
Learnability and Algorithm for Continual Learning

Gyuhak Kim * 1 Changnan Xiao * 2 Tatsuya Konishi 3 Bing Liu 1

Abstract
This paper studies the challenging continual learn-
ing (CL) setting of Class Incremental Learning
(CIL). CIL learns a sequence of tasks consisting
of disjoint sets of concepts or classes. At any time,
a single model is built that can be applied to pre-
dict/classify test instances of any classes learned
thus far without providing any task related infor-
mation for each test instance. Although many
techniques have been proposed for CIL, they are
mostly empirical. It has been shown recently that
a strong CIL system needs a strong within-task
prediction (WP) and a strong out-of-distribution
(OOD) detection for each task. However, it is still
not known whether CIL is actually learnable. This
paper shows that CIL is learnable. Based on the
theory, a new CIL algorithm is also proposed. Ex-
perimental results demonstrate its effectiveness.

1. Introduction
Learning a sequence of tasks incrementally, called con-
tinual learning, has attracted a great deal of attention re-
cently (Chen & Liu, 2018). In the supervised learning con-
text, each task consists of a set of concepts or classes to be
learned. It is assumed that all tasks are learned in one neural
network, which results in the key challenge of catastrophic
forgetting (CF) because when learning a new task, the sys-
tem has to modify the network parameters learned from
old tasks in order to learn the new task, which may cause
performance degradation for the old tasks (McCloskey &
Cohen, 1989). Two continual learning settings have been
popularly studied: task incremental learning (TIL) (van de
Ven & Tolias, 2019) and class incremental learning (CIL).

In TIL, each task is an independent classification problem
and has a separate model (the tasks may overlap). At test

*Equal contribution 1Department of Computer Science, Uni-
versity of Illinois at Chicago. 2Work done at ByteDance. 3KDDI
Research (work done when this author was visiting Bing Liu’s
group). Correspondence to: Bing Liu <liub@uic.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

time, the task-id of each test instance is provided to locate
the task-specific model to classify the test instance.

Definition 1.1 (Task Incremental Learning (TIL)). TIL
learns a sequence of tasks, 1, 2, ..., T . The training set of
task k is Dk = {((xi

k, k), y
i
k)

nk
i=1}, where nk is the number

of samples in task k ∈ T = {1, 2, ..., T}, and xi
k ∈ X is an

input sample and yik ∈ Yk ⊆ Y (=
⋃T

k=1 Yk) is its label. A
TIL system learns a function f : X × T → Y to assign a
class label y ∈ Yk to (x, k) (a test instance x from task k).

For CIL, a single model is built for all tasks/classes learned
thus far (the classes in each task are distinct). At test time,
no task-id is provided for a test instance.

Definition 1.2 (Class Incremental Learning (CIL)). CIL
learns a sequence of tasks, 1, 2, ..., T . The training set of
task k is Dk = {(xi

k, y
i
k)

nk
i=1}, where nk is the number of

samples in task k ∈ T = {1, 2, ..., T}, and xi
k ∈ X is an

input sample and yik ∈ Yk ⊂ Y (=
⋃T

k=1 Yk) is its label.
All Yk’s are disjoint (Yk∩Yk′ = ∅, ∀k ̸= k′). A CIL system
learns a function (predictor or classifier) f : X → Y that
assigns a class label y to a test instance x.

CIL is a more challenging setting because in addition to
CF, it has the inter-task class separation (ICS) (Kim et al.,
2022b) problem. ICS refers to the situation that since the
learner has no access to the training data of the old tasks
when learning a new task, then the learner has no way to
establish the decision boundaries between the classes of the
old tasks and the classes of the new task, which results in
poor classification accuracy. Kim et al. (2022b) showed
that a good within-task prediction (WP) and a good out-of-
distribution (OOD) detection for each task are necessary
and sufficient conditions for a strong CIL model.

Definition 1.3 (out-of-distribution (OOD) detection). Given
the training set D = {(xi, yi)ni=1}, where n is the number
of data samples, xi ∈ X is an input sample and yi ∈ Y is
its class label. Y is the set of all classes in D and called the
in-distribution (IND) classes. Our goal is to learn a function
f : X → Y ∪ {O} that can detect test instances that do not
belong to any classes in Y (OOD)), which are assigned to
class O, denoting out-of-distribution (OOD).

The intuition of the theory in (Kim et al., 2022b) is that if
OOD detection is perfect for each task, then a test instance
will be assigned to the correct task model to which the test

1



Learnability and Algorithm for Continual Learning

instance belongs for classification, i.e., within-task predic-
tion (WP). However, (Kim et al., 2022b) does not prove that
CIL is learnable. To our knowledge, no existing work has
reported a learnability study for CIL (see Sec. 2). This paper
performs the CIL learnability study.

The proposed learnability proof requires two assumptions:
(1) OOD detection is learnable. Fortunately, this has been
proven in a recent paper (Fang et al., 2022). (2) There is a
mechanism that can completely overcome forgetting (CF)
for the model of each task. Again, fortunately, there are
many existing TIL methods that can eliminate forgetting,
e.g., parameter-isolation methods such as HAT (Serrà et al.,
2018) and SupSup (Wortsman et al., 2020), which work
by learning a sub-network in a shared network for each
task. The sub-networks of all old tasks are protected when
training a new task. Orthogonal projection methods such as
PCP (Kim & Liu, 2020) and CUBER (Lin et al., 2022) can
also overcome forgetting in the TIL setting.

CIL can be solved by a combination of [a] a TIL method
that is able to protect each task model with no CF, and [b] a
normal supervised learning method for WP and [c] an OOD
detection method. [b] and [c] can be easily combined either
(i) with an OOD detection model since it also learns the IND
classes (see Definition 1.3) or (ii) a WP model that can also
perform OOD detection. That is, for CIL, we simply replace
the classification model built for each task in HAT/SupSup
with a combined WP and OOD detection model.

Based on the theory, we propose a new replay-based CIL
method that uses the combination of [a] and (ii) (two sepa-
rate heads for each task, one for WP and the other for OOD
detection based on the same feature extractor). This paper
thus makes two main contributions:

(1). It performs the first learnability study of CIL. To the
best of knowledge, no such a study has been reported so far.

(2). Based on the theory, a new CIL method, called ROW
(Replay, OOD, and WP for CIL), is proposed. Experimental
results show that it outperforms existing strong baselines.

It is interesting to note that our theory, including our earlier
work in (Kim et al., 2022b), in fact, unifies OOD detec-
tion and continual learning as it covers both (Kim et al.,
2023). Additionally, the theory is also applicable to open
world learning because OOD detection and class incremen-
tal learning are two critical components of an open world
learning system (Liu et al., 2023).

2. Related Work
To our knowledge, we are not aware of any paper that studies
the learnability of CIL. Below, we survey the existing CL
literature on both the theoretical and empirical sides.

On the theoretical side. Pentina & Lampert (2014) pro-
poses a PAC-Bayesian framework to provide a learning
bound on expected error by the average loss on the observed
tasks. However, this work is not about CIL but about TIL. It
focuses on knowledge transfer and assumes that all the tasks
have the same input space and the same label space and the
tasks are very similar. However, in CIL, every task has a
distinct set of class labels. Furthermore, this work is not con-
cerned with CF as earlier research in lifelong learning builds
a separate model for each task. Lee et al. (2021) studied the
generalization error by task similarity. It is again about TIL.
Bennani et al. (2020) showed that a specific method called
orthogonal gradient descent (OGD) gives a tighter general-
ization bound than SGD. As noted in Sec. 1, empirically, the
CF problem for TIL has been solved (Serrà et al., 2018; Kim
et al., 2022b). Several techniques have also been proposed
to carry out knowledge transfer (Ke et al., 2020; 2021; Lin
et al., 2022). Our work is entirely different as we study the
learnability of CIL, which is a more challenging setting than
TIL because of the additional difficulty of ICS (Kim et al.,
2022b) in CIL. In this work, we are not concerned with
knowledge transfer, which is mainly studied for the TIL
setting. Recently, Kim et al. (2022b) showed that a good
within-task prediction (WP) and a good OOD detection for
each task are necessary and sufficient conditions for a strong
CIL model. However, Kim et al. (2022b) did not show that
CIL is learnable. This paper performs this study. It also
proposes a new CIL algorithm.

On the empirical side, a large number of algorithms have
been proposed. They belong to several families. (1).
Regularization-based methods mitigate CF by restricting
the learned parameters for old tasks from being updated
significantly in a new task learning using regularizations
(Kirkpatrick et al., 2017; Zenke et al., 2017) or knowledge
distillation (Li & Hoiem, 2016; Zhu et al., 2021). Many ex-
isting approaches have used similar approaches (Ritter et al.,
2018; Schwarz et al., 2018; Xu & Zhu, 2018; Castro et al.,
2018; Dhar et al., 2019; Lee et al., 2019; Ahn et al., 2019;
Liu et al., 2020a). (2). Replay-based methods alleviate CF
by saving a small amount of training data from old tasks in a
memory buffer and jointly train the model using the current
data and the saved buffer data (Rusu et al., 2016; Lopez-
Paz & Ranzato, 2017; Chaudhry et al., 2019a; Hou et al.,
2019; Wu et al., 2019; Rolnick et al., 2019; Buzzega et al.,
2020; Rajasegaran et al., 2020a; Liu et al., 2021; Cha et al.,
2021; Yan et al., 2021; Wang et al., 2022b; Guo et al., 2022;
Kim et al., 2022a). Some methods in this family also study
which samples in memory should be used in replay (Aljundi
et al., 2019) or which samples in the training data should be
saved (Rebuffi et al., 2017; Liu et al., 2020b). (3). Pseudo-
replay methods generate pseudo replay data for old tasks
to serve as the replay data (Kamra et al., 2017; Shin et al.,
2017; Wu et al., 2018; Seff et al., 2017; Kemker & Kanan,

2



Learnability and Algorithm for Continual Learning

2018; Hu et al., 2019; Rostami et al., 2019; Ostapenko et al.,
2019). (Zhu et al., 2021) generates features instead of raw
data. (4). Parameter-isolation methods train and protect a
sub-network for each task (Mallya & Lazebnik, 2017; Abati
et al., 2020; von Oswald et al., 2020; Rajasegaran et al.,
2020b; Hung et al., 2019; Henning et al., 2021). Several sys-
tems, e.g., HAT (Serrà et al., 2018) and SupSup (Wortsman
et al., 2020), have largely eliminated CF. A limitation is that
the task-id of each test instance must be provided. These
methods are thus mainly used for TIL. (5). Orthogonal
projection methods learn each task in an orthogonal space
to other tasks to reduce task interference or CF (Zeng et al.,
2019; Kim & Liu, 2020; Chaudhry et al., 2020; Lin et al.,
2022).

