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Unsupervised Cross-Subject Adaptation for
Predicting Human Locomotion Intent

Kuangen Zhang

Abstract— Accurately predicting human locomotion
intent is beneficial in controlling wearable robots and in
assisting humans to walk smoothly on different terrains.
Traditional methods for predicting human locomotion
intent require collecting and labeling the human signals,
and training specific classifiers for each new subject,
which introduce a heavy burden on both the subject and
the researcher. In addressing this issue, the present study
liberates the subject and the researcher from labeling a
large amount of data, by incorporating an unsupervised
cross-subject adaptation method to predict the locomotion
intent of a target subject whose signals are not labeled.
The adaptation is realized by designing two classifiers
to maximize the classification discrepancy and a feature
generator to align the hidden features of the source and the
target subjects to minimize the classification discrepancy.
A neural network is trained by the labeled training set of
source subjects and the unlabeled training set of target
subjects. Then it is validated and tested on the validation
set and the test set of target subjects. Experimental results
in the leave-one-subject-out test indicate that the present
method can classify the locomotion intent and activities
of target subjects at the averaged accuracy of 93.60%
and 94.59% on two public datasets. The present method
increases the user-independence of the classifiers, but it
has been evaluated only on the data of subjects without
disabilities. The potential of the present method to predict
the locomotion intent of subjects with disabilities and
control the wearable robots will be evaluated in future work.
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|. INTRODUCTION

NTENT is a mental activity that indicates a commitment to

carry out specific actions in the future. Predicting the intent
of other individuals is important for both animals and robots.
Animals can predictively adjust their actions after predicting
the internal mental states and potential future actions of prey,
predators, and mates [1]. Robots would coordinate with other
individuals better if they could accurately predict the intent
of other entities, especially humans. For instance, powered
wearable robots (e.g., prostheses, orthoses, extra robots, and
exoskeletons) [2]-[5] need to predict human locomotion intent
to predictively change their locomotion modes to adapt to
different terrains (eg., stairs, ramp, and level ground) [6],
[7]. Researchers [8]-[11] claim that an intent recognition
system is critical for the wearable robots in order to avoid
disrupting the gait cycle and adapt to different locomotion
modes. If wearable robots cannot predict the human locomo-
tion intent accurately and timely, wearable robots may switch
to the level-ground mode while climbing stairs, which would
disrupt the gait cycle of humans and might cause the humans
to tumble.

It is difficult for a robot to understand human intent,
which cannot be measured directly. To address this issue,
previous researchers captured the signals in the human-robot
interface, including the signals of the inertial measurement unit
(IMU) [10]-[13], the surface electromyography (EMG) signals
of the residual limb [14], and the pressure as recorded from
the pressure-sensitive insoles [15]. Some researchers directly
controlled joint angles or torques of wearable robots based
on the captured human signals [2]. However, such volitional
control methods are not robust. Most researchers prefer to
classify these signals to some motion patterns, for switching
the locomotion modes of the wearable robots via a finite-state
controller [7]. Typical classification methods include lin-
ear discriminant analysis (LDA), support vector machines
(SVM) [16], [17], and artificial neural networks (ANN)
[17], [18]. LDA is computationally efficient because it can
be solved analytically, but it cannot handle complex features.
SVM can deal with complex features but a suitable kernel
function should be designed manually. ANN requires less
experience, but its classification accuracy based on ANN
may be lower than LDA and SVM [9], [19]. Compared to
shallow classification methods, deep neural networks, such
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as a convolutional neural network (CNN) [20], can classify
human intent more accurately and do not rely on the human
experience [21]. However, the computational complexity of
deep neural networks is greater than that of shallow classifi-
cation methods. A common limitation for all these methods is
that they all require labeled signals for every subject because
signals in the human-robot interface are usually noisy and
user-dependent. For instance, these signals can be affected by
the sensor position and the skin quality of humans. To accu-
rately decode the human locomotion intent, researchers need
to collect and label the signals and train the classifier for each
new subject, which is burdensome for both the subject and the
researcher [9].

Considering that the signals in the human-robot interface
are usually user-dependent, some researchers utilized a vision
sensor to monitor the environment and estimate the locomo-
tion modes [22], [23]. Besides, the trajectory of the robot
can be predicted from the sequential images by a novel
self-supervised learning method, which is able to supply latent
representations with physical semantic meanings for control-
ling the robot [24]. In our previous study, environmental infor-
mation captured by a depth camera and an IMU was utilized
to classify the environment and estimate the environmental
parameters. The environmental classifier trained for one sub-
ject achieved similar classification accuracy for other subjects
without training, which was user-independent [25]. Never-
theless, the environmental classification cannot determine the
locomotion intent accurately, such as the accurate transition
time between two locomotion modes. To accurately predict the
human locomotion intent, signals in the human-robot interface
are still required.

To design a user-independent classifier to accurately classify
the user-dependent signals, some researchers have adopted
domain adaptation strategies. They assumed that signals were
from two different types of subjects: the source subjects and
the target subjects. Sufficient labeled signals are available
from the source subjects, while it is difficult to label the
signals of the target subjects. To address this issue, researchers
designed unsupervised domain adaptation methods to train the
classifier using the labeled data from the source subjects and
the unlabeled data from the target subjects. They then used the
trained classifier to classify the data of the target subjects [26].
Although the feasibility of unsupervised domain adaptation
methods has been validated, there are still some limitations.
First, the focus had been on recognizing human activities
using the IMU signals with delay rather than predicting
human locomotion intent. Human activities can be observed
directly while human locomotion intent happens mentally and
cannot be observed. Hence, it is more difficult to accurately
predict human locomotion intent. In addition, the state-of-the-
art accuracy (87%) for recognizing the activities of the target
subject is not satisfactory for practical application. Moreover,
the domain adaptation method proposed in [26] was based on
an unsupervised clustering method, which required multiple
iterations and could take a longer time than an end-to-end
domain adaptation method.

