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Abstract

Accurately modeling and predicting complex
dynamical systems, particularly those involving
force exchange and dissipation, is crucial for
applications ranging from fluid dynamics to
robotics, but presents significant challenges due
to the intricate interplay of geometric constraints
and energy transfer. This paper introduces Ge-
ometric Contact Flows (GFC), a novel framework
leveraging Riemannian and Contact geometry
as inductive biases to learn such systems. GCF
constructs a latent contact Hamiltonian model
encoding desirable properties like stability or
energy conservation. An ensemble of contacto-
morphisms then adapts this model to the target
dynamics while preserving these properties. This
ensemble allows for uncertainty-aware geodesics
that attract the system’s behavior toward the
data support, enabling robust generalization and
adaptation to unseen scenarios. Experiments
on learning dynamics for physical systems
and for controlling robots on interaction tasks
demonstrate the effectiveness of our approach.

1. Introduction
Modeling dynamical systems is fundamental to many
scientific and engineering disciplines, enabling the analysis
and prediction of system behaviors across diverse applica-
tions (Yu & Wang, 2024). This involves generating state–
space trajectories to forecast the system evolution. While
the increasing availability of data has accelerated the adop-
tion of data–driven methods, purely black-box models face
substantial challenges (Chen et al., 2018). As exemplified in
Fig. 1, a naive MLP network fails to capture the true dynam-
ics, leading to inaccurate predictions even within the data
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Figure 1. A dynamical system modeled via an MLP (left) and our
GCF (right). The first prediction (orange) starts within the data
support and the second (red) outside. The MLP fails to reconstruct
the dynamics and does not converge to the attractor, while GCF
provides reliable and physically–interpretable predictions due to
its contact Hamiltonian structure.

support (orange trajectory). This stems from the model’s
inability to encode the physical relationships between
variables, which are governed by an underlying energy
function. The model also extrapolates unreliably in data–
sparse regions (red trajectory), showing the lack of physical
interpretability and generalization capacity in black-box
approaches (Wang et al., 2020). To overcome these
limitations, physics–informed models incorporate physical
principles into the model architecture, to ensure consistency
with the underlying dynamics. These physical inductive
biases appear as geometric structures, such as symplectic
and contact manifolds (Blair & Blair, 2010), providing a
powerful differential geometric perspective that we exploit.

This paper introduces GEOMETRIC CONTACT FLOWS
(GFC), a novel framework leveraging Riemannian and con-
tact geometry as inductive biases to learn complex dynami-
cal systems. By integrating these geometries (Sec. 3) with
a learning model, GCF provides robust, interpretable, and
physically–grounded dynamics modeling, overcoming the
limitations of black-box methods. First, a baseline latent dy-
namics encodes desired properties about the target dynamics
(e.g., stability, energy conservation) via a contact structure
and an associated Riemannian metric. We then adapt this
baseline model to the target dynamics through a contact dif-
feomorphism (Sec. 4). We improve the GCF generalization
robustness via an ensemble of contact diffeomorphisms to
identify uncertain regions, allowing the model to adapt its
behavior accordingly. This is achieved by modifying the
Riemannian metric to incorporate uncertainty, resulting in
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Figure 2. Geometric Contact Flows: A state x(tk) in the
ambient space (M, η) is mapped to a corresponding state
z(tk) in the latent space (N , η′) via the ensemble of
contactomorphisms{φrn(T )}n∈[1,N ]. The uncertainty σz esti-
mated by the ensemble is depicted as a colored patch (dark and
light colors denote low and high uncertainty). The latent dynamics
is integrated by following a contact Hamiltonian model resulting
into the latent state z(tk+1), which is then projected back into the
ambient space as x(tk+1) via {φ−1

rn (T )}n∈[1,N ]. Each contacto-
morphism in the ensemble is a composition of transformations (Eq.
(10a)), where each transformation results from integrating the flow
of a contact Hamiltonian vector field (Eq. (11)).

geodesics that avoid uncertain regions. Furthermore, this
Riemannian metric reshaping principle is leveraged to avoid
unsafe regions or unexpected interactions (Sec. 5). Figure 2
illustrates the overall GCF architecture. We demonstrate
the effectiveness of GCF on two physical dynamical sys-
tem reconstruction experiments (spring mesh and quantum
system), on handwriting dynamics reconstruction using two
datasets (Lemme et al., 2015; Fabi et al., 2022), and on two
real-world robotic tasks (Sec. 6).

In summary, our contributions are: (1) Design of
latent contact Hamiltonian dynamics with desirable
properties that are transferred to the target dynamics;
(2) An expressive class of neural networks to represent
contactomorphisms, preserving the dynamic and
geometric properties of the latent dynamics while
adapting them to the observed data; (3) An ensemble
of contactomorphisms to quantify the uncertainty in
dynamics prediction; (4) A generalization mechanism
based on Riemannian geodesics and ensemble uncer-
tainty to guide the dynamical system’s behavior and (5)
Experiments including comparisons to state-of-the-art
approaches and a methodology to transform dynamic
data to canonical contact Hamiltonian coordinates.

2. Related Work
Diffeomorphisms Learning. Differential geometry gives
a formal framework to connect the target dynamics to a
simpler latent space representation through a diffeomor-
phism (Franks, 1971). A prevalent approach for learning

dynamical systems is to define a simple (stable) dynamical
system in a latent space and use a diffeomorphism to
map it to the target dynamics, while preserving key
latent properties like periodicity or convergence to an
attractor (Perrin & Schlehuber-Caissier, 2016; Rana et al.,
2020; Zhang et al., 2022). Extensions of this approach
incorporate contraction properties to ensure stronger
stability guarantees (Mohammadi et al., 2024; Jaffe et al.,
2024). However, these methods are limited to first-order
dynamical systems and cannot model complex behaviors
such as self-crossing trajectories, physical interactions,
and asymmetric obstacle avoidance. While Fichera &
Billard (2024) extend diffeomorphisms to purely dissipative
second-order dynamical systems, their approach remains
limited, as it cannot model dynamics with limit cycles or
non-zero curl components. We overcome these limitations
by introducing a contact Hamiltonian structure in the
diffeomorphisms to preserve complex latent system’s
physical properties, even for general second-order systems.

Riemannian Metric Learning. Inspired by the manifold
hypothesis (Bengio et al., 2013), latent models can access
and represent data manifolds in high-dimensional spaces.
This can be exploited to learn a Riemannian metric
from dynamic trajectories, subsequently represented as
geodesics (Arnold, 1966). This metric also distinguishes the
data support from the surrounding ambient space (Hauberg,
2018). Building on this, Beik-Mohammadi et al. (2023)
learned a Riemannian metric that takes large values at the
boundaries of the data manifold, confining the learned
dynamics to a safe, data–informed region. By adjusting
the metric, the system’s behavior can directly be adapted
to specific environments, such as navigating around
obstacles (Zhi et al., 2022). Building on this idea, we
estimate an uncertainty-based metric to guide the system’s
geodesics towards safe regions.

