
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SSGNN: SIMPLE YET EFFECTIVE SPECTRAL GRAPH
NEURAL NETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Spectral GNNs leverage graph spectral properties to model graph representations
but have been less explored due to their computational challenges, especially com-
pared to the more flexible and scalable spatial GNNs, which have seen broader
adoption. However, spatial methods cannot fully exploit the rich information in
graph spectra. Current Spectral GNNs, relying on fixed-order polynomials, use
scalar-to-scalar filters applied uniformly across eigenvalues, failing to capture key
spectral shifts and signal propagation dynamics. Though set-to-set filters can cap-
ture spectral complexity, methods that employ them frequently rely on Transform-
ers, which add considerable computational burden. Our analysis indicates that ap-
plying Transformers to these filters provides minimal advantage in the spectral do-
main. We demonstrate that effective spectral filtering can be achieved without the
need for transformers, offering a more efficient and spectrum-aware alternative.
To this end, we propose a Simple Yet Effective Spectral Graph Neural Network
(SSGNN), which leverages the graph spectrum to adaptively filter through a sim-
plified global context filtering approach that captures key spectral features. More-
over, we introduce a novel, parameter-free Relative Gaussian Amplifier (ReGA)
module, which adaptively learns spectral filtering while maintaining robustness
against structural perturbations, ensuring stability. Extensive experiments on 20
real-world graph datasets, spanning both node-level and graph-level tasks along
with a synthetic graph dataset, show that SSGNN matches or surpasses the per-
formance of state-of-the-art (SOTA) spectral-based GNNs and graph transformers
while using significantly fewer parameters and GFLOPs. Specifically, SSGNN
achieves performance comparable to the current SOTA Graph Transformer model,
Polynormer, with an average 55x reduction in parameters and 100x reduction in
GFLOPs across all datasets. Our code will be made public upon acceptance.

1 INTRODUCTION

In recent years, Graph Neural Networks (GNNs) (Scarselli et al. (2008)), have gained significant
popularity for machine learning on graph structured data, delivering impressive results on various
graph related tasks. Although traditional GNNs utilize a message-passing framework (Gilmer et al.
(2017), Battaglia et al. (2018)) to facilitate information exchange between neighboring nodes, they
often face challenges such as over-smoothing and over-squashing (Oono & Suzuki (2019), Alon &
Yahav (2020), Di Giovanni et al. (2023)) which can restrict their ability to accurately model com-
plex functions. Spectral GNNs (Defferrard et al. (2016), Bruna et al. (2013)), on the other hand,
capitalize on graph convolutions and operate in the spectral domain to obtain graph filter responses
that enable them to capture non-local dependencies more effectively. Despite the success of spatial
GNNs, the exploration of spectral GNNs has been limited, largely because of the use of scalar filters
that fail to leverage the rich information within the graph spectrum Bo et al. (2023a). Recently graph
transformer (GT) models have show potential for enhancing GNN expressivity, their scalability is
limited due to high parameter complexity because of which linear GTs (Choromanski et al. (2022),
Zhang et al. (2022), Kong et al. (2023)) have been proposed. However, GTs underperform on numer-
ous widely used datasets (Platonov et al. (2023)), as highlighted in Polynormer (Deng et al. (2024)),
which raises concerns about the effective utilization of the expressivity enabled by the self-attention
module in these GTs.
Conventional spectral graph filters often apply scalar functions uniformly across eigenvalues, disre-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

garding the unique structural insights they provide. It is well known that eigenvalues and eigenvec-
tors capture critical structural properties: smaller eigenvalues represent smooth variations in a graph,
while the number of zero eigenvalues reflects the number of connected components. The eigenvec-
tor associated with the smaller non-zero eigenvalue balances smoothness and variation across the
graph, revealing its global structure. It is common that eigen-values of the graph Laplacian are not
distinct. While polynomial filters enhance flexibility by approximating spectral filters with fixed-
order polynomials and avoiding costly eigen-decomposition, they struggle with the high multiplicity
of eigenvalues commonly found in real-world graphs. This multiplicity leads to uniform scaling of
frequency components with the same eigenvalue, limiting the expressive capacity of these filters.

Unlike traditional scalar-to-scalar filters that apply the same filter to all eigenvalues, set-to-set filter-
ing leverages the spectrum information from a set of eigenvalues, enabling more expressive spectral
filtering by modeling complex interactions between frequency components. Specformer (Bo et al.
(2023a)) employs transformers (Vaswani et al. (2017)) for this purpose, directly capturing eigenvalue
relationships at the graph spectrum level without relying on polynomial approximations, thereby
constructing advanced spectral filters. However, its self-attention mechanism introduces a signifi-
cant computational bottleneck with quadratic time and space complexity, limiting scalability to large
graphs (Bo et al. (2023b)) and causing CUDA OOM issues even on moderately sized heterophilic
datasets. Heterophilic graphs, where nodes from different classes tend to connect, are highly sensi-
tive to hyperparameters (Luan et al. (2024)). Transformers also exhibit hyperparameter sensitivity
and training instability due to parameter perturbations (Chen et al. (2021)). Based on these chal-
lenges, we investigate: “Can we develop an effective spectral filtering approach that adaptively
learns filters based on graph data characteristics in a parameter and computation efficient manner,
while capturing global eigen-spectrum?”

We introduce SSGNN: Simple Yet Effective Spectral Graph Neural Network, an encoder-decoder
architecture that directly operates on the graph spectrum. Designed for computational efficiency,
SSGNN incorporates a novel, parameter-free Relative Gaussian Amplifier (ReGA) module, which
enables dynamic spectral filtering via global context, capturing inter-eigenvalue relationships with-
out the computational overhead of quadratic time complexity, making it scalable for large graphs.

This lightweight design enables SSGNN to effectively
model a diverse range of homophilic and heterophilic
datasets. Our results demonstrate that SSGNN not only
achieves comparable but often surpasses the performance
of state-of-the-art (SOTA) graph transformers (GT) and
spectral GNNs while significantly reducing parameter
counts. Figure 1 provides a comparative analysis of SS-
GNN with Specformer and Polynormer Deng et al. (2024),
the current SOTA spectral GNN and GT on WikiCS (ho-
mophilic graph) and Squirrel (heterophilic graph) datasets.
SSGNN achieves the highest accuracy on both datasets
while being fast and minimizing parameter usage.

0 10 20 30 40 50 60 70 80
Time taken to run 500 epochs (in seconds)

104

105

106

107

Nu
m

be
r o

f P
ar

am
et

er
s

34.73

38.6

43.79

80.23

84.46

85.07

Number of Params. vs Time vs Highest Test Accuracy

Polynormer (Squirrel)
Specformer (Squirrel)
SSGNN (Squirrel)
Polynormer (WikiCS)
Specformer (WikiCS)
SSGNN (WikiCS)

Figure 1: Comparison of SSGNN with
Specformer and Polynormer.

The major contributions of the paper can be summarised as follows:

• We propose a simple architecture featuring: i) a spectral encoder to capture eigenvalue
interdependencies and global structural information, while incorporating eigen-correction;
ii) a decoder that serves as a bank of filter bases, enabling adaptive learning of spectral fil-
ters tailored to the graph’s characteristics, enhanced by our parameter-free ReGA module,
which introduces global context filtering.

• We provide both theoretical and empirical analysis showing that SSGNN is robust against
structural changes.

• Experiments on a synthetic dataset demonstrate that SSGNN can learn complex filters, pro-
viding accurate approximations of spectral filters compared to other spectral GNNs and GT.
Specifically, SSGNN excels in modeling high-pass, band-pass, and comb filters, achieving
performance nearly 100 times better than Specformer in node regression task.

• Extensive experiments across 20 real-world graph datasets for node and graph classifica-
tion tasks demonstrate that SSGNN achieves comparable or even surpasses recent SOTA
models, with nearly 100x fewer parameters. Specifically, for node classification, on the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

homophilic WikiCS dataset, SSGNN outperforms Polynormer by 5%, utilizing approxi-
mately 2700x fewer parameters and 2600x fewer GFLOPs. In the same vein, on the het-
erophilic Tolokers dataset, SSGNN achieves nearly 2% higher AUC compared to Poly-
normer, with about 2600x fewer parameters and 500x fewer GFLOPs. In graph classifi-
cation tasks, we achieve a new best mean absolute error (MAE) of 0.0592 on the ZINC
dataset and 0.3012 average precision (AP) on MolPCBA. Additionally, on MolHIV, we
surpass an AUC of 80, a benchmark previously reached only by higher-order GNNs like
CIN (Bodnar et al. (2021)).

2 BACKGROUND AND RELATED WORKS

Preliminary. Consider an undirected graph G = (V, E), where V represents a finite set of N nodes.
Each node i ∈ V is associated with a feature vector Xi ∈ Rd, where X ∈ RN×df is the node feature
matrix and df denotes the dimensionality of node features. E ⊆ V×V represents the edge set and the
adjacency matrix of G is denoted as A ∈ {0, 1}N×N . Let D be the diagonal degree matrix, where
Dii corresponds to the degree of the node i. L = IN − D−1/2AD1/2 denotes the normalized
graph Laplacian, where IN is the identity matrix. Since L is a real symmetric matrix, its eigen
decomposition can be defined as L = UΛUT , where Λ = diag(λ0, λ1, ..., λN) is the diagonal
matrix of the eigenvalues and U = [u0, u1, ..., un] comprises of the corresponding eigenvectors.

Graph Signal Processing. The graph Fourier transform (GFT) for a signal x ∈ RN×1 is expressed
as x̂ = Ux ∈ RN×1. A spectral filter gθ operates on x̂ to scale the Fourier coefficients. Subse-
quently, an inverse GFT is applied to obtain the filtered signal in the vertex domain as x = Ux̂.

Existing GNNs can be roughly divided into three categories: Spatial GNNs, Spectral GNNs and GT.

Spatial GNNs. Spatial GNNs operate by leveraging local-message passing mechanisms, where in-
formation is exchanged between neighboring nodes based on graph topology. GraphSAGE Hamil-
ton et al. (2017) uses efficient sampling and aggregation, MPNN Gilmer et al. (2017) generalizes
message-passing across nodes, GAT Velickovic et al. (2017) as well as GATv2 Brody et al. (2021)
incorporate attention mechanisms to weigh the importance of neighboring nodes. Although stacking
multiple layers in spatial GNNs facilitates the capturing of long-range dependencies, it frequently
introduces difficulties such as over-smoothing Oono & Suzuki (2019), making node representations
hard to distinguish, and over-squashing Topping et al. (2021), where distant information is com-
pressed into limited node capacity.

Spectral GNNs. Spectral GNNs (Wu et al. (2019), Dong et al. (2020)) operate in the frequency
domain, utilizing the graph’s Laplacian spectrum to perform convolutions and capture global struc-
tures. Initial models like Spectral CNN (Bruna et al. (2013)) and ChebNet (Defferrard et al. (2016))
laid the foundation by learning convolutional filters in the spectral domain, while Graph Convolu-
tional Networks (GCN) (Kipf & Welling (2016)) further simplified spectral convolution for broader
applicability. Recent advances include SpecFormer (Bo et al. (2023a)), which integrates spectral
graph convolution with transformer architectures to capture local and global patterns effectively.
G2CN (Li et al. (2022)) utilizes Gaussian convolutional networks with concentrated graph filters,
enhancing efficiency while preserving structural properties. Despite these developments, spectral
methods still struggle with computational intensity and scalability challenges, making them less
practical for very large graphs (Wu et al. (2021), Liang et al. (2022)).