Many end-to-end domain adaptation methods have been
proposed to classify images, including domain-adversarial

neural networks (DANN) [27], domain separation networks
(DSN) [28], and adversarial discriminative domain adapta-
tion (ADDA) method [29]. The most representative method is
DANN, which consists of a feature generator, a label classifier,
and a domain classifier. The feature generator generates the
hidden features, which are input to the domain classifier to
classify their domains and to the label classifier to classify their
labels. The feature generator aligns features from the source
domain and the target domain to fool the domain classifier
until it can not discern which domain the features came
from. However, there are some limitations. First, the domain
classifier does not consider the classes of the target domain
samples, and thus a trained generator may generate ambiguous
features near class boundaries. Second, the feature distribu-
tions cannot be aligned entirely between different domains
due to different characteristics of different domains. Besides,
the above methods have only been evaluated on processing
images, which are usually more stable than human signals.

In response to such limitations and inspired by an image
classification method proposed by Saito e al. [30], this paper
proposes an end-to-end unsupervised cross-subject adaptation
method to accurately classify the locomotion intent and activ-
ities of the target subject based on the human kinetic and
biological signals (e.g., IMU and EMG) (see Fig. 1). To the
best of our knowledge, predicting human locomotion intent
without labeling the signals from the target subjects has not
been resolved to date. To realize the cross-subject adaptation,
a convolutional network, which consists of one feature gen-
erator and two classifiers, is designed to align the hidden
features and classify the aligned features in an adversarial
manner. Because one important step of training the network
is to maximize the classification discrepancy between two
classifiers, which is similar to the training strategy proposed
by Saito et al. [30], this method is also named as MCD. It is
hypothesized that the designed network trained by the labeled
data from the source subjects and the unlabeled data from the
target subjects can still predict the locomotion intent of the
target subjects accurately.

The key contributions of the present paper include the

following:
1) Development of an end-to-end unsupervised
cross-subject adaptation method to predict the

locomotion intent of the
and efficiently.

2) Designing a novel CNN to align the features of the
source subjects and the target subjects in an adversarial
manner.

3) Evaluating the developed method on two public
datasets and achieving state-of-art accuracy (93.60%
and 94.59%) for classifying the locomotion intent and
activities of the target subjects.

4) Comparing the performance of different sensors and
identifying the most important sensor to classify human
locomotion intent and activities.

target subjects accurately

The rest of this paper is organized as follows. Section II
describes the theoretical methods, the network architecture,
and the experimental setup. Sections III and IV present the
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Fig. 1. The overview of the unsupervised cross-subject adaptation method. The data of source subjects are labeled and can be trained by the
supervised learning method. In contrast, the data of target subjects do not have labels and are trained by the unsupervised cross-subject adaptation
method, which is realized by designing two classifiers to maximize the discrepancy and a feature generator to minimize the discrepancy between

two classifiers. Finally, the proposed method can predict labels of both source data and target data.

experimental results and discuss them. Section V concludes
the paper.

[l. MATERIALS AND METHODS

This section describes the proposed methods in detail,
including the signal processing method and unsupervised
domain adaptation method. The proposed methods are eval-
vated using two public datasets, and the corresponding exper-
imental setup and statistical analysis methods are presented.

A. Signal Processing

The present paper processes two public datasets: the ency-
clopedia of able-bodied bilateral lower limb locomotor signals
(ENABL3S)! provided by the Northwestern University [31]
and the daily and sports activities data set (DSADS)? provided
by the Bilkent University [32]. The signals in these datasets
have been filtered and segmented, and detailed signal process-
ing methods have been introduced in their papers. To keep
the integrity of the present paper, the signal segmentation and
feature extraction are introduced briefly in this section.

The ENABL3S [31] includes filtered signals of bilateral
EMG, IMU, and joint angle sensors. These filtered signals
were segmented by 300 ms wide sliding windows. The sliding
windows began 300 ms before each gait event, such as heel
contact and toe-off. It is difficult to accurately define and

1 https://doi.org/10.6084/m9.figshare.5362627
2http://archive.ics.uci.edu/ml/datasetstai1y+and+Sports+Activities

measure the accurate time of human intent, which is not an
intuitive signal. Hence, previous researchers had to utilize
some gait events to estimate the time of switching between
different locomotion modes of the wearable robots, such
as the toe-off from the level-ground mode to the upstairs
mode and the heel contact from downstairs mode to the
level-ground mode [11], [25], [33]. In the present work,
locomotion modes can be classified before the gait event,
which is used to trigger the transition of the locomotion modes
for the wearable robots. The features were extracted from the
segmented signals. For EMG signals, ten features, including
waveform length, the mean absolute value, the coefficients of
a sixth-order autoregressive model, the number of slope sign
changes, and the number of zero crossings, were extracted.
Features for the IMU and the joint angular signals included
the maximum, minimum, mean, standard deviation, and initial
and final values. In the present study, the features of 14 EMG
sensors, 5 IMUs, and 4 joint angle sensors were reshaped
to a 33 x 12 matrix, and each row represents features of a
Sensor.

The DSADS [32] contains five 9-axis IMUs and the signals
were captured at 25 Hz. The captured signals were segmented
to 5 s segments. There were 45 signal channels, and extracted
features from each channel included the maximum, minimum,
mean, standard deviation, and initial and final values. There-
fore, a 45 x 6 feature matrix was formed. There was no tran-
sition between different activities and the segmented signals
were delayed, and thus this dataset was only used to compare
the performance of recognizing human activities using the
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Fig. 2. The proposed network architecture and training steps. The type of convolutional layer used is indicated by both of the subscript and the
superscript, e.g., conv?2 suggests that a type-one convolutional layer with 32 channels is used. The fully connected layer is denoted by FC. Training

steps and objectives are introduced in subsubsection 1I-B.3 and 3-5.

present method and that using the methods introduced in the
previous study [26].