Hamiltonian Learning. The Hamiltonian framework
models second-order dynamics by describing how conjugate
variables (e.g., position and momentum) evolve through a
symplectic structure, which encodes energy conservation
geometrically. While many learning approaches parametrize
the energy function to model dynamical systems (Grey-
danus et al., 2019; Zhong et al., 2020a), or incorporate
a symplectic structure into neural networks (Jin et al.,
2020; Li et al., 2020; Tong et al., 2021), modeling systems
with friction and energy exchange requires extending the
Hamiltonian formulation. Several studies (Sosanya &
Greydanus, 2022; Zhong et al., 2020b; Chen et al., 2021)
incorporate forces and damping as external disturbances
on the symplectic manifold. However, these modifications
disrupt the symplectic structure and prevent us from
conserving the physical properties of the latent system
solely through the preservation of the geometric structure
via diffeomorphisms. Canizares et al. (2024) maintain the
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symplectic structure by doubling the manifold’s dimension
to represent non-conservative dynamics, at the cost of
introducing physically–meaningless variables. We approach
this problem by leveraging contact Hamiltonian dynamics.

Contact Hamiltonian Learning. Contact Hamiltonian
theory (Kholodenko, 2013) extends the symplectic manifold
by introducing a single, physically meaningful variable, to
account for energy dissipation and generation. This makes
contact geometry particularly well-suited for modeling non-
conservative systems (Bravetti et al., 2017). The term con-
tact refers to the geometric relationship between the dynam-
ical solutions and the energy constraints, where solutions

“touch” the constraints but do not violate them (Geiges,
2001). Zadra (2023) proposes to parametrize the contact
Hamiltonian with a neural network to model a broad class
of dynamical systems, but this is unstable beyond the
training data, hindering its generalization capabilities. Our
approach overcomes these limitations using the contact
Hamiltonian framework as an inductive bias to design con-
tact diffeomorphisms. These are later employed to design
uncertainty-aware geodesics for robust generalization.

3. Preliminaries
Vector Fields and 1-Forms. Let M be a smooth compact
manifold. The tangent space at x ∈ M, denoted TxM,
consists of all tangent vectors v to M at x. The tangent
bundle T M is the union of all tangent spaces. An element
of T M is a pair (x, v). The assignment of a specific tangent
vector to every point in the manifold is described by a
vector field X : M → T M. Given a function f : M → R,
the 1-form df : T M → R generalizes the gradient from
Euclidean spaces by measuring the variation of f in x
along a direction identified by v. The set of all the 1-forms
df ∀ (x, v) is the cotangent bundle T ∗M, the union of all
the cotangent spaces T ∗

x M. The contact and Riemannian
geometries provide two distinct mechanisms to associate
a 1-form to a vector field, thereby establishing different
connections between the tangent and cotangent bundles. In
simpler terms, these geometries link the same function f
to different vector fields X , as illustrated in Fig. 3.

Riemannian Geometry. A Riemannian metric g : T M×
T M → R is a smooth, symmetric, and positive-definite
bilinear map that defines an inner product on the tangent
spaces. The length of a smooth curve x(t) : [t0, t1] → M
w.r.t. the metric g is l =

∫ t1
t0

√
g(ẋ(t), ẋ(t))dt, where

ẋ(t) ∈ Tx(t)M is the vector tangent to the curve at x(t).
The curve minimizing this length between two points x(t0)
and x(t1) on M is called a geodesic. Geodesics generalize
straight lines in Euclidean space to curved spaces, repre-
senting the shortest paths in the geometry induced by g.
The geometric structure g(ẋ(t), ẋ(t)) does not need to be
symmetric with respect to ẋ to measure curve lengths. In

q1q2

f

q1q2

f

Figure 3. The same scalar function f , via its 1-form df , yields two
distinct vector fields (shown as streamlines) under different geo-
metric structures. In Riemannian geometry (left), the streamlines
correspond to the gradient flow, following the direction of steepest
ascent or descent of f , acting as a potential. In contrast, in contact
geometry (right), the function f describes an energy, and the angle
between the streamlines and the level curves of f , depends on the
energy dissipation in the dynamics, governed by Eq. (8).

such cases, it defines a Finslerian structure, generalizing
the Riemannian structure (Chern, 1996). The Riemannian
metric g establishes a correspondence between a differential
1-form df and a vector field Xf through the relation,

df(X) = g(Xf , X), ∀X ∈ T M. (1)

The vector field Xf is orthogonal to the level sets of f ,
which can be interpreted as a potential function (Fig. 3).

Contact Geometry. A 1-form η on a (2d+1)-dimensional
manifold M is called a contact form if it satisfies the maxi-
mal non-integrability condition (Geiges, 2008). This means
that the wedge product of η with the d-times repeated wedge
product of its exterior derivative dη, is non-zero everywhere
on M: η ∧ (dη)d ̸= 0. A contact manifold is then the pair
(M, η). Given the 1-form df , the contact form η uniquely
determines a vector field Xf through the relation,

df = dη(Xf , X)− LXf
η(X), ∀ X in T M, (2)

where LXf
denotes the Lie derivative along Xf (Geiges,

2001). The non-integrability condition ensures that η
imposes nonholonomic constraints, restricting the allowable
directions of motion without confining the dynamics to a
submanifold. Consequently, unlike the symplectic case,
motion is not constrained to the level sets of f (Cruz,
2018). In both symplectic and contact geometry, f is
typically referred to as the Hamiltonian H and interpreted
as energy, with the associated vector field written as
XH . Consequently, while symplectic geometry is limited
to describing conservative dynamical systems, contact
geometry offers a more general framework for modeling a
broader range of dynamical behaviors (Bravetti et al., 2017).

The integral flow x(t), generated by the vector field XH

from an initial point x0, defines a one-parameter family
of transformations φ(t), mapping x0 → x(t) within the
contact manifold (M, η):

x(t) = φ(t)(x0) : [0, T ] ⊂ R → (M, η). (3)
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Each transformation φ(t) : (M, η) → (M, η′) is smooth,
invertible, and preserves the contact structure up to a
conformal factor, i.e., φ∗η = aη′, a ∈ R (Zadra, 2023).
So, φ(t) constitutes a one-parameter family of contact-
preserving diffeomorphisms, a.k.a. contactomorphisms.
More generally, a contactomorphism maps between distinct
contact manifolds φ : (M, η) → (M, η′). In GCFs,
contactomorphisms are employed both to represent integral
dynamic contact flows x(t) within a single manifold and
as a mapping between ambient and latent spaces.