Graph Transformers. Graph Transformers (Thekumparampil et al. (2018), Yun et al. (2019)) have
emerged as a powerful alternative to traditional GNNs, effectively modeling long-range dependen-
cies through attention mechanisms that capture both local and global structures. Key advancements
include Graphormer (Ying et al. (2021)), which embeds structural encodings for improved perfor-
mance on molecular graphs; SAN (Kreuzer et al. (2021)), which integrates structural relationships
to enhance node classification; and GraphGPS (Rampášek et al. (2022)), which combines local
message-passing with global attention. Efficiency-focused models like Exformer (Shirzad et al.
(2023)) and DiFFormer (Gao et al. (2022)) aim to optimize attention mechanisms for scalability and
better long-range dependency modeling.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 METHODOLOGY

In this section, we present the architecture of SSGNN, which includes a Spectral Encoder and a De-
coder. Then, we discuss our parameter-free ReGA module followed by an overview of the modified
graph convolution. Finally, we conclude with the computational complexity analysis of SSGNN.

3.1 SPECTRAL ENCODER

First we adopt the eigen-correction strategy from Lu et al. (2024), to address the issue of repeated
eigenvalues as discussed in Section. 1, modifying the eigenvalues as follows:

λ̄i = βλi + (1− β)
2i

N − 1
,∀i ∈ N, (1)

where β ∈ [0, 1] is a hyperparameter that ensures λ̄i remains strictly monotonically increasing,
making each λ̄i to be unique. Then, we define an encoding function motivated by Specformer
Bo et al. (2023a), which maps these correct scalar eigenvalues ϕ : R 7→ Rd, into meaningful d
dimensional vector representation, as:

ϕ(λ̄k, 2i) = sin((ϵλ̄k)/10000
2i/d) ; ϕ(λ̄k, 2i+ 1) = cos((ϵλ̄k)/10000

2i/d), ∀k ∈ N. (2)

where ϵ > 0 denotes the scaling factor. While Specformer emphasizes the advantages of encoding
for expressive scalar eigenvalue representation, multi-scale features, and relative frequency shifts,
we offer a new perspective that supports our subsequent approach. We begin by concatenating
the corrected eigenvalues λ̄i∀i ∈ RN with their corresponding encodings ϕ(λ̄i) to form Zeig =

(λ̄0∥ϕ(λ̄0), . . . , λ̄n∥ϕ(λ̄n)) ∈ RN×(d+1). Next, we apply a transformation Weig ∈ R(d+1)×(d+1)

to Zeig to learn the dependencies between the original eigenvalues and their encoded representa-
tions, which can be seen as Ẑeig = ZeigWeig , Ẑeig ∈ RN×(d+1). Ẑeig can be interpreted as
comprising of two key components: (i) the corrected eigenvalues λ̄i, which retains essential global
structural information and (ii) ϕ(λ̄i), which captures the oscillatory behavior of these corrected
eigenvalues.

In homophilic data, where nodes with similar attributes are connected, the signal predominantly ex-
hibits low-frequency characteristics. This is due to connected nodes typically sharing comparable
features, resulting in a smoother graph signal. Consequently, the variations captured by ϕ(λ̄) are
minimal, highlighting the critical role of the corrected eigenvalue in enabling the model to distin-
guish between encodings. In contrast, heterophilic data, characterized by connections between nodes
with dissimilar attributes, is captured by high-frequency components. Here, connected nodes exhibit
substantial variability, leading to rapid fluctuations in the graph signal. These rapid oscillations are
represented by the higher eigenvalues of the Laplacian, while ϕ(λ̄) encapsulates these dynamic vari-
ations within the graph structure. The weight matrix Weig is trained to learn the interdependencies
between the corrected eigenvalue and its encoding, facilitating optimal model performance. By
leveraging this encoding, the model adapts to the underlying graph structure, accurately capturing
both smooth and oscillatory behaviors.

3.2 DECODER

The output of the encoder, Ẑeig ∈ RN×(d+1), is then passed into a two-layer MLP-based decoder
that includes a non-linear activation function. This architecture enables the decoder to effectively
capture intricate transformations and adapt versatile spectral filtering. It is given by:

λh = σ(ẐeigW1)Wh, λh ∈ RN×1, W1 ∈ R(d+1)×(d+1), Wh ∈ R(d+1)×1. (3)

Here σ denotes activation and W1,Wh are learnable parameters. The decoder holds a crucial func-
tion in our network, being responsible for adaptively executing spectral filtering. Its main objective
is to learn a wide variety of filtering strategies by adjusting to the graph’s spectral characteristics and
the node features. To allow the decoder to capture various aspects of the filtering procedure, we intro-
duce H heads, drawing inspiration from multi-head architecture of Transformers. These heads allow
the decoder to learn diverse spectral filtering patterns. These heads focus on learning distinct aspects
of the signal, making the decoder a bank of efficient filter bases (Effect of multi-head visualised in

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Appendix. F). As training progresses, the encoder refines its representations by integrating node fea-
ture data. However, in the early stages, the decoder might face difficulties in grasping meaningful
representations due to its reliance on spectral encodings, which may not comprehensively capture all
dependencies. Consequently, the learned filters may exhibit uneven amplitude distribution, where a
filter intended for a specific frequency band inadvertently captures signals from other bands.

To tackle the problem of noisy focus by decoder on irrelevant features, which hinders its effective-
ness in accurately isolating the target frequency band, we implement a mean shift at the decoder
level. This adjustment re-centers the amplitude distribution around zero, facilitating a more bal-
anced and accurate filtering mechanism. Furthermore, the variations learnt across different decoder
heads enhance the diversity of the filtering process. In this multi-head configuration, the mean shift
allows each head to concentrate more effectively on its target frequency components, yielding filters
that are both consistent and specialized. The mean shift is defined as λh − µh, ∀h ∈ H , where
µh = 1

N

∑N
k=1 λhk denotes the mean amplitude of the filter head. This mean value encapsulates the

global context captured by the decoder for that specific head. However, using the mean shift directly
may lead to inconsistencies, as the distribution can fluctuate unpredictably due to varying frequency
components. To address this, scaling the mean shift by the standard deviation of each head’s am-
plitudes σh normalizes these fluctuations, resulting in a more balanced representation across all
frequency bands. Considering these we introduce a head-specific factor zh ∈ RN×1 defined by:

zh =
1

σh
(λh − µh) (4)

Here σh represents the standard deviation of the learned amplitudes for each head h , calculated

as σh =
√

1
N

∑N
k=1(λhk − µh)2 + ϵ̃ with ϵ̃ being a small constant added for numerical stability.

We find that this formulation is equivalent to normalizing the learned amplitudes for each head of
the decoder. By applying mean shift, we obtain the global context of the entire spectrum. This
formulation serves as the foundation for global context filtering. (Appendix G.5 explores the impact
of mean shift.)

3.3 REGA: RELATIVE GAUSSIAN AMPLIFIER

To further enhance the representational capabilities of the filters learned by the decoder, we concen-
trate on amplification at the filtering level. 1By implementing a function f(·) to adjust the ampli-
fication of the decoder’s filters, we can optimize their ability to capture relevant spectral features,
thereby improving overall efficacy. For homophilic graph data, f(·) should guide the decoder to
amplify low-frequency components, allowing the filter to effectively function as a low-pass filter.
In contrast, for heterophilic graph data, f(·) should enable the decoder to adaptively model a band-
reject filter or amplify high-frequency components, thereby acting as a high-pass filter. zh highlights
a preference for frequency components with higher amplitudes. To emphasize this distinction, we
aim to model f(·) in a way that amplifies the amplitudes of frequency components near the mean
while suppressing those that diverge from it. This approach is designed to meet the following cri-
teria: i). f(z) is constrained within the semi-closed interval (0, 1], meaning f(z) ∈ (0, 1]; ii). It
attains a unique maximum value of 1 at z = 0; iii). As z approaches infinity, the function asymptot-
ically converges to zero, represented by limz→±∞ f(z) = 0. To meet these properties, we propose
Relative Gaussian Amplifier (ReGA), Gh(zh) utilizing the Gaussian function over other functions
as

Gh(zh) = αe−
(zh−a)2

2b2 , ∀h ∈ H, (5)

where α represents the scale of the Gaussian function. We set α = 1 to satisfy the first condition.
The mean a is set to 0 to meet the second condition and b is the standard deviation, serving as a
hyperparameter controlling the spread of the scores across different amplitude values. Thus, the
simplified form of Gh(zh) becomes:

fzh = Gh(zh) = e−
(zh)2

2b2 , fzh ∈ RN×1, (6)

1In filtering, this entails prioritizing relevant frequency components to enhance their influence while dimin-
ishing the effects of less relevant ones. From this point forward, we will refer to this adaptive behavior as
amplification throughout the paper.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where fzh represents ReGA’s output, the adaptive scores for each head h. fzh is now applied
element-wise to the decoder’s output λh ∈ RN×1, yielding the scaled output λ̂h. This operation
can be expressed as: λ̂h = fzh ⊙ λh where ⊙ denotes element-wise multiplication. By integrat-
ing ReGA, the decoder effectively adapts its learned filter bases, resulting in improved filtering of
frequency components. (Appendix. G.4 explores the impact of ReGA.)

To gauge the amplification effect of the filters on the initial values, we quantify the difference (λ̂ih−
λi, ∀i ∈ RN), highlighting the degree of emphasis placed on each component during filtering
(here λi) denotes the original eigenvalue). This approach is inspired by the gradient operator in
graph diffusion techniques, as discussed by Chamberlain et al. (2021). Amplified components reflect
heightened attention, while suppressed components denote reduced influence, thereby enhancing the
model’s adaptiveness. We conceptualize this deviation as a learned spectral shift. To improve the
interpretability of the learned spectral shift, we introduce a constraint to prevent negative filtering
(Bo et al. (2021)). This constraint is crucial for avoiding adverse effects in the spectral domain that
could arise from negative amplitude values. We enforce non-negativity by applying the absolute
value operation, represented as λ̂ih = |λ̂ih − λi|, ∀i ∈ RN .

3.4 GRAPH CONVOLUTION

With the learned spectral filters λ̂h, we now move on to defining the spectral bases necessary for
graph convolution. For each head h ∈ H , we construct the corresponding spectral bases Fh, stack
them along the head dimension, and pass these stacked bases through an MLP to capture interde-
pendencies between the spectral bases of different heads. This process is formulated as:

Fh = Udiag(λh)U
⊤, F̂ = MLP([F0|| · · · ||FH−1]), (7)

where F̂ is the final set of learned spectral bases that model interdependencies across heads. These
learned bases serve a similar role to polynomial bases used in existing literature, but are adaptively
learned from the data. Finally our graph convolution can be defined as:

X̄(l−1) = F̂X(l−1), X(l) = σ(X̄(l−1)W (l−1)), (8)

where X(l) represents the node representations for the l-th layer, while X̄(l−1) represents the mod-
ified representations of (l − 1)-th layer when given the spectral bases F̂ . The matrix W (l−1) rep-
resents the transformation that updates X̄(l−1) to X(l) and σ represents the activation. By stacking
multiple graph convolutional layer, SSGNN effectively learns node representations.