B. Unsupervised Cross-Subject Adaptation Network

The developed network is based on the network of maxi-
mum classifier discrepancy (MCD) [30] and a theorem pro-
posed by Ben-David et al. [34] on bounding the conditions
where a classifier trained from the source data can be expected
to perform well on the target data. Their work suggests that
the target error er of a classifier can be upper bounded by
the sum of the source error €5 of a classifier, the distance
in the symmetric difference classifier space between the two
classifiers dgag (S, T), and the combined error of the ideal
joint classifier A:

1
er(h) <es(h) + EdHAH(DS, D7)+ 4, (D

where / denotes a classifier that belongs to a classifier space
H. Dg and Dr represent the source domain and the target
domain, respectively.

The dgan (S, T) is defined as [34]:

duan(Ds, Dr) =2 sup |Pry~pglh(x) # h'(x)]
hieH

— Pry~py[h(x) # h' ()],

where sup indicates the upper bound, and Pr denotes the
probability. Two classifiers & and h’ belong to the classifier
space H.

The source error €5 can be minimized by training & and
h’ using the same labeled data in the source domain. The
term Pry~ps[h(x) # h'(x)] inside dgau(S,T) will also

)

be theoretically minimum, and can be assumed to be unim-
portant under the setting of unsupervised domain adaptation.
As a result, the objective of this research is to design a
learning algorithm to train two different classifiers & and A’
to agree on the predictions in the target domain, and make
Pry~py[h(x) # h'(x)] close to Pry~pglh(x) # h'(x)].

Inspired by the definition of dyapy(Ds, D7), the present
paper designs two classifiers C1 and C, with the same fully
connected neural network architecture and builds a convolu-
tional neural network F to be the feature generator whose
outputs are shared by two different classifiers. Thus, two
classifiers & and A’ mentioned above are defined as h
Ci[F(x)] and /' = C2[F(x)] in this research. Additionally,
the objective becomes how to jointly train /2 and 4’ to realize
Pry~prlh(x) # W' (x)] & Pry~ps[h(x) # h'(x)]. Next, this
section will discuss the detail of the proposed architectures
and the training steps for the feature generator and the label
classifiers. The overall network architecture and the adaptation
training strategies are shown in Fig. 2.

1) Feature Generator: The human signal matrix to be clas-
sified is similar but not identical to images. The relationship
between signals from different sensors is needed for the
predictive model to classify the human intent correctly. As a
result, the proposed feature generator takes advantage of the
ability of the CNN to localize pixel dependencies but is
slightly different from the traditional architecture of the CNN.

There are three types of convolutional layers in the proposed
architecture. The first type of the convolutional layer (convy)
has multiple 1 x 1 filters and a stride of 1. This kind of layer
is a multi-layer perceptron that increases the total number
of features. The second type of convolutional layer (conv;)
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consists of 1 x 3 filters and a stride of 2. This type of
layer convolves features from the same sensor to consider the
local connectivity of different features. The third convolutional
layer (conv3), which has m x n filters (m is the number
of sensors and n is the number of hidden features for each
sensor) and a stride of 1, convolves all features from different
sensors to a global hidden feature vector. The relationship
among all sensors can be considered rigorously through this
convolutional layer.

The batch normalization is adopted after each convolution
and before the nonlinear activation function (ReLU). Because
the human signals gathered by each sensor are important for
the human intent classification, the proposed feature generator
does not downsample the features.

2) Label Classifier: The label classifier for the proposed
work is an artificial neural network with two fully-connected
(FC) layers. One fully-connected layer with batch normaliza-
tion and a single activation (ReLU) first maps the features
extracted from the feature generator to 128 hidden features.
Then, another fully-connected layer directly maps these hidden
features to the classification scores of N different types
of human intent. There are two label classifiers, and their
classification scores are summed. The class with the highest
score is the most possible class of human intent.

3) Training Steps: The focus of the present work is how to
design a learning algorithm to train two different classifiers
C1 and C; to agree on their predictions on the target domain.
Inspired by the work proposed by Saito e al. [30], we solved
the problem by separating the learning process into three steps.

Step 1 Based on Ben David er al. ’s theorem, we first
train the feature generator and label classifiers to classify the
source signals correctly. This step makes Cy and C;, agree on
their predictions on the source samples, and thus the source
error €g is minimized through this step. In this training step,
the objective 1 is to train the network to minimize the softmax
cross entropy loss:

N
[Exyyexry D —1n = yllog Py(ylxs)l,  (3)

n=1

min
F,C1,C2

where I[n = ys] is a binary indicator which is 1 when n
equals yg, P, denotes the output probability for class n, and
E is the expectation operator.

Step 2 To make the two label classifiers C and C, agree on
their predictions in the target domain, an adversarial learning
strategy is used to detect target features that are far from the
support of the source. Thus in this step, the label classifiers are
trained as the discriminators on both domains without updating
the parameters of the feature generator F. Objective 2 is to
maximize the discrepancy between C; and C3 so that the target
features without the support of the source can be detected:

N

C{nig E ey, vs)e(Xs,Ys) Z(—I[n = ys]log Py (y|xs))
&2 n=1

1 N
~CExex, 5 ;(m} Olx) — P2Olx)D], @)

where Pn1 and Pn2 are the output probability from Ci(F) and
Cy(F) for class n respectively. ¢ is a weight parameter to
control the importance of the discrepancy loss.

Step 3 After maximizing the label classifier discrepancy,
we then train the feature generator F and fix two label
classifiers to only extract target features to make two classifiers
achieve an agreement. To better update the feature generator,
this training step is repeated four times for the same mini-
batch. The objective 3 is described as follows:

N
. 1
min(Ex,cx, §|P,3 (he) = PGyl ®)

These three training steps are repeated continuously for
different mini-batches until the target error €7 is minimized.
After training the network, the classification scores of two
classifiers are summed and the class with the highest score is
selected as the prediction of the input signals.

C. Implementation Details

The present network was trained by an Adam optimizer,
whose learning rate and weight decay were 0.0002 and 0.0005.
The max epoch and batch size were 50 and 128, respec-
tively. The dropout rate of all dropout layers was set at 0.5.
The network was implemented by PyTorch and tested on a
computer with an Intel Core i7-6700K, an 8 GB memory
chip (DDR3 SDRAM), and a graphics card (GeForce GTX
1050 Ti).