Contact Flows as Riemannian Geodesics. Notably, the
dynamic contact flow x(t) on the contact manifold (M, η)
can be interpreted as a reparametrization of a geodesic on
an augmented space–time Riemannian manifold (R×R, g),
where M = T ∗R×R (Abraham & Marsden, 2008). In this
setting, we denote the state variables as q ∈ R, q̇ ∈ TqR,
p ∈ T ∗

q R, and s ∈ R, with x = {q, p, s}. This means
that the augmented Riemannian manifold is equipped with
a cotangent bundle T ∗R endowed with a contact struc-
ture. This connection between the contact and the Rieman-
nian geometries arises from Maupertuis’ principle (López
& Martı́nez, 2000), which first adopts a variational perspec-
tive by expressing the contact flow x(t) as the solution of a
dynamic optimization problem,

min
q,p,s

∫ t1

t0

p(t) · q̇(t)−H(q(t), p(t), s(t)) dt. (4)

This formulation, defined on T ∗R × R, can be trans-
ferred to T R × R by mapping the 1-form p to vector
q̇ via the Riemannian connection in Eq. (1), resulting in
minq̇

∫ t1
t0

L(q(t), q̇(t)) dt, where L is the transformed cost
functional, i.e., the Lagrangian. This dynamic optimization
can be reparametrized using s as the independent variable,
with ds =

√
H(q, p, s)−HV (q) dt, where HV denotes the

potential energy component of the Hamiltonian (Abraham
& Marsden, 2008; Udrişte, 2000). In this setting, s plays
the role of arc-length to be minimized on the Riemannian
manifold and corresponds to the action associated with the
Lagrangian L. The problem then reduces to a geodesic
computation on R× R,

min
q̇

∫ s1

s0

√
ĝ(q̇(s), q̇(s), s) ds. (5)

The modified Riemannian metric ĝ is induced by the Hamil-
tonian H and depends on the variable s. This dependence
reflects how the shape of trajectories is affected by their
own length, capturing the influence of non-conservative
forces on the system’s evolution. By modifying the metric ĝ,
one can alter the system’s dynamics, providing a geometric
approach for controlling or shaping its trajectories (Udrişte,
2003; López & Martı́nez, 2000). The resulting geodesics
lie on R × R, as they depend on the reference level of s.
They can be projected onto the configuration space R by

fixing this value (Udrişte, 2000). In symplectic geometry
for conservative systems, s remains constant and is not a
dynamic variable. In contrast, contact geometry captures
energy dissipation or external input through the evolution
of s. Our proposed Geometric Contact Flows build on this
dual perspective , modeling the dynamics by harnessing
the contact interpretation while generalizing it through the
Riemannian perspective. Further details on these concepts,
along with a broader comparison between contact and
symplectic structures, are provided in App. A.

4. Contactomorphisms Learning
Latent Contact Hamiltonian Dynamics. Let (N , η′)
be a (2d+1)-dimensional contact manifold, locally de-
fined by a set of canonical coordinates z = {q,p, s}, with
q = {q1, . . . qd}, p = {p1, . . . pd}. In classical mechan-
ics, the conjugate variables qi and pi respectively represent
position and momentum, while s is the Lagrangian action.
As detailed in Sec. 3, the contact manifold can be inter-
preted as the augmented cotangent bundle of a Riemannian
manifold RN , i.e., N := T ∗RN × R, with q ∈ RN ,
{q,p} ∈ T ∗RN and s ∈ R. A contact Hamiltonian dy-
namics on the latent space (N , η′) is defined via a contact
Hamiltonian function Hg(z), generating a flow φg such that,

z(t) = φg(t)(z(0)), t ∈ [0, t1]. (6)

The choice of Hg(z) induces a metric ĝ on RN , making
φg follow its geodesics.

We propose to preserve the properties of the dynamical
system Hg in the ambient space through a suitable coordi-
nates change, i.e., via a contactomorphism. The choice of
the latent dynamics does not affect the reconstruction of
the target dynamics on the data support, but instead serves
as an inductive bias to guide the generalization. Possible
choices for Hg are,

HgA =
1

2
p⊤p+

1

2
q⊤q, (7a)

HgB =
1

2
p⊤p+

1

2
q⊤q+ s, (7b)

HgC =

(
1

2
p⊤p+

1

2
q⊤q+ s

)
s2. (7c)

For instance, to ensure periodic orbits in the target dynamics,
we can use the simple harmonic oscillator (7a), as our
latent dynamics. Other dynamical systems, such as the
example shown in Fig. 1, naturally converge to an attractor.
This behavior can be induced in the latent dynamics by
incorporating a damping term. We use the dependence
of the contact Hamiltonian on the Lagrangian action s,
to govern the variation of the system’s total energy. This
relationship is expressed as follows (Bravetti et al., 2017),

H(t) = H(0) e
∫ t
0
∂H/∂s dτ , (8)
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where ∂H/∂s represents the damping coefficient of the dy-
namics. Consequently, the +s term in Eq. 7b ensures the de-
pletion of the system energy and the convergence toward the
attractor {q,p, s} = 0. Instead, the dynamics (7c) is suit-
able for safety-critical scenarios requiring stopping the sys-
tem near unsafe regions of the state space (N , η′). By scal-
ing all terms of the contact Hamiltonian with s, the energy
H can reach zero while q and p remain non-zero, stopping
the system before it reaches the attractor. Unsafe regions are
here characterized by low values of the Lagrangian action s.

Contactomorphisms Design. While diffeomorphisms are
commonly used to align latent and target dynamics in first-
order systems, they fail to preserve the intrinsic structure of
second-order systems, in particular the interplay between
conjugate variables encoded in the contact form. To address
this, we leverage contactomorphisms, which preserve η′ and
thus maintain the latent space structure. The practical impli-
cations of this inductive bias are examined in the ablation
study presented in App. C.1. A contactomorphism φ trans-
forms coordinates z from the latent space (N , η′) into a new
set of coordinates x that describe the ambient space (M, η).
As described in Sec. 3, we model this transformation as the
flow φr(t) of a contact Hamiltonian system evaluated at
time t = T ,

z = φr(T )(x), x = φ−1
r (T )(z). (9)

For expressivity, we implement this contact transformation
as a composition of K sequential parametrized networks,

φr(T ) = φrθK
(τ) ◦ · · · ◦ φrθk

(τ) ◦ · · · ◦ φrθ1
(τ), (10a)

φ−1
r (T ) = φ−1

rθ1
(τ) ◦ · · · ◦ φ−1

rθk
(τ) ◦ · · · ◦ φ−1

rθK
(τ).