3.5 THEORITICAL ANALYSIS AND COMPUTATIONAL COMPLEXITY

Theoritical Analysis. Let λ ∈ RN×1 be the eigenvalue and λ̃ = λ + ξ represent a pertubed eigen-
value, where ξ is a bounded pertubation such that ∥ξ∥2 ≤ δ. The Gaussian-based spectral filtering
f(λ) = exp

(
− (Λ−µ)2

2(σc)2

)
remains stable under perturbations in the eigenvalue, such that:

∥f(λ)− f(λ̂)∥2 ≤ Kδ (9)

where K is a constant and δ is the perturbation bound. All proofs and empirical analysis are
provided in the Appendix section C

Computational Complexity. SSGNN’s computation involves two key components: spectral de-
composition and forward process. Spectral decomposition, pre-computed with a complexity of
O(N3), is amortized over multiple training and inference steps, as it is computed just once and
stored. For smaller graphs, this precomputation incurs minimal overhead (Appendix. G.1). How-
ever, for larger graphs, fast numerical methods such as Krylov subspace approximations for the
top k eigenvalues or Sparse Generalized Eigenvalue algorithms can significantly reduce the cost by
efficiently estimating k eigenvalues and eigenvectors. The forward pass has two parts: learnable
bases and graph convolution, with complexities O(HN2) and O(lNd), respectively, where l rep-
resents the number of layers, and d is the hidden dimension. Thus the total forward complexity
is O(N(HN + ld). For large graphs, this complexity can be further reduced to O(Hk2 + lNd).
(Training time comparison is detailed in Appendix. G.2).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Node regression: Mean of the sum of squared error and (R2 score) on synthetic data.

Model
Low-pass High-pass Band-pass Band-rejection Comb
exp(−10λ2) 1− exp(−10λ2) exp(−10(λ− 1)2) 1− exp(−10(λ− 1)2) |sin(πλ)|

GCN 3.4799(.9872) 67.6635(.2364) 25.8755(.1148) 21.0747(.9438) 50.5120(.2977)
GAT 2.3574(.9905) 21.9618(.7529) 14.4326(.4823) 12.6384(.9652) 23.1813(.6957)
ChebyNet 0.8220(.9973) 0.7867(.9903) 2.2722(.9104) 2.5296(.9934) 4.0735(.9447)
GPR-GNN 0.4169(.9984) 0.0943(.9986) 3.5121(.8551) 3.7917(.9905) 4.6549(.9311)
BernNet 0.0314(.9999) 0.0113(.9999) 0.0411(.9984) 0.9313(.9973) 0.9982(.9868)
JacobiConv 0.0003(.9999) 0.0064(.9999) 0.0213(.9999) 0.0156(.9999) 0.2933(.9995)
Specformer 0.0048(.9999) 0.001(.9999) 0.000057(.9999) 0.0054(.9999) 0.0052(.9999)
SSGNN 0.0034(.9999) 0.000008(.9999) 0.0000059 (.9999) 0.0084(.9999) 0.000057(.9999)

0.0 0.5 1.0 1.5 2.0
Raw Eigenvalues ()

0.0

0.2

0.4

0.6

0.8

1.0

N
ew

Ei
ge

nv
al

ue
s(

g
)

exp(10 2)
Specformer
Ground Truth
SSGNN

(a) Low-pass

0.0 0.5 1.0 1.5 2.0
Raw Eigenvalues ()

0.0

0.2

0.4

0.6

0.8

1.0

N
ew

Ei
ge

nv
al

ue
s(

g
)

exp(10(1)2)

Specformer
Ground Truth
SSGNN

(b) Band-pass

0.0 0.5 1.0 1.5 2.0
Raw Eigenvalues ()

0.0

0.2

0.4

0.6

0.8

1.0

N
ew

Ei
ge

nv
al

ue
s(

g
)

1 exp(10(1)2)
Specformer
Ground Truth
SSGNN

(c) Band-reject

0.0 0.5 1.0 1.5 2.0
Raw Eigenvalues ()

0.0

0.2

0.4

0.6

0.8

1.0

N
ew

Ei
ge

nv
al

ue
s(

g
)

1 exp(10 2)

Specformer
Ground Truth
SSGNN

(d) High-pass

0.0 0.5 1.0 1.5 2.0
Raw Eigenvalues ()

0.0

0.2

0.4

0.6

0.8

1.0

N
ew

Ei
ge

nv
al

ue
s(

g
)

|sin()|

Specformer
Ground Truth
SSGNN

(e) Comb

Figure 2: Filters learned by Specformer and SSGNN on a Synthetic dataset

4 EXPERIMENTS

In this section, we present experiments on diverse real-world and a synthetic graph dataset to assess
the effectiveness of our model, SSGNN. We thoroughly compare its performance against SOTA
GNNs, Graph Transformer and spectral GNN models across both homophilic and heterophilic
graphs for node classification, graph classification and regression. We also perform ablation studies
to show the effect ϵ and b on the learned filters after our ReGA operation.

4.1 LEARNING SPECTRAL FILTERS ON SYNTHETIC DATA

In this experiment, we use the synthetic dataset from Specformer, where 50 images from the Image
Processing Toolbox are treated as 2D 4-neighbor grid graphs with pixel values as node features.
All images share the same adjacency matrix, and five predefined graph filters generate the ground
truth signals. Specformer-Small and SSGNN are both configured with 16 hidden units and 1 head
for fair comparison, with training running up to 2000 epochs. No regularization is applied, and a
learning rate of 0.01 is used. We measure performance using sum of squared error and R2 score.
We conduct experiments using Specformer-Small and SSGNN with the described settings, while
for the remaining baselines, we rely on the results reported in the Specformer paper, as it already
provides a fair comparison across models. Table 1 shows the quantitative results, where SSGNN
consistently outperforms other models, especially on complex filters like high-pass, band-pass, and
comb achieving lower SSE. SSGNN surpasses Specformer even in low-pass filtering. Figure 2
visualizes the learned filters, showing that SSGNN aligns more closely with ground truth across all
scenarios. These results highlight that SSGNN is not only lightweight but also highly effective in
capturing various types of filtering based on the data.

4.2 NODE CLASSIFICATION

In the node classification task, we assess SSGNN using eight homophilic datasets and nine het-
erophilic datasets. In Tables 2, 3 and 4; “∗” indicates the baselines that were trained from scratch.
Details on the baseline settings and dataset splits can be found in the Appendix. E.
Results. The node classification results span three tables, each analyzed in detail. . In Table 2,
SSGNN shows competitive performance on homophilic datasets, outperforming most of SOTA GT
models. Notably SSGNN achieves a record 85.16% accuracy on WikiCS, surpassing Polynormer
by 5% with a remarkable 625x reduction in parameters.On Coauthor-Physics, Specformer faces
OOM, while SSGNN ranks first without such issues. In Amazon-Photo, SSGNN ranks second with
comparable performance to Specformer, lower standard deviation, and a 300x reduction in param-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

eters compared to Polynormer. In large-scale graphs like ogbn-arXiv, SSGNN outperforms both
Polynormer and Specformer, with Polynormer initially facing OOM issues. In Table 3, we evaluate
homophilic and heterophilic datasets targeted by Specformer, which Polynormer does not address.
For Chameleon, SSGNN achieves accuracy improvements of 7% and 2.35% over Specformer and
Polynormer, respectively. In the Squirrel dataset, it records increases of 4.65% and 7.45% compared
to Specformer. These significant enhancements demonstrate SSGNN’s superior ability to adaptively
capture high-pass and band-rejection features, as further evidenced by the synthetic data experi-
ments (see Table 1). In Table 4, we present results from experiments on the latest heterophilic graph
datasets introduced by Platonov et al. (2023), which were evaluated using Polynormer but not by
Specformer. We encountered challenges with the Roman-Empire dataset due to its directed nature,
which hinders spectral GNNs that convert it to undirected graphs. In contrast, models like Dir-
GNN, designed for directed graphs, achieve superior results. In the Minesweeper dataset, we ranked
second relative to Polynormer with a notable 3000x reduction in parameters. In the Tolokers and
Questions datasets, we achieve new SOTA accuracies, surpassing Polynormer and Specformer by
1.86% and 1.36% respectively, while also achieving a 2600x reduction in parameters compared to
Polynormer. These results demonstrate that SSGNN not only surpasses SOTA models across diverse
graph datasets but also showcases improved scalability and efficiency in handling both homophilic
and heterophilic graph data. Its streamlined architecture, combined with effective, parameter-free
ReGA module, allows SSGNN to effectively learn complex filters.

Table 2: Results for node classification accuracy on homophilic datasets. We report average accuracy
(%) ± std over 10 runs. The top first, second, and third results are highlighted for each dataset.

Computer Photo CS Physics WikiCS ogbn-arXiv

GCN 89.65± 0.52 92.70± 0.20 92.92± 0.12 96.18± 0.07 77.47± 0.85 71.74± 0.29
GraphSAGE 91.20± 0.29 94.59± 0.14 93.91± 0.13 96.49± 0.06 74.77± 0.95 –
GAT 90.78± 0.13 93.87± 0.11 93.61± 0.14 96.17± 0.08 76.91± 0.82 72.01± 0.20
GCNII 91.04± 0.41 94.30± 0.20 92.22± 0.14 95.97± 0.11 78.68± 0.55 –
GPRGNN 89.32± 0.29 94.49± 0.14 95.13± 0.09 96.85± 0.08 78.12± 0.23 71.10± 0.12
OrderedGNN 92.03± 0.13 95.10± 0.20 95.00± 0.10 97.00± 0.08 79.01± 0.68 –

GraphGPS 91.19± 0.54 95.06± 0.13 93.93± 0.12 97.12± 0.19 78.66± 0.49 70.97± 0.41
Exphormer 91.47± 0.17 95.35± 0.22 94.93± 0.01 96.89± 0.09 78.54± 0.49 72.44± 0.28
NodeFormer 86.98± 0.62 93.46± 0.35 95.64± 0.22 96.45± 0.28 74.73± 0.94 67.19± 0.83
DIFFormer 91.99± 0.76 95.10± 0.47 94.78± 0.20 96.60± 0.18 73.46± 0.56 69.86± 0.25

Specformer 87.23± 0.52∗

(33K)
95.36± 0.32∗

(32K)
95.60± 0.07∗

(226K) OOM∗ 84.55± 0.20∗

(17.6K)
71.98± 0.33∗

(500K)

Polynormer 93.71± 0.21∗

(5.4M)
96.48± 0.34∗

(7.8M)
95.55± 0.11∗

(9.3M)
97.27± 0.11∗

(4.0M)
80.07± 0.56∗

(7.5M)
71.89± 0.21∗

(393K)

SSGNN 91.38± 0.38
(27.2K)

95.38± 0.03
(26.5K)

96.30± 0.08
(220K)

98.33± 0.15
(135K)

85.16± 0.41
(12.3K)

72.10± 0.04
(36.5K)

Table 3: Averaged accuracy (%) ± std over 10 runs for node classification on homophilic (Cora,
Citeseer) and heterophilic datasets. We highlight the top first, second, and third results per dataset.

