned barcode summaries for layer 1, 8, 16, 24, and 32.

C.3.4 LLAMA3 (8B PARAMETERS)

We provide the results of the analysis depicted in Figure 3 including layers 1, 8, 16, 23 and 32
for the Llama 3 (8B parameters) where barcodes are computed using the Euclidean distance in the
representation space. We observe very similar results to the ones obtained with Mistral, indicating a
consinstency across models of the topological deformations of adversarial influence via XPIA (see
Section 3.1).

Figure 31: Cross-correlation matrices for the barcode summaries for clean vs. poisoned acti-
vations. Growing block of correlated features appears in the cross-correlation matrix of the barcode
summaries for layers 1, 8, 16, 24, and 32. Correlations in layer 1 are lower than with Mistral 7B,
see Figure 6.

Figure 32: PCA of barcode summaries of clean vs. poisoned activations. Clear distinction ap-
pears in the projection onto the two first principal components from the PCA of the pruned barcode
summaries for layers 1, 8, 16, 24, and 32.
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Figure 33: CCA loadings for clean vs. poisoned activations. Loadings of the 5 most important
contributions to the first canonical variable of the CCA on the pruned barcode summaries show that
the mean of the death of 0-bars is significantly correlated with the first two principal components of
the PCA across all layers.

Figure 34: Logistic regression for clean vs. poisoned activations. Prediction of a logistic regres-
sion trained on a 70/30 train/test split of the pruned barcode summaries, plotted on the projection
onto the two first principal components for visualization purposes. Accuracy and AUC–ROC tested
on the test data, and 5-fold cross validation on train data are presented for each model, showcasing
the outstanding performance of all models.

Figure 35: SHAP analysis: clean vs. poisoned activations. Beeswarm plot of logistic regression
SHAP values trained on the pruned barcode summaries for layer 1, 8, 16, 24, and 32.
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C.3.5 PHI3-MEDIUM-128K (14B PARAMETERS)

We provide the results of the analysis depicted in Figure 3 including layers 1, 8, 16, 23 and 32 for the
Phi-3-medium (14B parameters) model where barcodes are computed using the Euclidean distance
in the representation space. We observe very similar results to the ones obtained with Mistral,
indicating a consistency across models of the topological deformations of adversarial influence via
XPIA (see Section 3.1).

Figure 36: Cross-correlation matrices for the barcode summaries for clean vs. poisoned acti-
vations. Growing block of correlated features appears in the cross-correlation matrix of the barcode
summaries for layers 1, 8, 16, 24, and 32. Correlations in layer 1 are lower than with Mistral 7B,
see Figure 6.

Figure 37: PCA of barcode summaries of clean vs. poisoned activations. Clear distinction ap-
pears in the projection onto the two first principal components from the PCA of the pruned barcode
summaries for layers 1, 8, 16, 24, and 32.

Figure 38: CCA loadings for clean vs. poisoned activations. Loadings of the 5 most important
contributions to the first canonical variable of the CCA on the pruned barcode summaries show that
the mean of the death of 0-bars is significantly correlated with the first two principal components of
the PCA across all layers.
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Figure 39: Logistic regression for clean vs. poisoned activations. Prediction of a logistic regres-
sion trained on a 70/30 train/test split of the pruned barcode summaries, plotted on the projection
onto the two first principal components for visualization purposes. Accuracy and AUC–ROC tested
on the test data, and 5-fold cross validation on train data are presented for each model, showcasing
the outstanding performance of all models.

Figure 40: SHAP analysis: clean vs. poisoned activations. Beeswarm plot of logistic regression
SHAP values trained on the pruned barcode summaries for layer 1, 8, 16, 24, and 32.

C.3.6 LLAMA3 (70B PARAMETERS)

We provide the results of the analysis depicted in Figure 3 including layers 1, 8, 16, 23 and 32 for
the Llama 3 (70B parameters) where barcodes are computed using the Euclidean distance in the
representation space. We observe very similar results to the ones obtained with Mistral, indicating a
consinstency across models of the topological deformations of adversarial influence via XPIA (see
Section 3.1).

