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Abstract
Credal sets are sets of probability distributions
that are considered as candidates for an impre-
cisely known ground-truth distribution. In ma-
chine learning, they have recently attracted atten-
tion as an appealing formalism for uncertainty
representation, in particular due to their ability
to represent both the aleatoric and epistemic un-
certainty in a prediction. However, the design of
methods for learning credal set predictors remains
a challenging problem. In this paper, we make use
of conformal prediction for this purpose. More
specifically, we propose a method for predicting
credal sets in the classification task, given training
data labeled by probability distributions. Since
our method inherits the coverage guarantees of
conformal prediction, our conformal credal sets
are guaranteed to be valid with high probability
(without any assumptions on model or distribu-
tion). We demonstrate the applicability of our
method to natural language inference, a highly
ambiguous natural language task where it is com-
mon to obtain multiple annotations per example.

1. Introduction
Representing and quantifying uncertainty is becoming in-
creasingly important in machine learning (ML), particularly
as ML models are employed in safety-critical application
domains such as medicine or autonomous driving. In such
domains, a distinction between so-called aleatoric uncer-
tainty and epistemic uncertainty is often useful (Hora, 1996).
Broadly speaking, aleatoric uncertainty is due to the inherent
randomness of the data-generating process, whereas epis-
temic uncertainty stems from the learner’s lack of knowl-
edge about the best predictive model. Thus, while the former
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Figure 1: For the three-class classification setting, the space
of probability distributions can be illustrated by a two-
dimensional simplex: each point in the simplex corresponds
to a probability distribution so that credal sets can be de-
picted as regions. The left case corresponds to the special
case of a singleton (credal) set, i.e., a precise probability
distribution, signifying aleatoric but no epistemic uncer-
tainty. The case in the middle represents partial knowledge
with a certain degree of (epistemic) uncertainty about the
true distribution, and the right one corresponds to the case
of complete ignorance, where nothing is known about the
distribution.

is irreducible, the latter can in principle be reduced through
additional information, e.g., by gathering additional data to
learn from.

Representation of aleatoric and epistemic uncertainty re-
quires formalism more expressive than standard probability
distributions (Hüllermeier and Waegeman, 2021). One such
formalism which prevails in the recent ML literature is
second-order probability distributions. Essentially, in a clas-
sification setting, these are distributions over distributions
over classes. Models producing second-order distributions
as predictions can be learned in a classical Bayesian way
(Kendall and Gal, 2017; Depeweg et al., 2018) or using more
recent approaches such as evidential deep learning (Sensoy
et al., 2018). Yet, approaches of that kind are not unproblem-
atic and have been subject to criticism (Bengs et al., 2022;
2023). Another formalism suitable for representing both
types of uncertainty is the concept of a credal set, which
is well-established in the field of imprecise probability the-
ory (Walley, 1991) and meanwhile also attracted attention
in ML (Shaker and Hüllermeier, 2020; Hüllermeier et al.,
2022). Credal sets are (convex) sets of probability distribu-
tions that can be considered as candidates for an imprecisely
known ground-truth distribution. Figure 1 shows examples
of credal sets in a three-class scenario, where the space of
distributions can be visualized by the two-dimensional prob-
ability simplex. Broadly speaking, the larger the credal set,
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Premise a child is on the ground
crying.

Hypothesis A child on the ground
crying as others look
on.

True dist. [0.06, 0.94, 0.00]

entailment

neutral

co
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ra
di

cti
on

Premise uh-huh and is it true i
mean is it um

Hypothesis It is absolutely correct.
True dist. [0.31, 0.52, 0.17]

entailment

neutral
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nt
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on

Figure 2: An illustration of our proposed conformalized credal sets on two instances from the ChaosNLI dataset (Nie et al.,
2020). Green regions indicate credal sets, while the true and the predicted distributions are marked with orange squares and
black circles, respectively.

the higher the epistemic uncertainty, and the more “in the
middle” the set is located, i.e., the closer it is to the uniform
distribution, the higher the aleatoric uncertainty.