Chameleon Squirrel Actor Penn94 Cora Citeseer

GCN 40.89 ± 4.12 39.47 ± 1.47 33.23± 1.16 82.47± 0.27 87.14± 1.01 79.86± 0.67
GAT 39.21± 3.08 35.62± 2.06 33.93± 2.47 81.53± 0.55 88.03± 0.79 80.52± 0.71
H2GCN 26.75± 3.64 35.10± 1.15 35.86± 1.03 OOM 86.92± 1.37 77.07± 1.64

GPRGNN 39.93± 3.30 38.95± 1.99 39.92± 0.67 81.38± 0.16 88.57 ± 0.69 80.12± 0.83
JacobiConv 39.00± 4.20 29.71± 1.66 41.17 ± 0.64 83.35 ± 0.11 88.98 ± 0.46 80.78± 0.79

Specformer 36.11± 0.44∗

(82k)
37.66 ± 0.42∗

(75K)
42.01 ± 1.14∗

(37k)
84.28 ± 0.32∗

(338K)
88.50± 0.98∗

(54K)
81.52 ± 0.90∗

(126K)

Polynormer 40.75 ± 0.46∗

(665K)
34.86± 0.11∗

(2.0M)
41.16± 0.93∗

(6.2M)
83.31± 0.50∗

(983K)
86.79± 0.28∗

(1.8M)
80.94 ± 0.62∗

(2.4M)

SSGNN 43.10 ± 1.36
(77K)

42.31 ± 0.74
(34K)

43.22 ± 1.05
(32K)

84.33 ± 0.001
(157K)

88.66 ± 0.17
(48.5K)

82.18 ± 0.21
(121k)

4.3 GRAPH CLASSIFICATION AND REGRESSION

We evaluate SSGNN on three graph-level datasets of varying sizes: ZINC Dwivedi et al. (2023), a
small dataset with 12,000 molecular graphs, and two larger OGB datasets, MolHIV and MolPCBA
Hu et al. (2020), containing 41,000 and 437,000 graphs respectively. Nodes represent atoms, and
edges denote chemical bonds. For fair comparison, we match Specformer’s training settings. Re-
sults in Table 5 show that SSGNN outperforms SOTA models like GIN, PNA, SAN, GPS, and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Average results ± std for node classification over 10 runs on heterophilic datasets. Accuracy
is reported for roman-empire and amazon-ratings; ROC AUC is reported for the rest. The top first,
second, and third results are highlighted for each dataset.

roman-empire amazon-ratings minesweeper tolokers questions

GCN 73.69± 0.74 48.70± 0.63 89.75± 0.52 83.64± 0.67 76.09± 1.27
GraphSAGE 85.74± 0.67 53.63± 0.39 93.51± 0.57 82.43± 0.44 76.44± 0.62
GAT-sep 88.75± 0.41 52.70± 0.62 93.91± 0.35 83.78± 0.43 76.79± 0.71
H2GCN 60.11± 0.52 36.47± 0.23 89.71± 0.31 73.35± 1.01 63.59± 1.46
GPRGNN 64.85± 0.27 44.88± 0.34 86.24± 0.61 72.94± 0.97 55.48± 0.91
FSGNN 79.92± 0.56 52.74± 0.83 90.08± 0.70 82.76± 0.61 78.86± 0.92
GloGNN 59.63± 0.69 36.89± 0.14 51.08± 1.23 73.39± 1.17 65.74± 1.19
GGCN 74.46± 0.54 43.00± 0.32 87.54± 1.22 77.31± 1.14 71.10± 1.57
OrderedGNN 77.68± 0.39 47.29± 0.65 80.58± 1.08 75.60± 1.36 75.09± 1.00
G2-GNN 82.16± 0.78 47.93± 0.58 91.83± 0.56 82.51± 0.80 74.82± 0.92
DIR-GNN 91.23± 0.32 47.89± 0.39 87.05± 0.69 81.19± 1.05 76.13± 1.24
tGNN 79.95± 0.75 48.21± 0.53 91.93± 0.77 70.84± 1.75 76.38± 1.79

GraphGPS 82.00± 0.61 53.10± 0.42 90.63± 0.67 83.71± 0.48 71.73± 1.47
Exphormer 89.03 ± 0.37 53.51 ± 0.46 90.74± 0.53 83.77± 0.78 73.94± 1.06
NodeFormer 64.49± 0.73 43.86± 0.35 86.71± 0.88 78.10± 1.03 74.27± 1.46
DIFFormer 79.10± 0.32 47.84± 0.65 90.89± 0.58 83.57± 0.68 72.15± 1.31

Specformer OOM∗ OOM∗ 93.95± 0.39∗

(8.5K)
85.01± 0.48∗

(8.5K) OOM∗

Polynormer 92.15± 0.58∗

(9.9M)
54.36± 0.32∗

(9.1M)
97.12± 0.30∗

(10.5M)
84.51± 0.88∗

(7.9M)
78.83 ± 0.71∗

(6.7M)

SSGNN 83.90± 1.21
(77K)

52.46± 0.70
(690K)

94.38± 0.54
(3K)

86.37± 0.46
(3K)

79.16± 0.16
(12.5K)

Table 5: Average results ± std for graph classification and regression. ↓ means lower the better, and
↑ means higher the better. We highlight the top first, second, and third results for each dataset.

Model ZINC(↓) MolHIV(↑) MolPCBA(↑)
GCN 0.367± 0.011 0.7599± 0.0119 0.2424± 0.0034
GIN 0.526± 0.051 0.7707± 0.0149 0.2703± 0.0023
CIN 0.079± 0.006 0.8094 ± 0.0057 -
GIN-AK+ 0.080± 0.001 0.7961± 0.0119 0.2930± 0.0044
GSN 0.101± 0.010 0.7799± 0.0100 -
DGN 0.168± 0.003 0.7970 ± 0.0097 0.2885± 0.0030
PNA 0.188± 0.004 0.7905± 0.0132 0.2838± 0.0035

SAN 0.139± 0.006 0.7785± 0.0025 0.2765± 0.0042
Graphormer 0.122± 0.006 0.7640± 0.0022 0.2643± 0.0017
GPS 0.070 ± 0.004 0.7880± 0.0101 0.2907 ± 0.0028

Specformer 066± 0.003
(555K)

0.7889± 0.0124
(227K)

0.2972± 0.0023
(3.02M)

SSGNN 0.0592± 0.008
(401K)

0.8014± 0.0193
(194K)

0.3012± 0.0350
(2.64M)

Specformer, achieving new benchmarks of 0.0592 MAE on ZINC and 0.3012 AP on MolPCBA. On
MolHIV, we surpass most models, ranking second only to CIN in AUC-ROC.

4.4 ABLATIONS

This section explores the effect of hyperparameters b and ϵ on learned filters. The parameter b
controls the spread of our Relative Gaussian Amplifier (ReGA), influencing the distribution of scores
across spectral encodings. A higher b results in smoother filters with uniform score distribution,
while a lower b concentrates scores on a few encodings, causing sharp amplitude spikes. Fig. 3
shows this effect on the WikiCS dataset, where lower b values (e.g., b=2) lead to sudden spikes,
which smooth out as b increases to 10.

We now examine how varying ϵ affects the learned filters. A higher ϵ captures more oscillatory
patterns in spectral encodings, leading to stronger and more distinct components. However, this can
cause abrupt score assignments in ReGA, amplifying certain spectral components and suppressing

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0

2

4

6

8

10

12

14

Am
pl

itu
de

Frequency Response

(a) b= 2

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0

2

4

6

8

Am
pl

itu
de

Frequency Response

(b) b= 6

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0

2

4

6

8

Am
pl

itu
de

Frequency Response

(c) b= 10

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Am
pl

itu
de

Frequency Response

(a) ϵ = 10

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.0

0.5

1.0

1.5

2.0

2.5

Am
pl

itu
de

Frequency Response

(b) ϵ = 50

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Am
pl

itu
de

Frequency Response

(c) ϵ = 100

Figure 3: Effect of b with ϵ = 50 on WikiCS
dataset

Figure 4: Effect of ϵ with b = 2 on
Coauthor-Physics dataset

0.0 0.5 1.0 1.5 2.0
Eigenvalues

2

4

6

8

10

Am
pl

itu
de

Frequency Response

Learned filter

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.0015

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015

Graph Fourier Transform

GFT output

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.006

0.004

0.002

0.000

0.002

0.004

0.006

Graph Convolution

Graph Conv.

0.0 0.5 1.0 1.5 2.0
Eigenvalues

2

4

6

8

10

Am
pl

itu
de

Frequency Response

Learned filter

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.0004

0.0002

0.0000

0.0002

0.0004

Graph Fourier Transform

GFT output

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.0020

0.0015

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015

Graph Convolution

Graph Conv.

Figure 5: WikiCS dataset Figure 6: Amazon-Ratings dataset

others, resulting in random spikes. Conversely, a lower ϵ produces smoother filters with fewer oscil-
lations. Fig. 4 illustrates this effect on the Coauthor-Physics dataset, showing increased oscillations
and amplitude spikes as ϵ rises from 10 to 100.

4.5 VISUALIZATIONS

In this section, we explore the filters learned by SSGNN and their impact through visualizing the
Graph Fourier Transform (GFT) and the resulting convolved GFT output after applying our filters.
These visualizations illustrate how our model effectively captures the underlying spectral properties
of the graph, learning filters optimized for specific tasks. For the homophilic dataset WikiCS, our
model learns an optimal low-pass filter (Fig. 5), allowing it to suppress high-frequency components
and retain smooth node signals. In contrast, for the heterophilic dataset Amazon Ratings, SSGNN
learns a band-reject filter (Fig. 6) which efficiently handles the more complex spectral character-
istics of heterophilic graphs by filtering out irrelevant mid-frequency components. These results
emphasize the critical role our learned filters play in the convolution process, adapting to the nature
of the graph and enhancing performance across different types of data.

5 CONCLUSION

This work introduces SSGNN, a Simple Yet Effective Spectral Graph Neural network, powered by
spectral encoding and a decoder supported by a novel parameter-free Relative Gaussian Amplifier
(ReGA) to enhance adaptive filter learning. Synthetic data experiments show that SSGNN effec-
tively captures complex spectral filters, while real-world results demonstrate that it achieves com-
parable or outperforms SOTA graph transformers and spectral GNNs. Notably, SSGNN achieves
this with significant reductions in parameters, and runtime, highlighting its potential for advancing
efficient spectral GNN research.

REFERENCES

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
arXiv preprint arXiv:2006.05205, 2020.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in graph
convolutional networks. In Proceedings of the AAAI conference on artificial intelligence, vol-
ume 35, pp. 3950–3957, 2021.

Deyu Bo, Chuan Shi, Lele Wang, and Renjie Liao. Specformer: Spectral graph neural networks
meet transformers. arXiv preprint arXiv:2303.01028, 2023a.

