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ABSTRACT

We study the problem of training a flow-based generative model, parametrized by
a two-layer autoencoder, to sample from a high-dimensional Gaussian mixture.
We provide a sharp end-to-end analysis of the problem. First, we provide a tight
closed-form characterization of the learnt velocity field, when parametrized by a
shallow denoising auto-encoder trained on a finite number n of samples from the
target distribution. Building on this analysis, we provide a sharp description of the
corresponding generative flow, which pushes the base Gaussian density forward
to an approximation of the target density. In particular, we provide closed-form
formulae for the distance between the means of the generated mixture and the mean
of the target mixture, which we show decays as Θn(1/n). Finally, this rate is shown
to be in fact Bayes-optimal.

Flow and diffusion-based generative models have introduced a shift in paradigm for density estimation
and sampling problems, leading to state-of-the art algorithms e.g. in image generation (Rombach
et al., 2022; Ramesh et al., 2022; Saharia et al., 2022). Instrumental in these advances was the
realization that the sampling problem could be recast as a transport process from a simple –typically
Gaussian– base distribution to the target density. Furthermore, the velocity field governing the flow
can be characterized as the minimizer of a quadratic loss function, which can be estimated from
data by (a) approximating the loss by its empirical estimate using available training data and (b)
parametrizing the velocity field using a denoiser neural network. These ideas have been fruitfully
implemented as part of a number of frameworks, including score-based diffusion models (Song &
Ermon, 2019; Song et al., 2020; Karras et al., 2022; Ho et al., 2020), and stochastic interpolation
(Albergo & Vanden-Eijnden, 2022; Albergo et al., 2023; Lipman et al., 2022; Liu et al., 2022). A tight
analytical understanding of the learning of generative models from limited data, and the resulting
generative process, is however still largely missing. This constitutes the research question addressed
in the present manuscript.

A line of recent analytical works (Benton et al., 2023; Chen et al., 2022; 2023a;c;d; Wibisono
& Yang, 2022; Lee et al., 2022; 2023; Li et al., 2023; De Bortoli et al., 2021; De Bortoli, 2022;
Pidstrigach, 2022; Block et al., 2020) have mainly focused on the study of the transport problem,
and provide rigorous convergence guarantees, taking as a starting point the assumption of an
L2−accurate estimate of the velocity or score. They hence bypass the investigation of the learning
problem –and in particular the question of ascertaining the sample complexity needed to obtain such
an accurate estimate. More importantly, the study of the effect of learning from a limited sample
complexity (and thus e.g. of possible network overfitting and memorization) on the generated density,
is furthermore left unaddressed. On the other hand, very recent works (Cui & Zdeborová, 2023;
Shah et al., 2023) have characterized the learning of Denoising Auto-Encoders (DAEs) (Vincent
et al., 2010; Vincent, 2011) in high dimensions on Gaussian mixture densities. Neither work however
studies the consequences on the generative process. Bridging that gap, recent works have offered
a joint analysis of the learning and generative processes. Oko et al. (2023); Chen et al. (2023b); Yuan
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et al. (2023) derive rigorous bounds at finite sample complexity, under the assumption of data with
a low-dimensional structure. Closer to our manuscript, a concurrent work (Mei & Wu, 2023) bounds
the Kullback-Leibler distance between the generated and target densities, when parametrizing the
flow using a ResNet, for high-dimensional graphical models. On the other hand, these bounds do
not go to zero as the sample complexity increases, and are a priori not tight.

The present manuscript aims at complementing and furthering this last body of works, by providing
a tight end-to-end analysis of a flow-based generative model – starting from the study of the high-
dimensional learning problem with a finite number of samples, and subsequently elucidating the
implications thereof on the generative process.

Main contributions– We study the problem of estimating and sampling a Gaussian mixture using
a flow-based generative model, in the framework of stochastic interpolation (Albergo & Vanden-
Eijnden, 2022; Albergo et al., 2023; Lipman et al., 2022; Liu et al., 2022). We consider the case
where a non-linear two-layer DAE with one hidden unit is used to parametrize the velocity field of
the associated flow, and is trained with a finite training set. In the high-dimensional limit,

• We provide a sharp asymptotic closed-form characterization of the learnt velocity field, as a
function of the target Gaussian mixture parameters, the stochastic interpolation schedule, and the
number of training samples n.
• We characterize the associated flow by providing a tight characterization of a small number of
summary statistics, tracking the dynamics of a sample from the Gaussian base distribution as it is
transported by the learnt velocity field.
• We show that even with a finite number of training samples, the learnt generative model allows
to sample from a mixture whose mean asymptotically approaches the mean of the target mixture as
Θn(1/n) in squared distance, with this rate being tight.
• Finally, we show that this rate is in fact Bayes-optimal.