Learning to predict second-order representations, such as
credal sets or second-order distributions, from standard
“zero-order” supervised data — training instances together
with observed class labels — is a difficult endeavor. For
the case of second-order probabilities, it is even provably
impossible to predict uncertainty in an “unbiased” way, i.e.,
without imposing strong prior assumptions on the epistemic
uncertainty (Bengs et al., 2022; 2023). In this paper, we
assume “first-order” training data, i.e., instances associated
with probability distributions over the class labels. In other
words, instances are labeled probabilistically instead of be-
ing assigned a deterministic class label. Obviously, this type
of data facilitates second-order learning. Not less impor-
tantly, it is becoming increasingly available in practice, for
example, in the form of aggregations over multiple annota-
tions per data instance, and hence increasingly relevant in
applications (Uma et al., 2022; Stutz et al., 2023b)

Our method leverages the framework of conformal predic-
tion (CP), a non-parametric approach for set-valued pre-
diction rooted in classical frequentist statistics (Vovk et al.,
2022). Based on relatively mild assumptions, CP is able to
provide theoretical guarantees in the form of marginal cov-
erage: Predicted sets are guaranteed to cover the true target
with high probability. Since our method inherits these cov-
erage guarantees, our conformal credal sets are guaranteed
to be valid with high probability (without any assumptions
on model or distribution).

Our main contribution is the proposal of a novel, conformal
method to construct credal set predictors from first-order
training data:

• We propose a CP based method to construct conformal
credal sets. To this end, we make use of two types of
nonconformity functions based on distance resp. like-
lihood, and leveraging first-order resp. second-order
probability predictors.

• On ChaosNLI (Nie et al., 2020), a very ambiguous
natural language inference task with multiple annota-
tions per example, we show that our conformal credal
sets are indeed valid, i.e., include the true ground truth
distribution with high probability (see Figure 2 for
an illustration). We also compare the efficiency of
predictions (size of the predicted sets) for different
nonconformity functions.

• We complement this study with controlled experiments
on synthetic data, specifically investigating the perfor-
mance of credal set prediction in the presence of label
noise.

2. Related Work
Credal sets are widely used as models for representing
uncertainty, notably within the domain of imprecise proba-
bilities (Walley, 1991). As already mentioned, they can rep-
resent both types of uncertainty, aleatoric and epistemic. In
the context of data analysis and statistical inference, credal
sets are often used as robust models of prior information,
namely for modeling imprecise information about the prior
in Bayesian inference (Walley, 1996).

In machine learning, credal sets have been used for general-
izing some of the standard methods, including naive Bayes
(Zaffalon, 2002; Corani and Zaffalon, 2008), Bayesian net-
works (Corani et al., 2012), and decision trees (Abellán and
Moral, 2003). Typically, these approaches generalize simple
frequentist inference to robust Bayesian inference, making
use of an imprecise version of the Dirichlet model (a con-
jugate prior for the multinomial distribution). Compared
to our approach, these methods are learning on standard
(zero-order) training data. Moreover, despite representing
uncertainty in predictions, they do not provide any formal
guarantees.

Conformal prediction (Vovk et al., 2022), briefly intro-
duced in Section 3.2 below, has recently gained attention for
various applications in machine learning, especially for clas-
sification tasks (Sadinle et al., 2019; Romano et al., 2020;
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Angelopoulos et al., 2020; Stutz et al., 2021; Fisch et al.,
2022). These methods mostly focus on split conformal
prediction using a held-out calibration set (Papadopoulos
et al., 2002), overcoming computational limitations of ear-
lier transductive or bagging approaches (Vovk et al., 2022;
Vovk, 2015; Steinberger and Leeb, 2016; Barber et al., 2021;
Linusson et al., 2020). While tackling classification tasks,
our method for constructing conformal credal sets has more
similarity with conformal regression (Romano et al., 2019;
Sesia and Romano, 2021), particularly in multivariate set-
tings (Dietterich and Hostetler, 2022), as we essentially con-
formalize the simplex space of categorical distributions. Our
conformity scores differ, however, in that they are specific
for distributions rather than considering general multivariate
spaces. This work also relates to work on appropriate mea-
sures of inefficiency (Vovk et al., 2017) as measuring the
inefficiency of our conformal credal sets is non-trivial. Most
closely related to our work is the recent work by Stutz et al.
(2023b), who consider conformal prediction in settings with
high aleatoric uncertainty. However, we explicitly target
the construction of conformal credal sets, while Stutz et al.
(2023b) mainly focus on constructing confidence sets of
classes.