(10b)

Each individual contactomorphism φrθk
(τ) updates the ini-

tial point x by integrating, for a duration τ , the vector field
associated to the contact Hamiltonian Hrθk

, defined as,

Hrθk
=

1

2
p⊤Mθk(p)p+ Vθk(q) + Fθk(q)s, (11)

where Mθk(p), Vθk(q), Fθk(q) are scalar functions of the
conjugate variables, parametrized by random Fourier fea-
tures networks (Rahimi & Recht, 2007). The structure of
Hrθk

and the choice of network architecture are elaborated
in the ablation studies of App. C.3. The integration of the
associated vector field is performed using a contact split-
ting integrator (Zadra, 2023), as detailed in App. B.2. Our
architecture is analytically invertible, minimizing the com-
putational cost of computing φ−1

rθk
(τ).

Training a contactomorphism φr(T ), given a dataset of
B trajectories from the target dynamics {x̄b(t), t ∈
[0, tb]}b∈[1,B], involves the following steps: (1) We map
the training trajectories to their corresponding latent tra-
jectories {z̄b(t), t ∈ [0, tb]}b∈[1,B] via the contactomor-
phism φr(T ); (2) Starting from the initial latent states

{z̄b(0)}b∈[1,B], we integrate the latent dynamics to obtain
the predicted latent trajectories {zb(t), t ∈ [0, tb]}b∈[1,B];
(3) We then map the predicted latent trajectories to the am-
bient space using the inverse contactomorphism φ−1

r (T ),
yielding {xb(t), t ∈ [0, tb]}b∈[1,B]; (4) Finally, we compute
the estimation error in both spaces using the average loss,

ℓ =
1

B

B∑
b=1

1

tb

tb∑
t=0

(
wx

∥∥x̄b(t)− xb(t)
∥∥2
2
+

wz

∥∥z̄b(t)− zb(t)
∥∥2
2

)
,

(12)

where wx and wz are weights balancing the ambient and
latent space components. Typically, wx ≫ wz , as we focus
on capturing the ambient dynamics. However, the latent
error term acts as a useful regularizer, as shown in App. C.2.
Algorithm 1 in App. B.1 outlines the training phase.

After training, predicting the ambient dynamics from an
initial point x0 involves mapping it to the latent space via
the learned contactomorphism φr, integrating the latent dy-
namics φg , and then mapping the result back to the ambient
space via the inverse contactomorphism φ−1

r . Importantly,
integrating the latent dynamics does not require evaluating
the learned contactomorphism at every step. This enables ef-
ficient long-horizon predictions using only a single forward
and inverse mapping. Formally, this process is expressed as
a composition of contact Hamiltonian flows,

x(t) = φ−1
r (T ) ◦ φg(t) ◦ φr(T )(x0), t ∈ [0, t1]. (13)

Details on the physical interpretation of this composition
are provided in App. B.4.

5. Contactomorphisms Generalization
Ensemble of contactomorphisms. Relying on a single
contactomorphism to map the latent dynamics to the ambi-
ent space neglects predictive uncertainty. While predictions
may closely align with the training trajectories on the data
manifold, extrapolation in data-sparse regions tends to be
unreliable. To quantify uncertainty and identify the bound-
aries of the data manifold, we propose to use an ensemble
of N contactomorphisms {φrn(T )}n∈[1,N ], each randomly
initialized and trained on the same dataset (Syrota et al.,
2024). In data-rich regions, the predictions from the ensem-
ble closely match, while in regions with limited data, the
predictions diverge, resulting in high model uncertainty.

The ensemble-based uncertainty quantification, whether in
ambient or latent space, is computed by transforming the
starting point of the trajectories using the ensemble of con-
tactomorphisms to obtain N points:

{z}n∈[1,N ] = {φrn(T )}n∈[1,N ](x), (14a)

{x}n∈[1,N ] = {φ−1
rn (T )}n∈[1,N ](z). (14b)
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Figure 4. Optimal control problem (18) in both latent (left) and
ambient spaces (right). The learned dynamics ż = ZHg is ex-
tended by the control input u (represented by the golden arrow) to
minimize uncertainty and quickly converge to the data support.

The average prediction is computed and mapped back to
the original space to estimate the predictive variance of the
resulting N points,

σx = σ{φ−1
rn (T )}n∈[1,N ]

(
µ{z}n∈[1,N ]

)
, (15a)

σz = σ{φrn(T )}n∈[1,N ]

(
µ{x}n∈[1,N ]

)
, (15b)

where µ and σ denote the mean and variance of the pre-
dictions. Note that this computation requires all contacto-
morphisms to share the same latent space. We ensure this
by jointly training the ensemble as follows: (1) Transform
all B training trajectories into N × B latent trajectories
{z̄nb (t), t ∈ [0, tb]}n∈[1,N ]

b∈[1,B] using all N contactomorphisms
φrn ; (2) Integrate the latent dynamics starting from the
N × B initial latent states {z̄nb (0)}

n∈[1,N ]
b∈[1,B] to compute the

predicted latent trajectories {znb (t), t ∈ [0, tb]}n∈[1,N ]
b∈[1,B] ; (3)

Randomly select N inverse maps with replacement from the
ensemble to compute the ambient predictions {xn

b (t), t ∈
[0, tb]}n∈[1,N ]

b∈[1,B] ; (4) Compute the average loss over the N

contactomorphisms as ℓe = 1
N

∑N
n=1 ℓ, with ℓ defined as in

Eq. 12. Algorithm 2 in App. B.1 summarizes this process.

Designing uncertainty-aware geodesics. We leverage
the ensemble uncertainty to drive the system dynamics to
remain within or converge toward well-informed, data-rich
regions. As discussed in Sec. 3, the contact Hamiltonian
dynamics z(t) on the latent space (N , η′), governed by the
Hamiltonian function Hg, can be interpreted as geodesics
q(s) on the augmented Riemannian manifold (RN × R, ĝ)
with respect to the metric ĝ in Eq. (5). To guide the dynamics
away from uncertain regions, we propose to reshape ĝ using
the ensemble uncertainty σz. This increases the traversal
cost outside the data manifold, thereby steering the latent
dynamics away from data-poor regions. The geodesic q(s)
is obtained by solving the optimization problem,

min
q̇

∫ s1

s0

(√
ĝ(q̇, q̇, s) + σz(q, q̇, s)

)
ds, (16)

where canonical coordinates z = {q,p, s} ∈ T ∗RN × R
are converted to {q, q̇, s} ∈ T RN ×R. This corresponds to
computing a geodesic with respect to an augmented metric

ĝ′ which is generally Finslerian (see Sec. 3), due to its poten-
tial asymmetry in q̇. To solve this, we bring back the opti-
mization to the contact manifold M = T ∗RN by adopting
the geodesic interpretation of dynamical systems (Udriste &
Udriste, 2000). This involves the reformulation of the prob-
lem as a dynamic optimization under a time reparametriza-
tion (López & Martı́nez, 2000). Specifically, we define a
perturbation u to the velocity field of the learned geodesic
q̇g under metric ĝ, resulting in a perturbed direction q̇g′

under a modified metric ĝ′,

min
u

∫ t1

t0

(
σz(qg′ , q̇g′ , s) + ∥u(t)∥2

)
dt,

s.t. q̇g′ = q̇g + u(t).