The code used in the present manuscript is provided in this repository.

RELATED WORKS

Diffusion and flow-based generative models Score-based diffusion models (Song & Ermon, 2019;
Song et al., 2020; Karras et al., 2022; Ho et al., 2020) build on the idea that any density can be mapped
to a Gaussian density by degrading samples through an Ornstein-Uhlenbeck process. Sampling from
the original density can then be carried out by time-reversing the corresponding stochastic transport,
provided the score is known – or estimated. These ideas were subsequently refined in (Albergo &
Vanden-Eijnden, 2022; Albergo et al., 2023; Lipman et al., 2022; Liu et al., 2022), which provide a
flexible framework to bridge between two arbitrary densities in finite time.

Convergence bounds In the wake of the practical successes of flow and diffusion-based generative
models, significant theoretical effort has been devoted to studying the convergence of such methods,
by bounding appropriate distances between the generated and the target densities. A common
assumption of (Benton et al., 2023; Chen et al., 2022; 2023a;c;d; Wibisono & Yang, 2022; Lee et al.,
2022; 2023; Li et al., 2023; De Bortoli et al., 2021; De Bortoli, 2022; Pidstrigach, 2022; Block et al.,
2020) is the availability of a good estimate for the score, i.e. an estimate whose average (population)
squared distance with the true score is bounded by a small constant ϵ. Under this assumption, Chen
et al. (2022); Lee et al. (2022) obtain rigorous control on the Wasserstein and total variation distances
with very mild assumptions on the target density. Ghio et al. (2023) explore the connections between
algorithmic hardness of the score/flow approximation and the hardness of sampling in a number of
graphical models.

Asymptotics for DAE learning The backbone of flow and diffusion-based generative models
is the parametrization of the score or velocity by a denoiser-type network, whose most standard
realization is arguably the DAE (Vincent et al., 2010; Vincent, 2011). Very recent works have
provided a detailed analysis of its learning on denoising tasks, for data sampled from Gaussian
mixtures. Cui & Zdeborová (2023) sharply characterize how a DAE can learn the mixture parameters
with n = Θd(d) training samples when the cluster separation is Θd(1). Closer to our work, for
arbitrary cluster separation, Shah et al. (2023) rigorously show that a DAE trained with gradient
descent on the denoising diffusion probabilistic model loss (Ho et al., 2020) can recover the cluster
means with a polynomial number of samples. While these works complement the aforediscussed
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convergence studies in that they analyze the effect of a finite number of samples, neither explores the
flow associated to the learnt score.
Network-parametrized models Tying together these two body of works, a very recent line of
research has addressed the problem of bounding, at finite sample complexity, appropriate distances
between the generated and target densities, assuming a network-based parametrization. Oko et al.
(2023) provide such bounds when parametrizing the score using a class of ReLU networks. These
bounds however suffer from the curse of dimensionality. Oko et al. (2023); Yuan et al. (2023); Chen
et al. (2023b) surmount this hurdle by assuming a target density with low-dimensional structure. On
a heuristic level, Biroli & Mézard (2023) estimate the order of magnitude of the sample complexity
needed to sample from a high-dimensional Curie-Weiss model. Finally, a work concurrent to ours
(Mei & Wu, 2023) derives rigorous bounds for a number of high-dimensional graphical models. On
the other hand, these bounds are a priori not tight, and do not go to zero as the sample complexity
becomes large. The present manuscript aims at furthering this line of work, and provides a sharp
analysis of a high-dimensional flow-based generative model.

1 SETTING

We start by giving a concise overview of the problem of sampling from a target density ρ1 over Rd in
the framework of stochastic interpolation (Albergo & Vanden-Eijnden, 2022; Albergo et al., 2023).