Our empirical part of the work is related to but also very
different from the above methods. We use the replay data as
OOD training data to fine-tune an OOD detection head for
each task based on the features learned for the WP head and
uses the TIL method HAT to overcome CF. Some existing
methods have used a TIL method for CIL with an addi-
tional task-id prediction technique. iTAML (Rajasegaran
et al., 2020b)’s task-id prediction needs the test data come in
batches and each batch must be from the same task, which
is unrealistic as the test sample usually comes one after
another. CCG (Abati et al., 2020), Expert Gate (Aljundi
et al., 2017), HyperNet (von Oswald et al., 2020) and PR-
Ent (Henning et al., 2021) either build a separate network or
use entropy to predict the task-id. LMC (Ostapenko et al.,
2021) learns task specific knowledge via local modules capa-
ble of task-id prediction. However, they all perform poorly
because none of the systems deal with the ICS problem,
which is the key and is what our OOD detection is trying to
tackle. In this line of work, the most closely related work to
ours is MORE (Kim et al., 2022a), which builds a model for
each task treating the replay data as OOD data. However,
in inference, it considers only the IND classes of each task,
but not OOD detector. Our method is more principled and
outperforms MORE. The methods in (Kim et al., 2022b) do
not use replay data and perform worse.

3. Learnability of CIL
Before going to the learnability analysis, we first describe
the intuition behind. Kim et al. (2022b) showed that given a
test sample, the CIL prediction probability for each class in
a task is the product of two prediction probabilities: within-
task prediction (WP) and task-id prediction (TP),

P(Xk,j |x) = P(Xk,j |x, k)P(Xk|x), (1)

where Xk,j is the domain of task k and class j of the task
and x is an instance. The first probability on the right-hand-
side (RHS) is WP and the second probability on the RHS is
TP. However, as mentioned earlier, Kim et al. (2022b) did

Table 1. Notations used in Sec. 3.
Notation Description

X feature space
Y label space
H hypothesis space
Xk random variable in X of task k
Yk random variable in Y of task k

D(Xk,Yk) distribution of task k
l loss function
h hypothesis function in H

RD(X,Y )
risk function, expectation of loss function on D(X,Y )

D set of all distributions
S set of samples

D[1:k] weighted mixture of the first k distributions
πk mixture weight
Dk equivalent to D[k:k] and D(Xk,Yk)

S|[k1:k2] set of support samples for D[k1:k2]

S|k equivalent to S|[k:k]
Ak algorithm after training the k-th task
zi,jk score function of the j-th class of the i-th task for task k
O distribution of OOD
α constant in [0, 1)
Dα mixture of D and O with weight α
zok score for the OOD class
∅ empty set
ϵn error rate with total number of samples n

not study whether CIL is learnable. We also note that (Kim
et al., 2022b) proved that TP and OOD are correlated and
only differ by a constant factor. Based on the definition of
OOD detection (Definition 1.3), the OOD detection model
can also perform WP. In the recent work in (Fang et al.,
2022), it is proven that OOD detection is learnable.

We show that if the learning of each task does not cause
catastrophic forgetting (CF) for previous tasks, then CIL is
learnable.1 Fortunately, CF can be prevented for each task
as several existing task incremental learning (TIL) methods
including but not limited to HAT (Serrà et al., 2018) and
SupSup (Wortsman et al., 2020) in the parameter-isolation
family and PCP (Kim & Liu, 2020) and CUBER (Lin et al.,
2022) in the orthogonal projection family can ensure no CF
(Kim et al., 2022b). HAT/SupSup basically trains a sub-
network as the model for each task. In learning each new
task, all the sub-networks for the previous tasks are protected
with masks so that their parameters will not be modified in
backpropagation. Thus, in this section, we assume that all
tasks are learned without catastrophic forgetting (CF).

We now discuss the learnability of class incremental learn-
ing (CIL). The notations for the following discussion are
described in Tab. 1. Let X be a feature space, Y a label
space, and H a hypothesis function space. Assume H is
a ring, because we construct hypothesis functions by addi-
tion and multiplication in the proof of Theorem 3.3 and
Theorem 3.7. We use D(Xk,Yk) to denote the distribution

1The current learnability result only applies to offline CIL, but
not to online CL, where the task boundary may be blurry.

3



Learnability and Algorithm for Continual Learning

of task k. Xk ∈ X and Yk ∈ Y are random variables fol-
lowing D(Xk,Yk). D = {D(X,Y )} denotes the set of all
distributions. l(y1, y2) ≥ 0 denote a loss function. Denote
h ∈ H as a hypothesis function. For any X ∈ X , Y ∈ Y ,

the risk function RD(X,Y )
(h)

def
= E(x,y)∼D(X,Y )

[l(h(x), y)].

S
def
= {(x, y) ∼ D(X,Y )} is sampled from D(X,Y ), denoted

as S ∼ D(X,Y ).

For a series of distributions D(X1,Y1), . . . , D(XT ,YT ), we
denote the mixture of the first k distributions as D[1:k] =∑k

i=1 πiD(Xi,Yi)∑k
i=1 πi

, where the mixture weights π1, . . . , πT > 0

with
∑

k πk = 1. For brevity, Dk = D[k:k] = D(Xk,Yk).

Denote S|[k1:k2]
def
= {s ∈ S|s ∈ suppD[k1:k2]}. For sim-

plicity, S|k = S|[k:k].

Since continual learning tasks come one by one sequen-
tially, we denote the hypothesis function that is found by
an algorithm A after training the k-th task as Ak(S) with
S ∼ D[1:k]. Strictly speaking, hk(x) = Ak(S)(x) is only
well-defined for (x, y) ∼ D[1:k], and is not well-defined for
(x′, y′) ∼ Dk′ , k′ > k. Even if some implementation may
predict a real value by hk(x

′), we regard it as non-sense at
time k and only make sense until time k′.

For the risk function, we will meet RD[k1:k2]
(hk) and we

guarantee that k1 ≤ k2 ≤ k. Denote

hk = argmax1≤i≤k,j∈{1,... }{. . . , z
i,j
k , . . . },

where zi,jk is the score function of the j-th class of the i-th
task. The score function is any function that indicates which
class the sample belongs to. For example, the score function
could be the predicted logit of each class for a classification
algorithm. We calculate

RD[k1:k2]
(hk) = E(x,y)∼D[k1:k2]

[l(argmaxk1≤i≤k2,j∈{1,... }{. . . , z
i,j
k (x), . . . }, y)].

When we write RDα(h) with Dα = (1−α)D+αO (where
O denotes OOD and α ∈ [0, 1)), we require h to predict
one additional OOD class as

hk = argmax{. . . , zi,jk , . . . ; zok},

where zok is the score function of the OOD class.

Definition 3.1 (Fully-Observable Separated-Task Closed–
World Learnability). Given a set of distributions D, a hy-
pothesis function space H, we say CIL is learnable if there
exists an algorithm A and a sequence {ϵn| limn→+∞ ϵn =
0} s.t. (i) for any D1, . . . , DT ∈ D with suppDk ∩
suppDk′ = ∅, k ̸= k′, and (ii) for any π1, . . . , πT > 0
with

∑
k πk = 1,

max
k=1,...,T

ES∼D[1:k]
[RD[1:k]

(Ak(S))− inf
h∈H

RD[1:k]
(h)] < ϵn.

We use ϵ to represent the error rate, where the index n of
ϵn represents the total number of samples. The equation
limn→+∞ ϵn = 0 means that the error rate decreases to 0
as n goes to +∞. Definition 3.1, the risk function is calcu-
lated over D[1:k] at task k, which means the data of all the
past tasks and the current task are observable for optimiza-
tion. It is a desirable property for CIL to take expectation
over D[1:k] as it constructs a model that is equivalent to the
model built with the full training data of all tasks. Generally,
when an algorithm satisfies Definition 3.1, the system is
already learnable because this is just the traditional super-
vised learning which can see/observe all the training data of
all tasks and there is no OOD data involved (which means
the closed-world). However, when we apply the algorithm
A to solve for A(S) in practice, we usually cannot access
all samples in S, which is partially-observable instead of
fully-observable. That is the case for continual learning as
it assumes that in learning the new/current task, the training
data of the previous/past tasks is not accessible, at least a
major part of it.

Due to the lack of full observations, we have to define Ar
k

recursively. For any S ∼ D[1:k], we define

Ar
k(S) = Ar

k(S|k,Ar
k−1(S|[1:k−1])). (2)

The algorithm depends on implementation. In the following
discussion, we assume that learning a new task does not
interrupt the error bound of previous tasks. This is a valid
assumption as existing algorithms (Serrà et al., 2018; Worts-
man et al., 2020) achieve little or no forgetting. The version
of Definition 3.1 for partial observations is as follows.

Definition 3.2 (Partially-Observable Separated-Task Closed–
World Learnability). Given a set of distributions D, a hy-
pothesis function space H, we say CIL is learnable if there
exists an algorithm A and a sequence {ϵn| limn→+∞ ϵn =
0} s.t. (i) for any D1, . . . , DT ∈ D with suppDk ∩
suppDk′ = ∅, k ̸= k′, (ii) for any π1, . . . , πT > 0 with∑

k πk = 1,

max
k=1,...,T

ES∼D[1:k]
[RDk

(Ar
k(S))− inf

h∈H
RDk

(h)] < ϵn.

In Definition 3.4, the risk function is calculated over Dk

alone as only the current task data Dk is observable while
the past tasks are not. It is desirable that Definition 3.2
implies Definition 3.1, which transforms the learnability of
a CIL problem into the learnability of a supervised problem.
Unfortunately, Definition 3.2 does not imply Definition
3.1. Theorem 3.3 shows that there exists a trivial hypothe-
sis function that satisfies Definition 3.2 but doesn’t satisfy
Definition 3.1.

