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Abstract

Large-scale molecular representation methods have revolutionized applications
in material science, such as drug discovery, chemical modeling, and material
design. With the rise of transformers, models now learn representations directly
from molecular structures. In this study, we develop an encoder-decoder model
based on BART that is capable of leaning molecular representations and generate
new molecules. Trained on SELFIES, a robust molecular string representation,
our model outperforms existing baselines in downstream tasks, demonstrating its
potential in efficient and effective molecular data analysis and manipulation.

1 Introduction

Large-scale molecular representation methods are shown to be useful in various material science
applications, such as virtual screening, drug discovery, chemical modeling, material design, and
molecular dynamics simulations. With the progress in deep learning, numerous models have been
developed to derive representations directly from molecular structures. Recently, transformer-based
molecular representations have gained prominence in material informatics, offering significant
potential for advancements in drug discovery, materials science, and related fields. Recent works (1
253 145 15) have demonstrated the capability of transformer models in capturing complex relationships
and patterns within molecular data with the help of attention mechanisms. Most of these works
are based on SMILES (Simplified Molecular Input Line Entry System) (6). However, one of the
drawbacks of SMILES is that it does not guarantee syntactic and semantic validity of the molecule
(@), thus leading to a possibility of learning invalid representations. SELFIES (SELF-referencing
Embedded Strings) is another molecular string representation that was introduced by (7)) to overcome
the drawbacks of SMILES. Furthermore, in addition to achieving high accuracy predictions of
molecular properties, a key objective within computational material informatics is to devise novel and
functional molecules. But most existing transformer models for material informatics are encoder-only
models, which are not capable of generating new molecules.

In this paper, we introduce SELF-BART, a transformer-based model capable of capturing intricate
molecular relationships and interactions. Unlike most existing works that utilize encoder-only
models, we propose an encoder-decoder model based on BART (Bidirectional and Auto-Regressive
Transformers) (8). This model not only efficiently learns molecular representations but is also
capable of auto-regressively generating new molecules from these representations. This capability is
particularly impactful for novel molecule design and generation, facilitating efficient and effective
analysis and manipulation of molecular data.
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Figure 1: Model architecture

2 Model

The proposed SELF-BART model is an encoder-decoder architecture derived from the BART (Bidi-
rectional Auto-Regressive Transformer) model (8). The encoder processes the sequence of input token
bidirectionally and the decoder generates the sequence autoregressively. The SELF-BART model
is trained using SELFIES as it provides a more concise and interpretable representation, making it
suitable for machine learning applications where compactness and generalization are important (7).
During pre-training the model is trained with a denoising objective function. The model is trained
using the ZINC-22 (9) and PubChem (10) datasets. The dataset consists of molecules represented
in SMILES notation. We convert these SMILES strings to SELFIES using the SELFIES API (7). In
SELFIES each atom or bond is represented by symbols enclosed in [ ], which are then tokenized
using a word level tokenization scheme where each symbol or bond in [ ] is treated as a word. Further
15% of the tokens are randomly masked and the model is trained using a denoising objective where
the model learns to predict the next token in the original sequence, conditioned on both the corrupted
sequence and the already decoded part of the original sequence. The objective function is given as,

T
Edenoise = - Z IOg P(Y;S|Y<t7 Xcorrupl§ 9)

t=1

where, Y; is the ¢-th token in the original sequence Y, Y., represents the tokens preceding ¢ in
the target sequence, Xcomup: 1S the corrupted input sequence, ¢ are the model parameters, and
P(Y3|Y<t, Xeomupe; ) is the probability predicted by the model for token Y;, conditioned on the
corrupted input and the previously generated tokens. Figure 1 illustrates the pre-training model
architecture. We hypothesize that the encoder-decoder structure of the SELF-BART model, combined
with the denoising objective, provides better molecular representations. Moreover, training on
SELFIES instead of SMILES ensures that the encoder output represents only valid molecules,
enhancing the robustness of the molecular representations which are used for downstream tasks such
as property prediction.