D. Experimental Setup

For ENABLS3S [31], ten able-bodied subjects were invited to
perform experiments to capture corresponding human signals.
During experiments, these subjects transited between standing
(St), level ground walking (LW), stair ascent (SA), stair
descent (SD), ramp ascent (RA), and ramp descent (RD).
Each subject repeated walking on a circuit ten times, and each
circuit consisted of St - LW — SA — LW — RD — LW
—- St - LW —- RA — LW — SD — LW — St. Because
transitions between different locomotion modes were recorded,
the ENABL3S dataset can be used to predict the locomotion
modes.

For DSADS [32], eight able-bodied subjects participated in
the experiments and were requested to perform 19 activities
(e.g., sitting, standing, running, riding a bike, jumping, and
playing basketball). They performed each activity for five
minutes and there was no transition between different activi-
ties. Hence, the DSADS can only be used to classify human
activities rather than predict intent. The DSADS dataset is
also selected because it includes more types of activities than
in the ENABL3S dataset. There is only one paper that utilizes
the domain adaptation strategy to classify human locomotion
modes, and it uses the DSADS dataset. Using the same dataset,
the present paper can fairly compare the performance of the
present method with that of the previous method.

There are about 22,000 signal segments in the ENABL3S
dataset and 9,000 signal segments in the DSADS dataset. The
data of each subject were randomly divided into the training
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set (70%), validation set (15%), and the testing (15%) set.
In every experiment, a target subject was selected from the
subjects and the remaining subjects were regarded as source
subjects (leave-one-subject-out test). The network was trained
using the labeled training set of source subjects and the
unlabeled training set of the target subject. The validation set
of the target subject was used to optimize the hyper-parameters
of the designed networks and determine the time to stop
training. Finally, the performance of the network model was
tested on the test set of the target subjects. A different subject
was selected as the target subject in the next experiment
until transversing all the subjects. The present paper compared
the performance of different methods, including LDA, SVM,
ANN, CNN, DANN, and the present MCD. The LDA, SVM,
and ANN were only trained using the training set of the
source subjects and were tested on the test set of the target
subject. The network architecture of CNN and MCD are the
same but CNN was trained without the training set of the
target subject. We did not separately train the classifiers of
CNN to maximize the classifier discrepancy nor separately
train the feature generator of CNN to minimize the classifier
discrepancy. The validation set and the testing set of the
target subject were still used to optimize the parameters of the
CNN and to test the performance of the CNN. The network
architecture of the DANN is also the same as that of the MCD
except for the last layer of the domain classifier, which only
classifies the domain of the input. The implemented DANN
in the present paper uses the same training strategy as that
proposed by Ganin et al. [27], and is seen as the baseline of
the domain adaptation result.

E. Statistical Analysis

In the leave-one-subject-out test, the mean and the standard
deviation of the classification accuracy in the source and the
target domains were analyzed. The classification accuracy in
the source and the target domains was calculated on the test
set of the source subjects and the target subject, respectively.
Because the classification results followed a normal distri-
bution, a t-test and a one-way ANOVA with post hoc test
at a significance level of P = 0.05 were used to compare
the difference of results between using different methods
and between using different sensors. The forward time to
classify each signal segment was also calculated to compare
the computing time of different methods.

Il1. RESULTS
A. Evaluation on ENABL3S

On ENABL3S [31], the classification accuracy for each
target subject increases significantly with the present MCD.
As shown in Fig. 3, the classification accuracy using the
MCD is higher than that using LDA, SVM, and ANN for
all target subjects, and the MCD also outperforms the CNN
and DANN in most cases. Besides, the classification accuracy
for different target subjects varies largely because the EMG
and IMU signals used in this paper may be user-dependent.
The variation of the classification accuracy for different target
subjects decreases after using the MCD. The range of the

[ LDA
100
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Fig. 3. Accuracy of classifying the locomotion intent for each target
subject on ENABLS3S using the LDA, SVM, ANN, CNN, DANN, and MCD.
S1-S10 represent ten target subjects.

TABLE |
ACCURACY AND FORWARD TIME OF CLASSIFYING THE LOCOMOTION
INTENT FOR THE SOURCE SUBJECTS AND THE TARGET SUBJECT OF
ENABL3S UsING THE LDA, SVM, ANN, CNN, DANN, AND MCD
METHODS. SD DENOTES THE STANDARD DEVIATION. THE FORWARD
TIME INDICATES THE ONLINE EXECUTING TIME OF CLASSIFYING
EACH SIGNAL SEGMENT AND THE UNIT
IS IN MILLISECONDS (ms)

Methods Mean (%) SD (%) Mean (%) SD (%) Time (ms)
Source Target
LDA 92.59 0.23 85.78 4.53 0.05
SVM 90.31 1.30 79.17 7.10 0.05
ANN 93.56 0.37 86.31 3.56 0.10
CNN 96.30 0.76 90.93 4.37 7.33
DANN 95.17 0.92 91.58 3.01 6.25
MCD 95.29 0.46 93.60 2.36 7.33

classification accuracy for the target subject decreases to
8.27% after using the MCD, while those using the other
methods are higher than 9.22%.