Figure 41: Cross-correlation matrices for the barcode summaries for clean vs. poisoned acti-
vations. Growing block of correlated features appears in the cross-correlation matrix of the barcode
summaries for layers 1, 8, 16, 24, and 32. Correlations in layer 1 are lower than with Mistral 7B,
see Figure 6.
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Figure 42: PCA of barcode summaries of clean vs. poisoned activations. Clear distinction ap-
pears in the projection onto the two first principal components from the PCA of the pruned barcode
summaries for layers 1, 8, 16, 24, and 32.

Figure 43: CCA loadings for clean vs. poisoned activations. Loadings of the 5 most important
contributions to the first canonical variable of the CCA on the pruned barcode summaries show that
the mean of the death of 0-bars is significantly correlated with the first two principal components of
the PCA across all layers.

Figure 44: Logistic regression for clean vs. poisoned activations. Prediction of a logistic regres-
sion trained on a 70/30 train/test split of the pruned barcode summaries, plotted on the projection
onto the two first principal components for visualization purposes. Accuracy and AUC–ROC tested
on the test data, and 5-fold cross validation on train data are presented for each model, showcasing
the outstanding performance of all models.
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Figure 45: SHAP analysis: clean vs. poisoned activations. Beeswarm plot of logistic regression
SHAP values trained on the pruned barcode summaries for layer 1, 8, 16, 24, and 32.

C.4 RESULTS: LOCKED VS. ELICITED

C.4.1 MISTRAL 7B

We include the results of the global analysis in Figure 3 for the locked vs. elicited dataset. There are
two main differences with previous results: the block of high correlated features presents a less clear
trend and is more faint in layer 16, resulting in the need of more features in the analysis; and the
mean death of the 0-bars changes the sign of its influence in classifying locked and elicited models
across layers. However the distinction in the PCA of the barcode summaries remains clear and the
logistic regression still achieves perfect performance, despite a slightly less straightforward analysis.

Figure 46: Mistral with Euclidean distance: Cross-correlation matrices for the barcode sum-
maries for locked vs. elicited activations. Growing block of correlated features appears in the
cross-correlation matrix of the barcode summaries for layers 1, 8, 16, 24, and 32.

Figure 47: Mistral with Euclidean distance: PCA of barcode summaries of locked vs. elicited
activations. Clear distinction appears in the projection onto the two first principal components from
the PCA of the pruned barcode summaries for layers 1, 8, 16, 24, and 32.
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Figure 48: Mistral with Euclidean distance: CCA loadings for locked vs. elicited activations.
Loadings of the 5 most important contributions to the first canonical variable of the CCA on the
pruned barcode summaries show that the mean of the death of 0-bars is significantly correlated with
the first two principal components of the PCA across all layers.

Figure 49: Mistral with Euclidean distance: Logistic regression for locked vs. elicited activa-
tions. Prediction of a logistic regression trained on a 70/30 train/test split of the pruned barcode
summaries, plotted on the projection onto the two first principal components for visualization pur-
poses. Accuracy and AUC–ROC tested on the test data, and 5-fold cross validation on train data are
presented for each model, showcasing the outstanding performance of all models.
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Figure 50: Mistral with Euclidean distance: SHAP analysis for locked vs. elicited activations.
Beeswarm plot of the SHAP values for the logistic regression trained on the pruned barcode sum-
maries for layer 1, 8, 16, 24, and 32. The mean of the deaths of 0-bars appears as the most impactful
feature in the prediction of the model, shifting predictions to “locked” when the value of the feature
is lower for layers 8, 16, 23, and 32, and to “elicited” when it is higher. The opposite phenomenon
is observed in layer 0.

C.4.2 LLAMA3 (8B PARAMETERS)

We include the results of the global analysis in Figure 3 for the locked vs. elicited dataset. Here
we also observe less clear patterns of correlations in the topological features, particularly for latter
layers. Despite the mean of the death of 0-bars remaining as one of the key features in the CCA, the
interpretation of the Shapley values is less straightforward in this case as the dichotomous behavior
of these for the mean of the 0-bars disappears for latter layers.

Figure 51: Llama with Euclidean distance: Cross-correlation matrices for the barcode sum-
maries for locked vs. elicited activations. Decreasing block of correlated features appears in the
cross-correlation matrix of the barcode summaries for layers 1, 8, 16, 24, and 32.
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Figure 52: Llama with Euclidean distance: PCA of barcode summaries of locked vs. elicited
activations. Clear distinction appears in the projection onto the two first principal components from
the PCA of the pruned barcode summaries for layers 1, 8, 16, 24, and 32.