First-order data. In settings with high aleatoric uncer-
tainty, labeling each example with a single, unique class is
clearly insufficient. In practice, this is typically captured
by high disagreement among annotators – a problem par-
ticularly common in natural language tasks (Reidsma and
op den Akker, 2008; Aroyo and Welty, 2014; 2015; Schaek-
ermann et al., 2016; Dumitrache et al., 2019; Pavlick and
Kwiatkowski, 2019; Röttger et al., 2022; Abercrombie et al.,
2023). Handling this disagreement has received consider-
able attention lately (Uma et al., 2021) as it offers to go
beyond this zero-order information. For example, recent
work on evaluation with disagreeing annotators (Stutz et al.,
2023a) argues the use of these annotations to get approxi-
mate first-order information for evaluation. This approach is
becoming more and more viable with crowdsourcing tools
(Kovashka et al., 2016; Sorokin and Forsyth, 2008; Snow
et al., 2008) being an integral component of the benchmark,
making multiple annotations per data instance more acces-
sible. We follow a similar approach in our construction of
conformal credal sets.

3. Background
3.1. Supervised Learning and Predictive Uncertainty

We consider the setting of (polychotomous) classification
with label space Y = {1, . . . ,K} and an instance space X .
As usual, we assume an underlying data-generating process
in the form of a probability distribution P on X × Y , so
that observations (X,Y ) are i.i.d. samples from P . We
denote by λx ∈ ∆K the conditional probability distribution

P (· |X = x), which we also consider as an element of the
(K − 1)-simplex

∆K :=
{
λ = (λ1, . . . , λK)⊤ |λk ≥ 0, ∥λ∥1 = 1

}
⊂ RK .

Thus, for each class label k ∈ Y , the probability to observe
Y = k as an outcome for x ∈ X is given by λx

k .

Since the dependency between instances X and outcomes
Y is non-deterministic, the prediction of Y given X = x
is necessarily afflicted with uncertainty, even if the ground-
truth distribution λx is known. As already said, this un-
certainty is commonly referred to as aleatoric (Hüllermeier
and Waegeman, 2021). Intuitively, the closer λx to the
uniform distribution puni = (1/K, . . . , 1/K)⊤, the higher
the uncertainty, and the closer it is to a degenerate (Dirac)
distribution assigning all probability mass to a single class
(a corner point in ∆K), the lower the uncertainty. Various
measures have been proposed to quantify this uncertainty
in numerical terms, with Shannon entropy as the arguably
best-known representative (Depeweg et al., 2018).

Instead of assuming λx to be known, suppose now that only
a prediction λ̂

x
of this distribution is available. Epistemic

uncertainty refers to the uncertainty about how well the
latter approximates the former, and hence to the additional
uncertainty in the prediction of outcome Y that is caused by
the discrepancy between λ̂

x
and the ground-truth λx. We

seek to capture this discrepancy by means of credal sets

Q ∈ QK ⊂ ∆K ,

with the idea that Q ∋ λx holds with high probability.
Typically, credal sets are assumed to be convex, and fur-
ther restrictions might be imposed on QK for practical and
computational reasons, for example, a restriction to convex
polygons (with a finite number of extreme points).

3.2. Conformal Prediction

Conformal prediction provides a general framework for pro-
ducing set-valued predictions with a certain guarantee of
validity. In a supervised setting, consider data points of the
form Z = (X,U) ∈ X × U , and the task is to predict U
given X = x. We assume the space Z to be equipped with
a nonconformity measure f : Z −→ R that quantifies the
“strangeness” of z, i.e., the higher f(z), the less normal or
expected the data point. Let Dcalib ⊂ Z be a (randomly
generated) set of data points, called calibration data, and
Z another data point that remains unobserved. Under the
assumption of exchangeability, i.e., that the calibration data
and the query point Z have been generated by an exchange-
able process, we want to construct a so-called confidence
set C ⊆ U that guarantees coverage:

P(U ∈ C) ≥ 1− α. (1)
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By a simple combinatorial argument (Vovk et al., 2022), the
confidence set C can be constructed as

C(x) :=
{
u ∈ U | f(x, u) < q(E , α′)

}
, (2)

where α′ = |E|−1⌈(1 + |E|)(1− α)⌉, and q(E ;α′) denotes
the α′-quantile of E .