Deyu Bo, Xiao Wang, Yang Liu, Yuan Fang, Yawen Li, and Chuan Shi. A survey on spectral graph
neural networks. arXiv preprint arXiv:2302.05631, 2023b.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar, and
Michael Bronstein. Weisfeiler and lehman go cellular: Cw networks. Advances in neural infor-
mation processing systems, 34:2625–2640, 2021.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? arXiv
preprint arXiv:2105.14491, 2021.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

Ben Chamberlain, James Rowbottom, Maria I Gorinova, Michael Bronstein, Stefan Webb, and
Emanuele Rossi. Grand: Graph neural diffusion. In International conference on machine learn-
ing, pp. 1407–1418. PMLR, 2021.

Yifan Chen, Qi Zeng, Heng Ji, and Yun Yang. Skyformer: Remodel self-attention with gaussian
kernel and nystr\” om method. Advances in Neural Information Processing Systems, 34:2122–
2135, 2021.

Krzysztof Choromanski, Han Lin, Haoxian Chen, Tianyi Zhang, Arijit Sehanobish, Valerii Likhosh-
erstov, Jack Parker-Holder, Tamas Sarlos, Adrian Weller, and Thomas Weingarten. From block-
toeplitz matrices to differential equations on graphs: towards a general theory for scalable masked
transformers. In International Conference on Machine Learning, pp. 3962–3983. PMLR, 2022.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in neural information processing systems,
29, 2016.

Chenhui Deng, Zichao Yue, and Zhiru Zhang. Polynormer: Polynomial-expressive graph trans-
former in linear time. arXiv preprint arXiv:2403.01232, 2024.

Francesco Di Giovanni, T Konstantin Rusch, Michael M Bronstein, Andreea Deac, Marc Lackenby,
Siddhartha Mishra, and Petar Veličković. How does over-squashing affect the power of gnns?
arXiv preprint arXiv:2306.03589, 2023.

Xiaowen Dong, Dorina Thanou, Laura Toni, Michael Bronstein, and Pascal Frossard. Graph sig-
nal processing for machine learning: A review and new perspectives. IEEE Signal processing
magazine, 37(6):117–127, 2020.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research,
24(43):1–48, 2023.

Zhujin Gao, Junliang Guo, Xu Tan, Yongxin Zhu, Fang Zhang, Jiang Bian, and Linli Xu. Dif-
former: Empowering diffusion models on the embedding space for text generation. arXiv preprint
arXiv:2212.09412, 2022.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Mingguo He, Zhewei Wei, Hongteng Xu, et al. Bernnet: Learning arbitrary graph spectral filters via
bernstein approximation. Advances in Neural Information Processing Systems, 34:14239–14251,
2021.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, 33:22118–22133, 2020.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Kezhi Kong, Jiuhai Chen, John Kirchenbauer, Renkun Ni, C Bayan Bruss, and Tom Goldstein. Goat:
A global transformer on large-scale graphs. In International Conference on Machine Learning,
pp. 17375–17390. PMLR, 2023.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou. Re-
thinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34:21618–21629, 2021.

Mingjie Li, Xiaojun Guo, Yifei Wang, Yisen Wang, and Zhouchen Lin. G 2̂ cn: Graph gaussian
convolution networks with concentrated graph filters. In International Conference on Machine
Learning, pp. 12782–12796. PMLR, 2022.

Fan Liang, Cheng Qian, Wei Yu, David Griffith, and Nada Golmie. Survey of graph neural net-
works and applications. Wireless Communications and Mobile Computing, 2022(1):9261537,
2022. doi: https://doi.org/10.1155/2022/9261537. URL https://onlinelibrary.
wiley.com/doi/abs/10.1155/2022/9261537.

Kangkang Lu, Yanhua Yu, Hao Fei, Xuan Li, Zixuan Yang, Zirui Guo, Meiyu Liang, Mengran Yin,
and Tat-Seng Chua. Improving expressive power of spectral graph neural networks with eigen-
value correction. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38,
pp. 14158–14166, 2024.

Sitao Luan, Qincheng Lu, Chenqing Hua, Xinyu Wang, Jiaqi Zhu, Xiao-Wen Chang, Guy Wolf,
and Jian Tang. Are heterophily-specific gnns and homophily metrics really effective? evaluation
pitfalls and new benchmarks. arXiv preprint arXiv:2409.05755, 2024.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. arXiv preprint arXiv:1905.10947, 2019.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
A critical look at the evaluation of gnns under heterophily: Are we really making progress? arXiv
preprint arXiv:2302.11640, 2023.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal
Sinop. Exphormer: Sparse transformers for graphs. In International Conference on Machine
Learning, pp. 31613–31632. PMLR, 2023.

Kiran K Thekumparampil, Chong Wang, Sewoong Oh, and Li-Jia Li. Attention-based graph neural
network for semi-supervised learning. arXiv preprint arXiv:1803.03735, 2018.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. arXiv preprint
arXiv:2111.14522, 2021.

12

https://onlinelibrary.wiley.com/doi/abs/10.1155/2022/9261537
https://onlinelibrary.wiley.com/doi/abs/10.1155/2022/9261537

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Ben-
gio, et al. Graph attention networks. stat, 1050(20):10–48550, 2017.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 32(1):4–24, 2021. doi: 10.1109/TNNLS.2020.2978386.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in neural
information processing systems, 34:28877–28888, 2021.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph trans-
former networks. Advances in neural information processing systems, 32, 2019.

Zaixi Zhang, Qi Liu, Qingyong Hu, and Chee-Kong Lee. Hierarchical graph transformer with
adaptive node sampling. Advances in Neural Information Processing Systems, 35:21171–21183,
2022.

Hao Zhu and Piotr Koniusz. Simple spectral graph convolution. In International conference on
learning representations, 2021.

A DATASET INFORMATION

Table 6: Statistics of Node Classification datasets used in our experiments.

Dataset Type Nodes Edges Classes Features
Cora Homophily 2, 708 5, 429 7 1, 433
Citeseer Homophily 3, 327 4, 732 6 3, 707
Computer Homophily 13, 752 245, 861 10 767
Photo Homophily 7, 650 119, 081 8 745
CS Homophily 18, 333 81, 894 15 6, 805
Physics Homophily 34, 493 247, 962 5 8, 415
WikiCS Homophily 11, 701 216, 123 10 300

ogbn-arxiv Homophily 169, 343 1, 166, 243 40 128

Chameleon Heterophily 850 13, 584 5 2325
Squirrel Heterophily 2, 223 65, 718 5 2089
Penn94 Heterophily 41, 554 1, 326, 229 2 4, 814
roman-empire Heterophily 22, 662 32, 927 18 300
amazon-ratings Heterophily 24, 492 93, 050 5 300
minesweeper Heterophily 10, 000 39, 402 2 7
tolokers Heterophily 11, 758 519, 000 2 10
questions Heterophily 48, 921 153, 540 2 301

Table 7: Statistics of Graph Classification datasets used in our experiments.

Graphs Avg. nodes Avg. edges Min nodes Max nodes Tasks Metric
ZINC 12,000 23.2 24.9 9 37 Regression MAE
MolHIV 41,127 25.5 27.5 2 222 Classification AUROC
MolPCBA 437,929 26.0 28.1 1 332 Classification AP

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

B OUR COMPUTE

All experiments were conducted using two NVIDIA RTX 4090 GPUs, each with 24GB of memory.
While the SSGNN model can be efficiently trained on a single GPU, both GPUs were utilized to
train multiple configurations simultaneously by varying the hyperparameters b and ϵ. This parallel
training approach significantly reduced the total training time. All models were implemented using
the PyTorch deep learning framework.

C STABILITY TEST AGAINST PURTERBATIONS.

Here we first provide the proof for the theoritical statement that we made in the main paper and later
perform an ablation to justify the same (Table. 8).

Theorem 1. Let λ ∈ RN×1 be the corrected eigenvalue and λ̃ = λ + ξ represent a eigenvalue,
where ξ is a bounded pertubation such that ∥ξ∥2 ≤ δ. The Gaussian-based spectral filtering f(λ) =

exp
(
− (Λ−µ)2

2(σc)2

)
remains stable under perturbations in the eigenvalue, such that:

∥f(λ)− f(λ̂)∥2 ≤ Kδ (10)

where K is a constant and δ is the perturbation bound.

Proof. Let f(λ) = exp
(
− (λ−µ)2

2(σc)2

)
represent the Gaussian-based spectral filtering function, where

µ is the mean and σ is the standard deviation of the eigenvalue vectors and c is a scaling constant.
Let ξ represent a perturbation in the eigenvalues such that λ̂ = λ + ξ, with ∥ξ∥2 ≤ δ. We need to
show that the filtered output f(λ) remains stable under perturbations, that is, the difference between
f(λ) and f(λ̂) is bounded.

Consider the difference between f(λ) and f(λ̂) as:∣∣∣f(λi)− f(λ̂i)
∣∣∣ = ∣∣∣∣∣exp

(
− (λi − µ)2

2(σc)2

)
− exp

(
− (λ̂i − µ)2

2(σc)2

)∣∣∣∣∣ (11)

Since Gaussian is a smooth function over the interval (−∞,+∞), we can use the Mean Value
Theorem (MVT) to approximate the difference between the exponentials by their derivative∣∣∣f(λi)− f(λ̂i)

∣∣∣ ≤ ∣∣∣∣ d

dλi

(
exp

(
− (λi − µ)2

2(σc)2

))∣∣∣∣ · ∣∣∣λi − λ̂i

∣∣∣ (12)

The derivative of the Gaussian function can be written as:
d

dλi

(
exp

(
− (λi − µ)2

2(σc)2

))
= − (λi − µ)

(σc)2
exp

(
− (λi − µ)2

2(σc)2

)
(13)

Hence, Eq. 12 can be rewritten as:∣∣∣f(λi)− f(λ̂i)
∣∣∣ ≤ |λi − µ|

(σc)2
exp

(
− (λi − µ)2

2(σc)2

)
· |ξi| (14)

Since |λi − λ̂i| = |ξi| and assuming ∥ξ∥2 ≤ δ, we can bound the right-hand side by a constant K
that depends on µ, σ and c as ∣∣∣f(λi)− f(λ̂i)

∣∣∣ ≤ K|ξi| (15)

Since ∥ξ∥2 ≤ δ, the total deviation across all eigenvalue vectors is bounded by:

∥f(λ)− f(λ̂)∥2 ≤ K∥ξ∥2 ≤ Kδ (16)

Here we compare the performance of SSGNN and Specformer when subjected to structural pertur-
bations. We randomly remove 2%, 4%, 6%, 10% and 20% of edges from the original dataset and
train both the models 10 times on across different splits / seeds. We then report the average accu-
racy drop for both the models under different levels of perturbations. Table 8 shows that SSGNN
remains significantly stable even under extreme perturbations across all datasets when compared to
Specformer. Notably, SSGNN only underperforms on chameleon under a high perturbation.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 8: Perturbation analysis of SSGNN vs Specformer

Drop Edges(%) Cora Citeseer Chameleon Squirrel

SSGNN

2 0.51 0.66 0.54 0.46
4 0.63 0.56 0.19 0.43
6 0.66 0.58 0.32 0.32

10 1.38 0.62 0.51 0.21
20 1.51 0.92 0.88 0.52

Specformer

2 1.72 1.09 0.94 2.16
4 1.64 1.25 0.72 2.19
6 1.67 1.24 1.06 2.61

10 2.36 1.32 0.23 2.11
20 2.89 1.43 0.54 2.25

Table 9: Comparision of GFLOPs for Polynormer and our proposed SSGNN model. Bolded values
indicate better metric (lower the better).

heightModel Roman-Empire Amazon-Ratings Minesweeper Tolokers Questions
Polynormer 170.64 158.62 84.22 81.27 294.13

SSGNN 1.71 5.22 0.03 0.03 0.60
Model Computer Photo CS Physics WikiCS

Polynormer 56.14 47.22 150.82 133.48 69.58
SSGNN 0.37 0.20 4.04 8.37 0.131

D POLYNORMER CONFIGURATIONS

This section outlines the various configuration details and the corresponding highest test accuracy
achieved by Polynormer, as presented in Table 3. Polynormer was trained for 1000 epochs on
each dataset with extensive gridsearch for optimal hyper-parameters, including hidden dimension
(h), local epochs (LE), global epochs (GE), learning rate (LR), local layers (LL), global layers
(GL), weight decay (WD), and the number of heads (H). The best-performing configuration for
each dataset was selected and trained 10 times to obtain the average accuracy. Table 9 compares the
GFLOPs of Polynormer and SSGNN.