Theorem 3.3 (Definition 3.2 does not imply Definition 3.1).
For a set of distributions D and a hypothesis function space
H, if Definition 3.2 holds and H has the capacity to learn

4



Learnability and Algorithm for Continual Learning

more than one task, then there exists h ∈ H s.t. Definition
3.2 holds but Definition 3.1 doesn’t hold.

The proof is given in Appendix A. The main reason here
is that only the samples of the current task are observable,
while samples of both past and future tasks are hard to be
exploited. From the perspective of forward looking, when
training the current task, we have no access to any infor-
mation of future tasks, where samples of future tasks are
regarded as out-of-distribution (OOD) samples with respect
to the current and past tasks. Inspired by Theorem 3.3, we
include OOD detection into consideration and generalize
Definition 3.1 to the open-world setting.

Definition 3.4 (Fully-Observable Separated-Task Open–
World Learnability). Given a set of distributions D, a hy-
pothesis function space H, we say CIL is learnable if there
exists an algorithm A and a sequence {ϵn| limn→+∞ ϵn =
0} s.t. (i) for any D1, . . . , DT ∈ D with suppDk ∩
suppDk′ = ∅, k ̸= k′, (ii) for any π1, . . . , πT > 0 with∑

k πk = 1, and (iii) for any O(X1,Y1), . . . , O(XT ,YT ) ∈ D,
any α1, . . . , αT ∈ [0, 1),

max
k=1,...,T

ES∼D[1:k]
[R

D
α[1:k]

[1:k]

(Ak(S))

− inf
h∈H

R
D

α[1:k]

[1:k]

(h)] < ϵn,

where D
α[1:k]

[1:k] =
∑k

i=1(1− αi)Di + αiO(Xi,Yi).

The proof of Definition 3.4 is guaranteed by previous work
(Fang et al., 2022), which studies the learnablity of OOD
detection. It’s obvious that when Definition 3.4 is satisfied,
Definition 3.1 is satisfied, which is shown in Theorem 3.5.

Theorem 3.5 (Definition 3.4 implies Definition 3.1). For
a set of distributions D and a hypothesis function space H,
if Definition 3.4 holds, then Definition 3.1 holds.

The proof is given in Appendix A. When we have no access
to samples of past tasks in practice, we define Ak recursively
as in Eq. 2. The partial observable version of Definition 3.4
is stated below. In Definition 3.6, the risk function is over
Dk instead of D[1:k] because it’s the partial observable case.

Definition 3.6 (Partially-Observable Separated-Task Open–
World Learnability). Given a set of distributions D, a hy-
pothesis function space H, we say CIL is learnable if there
exists an algorithm A and a sequence {ϵn| limn→+∞ ϵn =
0} s.t. (i) for any D1, . . . , DT ∈ D with suppDk ∩
suppDk′ = ∅, k ̸= k′, (ii) for any π1, . . . , πT > 0 with∑

k πk = 1, and (iii) for any O(X1,Y1), . . . , O(XT ,YT ) ∈ D,
any α1, . . . , αT ∈ [0, 1),

max
k=1,...,T

ES∼D[1:k]
[RD

αk
k

(Ar
k(S))− inf

h∈H
RD

αk
k

(h)] < ϵn,

where Dαk

k = (1− αk)Dk + αkO(Xk,Yk).

Note that Fang et al. (2022) showed that OOD detection
is learnable under a compatibility condition for a single
OOD detection problem and Definition 3.6 is about learn-
ability with respect to an ensemble of multiple OOD detec-
tion problems. It is obvious that once each OOD detection
problem is learnable, the ensemble of them is also learn-
able. With this definition, we derive that CIL is learnable
as OOD detection is learnable. Different from Theorem
3.3 that partially-observable learnability does not imply
fully-observable learnability for the closed-world setting,
Theorem 3.7 shows that the learnability of a CIL system
can be converted to a series of OOD learnability problems
for the open-world setting (meaning there are OOD data).

Theorem 3.7 (Definition 3.6 implies Definition 3.4). For
a set of distributions D and a hypothesis function space
H, if Definition 3.6 holds, H enjoys enough capacity i.e.
infh∈H R

D
α[1:k]

[1:k]

(h) = 0, and the loss function on all tasks

is bounded by summation of loss function on each task i.e.,
Eq. 8 in Appendix, then Definition 3.4 holds and the upper
bound ϵn is multiplied by maxk=1,...,T

∑k
t=1

π[t:T ]

π[1:k]
.

The proof is given in Appendix A. Theorem 3.7 connects
Definitions 3.6 to 3.4 and Theorem 3.5 connects Defini-
tions 3.4 to 3.1, which is the desirable property of CIL.
When all tasks have the same weight π1 = · · · = πT = 1/T ,
the multiplier maxk=1,...,T

∑k
t=1

π[t:T ]

π[1:k]
= T , which is posi-

tively correlated with the number of tasks.

Though Theorem 3.7 gives an upper bound to induce
Definition 3.4 from Definition 3.6, the hypothesis func-
tion that satisfies Definition 3.4 is recursively derived
from the previous tasks (see the proof). We can also ob-
serve that when tasks have different weights, the multiplier
maxk=1,...,T

∑k
t=1

π[t:T ]

π[1:k]
depends on the order of tasks. It

is undesirable that the hypothesis function depends on the or-
der of tasks. When we can acquire some replay data of past
tasks and treat them as OOD data, we have the following
corollary that gives an order-free hypothesis function.

Corollary 3.8. For a set of distributions D and a hypothesis
function space H, if Definition 3.6 holds, H enjoys enough
capacity i.e. infh∈H R

D
α[1:k]

[1:k]

(h) = 0, and the loss function

on all tasks is bounded by summation of the loss functions
on every task i.e. Eq. 10 in Appendix, if we treat data of past
tasks as OOD data, then Definition 3.4 holds and the upper
bound ϵn is multiplied by maxk=1,...,T

kπ[1:T ]

π[1:k]
.

The proof is given in Appendix A.

4. Proposed Method
The learnability in Definition 3.6 is defined over the OOD
function of each task. By Definition 1.3 of OOD, an OOD
function is capable of classification (i.e., WP) for IND in-

5



Learnability and Algorithm for Continual Learning

stances and rejection for OOD instances (or TP as it can
be defined using OOD and such TP differs from OOD by
a constant factor (Kim et al., 2022b)). As discussed early,
we use the masks in HAT (Serrà et al., 2018) to protect each
OOD model to ensure there is no forgetting. Following
exactly this theoretical framework, an algorithm can be de-
signed, which works quite well (see ROW (-WP) in Tab. 4).
However, it is possible to do better by introducing a WP
head so that we can use the OOD head for estimating only
TP rather than for handling both WP and TP.

The proposed method ROW is a replay-based method. At
each task k, the system receives dataset Dk and leverages
the replay data saved from previous tasks in the replay mem-
ory buffer M as the OOD data of the task to train an OOD
detection head and also to fine-tune the WP head. Specifi-
cally, the model of each task has two heads: one for OOD
(for computing TP) and one for WP. That is, we optimize the
set of parameters (Ψk, θk, ϕk), where Ψk is the parameter
set of the feature extractor fk, θk is the parameter set of
OOD head hk, and ϕk is the parameter set of the WP head
(i.e., classifier) gk. The two task specific heads hk and gk
receive feature u from the shared feature extractor fk and
produce WP and TP probabilities, respectively. The training
consists of three steps: 1) training the feature extractor fk
and the OOD head hk using both IND instances in Dk and
OOD instances in M (i.e., the replay data), 2) fine-tuning a
WP head gk for the task using Dk based on only the fixed
feature extractor fk, and 3) fine-tuning the OOD heads of all
tasks that have been learned so far. Training steps 2 and 3
are fast as both are simply fine-tuning the single layer of the
classifiers (details below). The outputs from the two heads
are used to compute the final CIL prediction probability in
Eq. 1. An overview of the training and prediction process is
illustrated in Fig. 1.

1) Training Feature Extractor and OOD Head. This step
trains the OOD head hk for task k. Its feature extractor fk
is also shared by the WP head (see below). An illustration
of the training process is given in Fig. 1(a). Since OOD in-
stances are any instances whose labels do not belong to task
k, we leverage the task data Dk as IND instances and the
saved replay instances of tasks k′ ̸= k in the memory buffer
M as OOD instances represented by an OOD class (in red)
in the OOD head. The network hk◦fk is trained to maximize
the probability p(y|x, k) = softmaxhk(f(x, k; Ψk); θk)y
for an IND instance x ∈ Dk and maximize the probability
p(ood|x, k) for OOD instance x ∈ M. Formally, this is
achieved by minimizing the sum of cross-entropy losses

Lood(Ψt, θk) =− 1

2N

( ∑
(x,y)∈Dk

log p(y|x, k)

+
∑

(x,y)∈M

log p(ood|x, k)
)
,

(3)

where N is the number of instances in Dk. We utilize

x
f hk

xo

(a) Step 1

x
f gk

(b) Step 2

f

···

x

xo

hk

hk

(c) Step 3

x f

h1

g1

···

hk

gk

(d) Inference

Figure 1. Overview of training steps at task k and inference. (a):
the first step of training the feature extractor and OOD head for
task k. The system receives both IND instance x ∈ Dk and
OOD instance xo ∈ M. The output has IND classes (in blue)
and the OOD class or label (in red). (b): the second step of
fine-tuning the WP head using the IND training data only. (c):
fine-tuning all OOD heads using both IND and OOD instances.
(d): inference/prediction. For a test instance x, obtain TP and WP
probabilities, and compute the CIL probability as in Eq. 1.

upsampling with the replay instances to achieve an equal
number of samples as the current task data Dk. The first loss
is to discriminate the IND instances while the second loss is
introduced to distinguish between IND and OOD instances.

To deal with forgetting, we use the HAT method (Serrà et al.,
2018) (see Appendix B).