Recasting sampling as an optimization problem Samples from ρ1 can be generated by drawing
a sample from an easy-to-sample base density ρ0 –henceforth taken to be a standard Gaussian density
ρ0 = N (0, Id)–, and evolving it according to the flow described by the ordinary differential equation
(ODE)

d

dt
Xt = b(Xt, t), (1)

for t ∈ [0, 1]. Specifically, as shown in Albergo et al. (2023), if Xt=0 ∼ ρ0, then the final sample
Xt=1 has probability density ρ1, if the velocity field b(x, t) governing the flow (1) is given by

b(x, t) = E[α̇(t)x0 + β̇(t)x1|xt = x], (2)

where we denoted xt ≡ α(t)x0 + β(t)x1 and the conditional expectation bears over x1 ∼ ρ1,
x0 ∼ ρ0, with x0 ⊥ x1. The result holds for any fixed choice of schedule functions α, β ∈ C2([0, 1])
satisfying α(0) = β(1) = 1, α(1) = β(0) = 0, and α(t)2 + β(t)2 > 0 for all t ∈ [0, 1]. In addition
to the velocity field b(x, t), it is convenient to consider the field f(x, t), related to b(x, t) by the
simple relation

b(x, t) =

(
β̇(t)− α̇(t)

α(t)
β(t)

)
f(x, t) +

α̇(t)

α(t)
x. (3)

Note that f(x, t) can be alternatively expressed as E[x1|xt = x], and thus admits a natural interpre-
tation as a denoising function, tasked with recovering the target value x1 from the interpolated (noisy)
sample xt. The denoiser f(x, t) can furthermore characterized as the minimizer of the objective

R[f ] =

1∫
0

E ∥f(xt, t)− x1∥2 dt. (4)

The loss (4) is a simple sequence of quadractic denoising objectives.

Learning the velocity from data There are several technical hurdles in carrying out the minimiza-
tion (4). First, since the analytical form of ρ1 is generically unknown, the population risk has to be
approximated by its empirical version, provided a dataset D = {xµ

1 ,x
µ
0}nµ=1 of n training samples

xµ
1 (xµ

0 ) independently drawn from ρ1 (ρ0) is available. Second, the minimization in (4) bears over a
time-dependent vector field f . To make the optimization tractable, the latter can be parametrized
at each time step t by a separate neural network fθt(·) with trainable parameters θt. Under those
approximations, the population risk (4) thus becomes

R̂({θt}t∈[0,1]) =

1∫
0

n∑
µ=1

∥fθt(x
µ
t )− xµ

1∥
2
dt. (5)
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Remark that in practice, the time t can enter as an input of the neural network, and only one network
then needs to be trained. In the present manuscript however, for technical reasons, we instead consider
the case where a separate network is trained for each time step t. Besides, note that since the base
density ρ0 is a priori easy to sample from, one could in theory augment the dataset D with several
samples from ρ0 for each available xµ

1 . For conciseness, we do not examine such an augmentation
technique in the present manuscript, and leave a precise investigation thereof to future work. Denoting
by {θ̂t}t∈[0,1] the minimizer of (5), the learnt velocity field b̂ is related to the trained denoiser fθ̂t

by
(4) as

b̂(x, t) =

(
β̇(t)− α̇(t)

α(t)
β(t)

)
fθ̂t

(x) +
α̇(t)

α(t)
x. (6)

The sampling can finally be carried out by using b̂ as a proxy for the unknown b in (1):
d

dt
Xt = b̂(Xt, t) (7)

Note that the solution X1 at time t = 1 of the ODE (7) has a law ρ̂1 ̸= ρ1 due to the two
approximations in going from the population function-space objective (4) to the empirical parametric
proxy (5). The present manuscript presents a sharp analysis of the learning problem (5) and the
resulting flow (7) for a solvable model, which we detail below.

Data model We consider the case of a target density ρ1 given by a binary isotropic and
homoscedastic Gaussian mixture

ρ1 =
1

2
N (µ, σ2Id) +

1

2
N (−µ, σ2Id). (8)

Each cluster is thus centered around its mean ±µ and has variance σ2. For definiteness, we consider
here a balanced mixture, where the two clusters have equal relative probabilities, and defer the
discussion of the imbalanced case to Appendix D. Note that a sample xµ

1 can then be decomposed as
xµ
1 = sµµ+ zµ, with sµ ∼ U({−1,+1}) and zµ ∼ N (0, σ2Id). Finally, note that the closed-form

expression for the exact velocity field b (1) associated to the density ρ1 is actually known (see e.g.
Efron (2011); Albergo et al. (2023)). This manuscript explores the question whether a neural network
can learn a good approximate b̂ thereof without any knowledge of the density ρ1, and only from
a finite number of samples drawn therefrom.