(17)

The control term u locally deforms the trajectory to avoid
uncertain regions. Since the learned geodesic flow is en-
coded by the contact Hamiltonian vector field ZHg

, we lift
the optimization to the latent state space via the Riemannian
connection in Eq. (1),

min
u

∫ t1

t0

(
σ2
z(z(t)) + ∥u(t)∥2

)
dt

s.t. ż(t) = ZHg
(z(t)) + u(t).

(18)

In regions where the uncertainty is low (i.e., σz ≈ 0), the
control action vanishes (i.e., u ≈ 0), and the resulting
latent dynamics ż(t) = ZHg (z) are unchanged, correspond-
ing to the original latent metric, i.e., ĝ′ ≈ ĝ. Conversely,
in high-uncertainty regions, the control action u modifies
the dynamics by bending the latent trajectories to guide
them away from data-poor regions. Figure 4 illustrates the
optimal control problem (18) in the reconstruction of the
damped harmonic oscillator dynamics (Figure 1).

Designing safety-aware geodesics. The optimization
problem (18) can be extended with other types of energy
functions aimed at penalizing the crossing of unsafe re-
gions. To illustrate this, consider learning a contact Hamil-
tonian dynamics for a controlled physical system. Here,
an unsafe region can be described by obstacles in the
system workspace. Formally, an obstacle in the position
space RN is represented by a set Υq consisting of posi-
tions qo ∈ Υq, uniformly sampled from the spatial distri-
bution of points occupied by the obstacle. This set ex-
tends to the contact ambient space as Υx, where each
state xo = {qo,p, s} ∈ Υx ⊂ (M, η) is obtained by
augmenting qo with the momentum p and action variable
s that the dynamical system can acquire. This formula-
tion implies that an obstacle at qo cannot be traversed for
any combination of p and s. The sampled points xo are
mapped to the latent space (N , η′) via the ensemble, as
Υz = {φrn(T )(xo)}n∈[1,N ]. In this latent space, the en-
ergy assigned to each bin is determined by the density of
mapped points it contains. This energy distribution is then
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incorporated into the optimization (18) as a penalty term to
enforce obstacle avoidance,

min
u(·)

∫ t1

t0

(
EΥ(z(t)) + σ2

z(z(t)) + ∥u(t)∥2
)
dt

s.t. ż(t) = ZHg
(z(t)) + u(t),

(19)

where EΥ(z(t)) denotes the energy term associated with
the unsafe region, i.e., the latent space obstacle distribution.
This ensures that unsafe latent space regions are associated
with high energy values, which penalize trajectories that
cross these regions, resulting in e.g., obstacle avoidance.

6. Results
We test our approach on established baselines that incor-
porate inductive biases in learning dynamical systems. Eu-
clideanizing Flows (EF) (Rana et al., 2020) use diffeomor-
phisms to encode desirable properties like periodicity or
target convergence. Neural Contractive Dynamical Systems
(NCDS) (Mohammadi et al., 2024) improve upon EF by
enforcing global contraction. Hamiltonian Neural Networks
(HNN) (Greydanus et al., 2019) embed physical structure by
modeling systems with Hamiltonian dynamics. Dissipative
Hamiltonian Neural Networks (DHNN) (Sosanya & Grey-
danus, 2022) extend HNNs to non-conservative systems by
introducing dissipation. Details on the experimental setup
are provided in App. D. Scalability across target dimen-
sions and model sizes is evaluated in App. E.5. In classical
mechanics, the state of physical systems is typically de-
scribed by positions and velocities {q, q̇}, which we convert
to canonical coordinates {q, p, s}, required in the contact
Hamiltonian formulation (App. D.3). The Lagrangian action
s is not directly observable but it is estimated by comparing
the system’s behavior as described by Maupertuis’ prin-
ciple with that derived from Noether’s theorem, ensuring
consistency between the two representations.

Spring Mesh Dynamics Reconstruction. We consider
a 60-dimensional dataset (Otness et al., 2021) describing
the dynamics of a 2D square grid of nodes connected by
springs. The interaction among multiple springs results in
complex, large-scale deformations and oscillations. Pre-
dicting the motion of mesh nodes closely resembles finite
element modeling of material deformation. Table 1 summa-
rizes the dynamics reconstruction results, reporting the Dy-
namic Time Warping Distance (DTWD) (Berndt & Clifford,
1994) across 20 trials on systems simulated for 8 seconds
from varying initial conditions. Our GCF model achieves
a 57% reduction in reconstruction error. Experimental set-
tings and predicted dynamics plots are in given in App. E.1.

Table 1. Reconstruction error via DTWD on the spring mesh
GCF DHNN HNN EF NCDS MLP

0.50±.19 1.24±.62 1.49±.74 30.9±3.3 24.9±2.6 1.71±.56

Quantum Dynamics Reconstruction. A single-mode
bosonic system is a quantum mechanical oscillator whose
deterministic dynamics are governed by a contact Hamil-
tonian operator. The evolution of its wave function is de-
scribed by the quantum operators q̂ and p̂, representing the
system’s stochastic position and momentum, along with the
quantum phase s, which governs interference between wave
components. We conducted experiments on 20 synthetic sys-
tems with varying parameters, reconstructing the dynamics
of the state variables’ expected values using the GCF model
and baseline methods, over an 8 seconds horizon. HNN
and DHNN are inapplicable here due to their limitation to
even-dimensional phase spaces, which prevents modeling
the additional odd variable s. Results are summarized in
Table 2, showing that GCF achieves a 60% reduction in re-
construction error. Further details are provided in App. E.2.

Table 2. Reconstruction error via DTWD on the quantum system
GCF DHNN HNN EF NCDS MLP

0.29±0.04 N/A N/A 0.72±0.12 0.70±0.11 0.41±0.06

Handwriting Datasets. The LASA (Lemme et al., 2015)
and DigiLeTs (Fabi et al., 2022) datasets are widely used
benchmarks for motion generation, featuring 2D handwrit-
ten trajectories. LASA involves simpler, first-order dynam-
ics, while DigiLeTs includes more complex, second-order
motions with self-crossing paths. The learned dynamics
are treated as a skill that an actuated system must not only
imitate but also generalize and adapt to new scenarios. In
these tasks, the dynamics converge to a target, so we exclude
HNN, which models only periodic behaviors. Figure 5 com-
pares the remanent approaches on two characters. EF and
NCDS model a position-dependent vector field, enabling
flow lines to be plotted in the background. In contrast,
DHNN includes position and momentum, and GCF incor-
porates the Lagrangian action, making global flow lines
infeasible. Instead, circular patches depict local dynamics
around trajectory points with fixed extra-variable values.
GCF’s patches represent the model uncertainty.