2) Fine-Tuning the WP Head. Given the feature extractor
trained in the first step, we fix the feature extractor and
fine-tune the WP head gk (i.e., the WP classifier) using only
Dk by adjusting the parameters ϕk. This is achieved by
minimizing the cross-entropy loss

LWP (ϕk) = − 1

N

∑
(x,y)∈Dk

log p(y|x, k). (4)

WP probabilities for the classes of task k are just the output
softmax probabilities.

3) Fine-Tuning the OOD Heads of All Tasks. The OOD
head hk built in step 1) is biased because for early tasks,
where the instances in M are less diverse, the OOD heads
for them will be weaker than the OOD heads of later tasks
when the instances in M are more diverse. To mitigate this
bias, we fine-tune all OOD heads of all tasks after training
each task using only the replay data in M. After training
task k, we have M with replay instances of classes from task
1 to k. For each task k′ ≤ k, reconstruct a new IND data
D̃k′ by selecting instances corresponding to task k′ from
M, and a new pseudo memory buffer M̃ after removing
the instances in D̃k′ . We then fine-tune every OOD head by

6



Learnability and Algorithm for Continual Learning

minimizing the loss function

LTP (θk′)− 1

M

( ∑
(x,y)∈M̃

log p(ood|x, k′)

+
∑

(x,y)∈D̃k′

log p(y|x, k′)
) (5)

where M is |D̃k|+ |M̃|. Although the TP probability can
be defined simply using the fine-tuned OOD heads, it can
be further improved, which we discuss next.

4.1. Distance-Based Coefficient

We can further improve the performance by incorporating a
distance-based coefficient defined at the feature level into
the output from the OOD head. The intuition is based on
the observation that samples identified as OOD using a
score function defined at the feature level are not recog-
nized with a score function defined in the output level, and
vice versa (Wang et al., 2022a). Their combination usually
produces a better OOD detector.

After training task k, compute the means of the feature
vectors per class of the task and the variance of the features.
Denote the mean of class y by µy and the variance by Σk =∑

y Σy, where Σy is the variance of features of class y.
Using Mahalanobis distance (MD), the coefficient of an
instance x for task k is

ck(x) = max
y

1/MD(x;µy,Σk). (6)

The coefficient is large if the feature of a test instance x
is close to one of the sample means of the task and small
otherwise.

We finally define the TP probability for task k as

P(Xk|x) = ck(x)max
j

softmax(hk(x))j/Z, (7)

where Z is the normalizing factor and the maximum is taken
over the softmax outputs of the IND classes j obtained by
the OOD head hk. The maxj operation can also be seen
as the maximum softmax probability score (Hendrycks &
Gimpel, 2016).

With the WP and TP probabilities, we now make a CIL
prediction based on Eq. 1.

5. Empirical Evaluation
Baselines. We compare the proposed ROW2 with 12 base-
lines. Five are exemplar-free (i.e., saving no previous data)
methods and seven are replay-based methods. The exemplar-
free methods are: HAT (Serrà et al., 2018), OWM (Zeng

2https://github.com/k-gyuhak/CLOOD

et al., 2019), SLDA (Hayes & Kanan, 2020), PASS (Zhu
et al., 2021), and L2P (Wang et al., 2022c). For the multi-
head method HAT, we make prediction by taking argmax
over the concatenated logits from each task model as (Kim
et al., 2022b). The replay methods are: iCaRL (Rebuffi
et al., 2017), A-GEM (Chaudhry et al., 2019a), EEIL (Cas-
tro et al., 2018), GD (Lee et al., 2019) without external
data, DER++ (Buzzega et al., 2020), HAL (Chaudhry et al.,
2021), and MORE (Kim et al., 2022a).

We could not make the recent system in (Wu et al., 2022)
using a pre-trained model as no code is released. We also
do not include the existing parameter isolation methods
that deal with CIL problems as they are very weak. Hy-
perNet (von Oswald et al., 2020) and PR (Henning et al.,
2021) find the task-id via an entropy function and Sup-
Sup (Wortsman et al., 2020) finds it via gradient update.
They then make a within-task prediction. SupSup, PR, and
iTAML (Rajasegaran et al., 2020b) assume the test instances
come in batches and all samples in a batch belong to one
task. When tested per sample, HyperNet, SupSup, PR and
iTAML achieve 22.4, 11.8, 45.2 and 33.5 on 10 tasks of
CIFAR100, respectively, which are much lower than 51.4 of
iCaRL. CCG (Abati et al., 2020) has no code. The systems
in (Kim et al., 2022b) are also not included because they are
quite weak as their contrastive learning does not work well
with a pre-trained model. The results reported in their paper
based on ResNet-18 are also weaker than ROW.

Datasets. We use three popular continual learning bench-
mark datasets. 1). CIFAR10 (Krizhevsky & Hinton, 2009).
This is an image classification dataset consisting of 60,000
color images of size 32x32, among which 50,000 are train-
ing data and 10,000 are testing data. It has 10 different
classes. 2). CIFAR100 (Krizhevsky & Hinton, 2009). This
dataset consists of 50,000 training images and 10,000 test-
ing images with 100 classes. Each image is colored and of
size 32x32. 3). Tiny-ImageNet (Le & Yang, 2015). This
dataset has 200 classes with 500 training images of size
64x64 per class. The validation data has 50 samples per
class. Since no label is provided for the test data, we use the
validation set for testing as in (Zhu et al., 2021).

Backbone Architecture and Pre-Training. We use the
backbone architecture of transformer DeiT-S/16 (Touvron
et al., 2021). As pre-training models or feature extractors are
increasingly used in all types of applications, including con-
tinual learning (Wang et al., 2022c; Kim et al., 2022a; Wu
et al., 2022), we also take this approach. Following (Kim
et al., 2022a), to ensure there is no information leak from pre-
training to continual learning, the pre-trained model/network
is trained using 611 classes of ImageNet after removing 389
classes which are similar or identical to the classes of CIFAR
and Tiny-ImageNet. To leverage the strong performance of
the pre-trained model while adapting to new knowledge, we

7

https://github.com/k-gyuhak/CLOOD


Learnability and Algorithm for Continual Learning

fix the feature extractor and append trainable adapter mod-
ules of fully-connected networks with one hidden layer at
each transformer layer (Houlsby et al., 2019) except SLDA
and L2P.3 The number of neurons in each hidden layer is 64
for CIFAR10 and 128 for other datasets. Note that all base-
lines and ROW use the same architecture and the same
pre-training model for fairness as using a pre-trained model
improves the performance (Kim et al., 2022a; Ostapenko
et al., 2022).

Note that we do not use the pre-trained models like
CLIP (Radford et al., 2021) or others trained using the full
ImageNet data due to information leak both in terms of
features and class labels because our experiment data have
been used in training these pre-trained models. This leakage
can seriously affect the results. For example, the L2P system
using the pre-training model trained using the full ImageNet
data performs extremely well, but after those overlapping
classes are removed in pre-training, its performances drop
greatly. In Tab. 2, we can see that it is in fact quite weak.

Training Details. For the replay-based methods, we fol-
low the budget sizes of (Rebuffi et al., 2017; Buzzega et al.,
2020). For our method, we use the memory budget strat-
egy (Chaudhry et al., 2019b) to save equal number of sam-
ples per class. Denote the budget size by |M|.

For CIFAR10, we split the 10 classes into 5 tasks with 2
classes per task. We refer the experiment as C10-5T. The
memory budget size |M| is 200.

For CIFAR100, we conduct two experiments. We split the
100 classes into 10 and 20 tasks, where each task has 10
classes and 5 classes, respectively. We refer the experiments
as C100-10T and C100-20T. We choose |M| = 2,000.

For Tiny-ImageNet, we conduct two experiments. We split
the 200 classes into 5 tasks with 40 classes per task and 10
tasks with 20 classes per task. We refer the experiments as
T-5T and T-10T, respectively. We save 2,000 samples in
total for both experiments.

Following the random class order protocol of the existing
methods (Rebuffi et al., 2017; Lee et al., 2019), we randomly
generate 5 different class orders for each experiment and
report the average accuracy over the 5 random orders.

For all the experiments of our system, we find a good set of
learning rates and the number of epochs via validation data
made of 10% of the training data. The hyper-parameters
of our system is reported in Appendix C. For the baselines,
we use the experiment setups as reported in their official
papers. If we could not reproduce the result, we find the
hyper-parameters via the validation set.

3For SLDA and L2P, we follow the original papers. SLDA
fine-tunes only the classifier with a fixed feature extractor and L2P
trains learnable prompts.

Table 2. Average classification accuracy after the final task. ‘-XT’
means X number of tasks. Our system ROW and all baselines
use the pre-trained network. The last 7 baselines are replay-based
systems. The last column shows the average of each row. We
highlight the best results in each column in bold.

Method C10-5T C100-10T C100-20T T-5T T-10T Average

HAT 79.36±5.16 68.99±0.21 61.83±0.62 65.85±0.60 62.05±0.55 67.62
OWM 41.69±6.34 21.39±3.18 16.98±4.44 24.55±2.48 17.52±3.45 24.43
SLDA 88.64±0.05 67.82±0.05 67.80±0.05 57.93±0.05 57.93±0.06 68.02
PASS 86.21±1.10 68.90±0.94 66.77±1.18 61.03±0.38 58.34±0.42 68.25
L2P 73.59±4.15 61.72±0.81 53.84±1.59 59.12±0.96 54.09±1.14 60.47
iCaRL 87.55±0.99 68.90±0.47 69.15±0.99 53.13±1.04 51.88±2.36 66.12
A-GEM 56.33±7.77 25.21±4.00 21.99±4.01 30.53±3.99 21.90±5.52 36.89
EEIL 82.34±3.13 68.08±0.51 63.79±0.66 53.34±0.54 50.38±0.97 63.59
GD 89.16±0.53 64.36±0.57 60.10±0.74 53.01±0.97 42.48±2.53 61.82
DER++ 84.63±2.91 69.73±0.99 70.03±1.46 55.84±2.21 54.20±3.28 66.89
HAL 84.38±2.70 67.17±1.50 67.37±1.45 52.80±2.37 55.25±3.60 65.39
MORE 89.16±0.96 70.23±2.27 70.53±1.09 64.97±1.28 63.06±1.26 71.59
ROW 90.97±0.19 74.72±0.48 74.60±0.12 65.11±1.97 63.21±2.53 73.72

Evaluation Metrics. We use two metrics: average classi-
fication accuracy (ACA) and average forgetting rate. ACA
after the last task t is At =

∑t
i=1 A

t
i/t, where Ai is the ac-

curacy of the model on task ith data after learning task t. The
average forgetting rate after task t is Ft =

∑t−1
i=1 A

i
i − At

i

(Liu et al., 2020b). This is also referred as backward transfer
in other literature (Lopez-Paz & Ranzato, 2017).