Network architecture We consider the case where the denoising function f (4) is parametrized
with a two-layer non-linear DAE with one hidden neuron, and –taking inspiration from modern
practical architectures such as U-nets (Ronneberger et al., 2015)– a trainable skip connection:

fwt,ct(x) = ct × x+wt × φ(w⊤
t x), (9)

where φ is assumed to tend to 1 (resp. −1) as its argument tends to +∞ (resp −∞). Sign, tanh
and erf are simple examples of such an activation function. The trainable parameters are therefore
ct ∈ R,wt ∈ Rd. Note that (9) is a special case of the architecture studied in Cui & Zdeborová
(2023). It differs from the very similar network considered in Shah et al. (2023) in that it covers a
slightly broader range of activation functions (Shah et al. (2023) address the case φ = tanh), and in
that the skip connection istrainable –rather than fixed–. Since we consider the case where a separate
network is trained at every time step, the empirical risk (5) decouples over the time index t. The
parameters wt, ct of the DAE (9) should therefore minimize

R̂t(wt, ct) =

n∑
µ=1

∥fct,wt
(xµ

t )− xµ
1∥2+

λ

2
∥wt∥2, (10)

where for generality we also allowed for the presence of a ℓ2 regularization of strength λ. We remind
that xµ

t = α(t)xµ
0+β(t)xµ

1 , with {xµ
1}nµ=1 (resp. {xµ

0}nµ=1) n training samples independently drawn
from the target density ρ1 (8) (resp. the base density ρ0 = N (0, Id)), collected in the training set D.

Asymptotic limit We consider in this manuscript the asymptotic limit d → ∞, with n, ∥µ∥2/d, σ =
Θd(1). For definiteness, in the following, we set ∥µ∥2/d = 1. Note that Cui & Zdeborová (2023)
consider the different limit ∥µ∥= Θd(1). Shah et al. (2023) on the other hand address a larger range
of asymptotic limits, including the present one, but does not provide tight characterizations, nor an
analysis of the generative process.
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2 LEARNING

In this section, we first provide sharp closed-form characterizations of the minimizers ĉt, ŵt of the
objective R̂t (10). The next section discusses how these formulae can be leveraged to access a tight
characterization of the associated flow.
Result 2.1. (Sharp characterization of minimizers of (10)) For any given activation φ satisfying
φ(x)

x→±∞−−−−−→ ±1 and any t ∈ [0, 1], in the limit d → ∞, n, ∥µ∥2/d, σ = Θd(1), the skip connection
strength ĉt minimizing (10) is given by

ĉt =
β(t)(λ(1 + σ2) + (n− 1)σ2)

α(t)2(λ+ n− 1) + β(t)2(λ(1 + σ2) + (n− 1)σ2)
. (11)

Furthermore, the learnt weight vector ŵt is asymptotically contained in span(µemp., ξ) (in the
sense that its projection on the orthogonal space span(µemp., ξ) has asymptotically vanishing norm),
where

ξ ≡
n∑

µ=1

sµxµ
0 , µemp. =

1

n

n∑
µ=1

sµxµ
1 . (12)

In other words, µemp. is the empirical mean of the training samples. We remind that sµ = ±1 was
defined below (8) and indicates the cluster the µ−th sample xµ

1 belongs to. The components of ŵt

along each of these three vectors is described by the summary statistics

mt =
µ⊤

emp.ŵt

d(1 + σ2/n)
, qξt =

ŵ⊤
t ξ

nd
, (13)

which concentrate as d → ∞ to the quantities characterized by the closed-form formulae{
mt =

n
λ+n

α(t)2(λ+n−1)
α(t)2(λ+n−1)+β(t)2(λ(1+σ2)+(n−1)σ2)

qξt = −α(t)
λ+n

β(t)(λ(1+σ2)+(n−1)σ2)
α(t)2(λ+n−1)+β(t)2(λ(1+σ2)+(n−1)σ2)

. (14)

0.0 0.2 0.4 0.6 0.8 1.0
t

0.0

0.2

0.4

0.6

0.8

1.0

1.2

||wt||2

ct

wt

mt

qt

Figure 1: n = 4, σ = 0.9, λ = 0.1, α(t) = 1 −
t, β(t) = t, φ = tanh . Solid lines: theoretical predic-
tions of Result 2.1: squared norm of the DAE weight vec-
tor ∥ŵt∥2 (red), skip connection strength ĉt (blue) co-
sine similarity between the weight vector ŵt and the tar-
get cluster mean µ, ŵt∠µ ≡ ŵ⊤

t µ/∥µ∥∥ŵt∥ (green),
components mt, q

ξ
t of ŵt along the vectors µemp., ξ

(purple, pink, orange). Dots: numerical simulations in
dimension d = 5× 104, corresponding to training the
DAE (9) on the risk (10) using the Pytorch imple-
mentation of full-batch Adam, with learning rate 0.0001
over 4 × 104 epochs and weight decay λ = 0.1. The
experimental points correspond to a single instance of
the model.