Table 3. Reconstruction error via DTWD on handwriting datasets
Character EF NCDS DHNN GCF

0.43±0.10 0.44±0.14 0.65±0.15 0.44±0.12

2.22±0.03 2.79±0.09 0.82±0.22 0.70±0.36

EF and NCDS are limited to first-order dynamics and cannot
capture self-crossing trajectories. DHNN lacks convergence
guarantees, often failing to reach the target and to generalize
beyond the training data. In contrast, GCF accurately recon-
structs the dynamics, converges to the data manifold, and
reduces uncertainty, as shown by streamlines avoiding high-
uncertainty areas. Table 3 reports the reconstruction error
of the position dynamics. GCF achieves performance com-
parable to EF on LASA, while significantly outperforming
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Figure 5. Results on the handwriting datasets: Reconstruction and generalization of the LEAF 2 character from the LASA dataset and the
ELLE character from the DigiLeTs dataset. From top to bottom rows, EF, NCDS, DHNN and GCF methods. Demonstrations and model
predictions are shown as dashed and solid green lines.

other methods on DigiLeTs. Comprehensive results with
additional characters are provided in App. E.3. Figure 6
shows generalization tests on two characters, with predic-
tions initialized from states outside the training distribution.
A grid of points in the position space is used, with other state
variables set to zero. The violin plots provide a statistical
analysis of these predictions. Each point, representing a pre-
dicted trajectory, is computed as the ratio between time steps
spent within the data manifold (in the position space) and
the total time steps. Due to the lack of constraints outside
the data manifold, only few DHNN trajectories converge, as

EF NCDS DHNN GCF0.00
0.25
0.50
0.75
1.00

EF NCDS DHNN GCF0.00
0.25
0.50
0.75
1.00

Figure 6. Generalization results for the LEAF 2 (left) and ELLE

(right) characters. The violin plots depict the distribution of conver-
gence rates for predictions initialized from a grid of points in the
state space. While NCDS performs well on LEAF 2, it struggles
with ELLE. In contrast, GCF shows greater reliability, achieving
the highest average convergence ratio and lowest variance.

shown by the high proportion of points with a ratio of 0. EF
ensures asymptotic stability, guiding trajectories to the target
but not toward the data manifold, resulting in uniform ratio
distributions. NCDS performs better with contractive be-
havior, but neither method supports second-order dynamics.
In contrast, GCF shows greater reliability, ensuring all the
dynamics predictions for the two characters converge to the
data manifold and spend most of their time within it. Table 4
reports quantitative metrics for the two characters. Figure 7
illustrates how GCF adapts to unseen scenarios. Obsta-
cles, absent during training and representing unsafe regions,
are depicted as red points in the position space. Obstacle-
induced energy steers the system dynamics away from col-
lisions, as shown by higher cost and deflected streamlines
near the obstacle. The right plot compares distances to the
data support and the obstacle. The former distance peaks
near the obstacle, then drops, marking exit and reentry into

Table 4. Generalization measured as average ratio of convergence
Character EF NCDS DHNN GCF

0.49±0.37 0.94±0.19 0.18±0.13 0.69±0.19

0.61±0.30 0.54±0.35 0.17±0.15 0.66±0.12
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the data region. Appendix E.3 provides extended results on
additional characters and an ablation study on replacing the
contactomorphism ensemble with a single map.
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Figure 7. Obstacle avoidance by LEAF 2 (red dot as obstacle).

Figure 8. Snapshots of the unloaded (top) and loaded (bottom)
WRAP-AND-PULL robotic task, showing rope pickup, wrapping
around a drum, and pulling as the robot moves forward.

WRAP-AND-PULL Robotic Task. In robotics, learning
interaction tasks from demonstrations is more challenging
than learning free-space motions (Scherzinger et al., 2019;
Le et al., 2021). GCF’s ability to model energy behav-
iors and flexibly generalize to unforeseen states, makes it
well-suited for online robot control in interaction tasks. We
apply GCF to two robotics tasks: A WRAP-AND-PULL task
(detailed below) and a realistic DISHWASHER LOADING
task (Simmoteit et al., 2025) (See App. E.4). The first task,
a proof of concept, showcases all the robot capabilities en-
abled by the framework. Three kinesthetic demonstrations
were recorded for training, in which the robot grasps a rope,
wraps it around a drum, and pulls it along a specific tra-
jectory (see Fig. 8). The ensemble generates a reference
dynamic trajectory using the measured robot state, which
is tracked by a low-level Cartesian impedance controller.
Setup details are in App. D.1.

Our method is implemented using two different latent dy-
namics: The stable (7b) and the safe (7c) formulations. Ta-
ble 5 reports the reproduction accuracy for all methods
across five trials. The results indicate that the different la-
tent dynamics do not affect the GCF’s ability to learn and
reproduce the task. In contrast, EF, NCDS and DHNN fail
to achieve satisfactory results. EF struggles to model the
wrapping phase of the task, while DHNN lacks robustness to

Table 5. Reproduction error (DTWD) in WRAP-AND-PULL task.
EF NCDS DHNN GCF Safe GCF Stable

1.79±0.04 3.37±0.12 4.25±0.68 0.62±0.22 0.61±0.25

Table 6. Energy Consumption (J) in the WRAP-AND-PULL Task:
Comparison of baselines with stable and safe GCF. EF, NCDS and
DHNN values are included despite task failure.
Scenario EF* NCDS* DHNN* GCF Safe GCF St.
Unloaded 0.54±.04 1.52±.18 1.01±.42 0.60±.07 0.59±.07

Loaded 0.55±.06 2.73±.43 2.83±.58 0.63±.02 0.81±.09

∆ 0.01±.07 1.21±.47 1.82±.72 0.03±.07 0.22±.11

handle deviations from training states. We test GCF’s gener-
alization to unseen energy exchanges by adding a load to the
WRAP-AND-PULL task. Table 6 shows energy expenditure
for both loaded and unloaded cases. The GCF implementa-
tion with stable latent dynamics reproduces the trajectory
learned in the unloaded scenario, even in the loaded case,
by consuming more energy. In contrast, the safe GCF vari-
ant halts motion when the Lagrangian action s approaches
zero. As shown in Fig.9, the added load increases energy
demands, causing s to vanish before task completion. This
triggers an early stop, preventing energy use beyond what
was observed during training. This mechanism enables
energy-based task completion and acts as a safety stop in the
presence of unexpected interactions, as further demonstrated
in the DISHWASHER LOADING task. For details on that task
and additional analysis of the robot’s robustness to physical
disturbances in this proof-of-concept, see App.E.4. A full
video of the robot experiments, including adaptability to
unseen obstacles, and the repository implementing the GCF
framework are available at https://sites.google.
com/view/geometric-contact-flows.