5.1. Results and Comparison

Average Classification Accuracy. Tab. 2 shows the av-
erage classification accuracy after the final task. The last
column Average indicates the average performance of each
method over the 5 experiments. Our proposed method ROW
performs the best consistently. On average, ROW achieves
73.72% while the best replay baseline (MORE) achieves
71.59%. We observe that MORE is significantly better than
the other baselines. This is because MORE actually builds
an OOD model for each task, which is close to the proposed
theory but less principled than ROW.

The baselines SLDA and L2P are proposed to leverage a
strong pre-trained feature extractor in the original papers.
SLDA freezes the feature extractor and only fine-tunes the
classifier. It performs well for the simple experiment C10-
5T, but is significantly poorer than ROW on all experiments.
This is because the fixed feature extractor does not adapt
to new knowledge. Our method updates the feature extrac-
tor via adapter modules to new knowledge and it is able to
learn more complex problems. L2P trains a set of prompt
embeddings. In the original paper, it uses a feature extractor
that was pre-trained with ImageNet-21k which already in-
cludes the classes of the continual learning (CL) evaluation
datasets (information leak). After we remove the classes
similar to the datasets used in CL, its performance drops
dramatically (60.47% on average over the 5 experiments)
and much poorer than our ROW (73.72% on average).

We conduct additional experiments with the size of mem-

8



Learnability and Algorithm for Continual Learning

C10-5T0
10
20
30
40
50
60
70
80
90

Fo
rg

et
tin

g 
R

at
e

C100-10T
0

10

20

30

40

50

60

70

80

90

C100-20T
0

10

20

30

40

50

60

70

80

90

HAT
OWM
SLDA
PASS
L2P
iCaRL
A-GEM
EEIL
GD
DER++
HAL
MORE
ROW

Figure 2. Average forgetting rate (CIL). The lower the rate, the
better the method is.

ory buffer reduced by half to show the effectiveness of our
method. The new memory buffer sizes for CIFAR10, CI-
FAR100, and Tiny-ImageNet are 100, 1,000, and 1,000, re-
spectively. Tab. 3 shows that our method ROW experiences
little reduction in performance whereas the other replay-
based baselines suffer from significant performance reduc-
tion. On average over the 5 experiments, ROW achieves
72.70% while previously with the original memory buffer,
it achieved 73.72. In contrast, the second best baseline
DER++ reduces from 66.89 to 62.16. MORE is also robust
with small memory sizes, but its average accuracy is 71.44
which is still lower than ROW.

Average Forgetting Rate. We compare the forgetting rate
of each system after learning the last task in Fig. 2. The
forgetting rates of the proposed method ROW are 7.05, 7.99,
and 9.72 on C10-5T, C100-10T and C100-20T, respectively.
iCaRL forgets less than ours on C10-5T and C100-20T as
it achieves 4.95 and 8.31, respectively. However, iCaRL
was not able to adapt to new knowledge effectively as its
accuracies are much lower than ROW on the same experi-
ments. The forgetting rate of SLDA on C10-5T 5.74, but
a similar observation can be made as iCaRL. The average
accuracy over the 5 experiments of ROW is 73.72 while that
of iCaRL and SLDA are only 66.12 and 68.02, respectively.
According to the forgetting rates, the best baseline (MORE)
adapts to the new knowledge well, but it was not able to
retain the knowledge as effectively as ROW. Its forgetting
rates are 10.30, 22.96, and 22.90 on C10-5T, C100-10T, and
C100-20T, respectively, and are much larger than ours. This
results in lower performance of MORE than ROW.

It is important to note that our system actually has no
forgetting due to the CF prevention by HAT. The ‘forget-
ting’ occurs not because it forgets the task knowledge, but
because the classification becomes harder with more classes.

5.2. Ablation Experiments

We conduct an ablation study to measure the performance
after each component is removed from ROW. We consider
removing two components: WP head and the distance-based

Table 3. The classification accuracy of the replay-based baselines
and our method ROW with smaller memory buffer sizes. The
buffer sizes are reduced by half and the new sizes are: 100 for
CIFAR10 and 1,000 for CIFAR100 and Tiny-ImageNet. Numbers
in bold are the best results in each column.

Method C10-5T C100-10T C100-20T T-5T T-10T Avg.

iCaRL 86.08±1.19 66.96±2.08 68.16±0.71 47.27±3.22 49.51±1.87 63.60
A-GEM 56.64±4.29 23.18±2.54 20.76±2.88 31.44±3.84 23.73±6.27 31.15
EEIL 77.44±3.04 62.95±0.68 57.86±0.74 48.36±1.38 44.59±1.72 58.24
GD 85.96±1.64 57.17±1.06 50.30±0.58 46.09±1.77 32.41±2.75 54.39
DER++ 80.09±3.00 64.89±2.48 65.84±1.46 50.74±2.41 49.24±5.01 62.16
HAL 79.16±4.56 62.65±0.83 63.96±1.49 48.17±2.94 47.11±6.00 60.21
MORE 88.13±1.16 71.69±0.11 71.29±0.55 64.17±0.77 61.90±0.90 71.44
ROW 89.70±1.54 73.63±0.12 71.86±0.07 65.42±0.55 62.87±0.53 72.70

Table 4. Performance gains with the proposed techniques. The
method -WP indicates removing WP head and using only OOD
head obtained in step 1). The method -MD indicates removing the
distance-based coefficient.

C10-5T C100-10T C100-20T

ROW 90.97±0.19 74.72±0.48 74.60±0.12

ROW (-WP) 88.50±1.32 72.29±0.90 71.97±0.77

ROW (-WP-MD) 84.06±3.38 67.53±1.73 65.85±0.95

coefficient (MD) in Sec. 4.1. The method without WP head
(ROW (-WP)) simply uses the OOD head obtained from step
1) with Eq. 3. This method makes the final prediction by
taking argmax over the concatenated logit values without
the OOD label from each task network (i.e. OOD head).

Tab. 4 shows the average classification accuracy. The model
after removing WP also works greatly as it already outper-
forms most of the baselines on C10-5T and outperforms the
baselines on C100-10T and 20T. In other words, using OOD
head constructed following the theoretical framework is ef-
fective. The model is still functional after removing both
components (WP and the distance-based coefficient by MD)
as shown in the last row of the table (ROW (-WP-MD)).

6. Conclusion
To the best of our knowledge, there is still no reported study
of learnability of class incremental learning (CIL). This
paper performed such a study and showed that the CIL is
learnable with some practically reasonable assumptions. A
new CIL algorithm (called ROW) was also proposed based
on the theory. Experimental results demonstrated that ROW
outperforms strong baselines.

Acknowledgements
The work of Gyuhak Kim and Bing Liu was supported in
part by a research contract from KDDI and three NSF grants
(IIS-1910424, IIS-1838770, and CNS-2225427).

9



Learnability and Algorithm for Continual Learning

References
Abati, D., Tomczak, J., Blankevoort, T., Calderara, S., Cuc-

chiara, R., and Bejnordi, E. Conditional channel gated
networks for task-aware continual learning. In CVPR, pp.
3931–3940, 2020.

Ahn, H., Cha, S., Lee, D., and Moon, T. Uncertainty-
based continual learning with adaptive regularization. In
NeurIPS, 2019.

Aljundi, R., Chakravarty, P., and Tuytelaars, T. Expert gate:
Lifelong learning with a network of experts. In CVPR,
2017.

Aljundi, R., Belilovsky, E., Tuytelaars, T., Charlin, L., Cac-
cia, M., Lin, M., and Caccia, L. Online continual learning
with maximal interfered retrieval. In NeurIPS, 2019.

Bennani, M. A., Doan, T., and Sugiyama, M. Generalisation
guarantees for continual learning with orthogonal gradi-
ent descent. Lifelong Learning Workshop at the ICML,
2020.

Buzzega, P., Boschini, M., Porrello, A., Abati, D., and
Calderara, S. Dark experience for general continual learn-
ing: a strong, simple baseline. In NeurIPS, 2020.

Castro, F. M., Marı́n-Jiménez, M. J., Guil, N., Schmid, C.,
and Alahari, K. End-to-end incremental learning. In
ECCV, pp. 233–248, 2018.

Cha, H., Lee, J., and Shin, J. Co2l: Contrastive continual
learning. In ICCV, 2021.

Chaudhry, A., Ranzato, M., Rohrbach, M., and Elhoseiny,
M. Efficient lifelong learning with a-gem. In ICLR,
2019a.

Chaudhry, A., Rohrbach, M., Elhoseiny, M., Ajanthan, T.,
Dokania, P. K., Torr, P. H., and Ranzato, M. Continual
learning with tiny episodic memories. 2019b.

Chaudhry, A., Khan, N., Dokania, P. K., and Torr, P. H. S.
Continual learning in low-rank orthogonal subspaces,
2020.

Chaudhry, A., Gordo, A., Dokania, P., Torr, P., and
Lopez-Paz, D. Using hindsight to anchor past knowl-
edge in continual learning. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(8):6993–7001,
May 2021. URL https://ojs.aaai.org/index.
php/AAAI/article/view/16861.

Chen, Z. and Liu, B. Lifelong machine learning. Synthesis
Lectures on Artificial Intelligence and Machine Learning,
12(3):1–207, 2018.

Dhar, P., Singh, R. V., Peng, K., Wu, Z., and Chellappa, R.
Learning without memorizing. In CVPR, 2019.

Fang, Z., Li, Y., Lu, J., Dong, J., Han, B., and Liu, F. Is
out-of-distribution detection learnable? aNeurIPS-2022,
2022.

Guo, Y., Liu, B., and Zhao, D. Online continual learning
through mutual information maximization. In Interna-
tional Conference on Machine Learning, pp. 8109–8126.
PMLR, 2022.