The derivation of Result 2.1 is detailed in Ap-
pendix A, and involves a heuristic partition func-
tion computation, borrowing ideas from statis-
tical physics. The theoretical predictions for the
skip connection strength ĉt and the component
mt, q

ξ
t of the weight vector ŵt are plotted as

solid lines in Fig. 1, and display good agreement
with numerical simulations, corresponding to
training the DAE (9) on the risk (10) using the
Pytorch (Paszke et al., 2019) implementation
of the Adam optimizer (Kingma & Ba, 2014).

A notable consequence of (13) is that the weight
vector ŵt is contained at all times t in the two-
dimensional subspace spanned by the empirical
cluster mean µemp. and the vectors ξ (12) – in
other words, the learnt weights align to some ex-
tent with the empirical mean, but still possess a
non-zero component along ξ, which is orthogo-
nal thereto. ξ subsumes the aggregated effect of
the base vectors {xµ

0}nµ=1 used in the train set.
Rather remarkably, the training samples thus
only enter in the characterization of ŵt through
the form of simple sums (12). Since the vector
ξ is associated to the training samples, the fact
that the learnt vector ŵt has non-zero compo-
nents along ξ hence signals a form of overfitting
and memorization. Interestingly, Fig. 1 shows that the extent of this overfitting is non-monotonic
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in time, as |qξt | first increases then decreases. Finally, note that this effect is as expected mitigated
as the number of training samples n increases. From (14), for large n, mt = Θn(1) while the
components qξt is suppressed as Θn(1/n). These scalings are further elaborated upon in Remark B.3
in Appendix B. Finally, Result 2.1 and equation (6) can be straightforwardly combined to yield a
sharp characterization of the learnt estimate b̂ of the velocity field b (1). This characterization can
be in turn leveraged to build a tight description of the generative flow (7). This is the object of the
following section.

3 GENERATIVE PROCESS

While Corollary 2.1, together with the definition (6), provides a concise characterization of the
velocity field b̂, the sampling problem (7) remains formulated as a high-dimensional, and therefore
hard to analyze, transport process. The following result shows that the dynamics of a sample Xt

following the differential equation (7) can nevertheless be succinctly tracked using a finite number of
scalar summary statistics.
Result 3.1. (Summary statistics) Let Xt be a solution of the ordinary differential equation (7) with
initial condition X0. For a given t, the projection of Xt on span(µemp., ξ is characterized by the
summary statistics

Mt ≡
X⊤

t µemp.

d(1 + σ2/n)
, Qξ

t ≡ X⊤
t ξ

nd
. (15)

With probability asymptotically 1/2 the summary statistics Mt, Q
ξ
t (15) concentrate for all t to the

solution of the ordinary differential equations
d
dtMt =

(
β̇(t)ĉt +

α̇(t)
α(t) (1− ĉtβ(t))

)
Mt +

(
β̇(t)− α̇(t)

α(t)β(t)
)
mt

d
dtQ

ξ
t =

(
β̇(t)ĉt +

α̇(t)
α(t) (1− ĉtβ(t))

)
Qξ

t +
(
β̇(t)− α̇(t)

α(t)β(t)
)
qξt

, (16)

with initial condition M0 = Qξ
0 = 0, and with probability asymptotically 1/2 they concentrate to

minus the solution of (16). Furthermore, the orthogonal component X⊥
t ∈ span(µemp., ξ)

⊥ obeys
the simple linear differential equation

d

dt
X⊥

t =

(
β̇(t)ĉt +

α̇(t)

α(t)
(1− ĉtβ(t))

)
X⊥

t . (17)

Finally, the statistic Qt ≡ ∥Xt∥2/d is given with high probability by

Qt = M2
t (1 + σ

2/n) + n(Qξ
t )

2 + e
2

t∫
0
(β̇(t)ĉt+ α̇(t)

α(t)
(1−ĉtβ(t)))dt

. (18)