Unloaded Pull
Loaded Pull
Demonstrations
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Figure 9. Position and Lagrangian action trajectories (left and right
plots) of the WRAP-AND-PULL task, for both the unloaded and
loaded scenarios, using safe GCF.

7. Conclusion
Geometric Contact Flows (GCF) model dynamical systems
leveraging geometric inductive biases. It starts with a latent
dynamics and uses contactomorphisms to adapt it while pre-
serving its key features. To assess uncertainty, GCF employs
an ensemble of contactomorphisms to ensure convergence
to the data support. GCF has been successfully applied to
both dynamics reconstruction and control tasks, covering a
wide range of problems including spring mesh simulation,
quantum dynamics and robotic manipulation.
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A. Extended Preliminaries
Hamiltonian and contact Hamiltonian dynamics can be el-
egantly analyzed via differential geometry. We begin by
introducing the symplectic structure and comparing it with
the more familiar Riemannian structure. Subsequently, the
symplectic geometry is extended to contact geometry, which
forms the foundation of our approach. While contact and
Riemannian geometries offer distinct perspectives, they are
complementary in providing a deeper understanding of the
geometry of dynamical systems.

A.1. Symplectic and Riemannian Structures

Let M be a smooth compact manifold, and let TxM
denote the tangent space at x ∈ M. The collection
of all the tangent spaces identifies the tangent bundle
T M = ∪x∈MTxM. A vector field X : M → T M
assigns a tangent vector v to each point x ∈ M. The set
of all the vector fields over T M is denoted as Γ(T M). A
differential 1-form α : T M → R is a smooth map field act-
ing on vectors of the tangent bundle. For a smooth function
f : M → R, the 1-form α = df generalizes the gradient
from Euclidean spaces. Specifically, df measures the vari-
ation of f under an infinitesimal displacement on M. This
displacement is locally described by a starting point x and a
direction v, such that (x, v) ∈ T M. Alternatively, it can be
globally expressed by a vector field X . The variation of f
along the vector field X is given by df(X). This variation
is independent of the choice of reference frame. To preserve
this invariance, df must transform covariantly with X .
Consequently, the 1-form α = df resides in the cotangent
bundle T ∗M, the dual space to T M. The symplectic and
Riemannian structures provide two distinct mechanisms for
associating a 1-form to a vector field, thereby establishing
connections between the tangent and cotangent bundles.
By considering the dynamics governed by the vector field
and the scalar function defining the 1-form, a relationship
between these elements emerges, as illustrated in Figure 10.

The Riemannian Metric A Riemannian metric
g : T M × T M → R is a smooth, symmetric, and
positive-definite bilinear field of maps defined on pairs of
vectors in the tangent bundle. This enables the introduction
of an inner product on the tangent spaces of the manifold,
allowing us to measure distances and curve lengths.
For a smooth curve x(t) : [t0, t1] → M, the length l

w.r.t the metric g is l =
∫ t1
t0

√
g(ẋ(t), ẋ(t))dt, where

ẋ(t) ∈ Tx(t)M is the vector tangent to the curve at x(t).
The curve minimizing this length between two points
x(t0) and x(t1) on M is called a geodesic. Geodesics
generalize straight lines in Euclidean space to curved spaces,
representing the shortest paths in the geometry induced by
g. The geometric structure g(ẋ(t), ẋ(t)) does not need to
be symmetric with respect to ẋ to measure curve lengths.

q1q2

f

q1q2

f

q1q2

f

Figure 10. The same scalar function f , associated with the 1-form
α = df , gives rise to three distinct vector fields under different
geometric structures: Riemannian (top left), symplectic (top right),
and contact (bottom). The streamlines of these vector fields are
illustrated on a representation of the state manifold. In Riemannian
geometry, the streamlines correspond to gradient flow trajectories,
following the direction of steepest ascent or descent of f , which
acts as a potential. In symplectic geometry, the streamlines are
instead tangent to the level curves of f , representing isoenergetic
trajectories where f remains constant, thus describing the dynam-
ics of conservative systems. In contrast, in contact geometry, a
single flow line can traverse different energy levels, with the varia-
tion of energy along the flow governed by Equation 8.

In such cases, it defines a Finslerian structure, which is a
generalization of the Riemannian structure (Chern, 1996).

The Riemannian metric also establishes a correspondence
between vector fields and covector fields, thus defining a
bijection between the tangent bundle T M and the cotan-
gent bundle T ∗M. Specifically, the metric g associates a
vector field Xf with the differential 1-form α = df through
df(X) = g(Xf , X),∀X ∈ Γ(T M). Since g defines an
inner product, this connection allows the variation df(X)
to be interpreted as a measure of alignment between the
vector fields X and Xf . A greater alignment corresponds
to a larger variation of f along X . Consequently, Xf is
orthogonal to the level sets of f and represents a gradient
vector field. In this sense, f can be interpreted as a potential
function, generating a gradient flow x(t) whose trajectories
follow geodesic curves with respect to the metric g.

The Symplectic Form A differential 2-form ω : T M ×
T M → R is a skew-symmetric, bilinear, and smooth field
of maps acting on pairs of tangent vectors. A 2-form is
called symplectic if it is both closed (dω = 0) and non-
degenerate. Unlike the Riemannian metric, the symplectic
form lacks the properties required to define an inner product.
However, it still establishes a fundamental relation between
differential 1-forms and vector fields: Given a 1-form df , the
symplectic form ω uniquely determines a vector field Xf
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that is tangent to the level sets of f , rather than perpendicular
as in the Riemannian case. This relation is defined by,

df(X) = ω(Xf , X), ∀X ∈ Γ(T M). (20)

By definition, f remains constant along the flow of
Xf , which in turn preserves the symplectic form ω, i.e.,
LXf

ω = 0 where LXf
denotes the Lie derivative (Silva,

2001). In this framework, the function f is interpreted as
a conserved energy, or equivalently, as a Hamiltonian H .
The symplectic structure thereby endows M with a natural
geometric framework for formulating Hamiltonian dynam-
ics (Tokasi & Pickl, 2022). The pair (M, ω) is referred to
as a symplectic manifold. Notably, the non-degeneracy of
ω implies that M must be even-dimensional.