Figure 53: Llama with Euclidean distance: CCA loadings for locked vs. elicited activations.
Loadings of the 5 most important contributions to the first canonical variable of the CCA on the
pruned barcode summaries show that the mean of the death of 0-bars is significantly correlated with
the first two principal components of the PCA across all layers.

Figure 54: Llama with Euclidean distance: Logistic regression for locked vs. elicited activa-
tions. Prediction of a logistic regression trained on a 70/30 train/test split of the pruned barcode
summaries, plotted on the projection onto the two first principal components for visualization pur-
poses. Accuracy and AUC–ROC tested on the test data, and 5-fold cross validation on train data are
presented for each model, showcasing the outstanding performance of all models.
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Figure 55: Mistral with Euclidean distance: SHAP analysis for locked vs. elicited activations.
Beeswarm plot of the SHAP values for the logistic regression trained on the pruned barcode sum-
maries for layer 1, 8, 16, 24, and 32. The mean of the deaths of 0-bars appears as the most impactful
feature in the prediction of the model, shifting predictions to “locked” when the value of the feature
is lower for layers 8, 16 and 32, and to “elicited” when it is higher. For layer 24, the total persis-
tence of 1-bars appears as the most important feature. Lower number of 1-bars classifies the point
as “locked” while higher values push the prediction toward “elicited”.

D FURTHER DETAILS ON LOCAL ANALYSIS

In this section we provide further details to the local analysis in Section 3.3.

D.1 PIPELINE

Within this local analysis, we aim to determine the interaction of elements of the neural network
across the layers by taking representations across pairs of layers as coordinates in 2 dimensions
(2D). We study this across three models: Mistral, Phi3 3.8B and LLaMA3 8B. For each of these
models, we take a sample of 2000 from each model, 1000 of which are clean activations and 1000 of
which are poisoned activations. Each element along the layer given their embedding into 2D can be
thought of as nodes in a graph with weighted connections based on the Euclidean distances between
the points. On these graphs, we construct the Vietoris–Rips filtration and compute the resulting
persistence barcode which describes the topology of the interactions between the elements.

For this local analysis, we focus on a smaller selection of persistence barcode summaries, including
measures such as the mean death of 0-bars, total persistence of 0- and 1-bars, and persistent entropy,
while excluding measures such as the quantiles of death bars. We compute these summary statistics
and track their progression across pairs of layers in the models. We presented one such progression
within Figure 10 in Section 3.3, which captures how total persistence changes over the layers and
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is distinct from the control case. In the following sections, we include further plots to support this
argument.

D.2 RESULTS

D.2.1 MISTRAL MODEL

(a) (b) (c)

(d) (e)

Figure 56: Local analysis of consecutive layers for the total persistence of 1-bars for the Mistral
model. Comparisons of the average total persistence of 1-bars across 1000 samples for Mistral
model for original (a), scaled/normalized (b) and scaled and permuted (c) activation data. (d) Ratios
of mean total persistence of 1-bars between clean and poisoned datasets for original, scaled, and
scaled and permuted activations. (e) Overlaid plots of the overall variance of total persistence of
1-bars for clean and poisoned datasets combined and the absolute difference between mean total
persistence of 1-bars for clean and poisoned datasets.

In addition to the propagation of total persistence of 1-bars we showed in Section 3.3 and in this
section of the Appendix, we also evaluated the progression of other barcode summaries. Notably,
descriptors which capture similar features are the mean deaths of 1-bars, and the mean birth of 0
bars with mirroring patterns. In Figure 57, we show the results for the mean death of 0-bars.

D.2.2 PHI3 MODEL

We present a similar comparison of results for the Phi3 model. Figure 58 illustrates the patterns
across layers for the mean death of 0-bars, while Figure 59 shows the patterns for the total persistence
of 1-bars. Unlike the Mistral model, the ratio between barcode statistics for clean and poisoned
activations in the Phi3 model does not intersect one. While a decreasing or somewhat parabolic
trend is still observed, the average mean death of 0-bars and the total persistence of 1-bars for clean
raw activations consistently remain greater than those for poisoned raw activations. Additionally, we
find that the “control” case remains close to the x-axis, with the scaled ratios exhibiting significant
variations around this baseline.
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Figure 57: Local analysis of consecutive layers for the mean deaths of 0-bars for the Mistral
model. Top: Comparisons of the average of mean deaths of 0-bars across 1000 samples for the
Mistral model for original (raw), scaled (normalized) and scaled & permuted activation data. Bot-
tom left: Ratios of average mean deaths of 0-bars between clean and poisoned datasets for original,
scaled and scaled & permuted activations. Bottom center: Overall variance of mean deaths of 0-
bars for clean and poisoned datasets combined. Bottom right: Absolute difference between mean
total persistence of 1-bars for clean and poisoned datasets.