The MCD achieves higher classification accuracy
(mean = 93.60%) and lower standard deviation (2.36%) than
the other methods for classifying the locomotion intent of
the target subjects (see Table I). The significant effects of
using different methods are also described as a P matrix
in Table II (P is the probability that the null hypothesis is
true). There is a significant difference (P < 0.02) between
using the deep neural network (CNN, DANN, MCD) and
using the traditional algorithms (LDA, SVM, and ANN) for
both source subjects and target subjects, which validates
the feasibility of the present network. The disadvantage of
the present network is that it takes a longer time (7.33 ms)
than the traditional algorithms to classify a signal segment.
Although by using the same network architecture, the MCD
classifies the locomotion intent of the target subjects with a
2.67% higher mean and a 1.91% lower standard deviation
of the classification accuracy than for CNN, but their
difference is not significant (P = 0.11). Compared to the
DANN, which is a representative domain adaptation method,
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TABLE Il
P MATRIX OF CLASSIFICATION ACCURACY IN TABLE |. THE VALUE IN
THE MATRIX INDICATES THE P VALUE BETWEEN THE CLASSIFICATION
ACCURACY USING THE METHOD IN THE ROW AND THAT USING THE
METHOD IN THE COLUMN. THE LOWER LEFT CORNER AREA
REPRESENTS THE P VALUE OF THE CLASSIFICATION ACCURACY FOR
THE SOURCE SUBJECTS, AND THE UPPER RIGHT CORNER AREA
REPRESENTS THAT FOR THE TARGET SUBJECTS

Methods LDA SVM ANN CNN DANN MCD
LDA / 0.023  0.772  0.019 0.003 0.000
SVM 0.000 / 0.011  0.000 0.000 0.000
ANN 0.000  0.000 / 0.018 0.002 0.000
CNN 0.000  0.000  0.000 / 0.703 0.106
DANN 0.000 0.000 0.000 0.008 / 0.111
MCD 0.000  0.000 0.000 0.002 0.704 /
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Fig. 4. Accuracy of classifying the locomotion intent for source subjects
and the target subject on ENABL3S using the MCD method. The signals
are divided into different groups based on the type of sensors: EMG (E),
IMU (1), angle sensor (A), their combinations (+ denotes combination),
and all sensors (All). The error bars represent mean + one standard
deviation of classification accuracy in the leave-one-subject-out test.

the MCD achieves a 2.02% higher mean and a 0.65% lower
standard deviation of the classification accuracy on the target
domain, and again their difference is not significant either
(P = 0.11). Moreover, the MCD sacrifices its performance
for classifying the locomotion intent of the source subjects.
The mean accuracy of classifying the locomotion intent for
the source subjects using the MCD is statistically lower than
that using the CNN (P = 2 x 1073). Therefore, the MCD
outperforms the CNN in the target domain while achieving
lower performance than the CNN in the source domain.

The effects of selecting different sensors were also analyzed
to determine the importance of different types of sensors. The
signals captured from different types of sensors were utilized
to train the MCD. The P value of one-way ANOVA with post
hoc test is 2.16 x 10~ 13 for the source subjects and 1.25x 1078
for the target subjects, which means that changing the sensor
has a significant effect on classifying the human signals. As
shown in Fig. 4, the EMG performs worse than the other
sensors (P < 3 x 10™* for the source subjects and P < 0.05
for the target subjects). This result makes sense because the
EMG signals are noisy and highly user-dependent. Besides,
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Fig. 5. Accuracy of classifying human activities for each target subject
on DSADS using the LDA, SVM, ANN, CNN, DANN, and MCD methods.
S1-S8 represent eight target subjects.

there is no significant difference (P = 0.89) between the
classification accuracy for the source subjects using the IMU
and that using the angle sensors, but angle sensors significantly
outperform the IMU in classifying the locomotion intent of the
target subjects (P < 0.01). Hence, the angle sensors are less
user-dependent than the IMUs and EMGs. The reason may
be that the signals of joint angles are more stable than the
signals of linear acceleration, angular velocities, and muscle
signals. In addition, the human lower limb model can be built
based on the joint angles, which may also explain the improved
performance of the angle sensors. The mean values of the
classification accuracy for the source subjects and the target
subjects based on all sensors are 0.65% and 1.45% higher
than those based on IMUs and angle sensors (I4+A), but the
differences are not significant (P = 0.10 for source subjects
and P = 0.28 for target subjects). Hence, the EMG can still
provide some supplementary information for predicting the
human locomotion intent but need to be combined with kinetic
Sensors.

B. Evaluation on DSADS

The present method was also evaluated on the DSADS to
classify human activities. The classification accuracy using
LDA, CNN, DANN, and MCD is higher than that using SVM
and ANN for most target subjects (see Fig. 5). Moreover,
the range of classification accuracy reduces to about 11.81%
after using LDA, CNN, and MCD, which is lower than that
using the SVM, ANN, and DANN (> 16.26%).

The mean of classification accuracy (94.59%) for the target
subjects using the MCD is still the highest (see Table III).
However, CNN decreases the standard deviation of the classi-
fication accuracy to 3.01% for the target subjects. As shown in
Table IV, the CNN and MCD statistically outperform the SVM
and ANN in classifying the activities of the target subjects
(P < 3 x 1073). Although the MCD achieves 0.95% and
3.79% higher classification accuracy in the target domain than
CNN and DANN, there is no significant difference between
their classification accuracy (P > 0.10). It is surprising that
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TABLE IlI
ACCURACY AND FORWARD TIME OF CLASSIFYING HUMAN ACTIVITIES
FOR THE SOURCE SUBJECTS AND THE TARGET SUBJECT OF DSADS
USING THE LDA, SVM, ANN, CNN, DANN, AND MCD METHODS.
SD DENOTES THE STANDARD DEVIATION. THE FORWARD TIME
INDICATES THE ONLINE EXECUTING TIME OF CLASSIFYING EACH
SIGNAL SEGMENT. THE TIME IS IN MILLISECONDS (ms)

Methods Mean (%) SD (%) Mean (%) SD (%) Time (ms)
Source Target
LDA 98.02 0.22 92.76 3.12 0.07
SVM 96.78 1.15 81.58 8.36 0.05
ANN 97.72 0.27 81.65 8.96 0.13
CNN 99.20 0.73 93.64 3.01 7.72
DANN 98.55 0.87 90.80 4.70 6.82
MCD 97.73 0.81 94.59 3.83 7.72
TABLE IV

P MATRIX OF CLASSIFICATION ACCURACY IN TABLE Ill. THE
MEANINGS OF THE VALUES ARE THE SAME AS THOSE IN TABLE ||

Methods LDA SVM ANN CNN DANN MCD
LDA / 0.003 0.005 0.576  0.343 0.313
SVM 0.010 / 0987 0.002  0.017 0.001
ANN 0.032  0.041 / 0.003  0.023 0.002
CNN 0.001  0.000  0.000 / 0.172  0.590