A heuristic derivation of Result 3.1 is provided in Appendix B. Taking a closer look at (16), it
might seem at first from equations (16) that there is a singularity for t = 1 since α(1) = 0 in the
denominator. Remark however that both 1 − β(t)ĉt (11) and mt (14) are actually proportional
to α(t)2, and therefore (16) is in fact also well defined for t = 1. In practice, the numerical
implementation of a generative flow like (7) often involves a discretization thereof, given a
discretization scheme {tk}Nk=0 of [0, 1], where t0 = 0 and tN = 1:

Xtk+1
= Xtk + b̂(Xtk , tk)(tk+1 − tk). (19)

The evolution of the summary statistics introduced in Result 3.1 can be rephrased in more actionable
form to track the discretized flow (19).
Remark 3.2. (Summary statistics for the discrete flow) Let {Xtk}Nk=0 be a solution of the discretized
learnt flow (7), for an arbitrary discretization scheme {tk}Nk=0 of [0, 1], where t0 = 0 and tN = 1,
with initial condition Xt0 ∼ ρ0. The summary statistics introduced in Result 3.1 are then equal to
the solutions of the recursionsMtk+1

= Mtk + δtk

(
β̇(tk)ĉtk + α̇(tk)

α(tk)
(1− ĉtkβ(tk))

)
Mtk + δtk

(
β̇(tk)− α̇(tk)

α(tk)
β(tk)

)
mtk

Qξ
tk+1

= Qξ
tk

+ δtk

(
β̇(tk)ĉtk + α̇(tk)

α(tk)
(1− ĉtkβ(tk))

)
Qξ

tk
+ δtk

(
β̇(tk)− α̇(tk)

α(tk)
β(tk)

)
qξtk

,

(20)
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Figure 2: In all three plots, λ = 0.1, α(t) = 1 − t, β(t) = t, φ = sign. (left) σ = 1.5, n = 8. Temporal
evolution of the summary statistics Mt, Q

ξ
t , Qt,Xt∠µ (15). Solid lines correspond to the theoretical prediction

of (15) in Result 3.1, while dashed lines correspond to numerical simulations of the generative model, by
discretizing the differential equation (7) with step size δt = 0.01, and training a separate DAE for each time
step using Adam with learning rate 0.01 for 2000 epochs. All experiments were conducted in dimension
d = 5000, and a single run is represented. (middle) σ = 2, n = 16. Projection of the distribution of Xt (7)
in span(µemp., ξ), transported by the velocity field b̂ (6) learnt from data. The point clouds correspond to
numerical simulations. The dashed line corresponds to the theoretical prediction of the means of the cluster, as
given by equation (16) of Result 3.1. The target Gaussian mixture ρ1 is represented in red. The base zero-mean
Gaussian density ρ0 (dark blue) is split by the flow (7) into two clusters, which approach the target clusters
(red) as time accrues . (right) σ = 2. PCA visualization of the generated density ρ̂1, by training the generative
model on n samples, for n ∈ {4, 8, 16, 32, 64}. Point clouds represent numerical simulations of the generative
model. Crosses represent the theoretical predictions of Result 3.1 for the means of the clusters of ρ̂1, as given by
equation (16) of Result 3.1 for t = 1. As the number of training samples n increases, the generated clusters of
ρ̂1 approach the target clusters of ρ1, represented in red.

with probability 1/2, and to the opposite theoreof with probability 1/2. In equation (20), the initial
conditions are understood as Mt0 = Qξ

t0 = 0, and we have denoted δtk ≡ tk+1 − tk for clarity.
Furthermore, the orthogonal component X⊥

tk
∈ span(µemp., ξ)

⊥ obeys the simple linear recursion

X⊥
tk+1

=

[
1 + δtk

(
β̇(tk)ĉtk +

α̇(tk)

α(tk)
(1− ĉtkβ(tk))

)]
X⊥

tk
. (21)

Finally, the statistic Qtk ≡ ∥Xtk
∥2/d is given with high probability by

Qtk = M2
tk
(1 + σ

2/n) + n(Qξ
tk
)2 +

k∏
ℓ=0

[
1+

(
β̇(tℓ)ĉtℓ+

α̇(tℓ)

α(tℓ)
(1−ĉtℓβ(tℓ))

)
δtℓ

]2
. (22)

Equations (20),(21) and (22) of Remark 3.2 are consistent discretizations of the continuous flows
(16),(17) and (18) of Result 3.1 respectively, and converge thereto in the limit of small discretiza-
tion steps maxk δtk → 0. A derivation of Remark 3.2 is detailed in Appendix B. An important
consequence of Result 3.1 is that the transport of a sample X0 ∼ ρ0 by (7) factorizes into the
low-dimensional deterministic evolution of its projection on the low-rank subspace span(µemp., ξ),
as tracked by the two summary statistics Mt, Q