Hayes, T. L. and Kanan, C. Lifelong machine learning with
deep streaming linear discriminant analysis. In CVPR
Workshop on Continual Learning, 2020.

Hendrycks, D. and Gimpel, K. A baseline for detecting
misclassified and out-of-distribution examples in neural
networks. arXiv preprint arXiv:1610.02136, 2016.

Henning, C., Cervera, M., D’Angelo, F., Von Oswald, J.,
Traber, R., Ehret, B., Kobayashi, S., Grewe, B. F., and
Sacramento, J. Posterior meta-replay for continual learn-
ing. NeurIPS, 34, 2021.

Hou, S., Pan, X., Loy, C. C., Wang, Z., and Lin, D. Learn-
ing a unified classifier incrementally via rebalancing. In
CVPR, pp. 831–839, 2019.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
De Laroussilhe, Q., Gesmundo, A., Attariyan, M., and
Gelly, S. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning, pp.
2790–2799. PMLR, 2019.

Hu, W., Lin, Z., Liu, B., Tao, C., Tao, Z., Ma, J., Zhao,
D., and Yan, R. Overcoming catastrophic forgetting for
continual learning via model adaptation. In ICLR, 2019.

Hung, C.-Y., Tu, C.-H., Wu, C.-E., Chen, C.-H., Chan, Y.-
M., and Chen, C.-S. Compacting, picking and growing for
unforgetting continual learning. In NeurIPS, volume 32,
2019.

Kamra, N., Gupta, U., and Liu, Y. Deep Generative Dual
Memory Network for Continual Learning. arXiv preprint
arXiv:1710.10368, 2017.

Ke, Z., Liu, B., and Huang, X. Continual learning of a mixed
sequence of similar and dissimilar tasks. In NeurIPS,
2020.

Ke, Z., Liu, B., Ma, N., Xu, H., and Shu, L. Achieving
forgetting prevention and knowledge transfer in continual
learning. NeurIPS, 2021.

Kemker, R. and Kanan, C. FearNet: Brain-Inspired Model
for Incremental Learning. In ICLR, 2018.

Kim, G. and Liu, B. Continual learning via principal compo-
nents projection, 2020. URL https://openreview.
net/forum?id=SkxlElBYDS.

10

https://ojs.aaai.org/index.php/AAAI/article/view/16861
https://ojs.aaai.org/index.php/AAAI/article/view/16861
https://openreview.net/forum?id=SkxlElBYDS
https://openreview.net/forum?id=SkxlElBYDS


Learnability and Algorithm for Continual Learning

Kim, G., Ke, Z., and Liu, B. A multi-head model for con-
tinual learning via out-of-distribution replay. In Confer-
ence on Lifelong Learning Agents, pp. 548–563. PMLR,
2022a.

Kim, G., Xiao, C., Konishi, T., Ke, Z., and Liu, B. A
theoretical study on solving continual learning. NeurIPS-
2022, 2022b.

Kim, G., Xiao, C., Konishi, T., Ke, Z., and Liu, B. Open-
world continual learning: Unifying novelty detection and
continual learning. arXiv:2304.10038 [cs.LG], 2023.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Des-
jardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho, T.,
Grabska-Barwinska, A., et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national
academy of sciences, 114(13):3521–3526, 2017.

Krizhevsky, A. and Hinton, G. Learning multiple layers of
features from tiny images. Technical Report TR-2009,
University of Toronto, Toronto., 2009.

Le, Y. and Yang, X. Tiny imagenet visual recognition chal-
lenge, 2015.

Lee, K., Lee, K., Shin, J., and Lee, H. Overcoming catas-
trophic forgetting with unlabeled data in the wild. In
CVPR, 2019.

Lee, S., Goldt, S., and Saxe, A. Continual learning in
the teacher-student setup: Impact of task similarity. In
International Conference on Machine Learning, pp. 6109–
6119. PMLR, 2021.

Li, Z. and Hoiem, D. Learning Without Forgetting. In
ECCV, pp. 614–629. Springer, 2016.

Lin, S., Yang, L., Fan, D., and Zhang, J. Beyond not-
forgetting: Continual learning with backward knowledge
transfer. NeurIPS-2022, 2022.

Liu, B., Mazumder, S., Robertson, E., and Grigsby, S. Ai
autonomy: Self-initiated open-world continual learning
and adaptation. AI Magazine, 2023.

Liu, Y., Parisot, S., Slabaugh, G., Jia, X., Leonardis,
A., and Tuytelaars, T. More classifiers, less forget-
ting: A generic multi-classifier paradigm for incre-
mental learning. In ECCV, pp. 699–716. Springer
International Publishing, 2020a. doi: 10.1007/
978-3-030-58574-7 42. URL https://doi.org/
10.1007/978-3-030-58574-7_42.

Liu, Y., Su, Y., Liu, A.-A., Schiele, B., and Sun, Q. Mnemon-
ics training: Multi-class incremental learning without
forgetting. In CVPR, 2020b.

Liu, Y., Schiele, B., and Sun, Q. Adaptive aggregation
networks for class-incremental learning. In CVPR, 2021.

Lopez-Paz, D. and Ranzato, M. Gradient Episodic Memory
for Continual Learning. In NeurIPS, pp. 6470–6479,
2017.

Mallya, A. and Lazebnik, S. PackNet: Adding Multiple
Tasks to a Single Network by Iterative Pruning. arXiv
preprint arXiv:1711.05769, 2017.

McCloskey, M. and Cohen, N. J. Catastrophic interfer-
ence in connectionist networks: The sequential learning
problem. In Psychology of learning and motivation, vol-
ume 24, pp. 109–165. Elsevier, 1989.

Ostapenko, O., Puscas, M., Klein, T., Jahnichen, P., and
Nabi, M. Learning to remember: A synaptic plasticity
driven framework for continual learning. In CVPR, pp.
11321–11329, 2019.

Ostapenko, O., Rodriguez, P., Caccia, M., and Charlin, L.
Continual learning via local module composition. Ad-
vances in Neural Information Processing Systems, 34:
30298–30312, 2021.

Ostapenko, O., Lesort, T., Rodrı́guez, P., Arefin, M. R.,
Douillard, A., Rish, I., and Charlin, L. Continual learning
with foundation models: An empirical study of latent
replay. Conference on Lifelong Learning Agents, 2022.

Pentina, A. and Lampert, C. A pac-bayesian bound for life-
long learning. In International Conference on Machine
Learning, pp. 991–999. PMLR, 2014.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. arXiv preprint arXiv:2103.00020,
2021.

Rajasegaran, J., Hayat, M., Khan, S., Khan, F. S., Shao,
L., and Yang, M.-H. An adaptive random path selection
approach for incremental learning, 2020a.

Rajasegaran, J., Khan, S., Hayat, M., Khan, F. S., and Shah,
M. itaml: An incremental task-agnostic meta-learning
approach. In CVPR, 2020b.

Rebuffi, S.-A., Kolesnikov, A., and Lampert, C. H. iCaRL:
Incremental classifier and representation learning. In
CVPR, pp. 5533–5542, 2017.

Ritter, H., Botev, A., and Barber, D. Online structured
laplace approximations for overcoming catastrophic for-
getting. In NeurIPS, 2018.

11

https://doi.org/10.1007/978-3-030-58574-7_42
https://doi.org/10.1007/978-3-030-58574-7_42


Learnability and Algorithm for Continual Learning

Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T. P., and
Wayne, G. Experience replay for continual learning. In
NeurIPS, 2019.

Rostami, M., Kolouri, S., and Pilly, P. K. Complementary
learning for overcoming catastrophic forgetting using
experience replay. In IJCAI, 2019.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H.,
Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R., and Had-
sell, R. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Schwarz, J., Luketina, J., Czarnecki, W. M., Grabska-
Barwinska, A., Teh, Y. W., Pascanu, R., and Hadsell,
R. Progress & compress: A scalable framework for con-
tinual learning. arXiv preprint arXiv:1805.06370, 2018.

Seff, A., Beatson, A., Suo, D., and Liu, H. Continual
learning in generative adversarial nets. arXiv preprint
arXiv:1705.08395, 2017.

Serrà, J., Surı́s, D., Miron, M., and Karatzoglou, A. Over-
coming catastrophic forgetting with hard attention to the
task. In ICML, 2018.

Shin, H., Lee, J. K., Kim, J., and Kim, J. Continual learning
with deep generative replay. In NIPS, pp. 2994–3003,
2017.

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles,
A., and Jégou, H. Training data-efficient image transform-
ers & distillation through attention. In International Con-
ference on Machine Learning, pp. 10347–10357. PMLR,
2021.

van de Ven, G. M. and Tolias, A. S. Three scenarios for
continual learning. arXiv preprint arXiv:1904.07734,
2019.

von Oswald, J., Henning, C., Sacramento, J., and Grewe,
B. F. Continual learning with hypernetworks. ICLR,
2020.

Wang, H., Li, Z., Feng, L., and Zhang, W. Vim: Out-of-
distribution with virtual-logit matching. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 4921–4930, 2022a.

Wang, L., Zhang, X., Yang, K., Yu, L., Li, C., Hong, L.,
Zhang, S., Li, Z., Zhong, Y., and Zhu, J. Memory replay
with data compression for continual learning. Proceed-
ings of International Conference on Learning Represen-
tations (ICLR), 2022b.

Wang, Z., Zhang, Z., Lee, C.-Y., Zhang, H., Sun, R., Ren,
X., Su, G., Perot, V., Dy, J., and Pfister, T. Learning
to prompt for continual learning. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 139–149, 2022c.

Wortsman, M., Ramanujan, V., Liu, R., Kembhavi, A.,
Rastegari, M., Yosinski, J., and Farhadi, A. Supermasks
in superposition. In Larochelle, H., Ranzato, M., Hadsell,
R., Balcan, M. F., and Lin, H. (eds.), NeurIPS, 2020.

Wu, C., Herranz, L., Liu, X., van de Weijer, J., Raducanu,
B., et al. Memory replay gans: Learning to generate new
categories without forgetting. In NeurIPS, 2018.