Importantly, the guarantee (2) holds regardless of the non-
conformity function f(·), which, however, has an influence
on the efficiency of the prediction: The more appropriate the
function, the smaller the prediction set C tends to be. Nor-
mally, f(·) is not predefined but constructed in a data-driven
way using training data Dtrain. For example, a common ap-
proach is to train a predictor π : X −→ U and then define
f(x, u) in terms of d(u, π(x)), where d(·, ·) is an appropri-
ate distance function on U . Replacing the point-prediction
π(x) ∈ U by the prediction set C(x) ⊂ U can then be seen
as “conformalizing” the predictor π: Using the calibration
data, CP estimates a high-probability upper bound on the
distance between point-predictions and actual outcomes,
and corrects the former correspondingly.

4. Conformal Credal Set Prediction
Recall the setting and notation from Section 3.1. Our goal
is to learn a credal set predictor h : X −→ QK , that is,
a model that makes predictions in the form of credal sets,
thereby representing both aleatoric and epistemic uncer-
tainty. To this end, we assume probabilistic training data of
the form

D =
{(

x1,λ
x1
)
, . . . ,

(
xN ,λxN

)}
⊂ X ×∆K . (3)

The model h should be able to predict the (probabilistic)
outcomes for new query instances in a reliable way. More
specifically, suppose that xnew is a new query instance (fol-
lowing the same distribution as the training data) for which
a prediction is sought. The credal prediction Q = h(xnew)
should then be valid in the sense that Q ∋ λxnew with high
probability. At the same time, the prediction should be infor-
mative in the sense that the (epistemic) uncertainty reflected
by Q is as small as possible. Again, various measures for
quantifying the latter can be found in the literature (Klir and
Wierman, 1999; Sale et al., 2023).

We aim to construct the credal set predictor h by means of
(inductive) conformal prediction. Following the conformal-
ization recipe outlined in Section 3.2, we partition D into
Dtrain and Dcalib, using the former for model training and
the latter for calibration. Regarding the training step, we
explore two learning strategies, connected with two ways of
defining a nonconformity function, which is pivotal in the
calibration step.

The first approach is based on training a standard (first-
order) probability predictor, i.e., a probabilistic classifier

g : X −→ ∆K that maps instances to the (first-order)
probability distribution on Y . This can be achieved, for
example, by minimizing the cross-entropy loss between the
ground truth and the predicted distributions, i.e.,

g = argmin
ḡ∈H

∑
(xi,λxi )∈Dtrain

−
K∑

k=1

λxi

k log(ḡ(xi)k),

where H is a hypothesis space. Given a predictor g(·) of
this kind, nonconformity is naturally defined in terms of
distance:

f1(x,λ
x) := d(λx, g(x)) , (4)

where d(·, ·) is a suitable distance function on ∆K , such as
total variation, Wasserstein distance, etc.

An alternative approach is motivated by recent work on
(epistemic) uncertainty representation via second-order
probability distributions. A second-order learner G :
X −→ P(∆K) maps each input x to a distribution over
∆K . Given the training data, meaningful learning in this
context can be accomplished, for instance, by parameteriz-
ing the second-order distributions using Dirichlet distribu-
tions. Specifically, one can assume that each x is associated
with a Dirichlet distribution characterized by the parameter
vector θx ∈ RK

+ with the probability density function

P (λ |θx) =
1

B(θx)

K∏
k=1

λ
θx
k−1

k , (5)

where B(·) is the multivariate beta function. This way, λx

can be thought of as a sample from that distribution, i.e.,
λx ∼ Dir(θx). Our model then essentially yields a predic-
tion θ̂

x
of the true parameter θx for every x, and its opti-

mization involves minimizing the negative log-likelihood
loss

∑
(xi,λxi )∈Dtrain

(
log(B(θ̂

xi
))−

K∑
k=1

(θ̂xi

k − 1) log(λxi

k )

)
.