Figure 58: Local analysis of consecutive layers for the mean deaths of 0-bars for the Phi3 model.
Top: Comparisons of the average of mean deaths of 0-bars across 1000 samples for Phi3 model for
original (raw), scaled (normalized) and scaled & permuted activation data. Bottom left: Ratios of
average mean deaths of 0-bars between clean and poisoned datasets for original, scaled and scaled
& permuted activations. Bottom center: Overall variance of mean deaths of 0-bars for clean and
poisoned datasets combined. Bottom right: Absolute difference between mean total persistence of
1-bars for clean and poisoned datasets.
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Figure 59: Local analysis of consecutive layers for the total persistence of 1-bars for the Phi3
model. Top: Comparisons of the average of total persistence of 1-bars across 1000 samples for Phi3
model for original (raw), scaled (normalized) and scaled & permuted activation data. Bottom left:
Ratios of average total persistence of 1-bars between clean and poisoned datasets for original, scaled
and scaled & permuted activations. Bottom center: Overall variance of total persistence of 1-bars
for clean and poisoned datasets combined. Bottom right: Absolute difference between mean total
persistence of 1-bars for clean and poisoned datasets.

D.2.3 LLAMA3 8B MODEL

We present the results for the LLaMA3 8B model. Figures 60 and 61 both show a decreasing trend
in the ratio between clean and poisoned activations, whether measured by the mean death of 0-bars
or the total persistence of 1-bars respectively. Notably, this ratio crosses 1 around layer 15 or later.
Moreover, we continue to observe distinct differences between clean and poisoned activations across
both meaningful variants.

D.2.4 PEAK ANALYSIS FOR PHI3 AND LLAMA3

Table 7: Peak analysis. Precision@k for k=1, 3, and 5 largest peaks in total variance, and their
precision in detecting the largest peaks in absolute difference between the two classes. Spearman’s
rank correlation (r) is reported in the last column. ∗, ∗∗ correspond to p-values <.05 and .01,
respectively.

Phi3 p@1 p@3 p@5 r
Total Persistence 0-bars 0 .33 .2 0.69∗∗
Total Persistence 1-bars 1.0 .67∗ .8∗∗ 0.50∗∗
Mean Birth 1-bars 0 .33 .6∗ 0.66∗∗
Mean Death 1-bars 0 .67∗ .8∗∗ 0.35
LLAMA3 p@1 p@3 p@5 r
Total Persistence 0-bars 1.0∗ .33 .4 0.60∗∗
Total Persistence 1-bars 1.0∗ .67 .8∗∗ 0.93∗∗
Mean Birth 1-bars 1.0∗ .67 .6 0.60∗∗
Mean Death 1-bars 1.0∗ .67∗ .8∗ 0.93∗∗
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Figure 60: Local analysis of consecutive layers for the mean deaths of 0-bars for the LLaMA3
8B model. Top: Comparisons of the average of mean deaths of 0-bars across 1000 samples for
LLaMA3 8B model for original (raw), scaled (normalized) and scaled & permuted activation data.
Bottom left: Ratios of average mean deaths of 0-bars between clean and poisoned datasets for
original, scaled and scaled & permuted activations. Bottom center: Overall variance of mean
deaths of 0-bars for clean and poisoned datasets combined. Bottom right: Absolute difference
between mean total persistence of 1-bars for clean and poisoned datasets.

Figure 61: Local analysis of consecutive layers for the total persistence of 1-bars for the
LLaMA3 8B model. Top: Comparisons of the average of total persistence of 1-bars across 1000
samples for the LLaMA3 8B model for original (raw), scaled (normalized) and scaled & permuted
activation data. Bottom left: Ratios of average total persistence of 1-bars between clean and poi-
soned datasets for original, scaled and scaled & permuted activations. Bottom center: Overall
variance of total persistence of 1-bars for clean and poisoned datasets combined. Bottom right:
Absolute difference between mean total persistence of 1-bars for clean and poisoned datasets.
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D.2.5 NON-CONSECUTIVE LAYER ANALYSIS

Figure 62: Local analysis of non-consecutive layers for mean death of 0-bars. Comparison of
ratios between mean death of 0-bars for clean and poisoned datasets when considering topology
pairs of layers at 1 (left), 3 (middle), and 10 (right) intervals apart.