DANN 0.115 0.004 0.022 0.128 / 0.099
MCD 0361 0.077 0973 0.002 0.074 /

there is no significant difference between the classification
accuracy in the target domain using the LDA and that using
CNN, DANN, and MCD (P > 0.31). This result shows that
the LDA can classify IMU signals accurately. In addition,
the LDA can optimize its parameters analytically and is
time-efficient (forward time = 0.07 ms), and thus it is suitable
for real-time application. In the source domain, all methods
achieve high classification accuracy (> 96.78), which shows
that the labeled training set is still very important. The CNN
still significantly outperforms the other methods except the
DANN (mean = 99.20% and P < 2 x 10’3), but the lowest
standard deviation (0.22%) of the classification accuracy in the
source domain is achieved by the LDA.

The subjects in DSADS wore five IMUs on different body
parts, including torso (T), right arm (RA), left arm (LA),
right leg (RL), and left leg (LL). The signals captured from
different IMUs were utilized to train the MCD and test the
classification accuracy for source subjects and target subjects.
The classification accuracy was compared to evaluate the
effects of sensor positions. Based on the result of the one-way
ANOVA with post hoc test, different sensor positions do
not cause significant difference for the classification accuracy
in the source domain (P = 0.37) and the target domain
(P = 0.14). After wearing all five IMUs, the mean of
classification accuracy for the source subjects and the target
subjects increase to 97.73% and 94.59%, respectively, which
are 0.30% and 2.4% higher than the highest accuracy using the
single IMU (see Fig. 6). However, the classification accuracy
for using five IMUs does not significantly outperform that
using the single IMU (P > 0.07) except that using the sensor
on the left leg (P < 8 x 1073).
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Fig. 6. Accuracy of classifying the human activities for source subjects
and the target subject on DSADS using the MCD method. The signals
are divided into different groups based on the position of IMU: torso (T),
right arm (RA), left arm (LA), right leg (RL), and left leg (LL), and all
IMUs (All). The error bars represent mean + one standard deviation of
classification accuracy in the leave-one-subject-out test.

C. Visualization

To better visualize the different distributions of the hidden
features between the source domain and the target domain,
the present paper also visualizes t-SNE projection [35] of the
non-adapted input features (Fig. 7(a)) and the adapted features
(Fig. 7(b)) generated from the last layer of the feature gener-
ator of the MCD. The overlap between the different domains
suggests the success of the adaptation and is positively related
to the classification accuracy. As shown in Fig. 7, the features
of different domains align better after using the MCD. Before
adaptation, there is almost no overlap between the blue points
(source domain) and the red points (target domain). After
adaptation, the blue and the red points with the same labels
distribute in a similar area.

IV. DISCUSSION
A. Ablation Study

In the present paper, an unsupervised cross-subject adap-
tation method (MCD) was presented to predict the locomo-
tion intent and activities of humans. The MCD was trained
by the labeled training set of the source subjects and the
unlabeled training set of target subjects. Then the MCD was
validated and tested on the validation set and testing set of
the target subjects. Experimental results validated that the
MCD achieved the highest accuracy (93.60% on ENABL3S
and 94.59 on DSADS) to classify the locomotion intent and
the activities of the target subjects. These results confirmed the
feasibility of the unsupervised cross-subject adaptation method
in classifying the locomotion intent and the activities of the
target subjects, which could increase the user-independence of
the classifiers and reduce the burden of labeling a large amount
of data for each new subject. Besides these expected results,
some other interesting results were found.
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Fig. 7. (Best viewed in color) T-SNE visualization of the hidden features
for one target subject from the ENABL3S dataset before and after
adaptation using the MCD. Different colors represent different domains.
Blue and red points represent the source and the target hidden features,
respectively. The different numbers denote different classes of the hidden
features. All input samples are from the testing set. After adaptation,
the decision boundaries between each cluster are found to be better
than those of the non-adapted case.

Firstly, the MCD and CNN, which shared the same network
architecture, achieved different performances in the source
domain and the target domain. The CNN performed better
in the source domain (96.30% on ENABL3S and 99.20%
on DSADS) while the MCD achieved higher accuracy in
the target domain (93.60% on ENABL3S and 94.59% on
DSADS). There was only one loss function for the CNN,
which reflected the accuracy of classifying the data in the
source domain. Conversely, there were three loss functions
for the MCD. The first loss function was the same as that
for CNN. The second loss function was used for training the
classifiers to minimize the first loss function and maximize the
discrepancy of the classifiers. The third loss function was used

for training the feature generator to minimize the discrepancy
of classifiers. The MCD with the first loss, with the first
and the second loss, and with all three losses achieved the
target accuracy at 90.93%, 92.13%, and 93.60%, respectively
on ENABL3S and at 93.64%, 93.49%, and 94.59%, respec-
tively, on DSADS. Hence, different losses and training strate-
gies caused different performances. The last two adversarial
loss functions should be combined to inspire the network
to learn domain-independent features. Besides, the last two
losses influenced the training objective of the MCD and
thus decreased its performance in the source domain. It is
difficult to optimize multiple objectives simultaneously. When
the labels are available, the supervised learning method is
still the best choice to train CNN. When the labels are not
available, the unsupervised domain adaptation methods can
be helpful.

Second, kinetic sensors, such as IMU and angle sensors
can be utilized to predict the locomotion intent of subjects.
As shown in Fig. 4, using only IMU and angle sensors (I+A),
the mean accuracy for the source subjects and the target
subjects achieved 94.64% and 92.15%, respectively, which
were not significantly different from those using all sensors
(P = 0.10 and P = 0.28 ). This result may change the
traditional view that the signals of kinetic sensors generate
behind the motion and cannot be used to predict the intent
of humans. There are still some feedforward signals in IMU
and angle sensors, such as linear acceleration and angular
velocity. Based on the experimental results of the present
paper, these feedforward signals could be effectively used
to classify the human intent. Moreover, the EMG signals
could help to increase the classification accuracy further. After
using all the sensors, the mean accuracy increased by 0.56%
and 1.45% in the source domain and the target domain,
respectively, but these improvements are not significant. The
EMG is more significant in directly predicting the joint angles
or joint torques [2]. However, the EMG signals are noisier and
may change during walking [36]. For the classification task,
the number of EMG sensors can be reduced to increase the
robustness and make the subjects feel more comfortable.