Given a second-order predictor θ̂
x

, nonconformity can be
defined as a decreasing function of likelihood, e.g., as 1
minus relative likelihood:

f2(x,λ
x) = 1− P (λx | θ̂x)

maxλ∈∆K P (λ | θ̂x)
. (6)

Using the nonconformity function fi(·) (i ∈ {1, 2}), we
obtain the set of nonconformity scores by

Ei :=
{
fi(xj ,λ

xj ) | (xj ,λ
xj ) ∈ Dcalib

}
. (7)
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Algorithm 1 Conformal Credal Set Prediction

Input:
Data D; error rate α; query instance xnew.

Process:
Partition D into Dtrain and Dcalib.

Train a first-order (i = 1) or a second-order (i = 2)
predictor using Dtrain.

Choose a nonconformity function fi as in (4) or (6)
that suits the trained predictor to obtain the set of
scores Ei.

Set α′ = |Ei|−1⌈(1 + |Ei|)(1− α)⌉.
Output:

hi(xnew) =
{
λ ∈ ∆K | fi(xnew,λ) < q(Ei, α′)

}
.

Accordingly, the credal set can be defined as

hi(xnew) :=
{
λ ∈ ∆K | fi(xnew,λ) < q(Ei, α′)

}
. (8)

Algorithm 1 outlines a summary of the proposed methods.
In the following theorem, we state the validity of the pre-
dicted set, that is, the restatement of the conformal coverage
guarantee (Vovk et al., 2022) adjusted to our setting.

Theorem 4.1. Let P denote the joint probability distribu-
tion on (X,Λ) ∈ X × ∆K . If data points in Dcalib and
(xnew,λ

xnew) are drawn i.i.d. (exchangeably) from P , then
the conformal credal sets in (8) are valid, i.e.,

P
(
λxnew ∈ hi(xnew)

)
≥ 1− α , for i ∈ {1, 2}.

4.1. Noisy Observations

So far, we (implicitly) assumed that ground-truth probability
distributions λxi will be provided as training (and calibra-
tion) data. Needless to say, this assumption will rarely hold
true in practice. Instead, observations will rather be noisy
versions λ̃

xi of the true probabilities, i.e., the data will be
of the form

D =
{(

x1, λ̃
x1)

, . . . ,
(
xN , λ̃

xN )}
⊂ X ×∆K . (9)

Notably, such datasets emerge in scenarios where each data
instance x is annotated by multiple human experts, which
recently have attracted a lot of attention in the context of
machine learning and also conformal prediction (Stutz et al.,
2023b; Javanmardi et al., 2023). In this context, λ̃

x
de-

notes the distribution derived from aggregating annotator
disagreements concerning the label of instance x. Of course,
conformal prediction can still be applied to noisy data of
that kind, but the coverage guarantee will then only hold for

the noisy labeling:

P
(
λ̃
xnew ∈ h(xnew)

)
≥ 1− α̃. (10)

Practically, one may expect that the guarantees will hold
for the ground-truth as well, simply because calibration
on noisy instead of clean data will tend to make prediction
regions larger and hence more conservative. Moreover, since
nonconformity is derived from a predictive model g(·) that
seeks to recover ground-truth probabilities, the latter should
conform at least as well as noisy distributions. Of course,
this intuition is not a formal guarantee. In order to provide
such a guarantee for the ground-truth probabilities, one
obviously needs to make some assumptions. Concretely,
let us make the following bounded noise assumption for
the labeling process: The labeling noise is (stochastically)
bounded in the sense that, given the nonconformity function
f and a (small) probability δ > 0, there exists a tolerance
ϵ > 0 such that

P
(
|f(x,λx)− f(x, λ̃

x
)| < ϵ

)
≥ 1− δ (11)

all x ∈ X .

Theorem 4.2. Let α > 0 be any miscoverage rate, and
suppose the bounded noise assumption holds. Let q =
q(E , α̃) be the critical threshold on the noisy calibration
data Dcalib for miscoverage rate

α̃ =
α− δ

1− δ
.

Then, for any new query xnew ∈ X ,

P
(
f(xnew,λ

xnew) < q + ϵ
)
≥ 1− α .