Wu, T.-Y., Swaminathan, G., Li, Z., Ravichandran, A.,
Vasconcelos, N., Bhotika, R., and Soatto, S. Class-
incremental learning with strong pre-trained models. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 9601–9610,
June 2022.

Wu, Y., Chen, Y., Wang, L., Ye, Y., Liu, Z., Guo, Y., and Fu,
Y. Large scale incremental learning. In CVPR, 2019.

Xu, J. and Zhu, Z. Reinforced continual learning. In
NeurIPS, 2018.

Yan, S., Xie, J., and He, X. Der: Dynamically expandable
representation for class incremental learning. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 3014–3023, 2021.

Zeng, G., Chen, Y., Cui, B., and Yu, S. Continuous learn-
ing of context-dependent processing in neural networks.
Nature Machine Intelligence, 2019.

Zenke, F., Poole, B., and Ganguli, S. Continual learning
through synaptic intelligence. In ICML, pp. 3987–3995,
2017.

Zhu, F., Zhang, X.-Y., Wang, C., Yin, F., and Liu, C.-L. Pro-
totype augmentation and self-supervision for incremental
learning. In CVPR, 2021.

12



Learnability and Algorithm for Continual Learning

APPENDIX

A. Proof
Proof of Theorem 3.3. Denote the algorithm that satisfies Definition 3.2 as Ar

k. Given any ϵn and S ∼ D[1:k], denote
hk = Ar

k(S). Based on hk, we construct a h̃k that satisfies Definition 3.2 but doesn’t satisfy Definition 3.1.

We define H has the capacity to learn more than one task as follows. For any h0 ∈ H that could only make correct
predictions on a single task, but wrong predictions on all the other tasks, there exists δ > 0 s.t.

inf
h∈H

RD[1:k]
(h) < RD[1:k]

(h0)− δ.

Denote hk = argmaxi,j{. . . , z
i,j
k , . . . }, where zi,jk is the score function of the j-th class of the i-th task. Let σ(z) =

1/(1 + e−z) to be the sigmoid function. Define

z̃i,jk (x) = σ(zi,jk (x)) + i

and
h̃k = argmax

i,j
{. . . , z̃i,jk , . . . }.

(i) Since 0 < σ < 1, we have z̃i,jk < z̃i
′,j
k , ∀ i < i′. Therefore,

h̃k = argmaxi,j{. . . , z̃
i,j
k , . . . } = argmaxi=k,j{. . . , z̃

i,j
k , . . . }.

Since σ is monotonic increasing, we have

RDk
(hk) = E(x,y)∼Dk

[l(argmaxi=k,j{. . . , z
i,j
k (x), . . . }, y)]

= E(x,y)∼Dk
[l(argmaxi=k,j{. . . , z̃

i,j
k (x), . . . }, y)] = RDk

(h̃k).

Plugging RDk
(hk) = RDk

(h̃k) into Definition 3.2, we have

max
k=1,...,T

ES∼D[1:k]
[RDk

(h̃k)− inf
h∈H

RDk
(h)] < ϵn.

Therefore, h̃k also satisfies Definition 3.2.

(ii) Since h̃k always predicts the class of the k-th task, all predicted labels of samples from D[1:k−1] are wrong. Therefore,
we have

max
k=1,...,T

ES∼D[1:k]
[RD[1:k]

(h̃k)− inf
h∈H

RD[1:k]
(h)] > δ > 0.

Because δ is a constant that is irrelevant to S ∼ D[1:k], it cannot be reduced by increasing samples. Therefore, h̃k doesn’t
satisfy Definition 3.1.

13



Learnability and Algorithm for Continual Learning

Proof of Theorem 3.5. Denote the algorithm that satisfies Definition 3.4 as Ak. Define hk = Ak(S). Let α1 = · · · = αk =
0, then we have D

α[1:k]

[1:k] = D[1:k]. It’s obvious that hk satisfies Definition 3.1 because

RD[1:k]
(hk)− inf

h∈H
RD[1:k]

(h) = R
D

α[1:k]

[1:k]

(hk)− inf
h∈H

R
D

α[1:k]

[1:k]

(h).

14



Learnability and Algorithm for Continual Learning

Proof of Theorem 3.7. Denote the algorithm that satisfies Definition 3.6 as Ar
k. Given any ϵn and S ∼ D[1:k], denote

hk = Ar
k(S). Based on hk, we construct a h̃k that satisfies Definition 3.4.

For simplicity, we denote π[k:k′] =
∑k′

i=k πi.

For any O(X1,Y1), . . . , O(XT ,YT ) ∈ D and any α1, . . . , αT ∈ [0, 1), let

α′
k = 1− πk

π[k:T ]
(1− αk)

and

O′
(Xk,Yk)

=
πk

π[k:T ]
αkO(Xk,Yk) +

T∑
i=k+1

πi

π[k:T ]
[(1− αi)Di + αiO(Xi,Yi)].

Defining

D
α′

k

k

def
= (1− α′

k)Dk + α′
kO

′
(Xk,Yk)

and plugging α′
k and O′

(Xk,Yk)
into Definition 3.6, we have

max
k=1,...,T

ES∼D[1:k]
[R

D
α′
k

k

(hk)− inf
h∈H

R
D

α′
k

k

(h)] < ϵn.

Denote hk = argmax{. . . , zjk, . . . ; zok}, where zjk is the score function of the j-th class of the k-th task, and zok is the score
function of the OOD class of the k-th task. Denote the label of the j-th class of the i-th task as yi,j . Denote the label of
OOD class of the i-th task as yi,o. We define

h̃k(x) =

{
yi,j if hi′(x) = yi

′,o,∀ i′ < i, and hi(x) = yi,j ;

yk,o if hi′(x) = yi
′,o,∀ i′ ≤ k.

By definition of h̃k, when h̃k makes a wrong prediction, there exists a hi′ , i
′ ≤ k that makes a mistake. We assume that the

loss function satisfies the following inequality

l(h̃k(x), y) ≤



i−1∑
t=1

l(ht(x), y
t,o) + l(hi(x), y

i,j),

if hi′(x) = yi
′,o,∀ i′ < i, and hi(x) = yi,j ;

k∑
t=1

l(ht(x), y
t,o),

if hi′(x) = yi
′,o,∀ i′ ≤ k.

(8)

Then we can decompose the risk function of h̃k,

R
D

α[1:k]

[1:k]

(h̃k) = E
(x,y)∼D

α[1:k]

[1:k]

l(h̃k(x), y)

=

k∑
i=1

E
(x,y)∼D

α[1:k]

[1:k]

l(h̃k(x), y)1(x,y)∼Di

+

k∑
i=1

E
(x,y)∼D

α[1:k]

[1:k]

l(h̃k(x), y)1(x,y)∼Oi

≤
k∑

i=1

E
(x,y)∼D

α[1:k]

[1:k]

[

i−1∑
t=1

l(ht(x), y
t,o) + l(hi(x), y

i,j)]1(x,y)∼Di

+

k∑
i=1

E
(x,y)∼D

α[1:k]

[1:k]

[

i∑
t=1

l(ht(x), y
t,o)]1(x,y)∼Oi

.

(9)

15



Learnability and Algorithm for Continual Learning

With the fact that for any density function p(x) defined on A and any B ⊂ A,

∫
A

p(x)∫
A
p(x)dx

f(x)1x∈Bdx =

∫
B
p(x)dx∫

A
p(x)dx

∫
B

p(x)∫
B
p(x)dx

f(x)dx,

by definition of α′
k and O′

(Xk,Yk)
, we have that for t < i ≤ k,

E
(x,y)∼D

α[1:k]

[1:k]

l(ht(x), y
t,o)1(x,y)∼Di

=
(1− αi)πi

π[1:k]
E(x,y)∼Di

l(ht(x), y
t,o)

=
(1− αi)πi

π[1:k]

π[t:T ]

(1− αi)πi
E
(x,y)∼D

α′
t

t

l(ht(x), y
t,o)1(x,y)∼Di

=
π[t:T ]

π[1:k]
E
(x,y)∼D

α′
t

t

l(ht(x), y
t,o)1(x,y)∼Di

,

E
(x,y)∼D

α[1:k]

[1:k]

l(hi(x), y
i,j)1(x,y)∼Di

=
(1− αi)πi

π[1:k]
E(x,y)∼Di

l(hi(x), y
i,j)

=
(1− αi)πi

π[1:k]

π[i:T ]

(1− αi)πi
E
(x,y)∼D

α′
i

i

l(hi(x), y
i,j)1(x,y)∼Di

=
π[i:T ]

π[1:k]
E
(x,y)∼D

α′
i

i

l(hi(x), y
i,j)1(x,y)∼Di

,

and for t ≤ i ≤ k,

E
(x,y)∼D

α[1:k]

[1:k]

l(ht(x), y
t,o)1(x,y)∼Oi

=
αiπi

π[1:k]
E(x,y)∼Oi

l(ht(x), y
t,o)

=
αiπi

π[1:k]

π[t:T ]

αiπi
E
(x,y)∼D

α′
t

t

l(ht(x), y
t,o)1(x,y)∼Oi

=
π[t:T ]

π[1:k]
E
(x,y)∼D

α′
t

t

l(ht(x), y
t,o)1(x,y)∼Oi

.

16



Learnability and Algorithm for Continual Learning

Plugging the above three equations into Eq. 9, we have

RD
αk
[1:k]

(h̃k) ≤
k∑

i=1

i−1∑
t=1

π[t:T ]

π[1:k]
E
(x,y)∼D

α′
t

t

l(ht(x), y
t,o)1(x,y)∼Di

+

k∑
i=1

π[i:T ]

π[1:k]
E
(x,y)∼D

α′
i

i

l(hi(x), y
i,j)1(x,y)∼Di

+

k∑
i=1

i∑
t=1

π[t:T ]

π[1:k]
E
(x,y)∼D

α′
t

t

l(ht(x), y
t,o)1(x,y)∼Oi

=

k∑
t=1

k∑
i=t+1

π[t:T ]

π[1:k]
E
(x,y)∼D

α′
t

t

l(ht(x), y
t,o)1(x,y)∼Di

+

k∑
t=1

π[t:T ]

π[1:k]
E
(x,y)∼D

α′
t

t

l(ht(x), y
t,j)1(x,y)∼Dt

+

k∑
t=1

k∑
i=t

π[t:T ]

π[1:k]
E
(x,y)∼D

α′
t

t

l(ht(x), y
t,o)1(x,y)∼Oi

=

k∑
t=1

π[t:T ]

π[1:k]
E
(x,y)∼D

α′
t

t

l(ht(x), y
t,∗)1(x,y)∼∪k

i=t(Di∪Oi)

=

k∑
t=1

π[t:T ]

π[1:k]
R

D
α′
t

t

(ht).