ξ
t , and the simple linear dynamics of its projection

on the orthogonal space span(µemp., ξ)
⊥. Result 3.1 thus reduces the high-dimensional flow (7) into

a set of two scalar ordinary differential equations (16) and a simple homogeneous linear differential
equation (17). The theoretical predictions of Result (3.1) and Remark 3.2 for the summary statistics
Mt, Q

ξ
t , Qt are plotted in Fig. 2, and display convincing agreement with numerical simulations, corre-

sponding to discretizing the flow (7) in N = 100 time steps, and training a separate network for each
step as described in Section 1. A PCA visualization of the flow is further provided in Fig. 2 (middle).

Leveraging the simple characterization of Result 3.1, one is now in a position to characterize the
generated distribution ρ̂1, which is the density effectively sampled by the generative model. In
particular, Result 3.1 establishes that the distribution ρ̂1 is Gaussian over span(µemp., ξ)

⊥ – since
X⊥

0 is Gaussian and the flow is linear–, while the density in span(µemp., ξ) concentrates along the
vector µ̂ described by the components (16). The density ρ̂1 is thus described by a mixture of two
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Figure 3: α(t) = 1 − t, β(t) = t, φ = sign. Cosine asimilarity (left) and mean squared distance (right)
between the mean µ̂ of the generated mixture ρ̂1 and the mean µ of the target density ρ1, as a function of the
number of training samples n, for various variances σ of ρ1. Solid lines represent the theoretical characterization
of Corollary 3.3. Crosses represent numerical simulations of the generative model, by discretizing the differential
equation (7) with step size δt = 0.01, and training a separate DAE for each time step using the Pytorch
implementation of the full-batch Adam optimizer, with learning rate 0.04 and weight decay λ = 0.1 for 6000
epochs. All experiments were conducted in dimension d = 5× 104, and a single run is represented. Dashed
lines indicate the performance of the Bayes-optimal estimator µ̂⋆, as theoretically characterized in Remark 4.1.
Dots indicate the performance of the PCA estimator, which is found as in Cui & Zdeborová (2023) to yield
performances nearly identical to the Bayes-optimal estimator.

clusters, Gaussian along d− 2 directions, centered around ±µ̂. The following corollary provides a
sharp characterization of the squared distance between the mean µ̂ of the generated density ρ̂1 and
the true mean µ of the target density ρ1.
Corollary 3.3. (Mean squared error of the mean estimate) Let µ̂ be the cluster mean of the density
ρ̂1 generated by the (continuous) learnt flow (7). In the asymptotic limit described by Result 2.1, the
squared distance between µ̂ and the true mean µ is given by

1

d
∥µ̂− µ∥2= M2

1 + n(Qξ
1)

2 + nσ2(Qη
1)

2 + 1− 2M1, (23)

with M1, Q
ξ
1, Q

η
1 being the solutions of the ordinary differential equations (16) evaluated at time

t = 1. Furthermore, the cosine similarity between µ̂ and the true mean µ is given by

µ̂∠µ =
M1√
Q1

. (24)

Finally, both the Mean Squared Error (MSE) 1/d∥µ̂− µ∥2 (23) and the cosine asimilarity 1− µ̂∠µ
(24) decay as Θn(1/n) for large number of samples n.

The heuristic derivation of Corollary 3.3 is presented in Appendix A.1. The theoretical predictions
of the learning metrics (23) and (24) are plotted in Fig. 3 as a function of the number of samples,
along with the corresponding numerical simulations, and display a clear Θn(1/n) decay, signalling
the convergence of the generated density ρ̂1 to the true target density ρ1 as the sample complexity
accrues. A PCA visualization of this convergence is further presented in Fig.2 (right). Intuitively,
this is because the DAE learns the empirical means up to a Θn(1/n) component along ξ, and that the
empirical means itself converges to the true mean with rate Θn(1/n). While we focus on the MSE for
conciseness, the rate of convergence in terms of a variant of the squared gaussian mixture Wasserstein
distance (Delon & Desolneux, 2020; Chen et al., 2018) can similarly be derived to be Θn(1/n), see
Appendix F.