Dataset Description #Samples Metric
BACE Binary labels on S-secretase 1 (BACE1) binding properties 1,513 ROC-AUC
ClinTox Binary labels on clinical toxicity data on FDA-approved drugs 1478 ROC-AUC
BBBP Binary labels on blood—brain barrier permeability 2,039 ROC-AUC
HIV Binary labels on the ability to inhibit HIV replication 41,127 ROC-AUC
SIDER Drug side effect classification for 27 types of adverse effects 1,427 ROC-AUC
Tox21 Qualitative toxicity measurements on 12 targets 7,831 ROC-AUC
Esol Water solubility prediction of small molecules 1,128 RMSE
Lipophilicity =~ Prediction of octanol-water partition coefficient (logD) 4,200 RMSE
Freesolv Hydration free energy of small molecules in water 642 RMSE

Table 1: Description of the benchmark datasets used in the evaluation of the proposed model.



Model BBBP ClinTox HIV BACE SIDER Tox21

RF Q) 714 713 781 867 68.4 76.9
SVM (3) 72.9 669 792 862 68.2 81.8
MGCN (12) 85.0 634 738 734 55.2 70.7
D-MPNN (13) 71.2 90.5 750 853 63.2 68.9
DimeNet (14) . 76.0 § - 61.5 78.0
Hu, et al. (I3) 70.8 789 802 859 65.2 78.7
N-Gram (16) 91.2 855 830 876 63.2 76.9
MoICLR (17) 73.6 932 806  89.0 68.0 79.8
GraphMVP (18) 724 775 770 812 63.9 74.4
GeomGCL (I8) - 91.9 - - 64.8 85.0
GEM (19) 72.4 90.1 80.6 856 67.2 78.1
ChemBerta (1) 643 733 622 799 - -

ChemBerta2 (20) 71.94 90.7 - 85.1 - -

Galatica 30B (21) 59.6 82.2 75.9 72.7 61.3 68.5
Galatica 120B 21) 66.1 82.6 74.5 61.7 63.2 68.9
Uni-Mol (22) 72.9 91.9 80.8 85.7 65.9 79.6
SELFormer (5)) 90.2 - 68.1 83.2 74.5 65.3
MoLFormer-XL (3) 93.7 94.8 82.2 88.2 69.0 84.7
SELF-BART 95.2 96.9 83.0 89.3 65.0 76.5

Table 2: Results of the evaluation on classification tasks of MoleculeNet benchmark datasets

3 Results and Discussions

To evaluate the effectiveness of our proposed model on both molecular property prediction tasks and
molecule generation tasks. For the molecule property predition tasks, we conducted evaluations using
a comprehensive set of 9 distinct benchmark datasets sourced from MoleculeNet (11). The details of
the benchmarks used are illustrated in Table[[l We evaluate 6 datasets for the classification task and 3
datasets for regression tasks. To ensure a robust and unbiased assessment, we maintained consistency
with the MoleculeNet benchmark by adopting identical train/validation/test splits for all tasks (11).
We compare the performance of the proposed SELF-BART model with various graph-based and
text-based models. The SELF-BART model used in the evaluations is a 354M parameter model
trained on 1B samples drawn from a combination of ZINC and PubChem datasets with a vocabulary
of 3160 tokens. Futhermore, for the molecule generation tasks we conduct a preliminary analysis of
the SELF-BART model and compare its results with existing molecular generative models.

3.1 Molecular Property Prediction Tasks

We evaluated the SELF-BART models on nine benchmark from MoleculeNet (11). These tasks
include four binary classification tasks using BACE, ClinTox, BBBP and HIV datasets, two multi-
label classification task using SIDER and Tox21 datasets, and three regression tasks using the esol,
freesolv and lipophilicity datasets. For the evaluation, we used molecular embeddings generated by
the SELF-BART models as input features. We use XGBoost (23) as the downstream task model and
Optuna (24)) for hyperparameter tuning. The results corresponding to the optimal hyperparameters are
reported. The performance is measured using the ROC-AUC and RMSE metrics. Table 2| presents the
performance of the SELF-BART models compared to other molecular graph-based, geomentry-based
models and molecular string-based models. ChemBERTa, Galatica, Uni-Mol and MolFormer are
trained on SMILES representations, while SELFormer and the proposed SELF-BART model are
trained on SELFIES representations. As shown in Table [2] the SELF-BART model outperforms
the other models in four out of six tasks. We also evaluate the performance of the models on 3
regression task, the results of which are presented in Table 3] The SELF-BART model outperforms
the other models in two out of three tasks. The improved performance of SELF-BART can be
attributed to encoder-decoder architecture of model being trained on SELFIES, which ensures that
the learned representations correspond to valid molecules. This approach substantially improves the
robustness and quality of the molecular representations. Although both SELFormer and the proposed
SELF-BART model are trained on SELFIES, SELF-BART demonstrates superior performance.
This enhancement is primarily due to SELF-BART’s encoder-decoder architecture combined with
a denoising objective, in contrast to SELFormer’s encoder-only architecture. This design choice
significantly improves the robustness and quality of the molecular representations.