Continuing the analysis of non-consecutive layers, we examine how increasing layer separation af-
fects the contrast between clean and poisoned activations across different barcode summaries. Figure
62 shows the ratio of the mean death times of 0-bars, while Figure 63 shows the ratio of the total
persistence of 1-bars. For both summaries, we observe that at a 10-layer separation, the similarity
between the ratios for the scaled and control settings becomes more pronounced compared to sepa-
rations of 1 or 3 layers, indicating a reduced distinction between clean and poisoned interactions at
larger layer intervals.

Figure 63: Local analysis of non-consecutive layers on total persistence of 1-bars for the Mistral
model. Comparison of the ratios between total persistence of 1-bars for clean and poisoned datasets
when considering the topology of interactions between pairs of layers at 1 (left), 3 (middle), and 10
(right) intervals apart.

E SANDBAGGED REPRESENTATION DATA COLLECTION

To study sandbagging, we follow the “password-locking” paradigm introduced in prior work (Green-
blatt et al., 2024; van der Weij et al., 2024), wherein a model is fine-tuned to hide certain behaviors
or capabilities unless presented with a predefined password in the prompt. We leverage the the syn-
thetic data generation process and fine-tuning procedure detailed in Section 3 and 4 of van der Weij
et al. (2024). For clarity of our experimental setup, we summarize it briefly here. We extend it to
extract final token hidden representations from the model under both elicited and elicited conditions.

1. We generate a synthetic dataset of 3,347 evaluation questions based on the the Weapons of
Mass Destruction Proxy (WMDP) benchmark (Li et al., 2024) using GPT-4 (Perez et al.,
2022) to serve as a proxy measurement for hazardous knowledge in biology, chemistry, and
cybersecurity. This process protects against data leakage by never including actual WMDP
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items in the prompt and filters out any questions the base models cannot solve to ensure
that the fine-tuned model genuinely has the underlying capability.

2. Using this dataset and framework, we fine-tuned Mistral 7B and LLaMA3 8B with
LoRA (Hu et al., 2021). During this fine-tuning process, each WMDP-like evaluation
question appears twice: once with the password, where the model is fully elicited and is
provided with the correct answer and second where the model is password is absent or
locked and the model is provided with an incorrect answer.

3. Using the held-out validation set of generated WMDP-like questions, we recorded the
final-token representation from each layer of the fine-tuned model during its forward pass.
Specifically, for each prompt x, we collect:

Act
(locked)
ℓ (x) = Hiddenℓ

(
xlocked

)
[−1],

Act
(elicited)
ℓ (x) = Hiddenℓ

(
xelicited

)
[−1],

We then apply the global layer-wise topological analysis outlined in Section 3.2 to this representa-
tion data to study how the model’s latent space differs between elicited (no password) and elicited
(correct password) states.

F GLOBAL PH PIPELINE AND RESOURCE CONSTRAINTS

All Vietoris–Rips barcodes are computed with the GPU build of RIPSER++ on a single node
equipped with four NVIDIA A100 GPUs (80 GB each). Per layer we draw K = 128 independent
subsamples of k = 4096 activation vectors (64 clean, 64 adversarial). Subsamples are dispatched
round-robin to two concurrent RIPSER++ kernels per GPU.

Memory Footprint. A complete k = 4096 complex truncated at dimension 2 occupies only 2.1 ±
0.4 GB of device memory (95th percentile < 2.8 GB; Tab. 8), leaving a wide margin inside the 80
GB budget, even when two barcodes are built concurrently on the same GPU.

Throughput. The mean walltime per barcode is 36.8 ± 0.6s (95th percentile < 40s). With four
GPUs processing eight barcodes in parallel, a full layer (128 barcodes) finishes in ≈ 10 min and the
five-layer suite of one model in ≈ 50 min. Running the six models serially therefore completes in
about five hours on a single 4 × A100 node—comfortably within the nightly maintenance window.