4 BAYES-OPTIMAL BASELINE

Corollary 3.3 completes the study of the performance of the DAE-parametrized generative model. It
is natural to wonder whether one can improve on the Θn(1/n) rate that it achieves. A useful baseline
to compare with is the Bayes-optimal estimator µ̂⋆, yielded by Bayesian inference when in addition
to the dataset D = {xµ

1}nµ=1, the form of the distribution (8) and the variance σ are known, but not
the mean µ –which for definiteness and without loss of generality will be assumed in this section to
be have been drawn at random from N (0, Id). The following remark provides a tight characterization
of the MSE achieved by this estimator.

8
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Remark 4.1. (Bayes-optimal estimator of the cluster mean) The Bayes-optimal estimator µ̂⋆ of µ
assuming knowledge of the functional form of the target density (8), the cluster variance σ, and the
training set D, is defined as the minimizer of the average squared error

µ̂⋆ = arginf
ν

Eµ∼N (0,Id),D∼ρ⊗n
1

∥ν(D)− µ∥2. (25)

In the asymptotic limit of Result 2.1, the Bayes-optimal estimator µ̂⋆(D) is parallel to the empirical
mean µemp.. Its component m⋆ ≡ µ⊤

emp.µ̂
⋆(D)/d(1 + σ2/n) concentrate asymptotically to

m⋆ =
n

n+ σ2
, (26)

Finally, with high probability, the Bayes-optimal MSE reads

1

d
∥µ̂⋆(D)− µ∥2= σ2

n+ σ2
. (27)

In particular, (27) implies that the optimal MSE decays as Θn(1/n).

Remark 4.1, whose derivation is detailed in Appendix C, thus establishes that the Bayes-optimal MSE
decays as Θn(1/n) with the number of available training samples. Note that while the Bayes-optimal
estimator is colinear to the empirical mean, it is differs therefrom by a non-trivial multiplicative
factor. On the other hand, the Θn(1/n) rate is intuitively due to the Θn(1/n) convergence of the
empirical mean to the true mean. Contrasting to Corollary 3.3 for the MSE associated to the mean µ̂
of the density ρ̂1 learnt by the generative model, it follows that the latter achieves the Bayes-optimal
learning rate. The Bayes-optimal MSE (27) predicted by Remark 4.1 is plotted in dashed lines in
Fig. 3, alongside the MSE achieved by the generative model (see Corollary 3.3). The common 1/n
decay rate is also plotted in dashed black for comparison. Finally, we observe that the estimate of
µ inferred by PCA, plotted as dots in Fig. 3, leads to a cosine similarity which is very close to the
Bayes-optimal one, echoing the findings of Cui & Zdeborová (2023) in another asymptotic limit. We
however stress an important distinction between the generative model analyzed in previous sections
and the Bayes and PCA estimators dicussed in the present section. The generative model is tasked
with estimating the full distribution ρ1 only from data, while being completely agnostic thereof. In
contrast, PCA and Bayesian inference only offer an estimate of the cluster mean, and require an
exact oracle knowledge of its functional form (8) and the cluster variance σ. They do not, therefore,
constitute generative models and are only discussed in the present section as insightful baselines.

It is a rather striking finding that the DAE (9) succeeds in approximately sampling from ρ1(8) when
trained on but n = Θd(1) samples –instead of simply generating back memorized training samples–,
and further displays information-theoretically optimal learning rates. The answer to this puzzle
lies in the fact that the architecture (9) is very close to the functional form of the exact velocity
field b (1), as further detailed in Appendix B (see equation (67)), and is therefore implicitly biased
towards learning the latter – while also not being expressive enough to too detrimentally overfit. A
thorough exploration of this form of inductive bias for more complex architectures is an important
and fascinating entreprise, which falls out of the scope of the present manuscript and is left for future
work.

CONCLUSION

We conduct a tight end-to-end asymptotic analysis of estimating and sampling a binary Gaussian
mixture using a flow-based generative model, when the flow is parametrized by a shallow auto-
encoder. We provide sharp closed-form characterizations for the trained weights of the network, the
learnt velocity field, a number of summary statistics tracking the generative flow, and the distance
between the mean of the generated mixture and the mean of the target mixture. The latter is found to
display a Θn(1/n) decay rate, where n is the number of samples, which is further shown to be the
Bayes-optimal rate. In contrast to most studies of flow-based generative models in high dimensions,
the learning and sampling processes are jointly and sharply analyzed in the present manuscript, which
affords the possibility to explicitly investigate the effect of a limited sample complexity at the level of
the generated density.
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