The proof is deferred to Appendix A. As a consequence of
this result, a conformal predictor learned on the noisy data
with modified miscoverage rate α̃ can be turned into a valid
predictor (with miscoverage rate α) for the ground-truth data
by increasing the learned rejection threshold by ϵ, provided
the bounded noise property (11) can be ascertained. Thus,
if we denote the corresponding credal set predictor by hϵ,
we can guarantee that

P
(
λxnew ∈ hϵ(xnew)

)
≥ 1− α . (12)

5. Experiments
In this section, we evaluate the performance of our proposed
methods using both synthetic and real datasets. In vanilla
conformal prediction, the performance of a method is usu-
ally assessed based on the average prediction set size, aka
efficiency, and the average coverage on the test set. It is
more appealing to have the promised coverage with smaller
sets.
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Table 1: Summary of the nonconformity functions used in
experiments.

Name Formulation Predictor

TV 1
2

∑K
k=1 |λx

k − g(x)k| first-order
WS - first-order
KL

∑K
k=1 λ

x
k log(

λx
k

g(x)k
) first-order

Inner 1−
∑K

k=1 λ
x
kg(x)k first-order

SO as in (6) second-order

In our scenario, the analytical calculation of credal sets is
not feasible. Therefore, for the sake of illustration as well as
other analyses, such as efficiency calculation, we resort to
approximations. We discretize the simplex with a resolution
of 0.005, yielding M = 19969 distributions. This enables
the straightforward construction of credal sets, as defined in
(8). The efficiency is gauged by considering the fraction of
all M distributions that lie within the predicted credal sets.
All implementations and experiments can be found in the
technical supplement of this work.1

5.1. Learning Model

In our experiments, we employ a deep neural network as
the learner. Specifically, the model consists of three hidden
layers with 256, 64, and 16 units, utilizing ReLU as the
activation function. Prior to the output layer, a dropout
layer with a rate of 0.3 is incorporated. The same model
architecture serves both first- and second-order predictors,
differing only in the activation functions of the output layers.
For the first-order predictor, softmax is used, while for the
second-order predictor, ReLU is employed. Learning is
facilitated using the Adam optimizer with a learning rate
of 10−4, utilizing cross-entropy as the loss function for
the first-order predictor and negative log-likelihood for the
second-order predictor.

5.2. Nonconformity Functions

CP should work regardless of the choice of nonconformity
score function, while this choice can affect the efficiency
and geometry of the prediction set. For the sake of compari-
son, we examine different nonconformity functions in our
experiments. When utilizing a first-order predictor, besides
total variation (TV) and the First Wasserstein (WS) distance,
we also investigate the Kullback–Leibler (KL) divergence
and 1 minus the inner product (Inner) as nonconformity
functions. For the second-order predictor, we consider 1
minus the relative likelihood (SO) as defined in (6). Ta-
ble 1 offers a summary of all five nonconformity functions
employed in our experiments.

1The link to the code: https://github.com/
alireza-javanmardi/conformal-credal-sets

5.3. Real Data

We focus on the ChaosNLI dataset (Nie et al., 2020), an
English Natural Language Inference (NLI) dataset that cap-
tures the inherent variability in human judgments of textual
entailment. Here, the classes are entailment, neutral, and
contradiction for each premise-hypothesis pair. Instances
in this dataset are selected from the development sets of
SNLI (Bowman et al., 2015), MNLI (Williams et al., 2018),
and AbductiveNLI (Bhagavatula et al., 2019), for which
the majority vote was less than three among the five hu-
man annotators. These instances were then given to 100
independent humans for annotation, given strict annotation
guidelines.

We combine the chaos-SNLI and chaos-MNLI subsets, re-
sulting in a dataset of 3113 datapoints. For model train-
ing, we leverage a language model from the Hugging
Face transformers library (Wolf et al., 2019), initially
trained on SNLI and MultiNLI datasets for classification
tasks2. We utilize the last hidden layer output of this model
to embed the premise-hypothesis pairs from our 3113 in-
stances, serving as inputs for our deep neural network. To
split the data, we randomly select 500 instances for calibra-
tion, 500 for testing, and the remaining for training. This
process is repeated ten times with different random seeds.
In Figure 3, we compare the resulting credal sets of different
nonconformity functions for three specific instances. Fig-
ure 4 summarizes the overall performance of the proposed
methods on this data under different miscoverage rates (α).
Notably, the mean of the average coverage over the test
data across various random seeds aligns with or exceeds
the nominal value, consistent with the conformal prediction
guarantee.