For results reported in Table 2 and Table 4 (of main paper) we use the default configuration provided
by the authors of Polynormer.

E BASELINE CONFIGURATIONS

We compare our model against various SOTA GNNs, spectral GNNs, and graph Transformers (GT).
For homophilic datasets, we use a 60%-20%-20% testing split, as given in (He et al., 2021). For
most heterophilic datasets, we adopt a 50%-25%-25% split, following Platonov et al. (2023). Ho-
mophilic methods are executed 10 times, while heterophilic methods run across 10 splits, with mean
accuracy and standard deviation reported. We utilize Specformer results for homophilic datasets
and Platonov et al. (2023) for heterophilic datasets, while Graph Transformers results are sourced
from Polynormer. Both Specformer and Polynormer are trained from scratch on all datasets. We
experiment with hidden dimensions d ranging from 32 to 512 for both SSGNN and Specformer,
while for Polynormer from 32 to 64. The number of heads is varied from 1 to 4 for SSGNN and
Specformer, and from 2 to 8 for Polynormer. Learning rates are explored in the range of 102 to 104

for all models. For Polynormer, we assess configurations with 5-7 local layers and 2-3 global lay-
ers, with detailed configurations provided in the appendix. In the node classification task, we focus
on large-scale graphs, specifically ogbn-arXiv and Penn94, employing truncated spectral decom-
position. For Penn94, we utilize eigenvectors corresponding to the smallest 3000 (low-frequency)
and largest 3000 (high-frequency) eigenvalues. For arXiv, we select the smallest 5000 eigenvalues
(low-frequency). These are based on the experimental findings that low-pass filtering is effective

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 10: Polynormer Configurations and Accuracies for Chameleon dataset

h LE GE LR LL GL WD H Accuracy (%)
32 100 900 0.001 5 2 0.0 2 34.02
32 100 900 0.01 5 2 0.0 2 31.95
32 100 900 0.0001 5 2 0.0 2 35.05
64 100 900 0.001 5 2 0.0 2 40.72
32 100 900 0.001 5 2 0.0 4 42.78
64 100 900 0.001 5 2 0.0 4 42.78
32 100 900 0.001 5 2 0.0 8 35.56
64 100 900 0.001 5 2 0.0 8 36.08
64 100 900 0.001 7 2 0.0 8 35.56
64 100 900 0.001 5 3 0.0 8 30.92

Table 11: Polynormer Configurations and Accuracies for Squirrel dataset.

h LE GE LR LL GL WD H Accuracy (%)
32 100 900 0.001 5 2 0.0 2 34.73
32 100 900 0.01 5 2 0.0 2 34.73
32 100 900 0.0001 5 2 0.0 2 34.73
64 100 900 0.001 5 2 0.0 2 33.62
32 100 900 0.001 5 2 0.0 4 34.82
64 100 900 0.001 5 2 0.0 4 35.73
32 100 900 0.001 5 2 0.0 8 35.73
64 100 900 0.001 5 2 0.0 8 34.73
64 100 900 0.001 7 2 0.0 8 34.12
64 100 900 0.001 5 3 0.0 8 34.77

Table 12: Polynormer Configurations and Accuracies for Cora dataset.

h LE GE LR LL GL WD H Accuracy (%)
32 100 900 0.001 5 2 0.0 2 86.86
32 100 900 0.01 5 2 0.0 2 85.71
32 100 900 0.0001 5 2 0.0 2 83.57
64 100 900 0.001 5 2 0.0 2 87.02
32 100 900 0.001 5 2 0.0 4 86.20
64 100 900 0.001 5 2 0.0 4 85.05
32 100 900 0.001 5 2 0.0 8 87.84
64 100 900 0.001 5 2 0.0 8 87.84
64 100 900 0.001 7 2 0.0 8 86.04
64 100 900 0.001 5 3 0.0 8 85.22

Table 13: Polynormer Configurations and Accuracies for Citeseer dataset.

h LE GE LR LL GL WD H Accuracy (%)
32 100 900 0.001 5 2 0.0 2 81.99
32 100 900 0.01 5 2 0.0 2 80.49
32 100 900 0.0001 5 2 0.0 2 80.76
64 100 900 0.001 5 2 0.0 2 80.49
32 100 900 0.001 5 2 0.0 4 77.76
64 100 900 0.001 5 2 0.0 4 79.40
32 100 900 0.001 5 2 0.0 8 79.94
64 100 900 0.001 5 2 0.0 8 81.17
64 100 900 0.001 7 2 0.0 8 80.76
64 100 900 0.001 5 3 0.0 8 79.53

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 14: Polynormer Configurations and Accuracies for Penn94 dataset.

h LE GE LR LL GL WD H Accuracy (%)
32 100 900 0.001 5 2 0.0 2 82.94
32 100 900 0.01 5 2 0.0 2 83.45
32 100 900 0.0001 5 2 0.0 2 82.56
64 100 900 0.001 5 2 0.0 2 83.72
32 100 900 0.001 5 2 0.0 4 83.67
64 100 900 0.001 5 2 0.0 4 OOM
32 100 900 0.001 5 2 0.0 8 OOM
64 100 900 0.001 5 2 0.0 8 OOM
64 100 900 0.001 7 2 0.0 8 OOM
64 100 900 0.001 5 3 0.0 8 OOM

Table 15: Polynormer Configurations and Accuracies for Actor dataset.

h LE GE LR LL GL WD H Accuracy (%)
32 100 900 0.001 5 2 0.0 2 42.05
32 100 900 0.01 5 2 0.0 2 40.15
32 100 900 0.0001 5 2 0.0 2 36.09
64 100 900 0.001 5 2 0.0 2 41.11
32 100 900 0.001 5 2 0.0 4 37.42
64 100 900 0.001 5 2 0.0 4 39.89
32 100 900 0.001 5 2 0.0 8 38.88
64 100 900 0.001 5 2 0.0 8 41.29
64 100 900 0.001 7 2 0.0 8 39.01
64 100 900 0.001 5 3 0.0 8 42.49

Table 16: Polynormer Configurations and Accuracies for OGBN-Arxiv dataset.

h LE GE LR LL GL WD H Accuracy (%)
32 100 900 0.001 5 2 0.0 2 70.56
32 100 900 0.01 5 2 0.0 2 70.86
32 100 900 0.0001 5 2 0.0 2 58.29
64 100 900 0.001 5 2 0.0 2 72.08
32 100 900 0.001 5 2 0.0 4 72.03
64 100 900 0.001 5 2 0.0 4 OOM
32 100 900 0.001 5 2 0.0 8 OOM
64 100 900 0.001 5 2 0.0 8 OOM
64 100 900 0.001 7 2 0.0 8 OOM
64 100 900 0.001 5 3 0.0 8 OOM

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

for homophilic datasets, while band-rejection or high-pass filtering performs better in heterophilic
scenarios.

F VISUAL INSIGHTS OF THE MULT-HEADED DECODER

In this section, we visualize how different heads of the decoder affect the performance of SSGNN.

For the Amazon-Computers dataset, employing a single head results in an accuracy of 90.5116 with
convergence achieved at the 849th epoch. Increasing to two heads improves the accuracy to 90.775
and reduces the convergence time to the 764th epoch. Finally, our configuration with four heads
achieves the best performance, with an accuracy of 91.28 and convergence at the 609th epoch.

Figures 19, 20, and 21 illustrate the filtering patterns learned for the 1-head, 2-head, and 4-
head configurations, respectively. The visualizations reveal that with four heads, the filters exhibit
substantial variation during the initial epochs (e.g., the 25th epoch). By the 250th epoch, the filters
start to align, and by the 575th epoch, they converge to similar patterns. This progression highlights
how multiple heads enable the model to learn diverse filtering patterns in the early stages, ultimately
accelerating convergence and improving overall performance.

G ADDITIONAL EXPERIMENTAL INSIGHTS (ABLATIONS)

Based on the valueable feedback received from the reviewers, we have added some additionla ex-
perimnets that showcase interesting insights. In Tables 19-24 bold values indicate better results.

G.1 EIGEN (SPECTRAL) DECOMPOSITION COST FOR SSGNN

Table 17 presents the pre-computation (eigen decomposition) time for the graphs. It is important
to note that this decomposition is performed only once. Consequently, the overall complexity of
SSGNN is better represented as the sum of its forward pass complexity and the decomposition cost
amortized over the number of uses in training and inference, rather than a direct summation of the
two.