Table 8: Computational Costs. Per-barcode wall-clock time and GPU-memory consumption (k=
4096, dimension ≤ 2). Statistics over K = 64 barcodes drawn from the LLAMA-3 8B activations.

Layer time µ± σ [s] (p95) memory µ± σ [GB]

1 38.34± 0.76 (39.6) 2.27± 0.34
8 36.79± 0.70 (38.0) 2.12± 0.39
16 36.68± 0.45 (37.4) 2.13± 0.30
24 36.63± 0.71 (38.1) 2.03± 0.33
32 36.62± 0.54 (37.4) 2.20± 0.344

After choosing K = 64, we recomputed the Monte-Carlo variance σ2
f from the raw, unscaled feature

values. For 39 out of 41 statistics, we found σf < 0.10, which would put the standard error SE =

σf/
√
K below ∆⋆/2 = 0.025 with only K ≤ 20. The outlier features were those which aggregate

counts—total persistence of H0 and the raw count of H1 bars—and need to be transformed for
their variance to be directly comparable to the other features. These do not affect the classifier as
the features are scaled prior to training and also do not appear as the most informative features for
distinguishing between clean and posioned PH-derived features. We conservatively choose K =
128 and the resulting ROC–AUCs on the logistic regression model trained only on barcodes are
perfect (1.00 ± 0.00), confirming that the subsampling budget is more than sufficient to validate the
significance of the features derived from PH, while balancing GPU memory and computation time.
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G ROBUSTNESS TO ADAPTIVE ATTACKS

We tested the robustness of our identified topological features against real-world attack examples
from Microsoft’s large-scale LLMail-Inject dataset (Abdelnabi et al., 2025) which includes
XPIA attack examples and information on their efficacy against four distinct defenses and a fifth
setup involving a stacked arrangement of all four. All attack examples are sourced from a public
red teaming competition. These attacks are particularly relevant as they include examples that were
specifically designed to evade the TASKTRACKER activation-based defense (Abdelnabi et al., 2024),
the source of our primary XPIA data. Thus, applying our topological framework to these attack
examples is a particularly strong test of whether our topological features represent a fundamental
shift in the shape and structure of LLM latent space, or whether it is an artifact that can be easily
subverted.

Methodology. As the LLMail-Inject dataset does not contain paired clean exam-
ples, we synthetically generated and manually verified 100 clean counterparts using
Phi-3-medium-4k-instruct. The small sample size was chosen to ensure that we could
verify the quality of the synthetically generated clean examples. We then generated last-token ac-
tivation data from layer 16 of Mistral-7B-Instruct-v0.2 for both the clean and adaptive
attack inputs and computed the corresponding barcode summary statistics.

Results. The topological features of the activation spaces under these adaptive attacks show a
clear distinction from the clean examples, as summarized in Table 9. The results show a clear shift
towards a simpler, more dispersed topology under adversarial influence.

Table 9: PH barcode statistics for clean vs. adaptive attack. Comparison of barcode summary
statistics of clean vs. adaptive attack activations from the LLMail-Inject dataset on Mistral-7B
(Layer 16).

PH Feature Clean Attack (Adaptive)
H0 Count 64 50
H0 Death Time (Median) 56.07 58.85
H0 Death Time (Mean ± SD) 55.43 ± 21.23 51.73 ± 28.38

H1 Count (Loops) 12 4
H1 Birth Time (Median) 69.36 84.92
H1 Death Time (Median) 71.59 86.20

• Fewer, Larger-Scale Loops: The number of 1-dimensional loops (H1 bars) decreases
significantly from 12 in the clean data to just 4 in the adversarial data. Furthermore, their
median birth time increases from ≈ 69 to ≈ 85, indicating that the remaining topological
features are formed at much larger scales.

• More Dispersed Clusters: The median H0 death time increases, supporting the hypothesis
of greater dispersion. We note that the mean H0 death time appears to contradict this
trend (decreasing from 55.43 to 51.73). This is due to a small subset of components in
the adversarial data merging at very low scales. The median, being more robust to such
outliers, better captures the overall geometric shift towards a more spread-out structure.

These findings further suggest that the topological compression signature we identify across models
and across XPIA and sandbagging attack conditions reflects a fundamental property of adversarial
influence, as the signature remains detectable even against attacks optimized to evade XPIA de-
fenses, including but not limited to the TASKTRACKER activation-based defense.
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