5.4. Synthetic Data

The primary objective of conducting experiments with syn-
thetic data is to illustrate the impact of noisy observations,
particularly to showcase the behavior of the proposed credal
sets when we only have access to an approximation of the
ground truth distributions. Our experiment revolves around
a K-class classification task with K ∈ {3, 4, 6, 8, 10}. For
each K, we consider 10-dimensional features X ∈ R10,
where each X1, . . . , X10 are independent standard normal
random variables. Subsequently, we generate a random ma-
trix β ∈ R10×K , with its elements drawn independently
from the standard normal distribution. To define the ground
truth probability over the classes for object X , we use the
following formulation:

λx
k := P(Y = k|x) = Zj(x)∑

j Zj(x)
,

2The model can be found at https://huggingface.co/
cross-encoder/nli-deberta-base
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Premise-Hypothesis pair TV KL WS Inner SO

Premise: A man in a bar drinks from
a pitcher while a man in a green hat
looks on and a woman in a black shirt
drink from a glass.
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Premise: A photographer snaps a
midair action shot of a snowboarder.
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Figure 3: Various credal sets obtained for three instances from ChaosNLI dataset (Nie et al., 2020). The ground truth
distributions are denoted by orange squares. Black circles indicate model predictions in cases employing a first-order learner
(first four columns). For the last column, utilizing a second-order learner, the predicted second-order distributions are
represented through contour plots. The miscoverage rate is α = 0.2, and the efficiency of each credal set is written below it.
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Figure 4: Coverage and efficiency results of different nonconformity functions applied on the ChaosNLI dataset (Nie et al.,
2020). The horizontal dashed lines indicate the nominal coverage levels.

where Z(x) := exp(x⊤β). Employing this data-generating
process, we generate N = 1500 samples to construct the
dataset DK = {(xi,λ

xi)}Ni=1.

To obtain noisy versions of DK , we employ a sampling
approach. Specifically, we independently sample each dis-
tribution λxi m times and utilize relative frequencies to
create its noisy counterpart λ̃

xi

m . We represent the resulting
dataset as DK

m = {(xi, λ̃
xi

m )}Ni=1. We repeat this process
four times with m ∈ {1, 5, 10, 100}.

Given each dataset DK
m , we randomly partition data points

into training, calibration, and test sets and perform the pro-

posed methodologies accordingly. Again, we repeat this pro-
cess ten times with different random seeds for each dataset
DK

m . Due to the computational complexity in calculating
efficiency for cases with K > 3, we utilize the quantile of
the calibration nonconformity scores as an efficiency metric.
In Figure 5, we represent the overall result for TV under
different K and m values. It can be observed that the cover-
age is fulfilled across almost all scenarios, including m = 1
with degenerate distributions. This observed behavior is
somewhat intuitive. The model endeavors to learn the un-
derlying probabilistic relationship between X and Y , even
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Figure 5: Coverage and quantile results for synthetic data, where the ground truth distributions are approximated by
observing m samples from them. The horizontal dashed line indicates the nominal coverage levels 1− α = 0.9.

given the noisy data 3. Consequently, during calibration
with noisy instances, the nonconformity scores of noise-
free instances are mostly upper-bounded by the scores of
their noisy counterparts, resulting in more conservative sets
that effectively cover the ground-truth distributions. It can
also be seen that the quantile of the nonconformity scores
shrinks as m increases. Results for other nonconformity
functions, along with some visualizations for the specific
case of K = 3, can be found in Appendix B.

6. Limitations
The methods we proposed are promising but still subject to
certain limitations. One challenge, for example, lies in the
representation of credal sets as subsets of the probability
simplex. For the nonconformity functions we used in this
work, there are no closed-form equations for the resulting
credal sets. Instead, the sets are only represented implicitly
(through the nonconformity threshold). Numerical approxi-
mation is feasible but essentially limited to scenarios with a
small number of classes.

The issue of representation is also connected to the com-
putation of uncertainty measures, i.e., numerical measures
quantifying the total, aleatoric, and epistemic uncertainty
associated with a credal set (Klir and Wierman, 1999). Com-
putation of these measures involves the computation of spe-
cific characteristics of the set, such as its distance from the
center of the simplex or its volume (Sale et al., 2023).