Table 17: Decomposition Time

Dataset Time(s)
Cora 1.0162
Citeseer 1.8773
Photo 19.1895
Computer 112.5633
CS 234.1317
Physics 1954.2803
WikiCS 63.9295
Chameleon 3.0252
Squirrel 5.6846
roman-empire 491.1278
amazon-ratings 713.6977
minesweeper 38.3126
tolokers 59.3125
questions 6173.5986

G.2 TRAINING TIME COMPARISION OF SPECFORMER, POLYNORMER AND SSGNN

Table 18 compares the training time per epoch (in milliseconds) for Specformer, Polynormer and
SSGNN. The results indicate that SGGNN is significantly faster than Polynormer across all datasets.
However, on the chameleon and squirrel datasets Specformer is faster than SGGNN. This is because
these datasets have very few nodes (850 and 2223, respectively) and in such cases, Specformer’s
set-to-set approach is more efficient than SGGNN’s global context filtering approach. Nevertheless,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0
Eigenvalues

3.50

3.75

4.00

4.25

4.50

4.75

5.00

5.25

Am
pl

itu
de

Frequency Response

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.004

0.002

0.000

0.002

0.004

Graph Fourier Transform

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.006

0.004

0.002

0.000

0.002

0.004

Graph Convolution

Figure 7: For Chameleon dataset, (left) the learned filter; (middle) GFT output; (right) Graph con-
volution output

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Am
pl

itu
de

Frequency Response

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.004

0.002

0.000

0.002

0.004
Graph Fourier Transform

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.003

0.002

0.001

0.000

0.001

0.002

0.003

Graph Convolution

Figure 8: For Squirrel dataset, (left) the learned filter; (middle) GFT output; (right) Graph convolu-
tion output

0.0 0.5 1.0 1.5 2.0
Eigenvalues

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Am
pl

itu
de

Frequency Response

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.00075

0.00050

0.00025

0.00000

0.00025

0.00050

0.00075

0.00100
Graph Fourier Transform

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.00100

0.00075

0.00050

0.00025

0.00000

0.00025

0.00050

0.00075

Graph Convolution

Figure 9: For Tolokers dataset, (left) the learned filter; (middle) GFT output; (right) Graph convolu-
tion output

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.2

0.4

0.6

0.8

1.0

Am
pl

itu
de

Frequency Response

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.0004

0.0002

0.0000

0.0002

0.0004

Graph Fourier Transform

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.0015

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015

Graph Convolution

Figure 10: For Minesweeper dataset, (left) the learned filter; (middle) GFT output; (right) Graph
convolution output

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0

2

4

6

8

10

12

Am
pl

itu
de

Frequency Response

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.0015

0.0010

0.0005

0.0000

0.0005

0.0010
Graph Fourier Transform

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.006

0.004

0.002

0.000

0.002

0.004
Graph Convolution

Figure 11: For CS dataset, (left) the learned filter; (middle) GFT output; (right) Graph convolution
output

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0

10

20

30

40

50

60

70

80

Am
pl

itu
de

Frequency Response

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.0015

0.0010

0.0005

0.0000

0.0005

0.0010
Graph Fourier Transform

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.0125

0.0100

0.0075

0.0050

0.0025

0.0000

0.0025

0.0050

0.0075 Graph Convolution

Figure 12: For Computer dataset, (left) the learned filter; (middle) GFT output; (right) Graph con-
volution output

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.5

1.0

1.5

2.0

2.5

Am
pl

itu
de

Frequency Response

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.0015

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

Graph Fourier Transform

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.003

0.002

0.001

0.000

0.001

0.002

0.003

0.004

0.005
Graph Convolution

Figure 13: For Arxiv dataset, (left) the learned filter; (middle) GFT output; (right) Graph convolution
output

0.0 0.5 1.0 1.5 2.0
Eigenvalues

4.0

4.5

5.0

5.5

6.0

6.5

Am
pl

itu
de

Frequency Response

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015

0.0020
Graph Fourier Transform

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.003

0.002

0.001

0.000

0.001

0.002

0.003

0.004
Graph Convolution

Figure 14: For Photo dataset, (left) the learned filter; (middle) GFT output; (right) Graph convolution
output

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0

2

4

6

8

Am
pl

itu
de

Frequency Response

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.003

0.002

0.001

0.000

0.001

0.002

Graph Fourier Transform

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.004

0.002

0.000

0.002

0.004

Graph Convolution

Figure 15: For Citeseer dataset, (left) the learned filter; (middle) GFT output; (right) Graph convo-
lution output

0.0 0.5 1.0 1.5 2.0
Eigenvalues

2

3

4

5

6

7

8

9

Am
pl

itu
de

Frequency Response

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.002

0.001

0.000

0.001

0.002

0.003

Graph Fourier Transform

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.0075

0.0050

0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

Graph Convolution

Figure 16: For Cora dataset, (left) the learned filter; (middle) GFT output; (right) Graph convolution
output

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Am
pl

itu
de

Frequency Response

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.004

0.003

0.002

0.001

0.000

0.001

Graph Fourier Transform

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.0015

0.0010

0.0005

0.0000

0.0005

0.0010

Graph Convolution

Figure 17: For Penn dataset, (left) the learned filter; (middle) GFT output; (right) Graph convolution
output

0.0 0.5 1.0 1.5 2.0
Eigenvalues

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

5.25

Am
pl

itu
de

Frequency Response

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.0006

0.0004

0.0002

0.0000

0.0002

0.0004

0.0006

0.0008

Graph Fourier Transform

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.0006

0.0004

0.0002

0.0000

0.0002

0.0004

0.0006

0.0008

Graph Convolution

Figure 18: For Actor dataset, (left) the learned filter; (middle) GFT output; (right) Graph convolution
output

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Different Heads

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Different Heads

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Different Heads

Figure 19: Filter learnt by decoder for Amazon Computer - 1 head configuration. (left) 25th epoch,
(middle) 725th epoch, (right) 825th epoch

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Different Heads

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Different Heads

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Different Heads

Figure 20: Filter learnt by decoder for Amazon Computer - 2 head configuration. (left) 25th epoch,
(middle) 550th epoch, (right) 675th epoch

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Different Heads

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Different Heads

0.0 0.5 1.0 1.5 2.0
Eigenvalues

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Different Heads

Figure 21: Filter learnt by decoder for Amazon Computer - 4 head configuration. (left) 25th epoch,
(middle) 250th epoch, (right) 575th epoch

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

SGGNN outperforms Specformer in terms of speed on the remaining datasets and avoids the out-of-
memory (OOM) issues that Specformer experiences.

Table 18: Training Time (ms) per epoch for Specformer, Polynormer, and SSGNN (ours). Bold
values indicate lesser training time. We have also provided the number of parameters for each
model on respective datasets.

Type Dataset Specformer Polynormer SSGNN (Ours)

Homophily

Cora 1.33
(54K)

30.16
(1.8M)

1.13
(48.5K)

Citeseer 1.35
(126K)

33.20
(2.4M)

0.98
(121K)

CS 67.94
(226K)

23.48
(9.3M)

8.33
(220K)

Photo 5.74
(32K)

25.79
(7.8M)

1.47
(26.5K)

Computer 21.31
(33K)

19.13
(5.4M)

7.35
(27.2K)

Physics OOM
156.37
(4.0M)

37.83
(135K)

WikiCS 12.95
(17.6K)

69.39
(7.5M)

2.86
(12.3K)

ogbn-arxiv 30.31
(500K)

137.20
(393K)

29.31
(36.5K)

Heterophily

Chameleon 0.690
(82K)

28.71
(665K)

1.09
(77K)

Squirrel 0.697
(75K)

27.63
(2.0M)

1.12
(34K)

Actor 4.13
(37K)

30.08
(6.2M)

1.95
(32K)

Penn94 7.78
(338K)

41.44
(983K)

6.90
(157K)

roman-empire OOM
102.40
(9.9M)

20.48
(77K)

amazon-ratings OOM
127.11
(9.1M)

91.80
(690K)

minesweeper 20.03
(8.5K)

62.71
(10.5M)

6.13
(3K)

tolokers 28.58
(8.5K)

91.96
(7.9M)

8.35
(3K)

Questions OOM
360.22
(6.7M)

8.35
(3K)

G.3 IS SPECFORMER BETTER WITHOUT A TRANSFORMER?

As mentioned in our abstract, we observed that specformer’s performance improved without the
transformer block on some datasets. This insight emerged as a key finding from our detailed inves-
tigation of Specformer. To evaluate the role of Transformers in spectral filtering, we performed ab-
lation studies by removing the multi-head attention (MHA) and feedforward network (FFN) blocks,
retaining only the EigenEncoder and decoder. Interestingly, this simplified architecture achieved
results that were comparable to, or even better than, the Specformer, as shown in Table 19.

These findings highlight that Transformers contribute minimally to spectral domain performance,
reinforcing the claim made in the abstract. Furthermore, the simplified architecture fits efficiently
within the 24GB memory of an RTX 4090 GPU and delivers performance on par with state-of-the-
art models. In contrast, the original Specformer is unable to fit on datasets such as Roman Empire,
Amazon Ratings, and Questions.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 19: Results of Specformer, and Specformer-without-transformer. Specformer results are taken
directly from our paper. We report avg results (%) ± std over 10 runs. ROC AUC is reported for
Minesweeper, Tolokers, and Questions; accuracy is reported for the rest.

Type Dataset Specformer Specformer-w/o-transformer

Homophily

Computer 87.23± 0.52 89.00 ± 3.55
Photo 95.36 ± 0.32 95.32± 0.38
ogbn-arxiv 71.98± 0.33 71.99 ± 0.09
Citeseer 81.52± 0.90 81.84 ± 0.95
CS 95.60 ± 0.07 95.31± 0.33
Cora 88.50 ± 0.98 85.71± 1.33
WikiCS 84.55 ± 0.20 84.50± 0.46
Physics OOM 98.02 ± 0.38

Heterophily

Chameleon 36.11 ± 0.44 35.98± 2.04
Squirrel 37.66± 0.42 39.79 ± 0.98
Actor 42.01 ± 1.14 41.69± 1.30
Penn94 84.28± 0.32 84.51 ± 0.09
roman-empire OOM 80.78 ± 0.86
amazon-ratings OOM 52.45 ± 0.89
Minesweeper 93.95 ± 0.39 93.80± 0.46
Tolokers 85.01± 0.48 85.18 ± 0.67
Questions OOM 76.69 ± 1.24

G.4 EFFECT OF REGA ON SSGNN

To highlight the critical role of ReGA in SSGNN, we conduct an ablation study comparing the
performance of SSGNN without ReGA to our proposed SSGNN, which incorporates ReGA. The
results in Table 20 clearly demonstrate the impact of the ReGA module on performance across
various datasets. Removing ReGA leads to a notable drop in performance, with improvements of
2.91% on Chameleon, 2.64% on Squirrel, 2.26% on Amazon Ratings, 2.07% on Actor, 1.69% on
Cora, 1.39% on Penn94, 1.29% on Tolokers and 1.19% on Minesweeper when ReGA is included.
These consistent gains across diverse datasets highlight that ReGA is not only integral but also a key
contributor to SSGNN’s SOTA performance.

G.5 EFFECT OF RECENTERING (MEAN-SHIFT) ON REGA

To demonstrate the importance of recentering (Eq. 4), we conduct an ablation study where the mean
shift was removed, and the decoder’s output was directly passed to the scoring function. This re-
sulted in a performance degradation, demonstrating that mean shift effectively captures global con-
text and highlights the importance of interactions among eigenvalues. The results are shown in
Table 21.

G.6 EFFECT OF EIGEN-CORRECTION ON SPECFORMER AND SSGNN

We perform extensive ablations to evaluate the role of eigen-correction and determine whether the
performance improvement of SSGNN primarily stems from ReGA or eigen-correction. Specifically,
we trained Specformer with eigen-correction to ensure a fair comparison, as shown in Table 22.
The results demonstrate that even with eigen-correction, Specformer is consistently outperformed
by SSGNN across most datasets. Furthermore, we removed eigen-correction from SSGNN and
observed its performance, as presented in Table 23. Notably, SSGNN without eigen-correction
still outperformed Specformer in several datasets, confirming that SSGNN’s ReGA module plays a
critical role in its performance. Importantly, we observed that SSGNN gains significantly more from
eigen-correction than Specformer, indicating its ability to leverage this enhancement. These results
collectively demonstrate that while eigen-correction contributes to performance, SSGNN’s primary
advantage lies in its ReGA module, which drives its success independently of preprocessing tricks.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 20: Results of SSGNN-without-ReGA and SSGNN-with-ReGA (ours). We report avg results
(%) ± std over 10 runs. ROC AUC is reported for Minesweeper, Tolokers, and Questions; accuracy
is reported for the rest.