Model ESOL FreeSolv Lipophilicity

D-MPNN(13) 1.050 2.082 0.683
Hu et al.(15) 1.220 2.830 0.740
MGCN(12) 1.270 3.350 1.110
GEM(19) 0.798 1.877 0.660
SchNet(25) 1.050 3.220 0.910
KPGT(26) 0.803 2.121 0.600
GraphM VP-C(18) 1.029 - 0.681
GCN(27) 1.430 2.870 0.850
GIN(28) 1.450 2.760 0.850
MolCLR(17) 1.110 2.200 0.650
ChemBERTa-2(20) - - 0.986
MolFormer(3) 0.755 2.022 0.840
SELFformer(5) 0.682 2.797 0.735
SELF-BART 0.454 1.397 0.771

Table 3: Results of the evaluation on regression tasks of MoleculeNet benchmark datasets

3.2 Molecule Generation Task

The SELF-BART model is an encoder-decoder architecture, making it not only capable of providing
robust molecular representations but also adept at generating molecules. In this section, we analyze
the SELF-BART model’s performance in non-conditioned molecular generation. Given the infinitely
large and unexplored chemical space, it is crucial for a molecular generative model to understand
molecular grammar and rules, ensuring the generation of novel and valid molecules. As a preliminary
analysis, we evaluate the SELF-BART model’s ability to generate molecules. For this purpose, we
use the decoder, initializing it with the begin of sentence <bos> token to generate 10,000 molecules.
This evaluation helps us understand the model’s proficiency in producing diverse and valid molecular
structures. The metrics we use in this analysis are validity, uniqueness, novelty and internal diversity.
The metric scores are presented in Table E} The metrics for CharRNN, VAE, AAE, LatentGAN,
JT-VAE and MolGPT are values reported from (2)) trained on MOSES dataset, while SELF-BART
was trained on 1B samples from ZINC-22 and PubChem. From the results, we can observe that the
SELF-BART model is equally performant in generating unique, valid, and novel molecules with the
high internal diversity, thus confirming its effectiveness in generating molecules of varying structures
and quality compared to similar baseline methods.

Models Validity unique@10K Novelty IntDiv; IntDiv,
CharRNN 0.975 0.999 0.842 0.856 0.85
VAE 0.977 0.998 0.695 0.856 0.85
AAE 0.937 0.997 0.793 0.856 0.85
LatentGAN 0.897 0.997 0.949 0.857 0.85
JT-VAE 1.0 0.999 0914 0.855 0.849
MolGPT 0.994 1.0 0.797 0.857 0.851
SELF-BART 0.998 0.999 1.0 0918 0.908

Table 4: Comparison of different models based on various metrics used in evaluating molecular
generative models.

4 Conclusion

This paper presents SELF-BART, an encoder-decoder transformer model designed to effectively
learn representations of the chemical space. By training on SELFIES strings, SELF-BART ensures
the validity of the molecules during pre-training, which enhances the robustness of its molecular
representations. The model’s effectiveness is demonstrated through performance evaluations on
benchmark classification and regression tasks from MoleculeNet. The SELF-BART model achieved
state-of-the-art results in most tasks. Although the primary focus is on molecular representation for
downstream tasks, we provided an initial exploration of the model’s ability to generate molecules
without conditioning. The preliminary analysis showed that the model was capable of generating valid
and novel molecules with good structural diversity. Future work will investigate the model’s generative
capabilities further, including conditioned molecular generation, and examine its performance with
scaling and conditioned generative modeling.
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