By assumption that infh∈H R
D

α[1:k]

[1:k]

(h) = 0, it’s obvious that infh∈H R
D

α′
k

k

(h) = 0, which means that

max
k=1,...,T

ES∼D[1:k]
[R

D
α′
k

k

(hk)] < ϵn.

Therefore, we have
max

k=1,...,T
ES∼D[1:k]

[R
D

α[1:k]

[1:k]

(h̃k)− inf
h∈H

R
D

α[1:k]

[1:k]

(h)]

≤ max
k=1,...,T

ES∼D[1:k]
[

k∑
t=1

π[t:T ]

π[1:k]
R

D
α′
t

t

(ht)]

< ϵn · max
k=1,...,T

k∑
t=1

π[t:T ]

π[1:k]
.

17



Learnability and Algorithm for Continual Learning

Proof of Corollary 3.8. Denote the algorithm that satisfies Definition 3.6 as Ar
k. Given any ϵn and S ∼ D[1:k], denote

hk = Ar
k(S). Based on hk, we construct a h̃k that satisfies Definition 3.4.

For simplicity, we denote π[k:k′] =
∑k′

i=k πi.

Different from proof of Theorem 3.7, when we can acquire replay data and therefore treat them as OOD data, we let

α′
k = 1− πk

π[1:T ]
(1− αk)

and
O′

(Xk,Yk)
=

πk

π[1:T ]
αkO(Xk,Yk) +

∑
i ̸=k

πi

π[1:T ]
[(1− αi)Di + αiO(Xi,Yi)].

Defining

D
α′

k

k

def
= (1− α′

k)Dk + α′
kO

′
(Xk,Yk)

and plugging α′
k and O′

(Xk,Yk)
into Definition 3.6, we have

max
k=1,...,T

ES∼D[1:k]
[R

D
α′
k

k

(hk)− inf
h∈H

R
D

α′
k

k

(h)] < ϵn.

Denote hk = argmax{. . . , zjk, . . . ; zok}, where zjk is the score function of the j-th class of the k-th task, and zok is the score
function of the OOD class of the k-th task. Denote the label of the j-th class of the i-th task as yi,j . Denote the label of
OOD class the the i-th task as yi,o. We define

h̃k(x) =

{
yi,j if hi(x) = yi,j ,∃ i ≤ k;

yk,o if hi′(x) = yi
′,o,∀ i′ ≤ k.

It’s ideal that hi′(x) = yi
′,o,∀ i′ ̸= i when hi(x) = yi,j ,∃ i ≤ k. But when h̃k makes a wrong prediction, there exists a

hi′ , i
′ ≤ i that makes a mistake. We assume that the loss function satisfies the following inequality

l(h̃k(x), y) ≤



∑
t̸=i

l(ht(x), y
t,o) + l(hi(x), y

i,j),

if hi(x) = yi,j ,∃ i ≤ k;

k∑
t=1

l(ht(x), y
t,o),

if hi′(x) = yi
′,o,∀ i′ ≤ k.

(10)

All the same as the proof of Theorem 3.7, we have

R
D

α[1:k]

[1:k]

(h̃k) = E
(x,y)∼D

α[1:k]

[1:k]

l(h̃k(x), y)

≤
k∑

i=1

E
(x,y)∼D

α[1:k]

[1:k]

[
∑
t̸=i

l(ht(x), y
t,o) + l(hi(x), y

i,j)]1(x,y)∼Di

+

k∑
i=1

E
(x,y)∼D

α[1:k]

[1:k]

[

i∑
t=1

l(ht(x), y
t,o)]1(x,y)∼Oi

≤ ϵn · max
k=1,...,T

k∑
t=1

π[1:T ]

π[1:k]
= ϵn · max

k=1,...,T

kπ[1:T ]

π[1:k]
.

18



Learnability and Algorithm for Continual Learning

B. Hard Attention to the Task (HAT)
In training the network hk ◦ fk using the data of task k and the generated pseudo feature vectors, we employ the hard
attention mask (Serrà et al., 2018) to prevent forgetting in the feature extractor.

The hard attention mask akl is a trainable pseudo binary 0-1 vector at each layer l of task k. It is element-wise multiplied to
the output of the layer as akl ⊗ hl and blocks (for value of 0) or unblocks (for value of 1) the information flow from neurons
of adjacent layers. Neurons with value 1 are important for the task and thus need to be protected while neurons with value 0
are not necessary for the task and can be freely modifed without affecting other tasks.

More specifically, we modify the gradients of parameters that are important in performing the previous tasks (1, · · · , k − 1)
during training task k so the important parameters for previous tasks are unaffected. The gradient of parameter wij,l at ith
row and jth column of layer l is modified as

∇w′
ij,l =

(
1−min

(
a<k
i,l , a

<k
j,l−1

))
∇wij,l, (11)

where a<k
i,l is an accumulated attentions over previous tasks and is 1 if the hard attention of neuron i at layer l is ever used

by any previous task < k (see (Serrà et al., 2018) for details).

To encourage parameter sharing and sparsity in the number of activated masks, a regularization is introduced as Lr =∑
l,i a

k
i,l(1− a<k

i,l )
/∑

l,i(1− a<k
i,l ). The final objective to train a comprehensive task network without forgetting is

L = Lood + Lr, (12)

where Lood is the cross-entropy loss in Eq. 3.

C. Hyper-Parameters
For all the experiments, we use SGD with momentum value of 0.9 with batch size of 64. For C10-5T, we use learning rate
0.005 and train for 20 epochs. For C100-10T and 20T, we train for 40 epochs with learning rate 0.001 and 0.005 for 10T
and 20T, respectively. For T-5T and 10T, we use the same learning rate 0.005, but train for 15 and 10 epochs for 5T and 10T,
respectively. For fine-tuning WP and OOD head, we use batch size of 32 and use the same learning rate used for training the
feature extractor. For fine-tuning WP and TP, we train for 5 epochs and 10 epochs, respectively.

D. Required Memory

Table 5. The size of the model (in entries) required for each method without the memory buffer.

Method C10-5T C100-10T C100-20T T-5T T-10T

HAT 23.0M 24.7M 25.4M 24.6M 25.1M
OWM 26.6M 28.1M 28.1M 28.2M 28.2M
SLDA 21.6M 21.6M 21.6M 21.7M 21.7M
PASS 22.9M 24.2M 24.2M 24.3M 24.4M
L2P 21.7M 21.7M 21.7M 21.8M 21.8M
iCaRL 22.9M 24.1M 24.1M 24.1M 24.1M
A-GEM 26.5M 31.4M 31.4M 31.5M 31.5M
EEIL 22.9M 24.1M 24.1M 24.1M 24.1M
GD 22.9M 24.1M 24.1M 24.1M 24.1M
DER++ 22.9M 24.1M 24.1M 24.1M 24.1M
HAL 22.9M 24.1M 24.1M 24.1M 24.1M
MORE 23.7M 25.9M 27.7M 25.1M 25.9M
ROW 23.7M 26.0M 27.8M 25.2M 26.0M

We report the network sizes of the systems after learning the last task. We use an ‘entry’ to denote a parameter or a value
required to learn and to do inference for a task.

All the systems except SLDA and L2P use the feature extractor DeiT-S/16 (Touvron et al., 2021) and adapter modules. The
transformer consumes 21.6 millions (M) entries and the adapters take 1.2M and 2.4M entries for CIFAR10 and the other

19



Learnability and Algorithm for Continual Learning

datasets. SLDA fine-tunes only the classifier on top of the fixed pre-trained feature extractor as it does not have a protection
mechanism. L2P uses a prompt pool with 23k entries. Since each method requires method-specific elements (e.g., task
embedding for HAT), the number of entries required for each method is different. The number of entries for each model is
reported in Tab. 5.

Our system saves the covariance matrices for computing the distance-based coefficient in Sec. 4.1. The covariances are
saved for each task. Since each covariance is in size 384x384, the total entries for this step are 737.3k, 1.5M, 2.9M, 737.3k,
and 1.5M for C10-5T, C100-10T, C100-20T, T-5T, and T-10T, respectively. The numbers are relatively small considering
that some of the replay-based methods (e.g., iCaRL, HAL) require a teacher model the same size as the training model for
knowledge distillation. More importantly, replay buffer requires the largest memory (e.g., for Tiny-ImageNet, saving 2,000
images of size 64x64x3 requires 24.6M entries). It is highly important that the system is robust to replay buffer size. ROW
is shown to remain strong with small replay buffer sizes (see Tab. 3).

Our system ROW saves an additional classifier. WP head is of the same shape as the classifier of the standard baselines (e.g.,
iCaRL or DER++). OOD (or TP) head requires the same memory as WP with additional parameters for OOD class per task.
The required memory is small. For instance, for C10-5T, using OOD head only introduces 5,775 additional entries.

E. Societal Impact and Limitation
We do not see any negative societal impact as we use public domain datasets for the experiments and our algorithm is just
like any normal supervised learning in nature. In practical use, if the training data of the application is biased, it could affect
the model just like in any other supervised learning. We believe that this can be alleviated by checking any potential bias in
the training data.

The current theoretical study is only applicable to offline CIL. In future work, we will extend our study to online CIL, where
the task boundary may be blurry.

F. Effect on Underrepresented Minorities
The existence of underrepresented samples in the current task does not affect our theory, but it will affect an actual
implementation and give weaker results. The OOD detection method in our paper simply trains the system by considering
the samples of the current task as in-distribution and the samples in the replay buffer as OOD of the current task. In case
there is a set of underrepresented classes in the current task’s dataset, one can use existing techniques proposed for the
sample imbalance problem to alleviate the issue. However, this problem is not just relevant to our proposed method, but
relevant to all existing OOD and CL methods, or even supervised learning methods.

20