Our generalization to the case of noisy training data, i.e.,
labelings λ̃ that only approximate the ground-truth prob-
abilities λ, provides guarantees under the bounded noise
assumption. While this assumption is plausible, and in a
sense always achievable with a sufficiently large ϵ, its practi-
cal use requires a meaningful choice of ϵ and δ, which leads
to inference that is both valid and efficient. This will be

3Of course, this holds under some reasonable assumptions on
noise.

difficult in cases of limited knowledge about the labeling
noise. If labels are constructed from relative frequencies
(like in the case of multiple annotators), classical statistical
methods might be applicable. In general, however, an ap-
propriate choice of ϵ and δ for practical problems is still an
open problem.

7. Conclusion and Future Work
Conformal credal set prediction connects machine learning
with imprecise probability theory and offers a novel data-
driven approach to constructing predictions that effectively
capture both aleatoric and epistemic uncertainty. Thereby, it
provides the basis of a new approach to reliable, uncertainty-
aware machine learning. Leveraging the inherent validity
of the conformal prediction framework, our conformalized
credal sets are assured to cover the ground truth distributions
with high probability. We have explored different noncon-
formity functions within this novel setting and evaluated
their performance through numerical experiments.

A natural next step is to explore alternative approaches for
defining nonconformity functions, with the goal of devising
formulations amenable to closed-form solutions for credal
sets. Besides, the nonconformity has a strong influence on
the efficiency and hence the uncertainty of credal set predic-
tions. Obviously, there is a preference for nonconformity
functions leading to higher efficiency and lower uncertainty.

Another interesting direction is to extend the learning of
credal set predictors to standard (zero-order) training data.
As already mentioned, learning a second-order predictor
from data of that kind turns out to be difficult in the case of
second-order probability distributions. Broadly speaking,
this is due to the inherent ambiguity of the missing first-
order information, which cannot be resolved due to certain
averaging effects (Bengs et al., 2022; 2023). For the case of
credal predictors, the situation is still less clear.
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Appendix A. Proof of Theorem 4.2

Proof. Let A denote the event f(xnew,λ
xnew) < q + ϵ and Ã the event f(xnew, λ̃

xnew
) < q. We have

P (A) ≥ P (A ∧ Ã)

= P (Ã) · P (A | Ã)

= P (Ã) · (1− P (¬A | Ã))

Since ¬A means that f(xnew,λ
xnew) ≥ q + ϵ, the conditional event ¬A |B implies a violation of the closeness condition in

(11), wherefore the probability P (¬A |B) is upper-bounded by δ according to (11). Therefore, noting that P (Ã) ≥ 1− α̃
is the standard guarantee by CP,

P (A) ≥ P (Ã) · (1− P (¬A | Ã))

≥ (1− α̃) · (1− δ)

= 1− α .

Appendix B. More Results for the Synthetic Data
Figure 6 depicts the overall coverage and quantile comparison between four different nonconformity functions TV, KL, WS,
and Inner. In Figure 7, we illustrate the evolution of the credal sets as m changes from 1 to 100 for different nonconformity
functions when K = 3. For this case, the full comparison of efficiency and coverage across various nonconformity functions
is provided in Figure 8.
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Figure 6: Coverage and quantile results for synthetic data, where the ground truth distributions are approximated by
observing m samples from them. The horizontal dashed lines indicate the nominal coverage levels 1− α = 0.9.
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Figure 7: Credal sets derived for a synthetic data instance using various credal set predictors. Rows correspond to the
number of samples utilized for distribution estimation. The ground truth distribution is marked by an orange square, and its
noisy versions are denoted by red squares. In cases employing a first-order learner (first four columns), model predictions are
denoted by black circles. The predicted second-order distributions are illustrated via contour plots in the last column, where
a second-order learner is employed. The miscoverage rate is α = 0.05, and the efficiency of each credal set is indicated
below it.
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(c) m = 10.

TV KL WS Inner SO

0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2
Miscoverage rate ( )

0%

20%

40%

60%

80%

100%

Av
er

ag
e 

C
ov

er
ag

e

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e 
Ef

fic
ie

nc
y

(d) m = 100.

Figure 8: Coverage and efficiency results of different nonconformity functions applied on the synthetic data with K = 3.
The horizontal dashed lines indicate the nominal coverage levels.
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