Third, the CNN can accurately classify human activities
based on the IMU signals (mean accuracy = 99.2%, see
Table III). There were more activities (19 activities) in the
DSADS, which were supposed to be more difficult to recog-
nize than ENABL3S (6 activities). However, experimental
results showed that all methods could accurately classify
human activities (accuracy > 96.78% in the source domain
and > 81.58 in the target domain). The LDA also achieved
high performance in the target domain (92.76%). The reasons
may be that the IMU signals were more stable and the time
length of the data segment on DSADS was 5 s, which was
much longer than for ENABL3S (300 ms). The long data
segment cannot be used to predict the locomotion intents but
can be used to label the historical activities in real-time, which
may also increase the user-independence of wearable robots.

Finally, the data size can affect the result of the domain
adaptation. In previous papers [26], [27], the size of the
source data was usually larger than that of the target data.
In the present leave-one-subject-out test, there are more source
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subjects than the target subject, which can be seen as the
many-to-one transfer. The present paper also implemented a
one-to-many transfer experiment, where there were only one
source subject and multiple target subjects. In the one-to-many
transfer experiments, the classification accuracy on the target
domain decreased to 80.57% and 76.09% for the ENABL3S
and DSADS datasets, respectively. This phenomenon is not
occasional, and it has been proved why increasing the size
of the source data helps improve the performance of the
classifier on the target domain (see the Appendix for the
detailed theoretical explanation).

B. Comparison With Existing Works

The present MCD performed better for classifying target
data than the respective domain adaptation method: DANN.
The MCD achieved 2.02% and 3.79% higher classifica-
tion accuracy than the DANN on the target domain of the
ENABL3S and DSADS, respectively. The MCD and DANN
have the same feature extractor and label classifier but have
different training strategies. The DANN only classified the
domain of the input data and entirely aligned the feature
space of the source and the target data without considering
the decision boundaries. Because the data of different classes
may distribute differently, aligning the overall feature space
may negatively affect the alignment of the features that belong
to the same class. Comparatively, the MCD seems to be better
because it uses two label classifiers to estimate the decision
boundaries of the source and the target data and a common
feature generator to align the features based on the estimated
decision boundaries.

Hu et al. [9] have achieved high accuracy on ENABL3S
(mean accuracy = 98.57%) to recognize the locomotion intent
of subjects using the LDA. However, they assumed that the
locomotion mode in the last step was known and trained
20 classifiers based on different locomotion modes in the
last step. Besides, they also restricted the transition between
different locomotion modes. For instance, they hypothesized
that the next mode of stair ascent could only be stair ascent or
level ground walking. Hence, they have utilized much prior
information to further increase the classification accuracy.
Moreover, they trained the classifiers for each subject, which
was highly user-dependent. In this study, the accuracy was
estimated based on the current segment of the signals without
considering the last locomotion mode. Also, the transition
between different locomotion modes was not limited. The
present paper only used one classifier to classify the loco-
motion intent of both source subjects and target subjects.
Besides, the present paper recognized six different locomotion
modes, which were more than five modes in [9]. Compared
to the results in [9], our results were just the original results
of classifiers without being fine-tuned. Therefore, the LDA
in the present study only achieved an accuracy of 92.59%
and 85.78% to classify the locomotion intent of the source
subjects and the target subjects, respectively. Comparatively,
the presented CNN and MCD increased the accuracy by 3.71%
and 7.82%, respectively, in the source domain and the target
domain, respectively, which indicated the advantages of the

developed methods. After using some fine-tuning strategies
similar to those in [9] or the decision fusion method [37],
the classification accuracy could be increased further.

Fallahzadeh and Ghasemzadeh [26] also presented an unsu-
pervised domain adaptation method to classify human activ-
ities of the target subjects on DSADS and achieved 87%
mean accuracy in the leave-one-subject-out test using the IMU
placed on the torso. Using one IMU placed on the torso,
the presented method achieved 90.60% mean accuracy for the
target subjects in the leave-one-subject-out test (see Fig. 0).
Moreover, the present paper also compared the results using
a single IMU and all IMUs, and experimental results showed
that the mean accuracy in the target domain could increase
to 94.59% after using all IMUs. Therefore, it is important
to wear multiple sensors and use sensor fusion methods to
provide more stable information.

C. Limitations and Future Works

Although the present study fulfilled the goal of classifying
the locomotion intent and activities of the target subjects, there
are still some limitations. Firstly, the classification accuracy of
the locomotion intent in the target domain should be increased
further. Locomotion intent prediction is related to the real-time
control of wearable robots, such as exoskeleton and prosthesis,
and the incorrect prediction may cause the user to tumble.
To resolve this issue, we will combine the decision fusion
method and the present unsupervised cross-subject adaptation
to filter the decisions and increase the classification accuracy.
In our previous work [37], we designed an analytical method
based on the hidden Markov model to fuse the sequential
decisions, and the processing time for each decision was 3 mil-
liseconds. Then the overall processing time for the present
MCD and the decision fusion method will be 11 milliseconds,
which is adequately short enough for a high-level controller.
Additionally, we will label the previous locomotion modes
using the IMU and other mechanical signals. Then the system
will be able to obtain a large amount of labeled data of target
subjects and train the network with the supervised learning
method.