Type Dataset SSGNN-w/o-ReGA SSGNN-with-ReGA (Ours)

Homophily

Cora 87.18± 1.35 88.66 ± 0.17
Citeseer 81.79± 1.38 82.18 ± 0.21
Computer 90.72± 0.52 91.38 ± 0.38
Photo 94.96± 0.44 95.38 ± 0.03
CS 95.21± 0.41 96.30 ± 0.08
Physics 97.47± 0.40 98.33 ± 0.15
WikiCS 84.54± 0.33 85.16 ± 0.41
ogbn-arxiv 72.13 ± 0.08 72.10± 0.04

Heterophily

Chameleon 41.88± 2.39 43.10 ± 1.36
Squirrel 41.22± 1.05 42.31 ± 0.74
Actor 42.34± 1.11 43.22 ± 1.05
Penn94 83.17± 0.17 84.33 ± 0.001
roman-empire 83.19± 0.40 83.90 ± 1.21
amazon-ratings 51.30± 0.58 52.46 ± 0.70
Minesweeper 93.27± 0.38 94.38 ± 0.54
Tolokers 85.02± 0.89 86.37 ± 0.46
Questions 78.15± 1.10 79.16 ± 0.16

Table 21: Results of SSGNN and SSGNN-without-recentering. SSGNN results are taken di-
rectly from our paper. We report avg results (%) ± std over 10 runs. ROC AUC is reported for
Minesweeper, Tolokers, and Questions; accuracy is reported for the rest.

Type Dataset SSGNN-w/o-recentering SSGNN

Homophily

Cora 86.97± 0.0143 88.66 ± 0.17
Citeseer 81.20± 0.013 82.18 ± 0.21
Computer 90.18± 0.006 91.38 ± 0.38
Photo 94.63± 0.003 95.38 ± 0.03
CS 95.31± 0.002 96.30 ± 0.08
Physics 97.34± 0.007 98.33 ± 0.15
WikiCS 84.43± 0.005 85.16 ± 0.41
ogbn-arxiv 71.92± 0.0008 72.10 ± 0.04

Heterophily

Chameleon 42.22± 0.039 43.10 ± 1.36
Squirrel 41.42± 0.010 42.31 ± 0.74
Actor 41.13± 0.011 43.22 ± 1.05
Penn94 84.29± 0.001 84.33 ± 0.001
roman-empire 82.91± 0.004 83.90 ± 1.21
amazon-ratings 51.65± 0.005 52.46 ± 0.70
Minesweeper 93.63± 0.003 94.38 ± 0.54
Tolokers 84.84± 0.006 86.37 ± 0.46
Questions 78.09± 0.012 79.16 ± 0.16

G.7 COMPARISION WITH LIGHTWEIGHT SPECTRAL GNNS

We compare our proposed model SSGNN with lightweight spectral gnns like SGC (Wu et al. (2019))
and SSGC (Zhu & Koniusz (2021)). Table 24 demonstrates that SSGNN outperforms both SCG and
SSGC across all datasets except chameleon. The results of SGC and SSGC were obtained after
thorough hyper-parameter tuning. Table 25 shows the training time (in milliseconds) per epoch for
SCG, SSGC and SSGNN. SGC and SSGC demonstrate faster training times due to their reliance
on a simple two-layer MLP with precomputed aggregation. In contrast, SSGNN involves multiple
components, including the encoder, decoder, ReGA, and graph convolution layer, which require

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 22: Results of Specformer and SSGNN both with eigen-correction. SSGNN results are taken
directly from our paper as we apply eigen-correction on all datasets. We report avg results (%) ± std
over 10 runs. ROC AUC is reported for Minesweeper, Tolokers, and Questions; accuracy is reported
for the rest.

Type Dataset Specformer-with-eigen-corec. SSGNN (Ours)

Homophily

Cora 87.22± 1.43 88.66 ± 0.17
Citeseer 81.04± 1.18 82.18 ± 0.21
Computer 85.79± 9.54 91.38 ± 0.38
Photo 95.69 ± 0.235 95.38± 0.03
CS 95.40± 0.26 96.30 ± 0.08
Physics OOM 98.33 ± 0.15
WikiCS 84.54± 0.53 85.16 ± 0.41
ogbn-arxiv 72.07± 0.073 72.10 ± 0.04

Heterophily

Chameleon 36.12± 3.83 43.10 ± 1.36
Squirrel 35.56± 0.98 42.31 ± 0.74
Actor 41.44± 1.12 43.22 ± 1.05
Penn94 84.50 ± 0.22 84.33± 0.001
roman-empire OOM 83.90 ± 1.21
amazon-ratings OOM 52.46 ± 0.70
Minesweeper 93.25± 1.07 94.38 ± 0.54
Tolokers 84.85± 0.84 86.37 ± 0.46
Questions OOM 79.16 ± 0.16

Table 23: Results of Specformer and SSGNN both without eigen-correction. Specformer results are
taken directly from our paper. We report avg results (%) ± std over 10 runs. ROC AUC is reported
for Minesweeper, Tolokers, and Questions; accuracy is reported for the rest.

Type Dataset Specformer-w/o-eigen-corec. SSGNN-w/o-eigen-corec.

Homophily

Cora 88.50 ± 0.98 88.45± 1.48
Citeseer 81.52± 0.90 82.10 ± 1.39
Computer 87.23± 0.52 90.98 ± 0.34
Photo 95.36 ± 0.32 94.97± 0.41
CS 95.60 ± 0.07 95.24± 0.36
Physics OOM 97.83 ± 0.41
WikiCS 84.55± 0.20 85.04 ± 0.21
ogbn-arxiv 71.98± 0.33 72.08 ± 0.11

Heterophily

Chameleon 36.11± 0.44 42.05 ± 1.74
Squirrel 37.66± 0.42 42.15 ± 1.15
Actor 42.01± 1.14 42.65 ± 1.16
Penn94 84.28± 0.32 84.35 ± 0.12
roman-empire OOM 83.43 ± 0.56
amazon-ratings OOM 51.87 ± 0.53
Minesweeper 93.95 ± 0.39 93.78± 0.87
Tolokers 85.01± 0.48 85.43 ± 0.95
Questions OOM 78.47 ± 1.35

more computation time compared to SGC and SSGC’s minimal architecture. However, our findings
highlight a critical distinction: while SGC and SSGC perform well on homophilic graphs, their pre-
computation method, rooted in homophilic aggregation, hampers their effectiveness in heterophilic
settings. SSGNN, on the other hand, effectively models both homophilic and heterophilic patterns,
achieving a balanced tradeoff between accuracy, training speed, parameter efficiency, and computa-
tional demands.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 24: Results of SGC, SSGC, and SSGNN (ours)

Type Dataset SGC SSGC SSGNN (Ours)

Homophily

Cora 87.65± 0.021 88.34± 0.057 88.66 ± 0.17
Citeseer 81.51± 0.015 81.99± 0.034 82.18 ± 0.21
Computer 86.93± 0.011 87.71± 0.007 91.38 ± 0.38
Photo 92.44± 0.006 93.11± 0.005 95.38 ± 0.03
CS 93.23± 0.041 93.77± 0.052 96.30 ± 0.08
Physics 97.64± 0.016 98.11± 0.022 98.33 ± 0.15
WikiCS 74.19± 0.023 75.02± 0.018 85.16 ± 0.41
ogbn-arxiv 60.69± 0.027 61.04± 0.038 72.10 ± 0.04

Heterophily

Chameleon 44.84± 0.032 45.34 ± 0.029 43.10± 1.36
Squirrel 40.23± 0.031 40.42± 0.030 42.31 ± 0.74
Actor 26.43± 0.010 27.63± 0.008 43.22 ± 1.05
Penn94 80.01± 0.031 80.43± 0.043 84.33 ± 0.001
roman-empire 52.20± 0.037 53.08± 0.029 83.90 ± 1.21
amazon-ratings 43.83± 0.046 44.73± 0.032 52.46 ± 0.70
minesweeper 83.41± 0.042 84.22± 0.021 94.38 ± 0.54
tolokers 78.84± 0.019 79.35± 0.027 86.37 ± 0.46

Table 25: Training Time (ms) per epoch of SGC, SSGC, and SSGNN (ours). Bold values indicate
faster training time. We have also provided number of parameters for each model across all datasets.

Type Dataset SGC SSGC SSGNN (Ours)

Homophily

Cora 0.531
(11.5K)

0.526
(11.5K)

1.13
(48.5K)

Citeseer 0.495
(29.8K)

0.495
(29.8K)

0.98
(121K)

CS 0.602
(54.5K)

0.598
(54.5K)

8.33
(220K)

Photo 0.563
(6K)

0.560
(6K)

1.47
(26.5K)

Computer 0.584
(6.2K)

0.581
(6.2K)

7.35
(27.2K)

Physics 0.562
(67.3K)

0.558
(67.3K)

37.83
(135K)

WikiCS 0.559
(2.4K)

0.567
(2.4K)

2.86
(12.3K)

ogbn-arxiv 0.742
(1.3K)

0.647
(1.3K)

29.31
(36.5K)

Heterophily

Chameleon 0.690
(18.6k)

0.659
(18.6K)

1.09
(77K)

Squirrel 0.697
(16.7K)

0.761
(16.7K)

1.12
(34K)

Actor 0.695
(7.5K)

0.663
(7.5K)

1.95
(32K)

Penn94 0.635
(38.5K)

0.7394
(38.5K)

6.90
(157K)

roman-empire 0.656
(2.5K)

0.665
(2.5K)

20.48
(77K)

amazon-ratings 0.677
(2.4K)

0.678
(2.4K)

91.80
(690K)

minesweeper 0.905
(82)

0.919
(82)

6.13
(3K)

tolokers 0.655
(106)

0.658
(106)

8.35
(3K)

27

	Introduction
	Background and Related Works
	Methodology
	Spectral Encoder
	Decoder
	ReGA: Relative Gaussian Amplifier
	Graph Convolution
	Theoritical Analysis And Computational Complexity

	Experiments
	Learning Spectral Filters on Synthetic Data
	Node Classification
	Graph Classification and Regression
	Ablations
	Visualizations

	Conclusion
	DataSet Information
	Our Compute
	Stability Test against Purterbations.
	Polynormer Configurations
	Baseline Configurations
	Visual Insights of the Mult-headed Decoder
	Additional Experimental Insights (Ablations)
	Eigen (Spectral) Decomposition cost for SSGNN
	Training time comparision of Specformer, Polynormer and SSGNN
	Is Specformer better without a transformer?
	Effect of ReGA on SSGNN
	Effect of recentering (mean-shift) on ReGA
	Effect of Eigen-correction on Specformer and SSGNN
	Comparision with lightweight spectral GNNs