Second, the present method has only been evaluated on the
dataset of subjects without disabilities, because we have not
found a public dataset that includes the signals of subjects with
disabilities who walk on different terrains. The gait patterns of
subjects with disabilities are different from those of subjects
without disabilities, which may decrease the classification
accuracy for the target subject. If some labeled signals of
subjects with disabilities are also included in the source
dataset, the classification accuracy for new target subjects
with disabilities may still be high because the present method
is able to learn the common features of the subjects with
disabilities and subjects without disabilities. To validate this
assumption, we will capture and label signals of subjects with
disabilities to prepare a more complete dataset and analyze the
corresponding results in the future.

Thirdly, there are still some intents that cannot be predicted
using the present method, for example, crossing an obstacle,
turning around, and kicking a football. This is also a limitation
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of the finite-state controller because it is impossible to list
all possible intents for a new user. We may also combine a
finite-state controller with a volitional controller, which allows
the subjects to directly control the joint angles of wearable
robots using the muscle signals. However, volitional control
is not robust. There are still many challenges for accurately
predicting human intents.

Finally, the present study only performed offline analy-
sis, and there may be some other challenges in an online
test. Therefore, the presented method will be applied to
the real-time control of the wearable robots to evaluate its
performance in real-time.

V. CONCLUSION

Labeling a large amount of user-dependent human signals
to accurately classify the locomotion intent of subjects has
been a burden to both the researcher and the subject. The
present paper resolved this problem by developing an unsuper-
vised cross-subject adaptation method to accurately recognize
the locomotion intent and the activities of target subjects.
The developed method only utilized the labeled training
data of source subjects and unlabeled training data of target
subjects, which avoided the burdensome works of labeling
data. The proposed method was evaluated using two public
datasets (ENABL3S and DSADS), which recorded signals
of able-bodied subjects while performing different activities.
Experimental results showed that the presented method was
able to classify the locomotion intent and activities of target
subjects at high accuracy (93.60% on ENABL3S and 94.59%
on DSADS), which validated the feasibility and the level of
accuracy of the developed method. This study indicated that
after capturing human signals and designing the unsupervised
cross-subject domain adaptation method, robots can accurately
predict locomotion intent of humans, which is beneficial for
the control of wearable robots and for the improvement of
human-robot interaction.

APPENDIX

Lemma 1: Let Dgs and Dg; be the source domain with
a small distribution range and that with a large distribution
range in the feature space, where Dss C Dsr, and let Dr
be the target domain. If data in Dgg, Dsr, and Dt can be
classified correctly using the same idea classifier #* trained by
the supervised learning method, then for the classifier hgs €
Hgs and hg; € Hgy:

sup  e3-(hse), (6)

hsr€Hsy.

sup €55 (hss) =
hss€Hgs

here Hgs and Hgy are two classifier spaces where
€ss (hss) — 0 and egr (hs) — 05 €ss (hss) and esp (hsL)
denote the error in the source domain Dgs and Dsy, which
can be minimized by the supervised learning with the labeled
source data; Supjccpog €25 (hgs) and SUP, e Hy, ert(hst)
indicate the supremum of errors of the classifier hgg and
hsr on the unlabeled target domain Dr transferred from the
labeled source domain Dggs and Dgy, respectively.

Proof: According to previous research [34]:

duan (Ds, Dr)

er (h) <es (h) + + 2 =supep(h), (7)

heH
where the er (h) and €gs (h) indicate the error of a classifier
h € H on the target domain Dy and the source domain Dy,
respectively. The H -distance for domain divergence is denoted
by duan (Ds, Dr). The combined error of the ideal joint
classifier A* is indicated by A:

A = min (es (h*) + e (h*)). (8)

Since data in Dgg, Dsy, and Dr can be classified correctly
using the same ideal classifier 42* trained by the supervised
learning method, 4 — 0. Besides, the classifier 4 is trained by
the labeled data in the source domain, €5 (k) — 0. Therefore,
the er (h) mainly depends on dyag (Ds, Dr). Based on the
previous research [34], dg an (Ds, D) is calculated as below:

duau(Ds, Dr) =2 sup |Prepglh(x) # h'(x)]
h,heH

—Preep [h(x) K1, ()

where Pr denotes the probability. Two classifiers # and A’
belong to the classifier space H.

Since two classifiers 4 and A’ are both trained by the
same labeled data in the source domain, their disagreement
on the same data x in the source domain will be low:
Pry~pslh(x) # h'(x)] — 0. Therefore, dgan (Ds, Dr)
mainly depends on the supremum of the disagreement of
two classifiers on the same data x in the target domain
supy, yep | Pro~ny [h(x) # b (0)]].

The sub classifier spaces Hgs and Hgy fulfill the require-
ment that €55 (hss) — 0, hss € Hgs and €5y (hsy) —
0, hsy € Hgr. Recall that the distribution range of the source
domain Dgg is smaller than that of the Ds;: Dss C Dsy. The
bigger the distribution range of a domain is, the smaller the
sub classifier space is. The reason is that the larger distribution
range introduces more constraints to classify the data in the
domain. Therefore, Hss D Hsy. Since the classifier space is
the same for classifying the data in the source domain and
the target domain, the supremum of the disagreement of two
classifiers on the same data x in the target domain is also
affected by different classifier spaces Hss O Hsyr:

sup | Pre~p[h(x) # 1 (x)]]|

h,h/EHSS
> sup |Pro~p,[h(x) #K ()] +5, (10)
h,heHgy,
where J is a small value. Then:
duau(Dss, Dr) = dgau(Dsr, Dr) + 26. (1D

Recall that €55 (hss) — 0, hss € Hgs and €5 (hsp) —
0, hsy € Hgr. Hence, |esy (hsp) — €ss (hss)| < 0 can be
achieved using the supervised learning method with the labeled
source data. Then:

esp (hsL) = €ss (hss) +esp (hsp) — €ss (hss)
< €ss (hss) + lesp (hsp) — €ss (hss)|
< ess (hss) + 0. (12)
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Combine (11) with (12):

duan (Dst, Dr)

esy (hsp) + 5 + 1
d D D
< Ess(hss)+5+w—5+i

duan (Dss, Dr)

= egs (hss) + > + 4. (13)
Based on (7) and (13):
o €35 (hgs) > b exL(hse). (14)
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