A diffeomorphism ϕ : (M, ω) → (N , ω′) between two
symplectic manifolds is called a symplectomorphism if it
preserves the symplectic form, i.e., ϕ∗ω′ = ω (Polterovich,
2012). The symplectic flow x(t), generated by integrating
the Hamiltonian vector field Xf , can be understood as the
action of a one-parameter group of diffeomorphisms ϕ(t)
on a point x ∈ (M, ω). This is defined as,

x(t) = ϕ(t)(x) : [0, T ] ⊂ R → (M, ω). (21)

A.2. Symplectic Bundles of Riemannian Manifolds

The geodesic flow x(t) on a Riemannian manifold (R, g)
lifts to the joint evolution of coordinates (x(t), α(x(t), ẋ(t))
on the cotangent bundle T ∗R (Abraham & Marsden, 2008).
This extended dynamics is governed by an energy function
H(x, α) : T ∗R → R = g−1(α, α), which remains
constant along the flow. A reparameterization ds =

√
Hdt

links the trajectory of the integrated dynamical system
at time t on T ∗R with the length of the corresponding
geodesic on R. This framework reveals a fundamental
connection between geodesic flows and Hamiltonian
dynamics in the special case where the Hamiltonian consists
solely of a kinetic energy term. The cotangent bundle T ∗R
is naturally equipped with a symplectic structure, making
it a symplectic manifold (T ∗R, ω).

The formulation can be further generalized by introducing
a potential energy function into the Hamiltonian, given by
H(x, α) = g−1(α, α) + V (x). In this setting, the geodesic
structure underlying the Hamiltonian flow is determined by
the Jacobi metric:

ĝ = (H − V (x)) g, (22)

which rescales the original metric g by a position-dependent
conformal factor (Abraham & Marsden, 2008). The corre-
sponding time reparameterization takes the form

ds =
√
H − V (x) dt, (23)

restoring the interpretation of the trajectory as a geodesic
with respect to the metric ĝ (Udrişte, 2000; Udriste &
Udriste, 2000). This reparameterization underlies the Mau-
pertuis principle, which states that conservative mechanical
motion can be recast as geodesic motion in a suitably de-
formed geometry.

The Maupertuis’ principle The trajectories of an Hamil-
tonian dynamics on the symplectic manifold (T ∗R, ω) are
obtained as the critical solutions of the Lagrangian action
functional (López & Martı́nez, 2000),

s =

∫ t1

t0

α(t) · ẋ(t)−H(x(t), α(t)) dt, (24)

where the covector α(x(t), ẋ(t)) is denoted simply as α(t)
to emphasize its dependence on the integration variable t.
The resolution of this optimization problem corresponds
to a geodesic computation on (M, ĝ) under the arc-length
parametrization of Equation (23),

x(s) = argmin
ẋ

∫ s1

s0

√
ĝ(ẋ(s), ẋ(s)) ds. (25)

A modification of the Hamiltonian dynamics on the
symplectic manifold (T ∗R, ω) can be represented in the
time domain as a change in the action functional (24), while
geometrically, it corresponds to an adjustment of the Jacobi
metric on the Riemannian manifold (R, ĝ). This geometric
perspective, first introduced in classical mechanics in the
18th century, is known as the Maupertuis’ principle of
least action. In physical terms, it states that the dynamics
of a system follow a trajectory that extremizes (typically
minimizes) the difference between the kinetic and potential
terms over time. Practically, this provides a geometric
framework for shaping or controlling the trajectories of a
dynamical system by modifying only the underlying Jacobi
metric ĝ (Udrişte, 2003; López & Martı́nez, 2000).

A.3. Contact Geometry

While symplectic manifolds provide a geometric framework
for modeling the dynamics of conservative systems in clas-
sical mechanics, a more general approach is required to
describe non-conservative systems. This is addressed by
contact manifolds, the odd-dimensional counterparts of sym-
plectic manifolds (Geiges, 2001; Bravetti et al., 2017). A
contact manifold is defined as (M, η), where M is an odd-
dimensional smooth manifold, and η is a non-degenerate
1-form known as the contact form (Geiges, 2008). The con-
tact form satisfies the maximal non-integrability condition,
meaning that the top-degree differential form η∧ (dη)d ̸= 0
is nowhere vanishing on M. This form is constructed by tak-
ing the exterior product of η with the d-fold wedge product
of its exterior derivative dη, i.e.,

(dη)d = dη ∧ · · · ∧ dη︸ ︷︷ ︸
d times

. (26)

14



Geometric Contact Flows: Contactomorphisms for Dynamics and Control

The (2d + 1)-form defines a volume form on M, ensur-
ing that the hyperplanes defined by ker(η) ⊂ TM, which
constrain the dynamics on the contact manifold, do not
form a foliation, i.e., they do not partition the manifold
into lower-dimensional submanifolds (Geiges, 2001; 2008).
Geometrically, this means that the contact distribution im-
poses non-holonomic constraints: it restricts the admissible
directions of motion at each point without confining the dy-
namics to a fixed submanifold or energy level. This property
is crucial for modeling systems where energy can change
over time, enabling constraints on energy behavior without
enforcing conservation.

Contact Hamiltonian Dynamics Like symplectic geometry,
contact geometry connects scalar functions to vector fields,
enabling the description of dynamical systems (Zadra, 2023).
Given an energy function H : M → R, the dynamics on
a contact manifold are defined by a contact Hamiltonian
vector field XH , as follows,

dH(X) = dη(XH , X)−LXH
η(X), ∀X ∈ Γ(T M).

(27)
Unlike symplectic geometry, where dynamics are confined
to energy-preserving flows along the level sets of the Hamil-
tonian, contact geometry allows for an additional component
of motion. Specifically, the dynamics on a contact manifold
are not restricted to the term dη(XH , X), which lies tangent
to the level sets of H , but also include a transverse com-
ponent LXH

η(X), arising from the non-degeneracy of the
contact form. Consequently, while in symplectic geometry
the symplectic form ω is strictly preserved, contact geome-
try allows the contact form η to be preserved only up to a
scaling factor a ∈ R (Bravetti et al., 2017).

A diffeomorphism φ : (M, η) → (N , η′) between two con-
tact manifolds, a.k.a. contactomorphism, satisfies φ∗η′ =
aη, thereby preserving the contact structure up to the scal-
ing factor (Zadra, 2023). Analogous to the symplectic case,
the integral flow x(t) generated by the contact Hamiltonian
vector field XH can be viewed as a contactomorphism, i.e.,

x(t) = φ(t)(x) : [0, T ] ⊂ R → (M, η). (28)

Contact Flows as Riemannian Geodesics Contact Hamilto-
nian flows can also be reinterpreted as geodesics associated
with an induced Riemannian metric ĝ, under the reparame-
terization given in Equation (23) (Udrişte, 2000) In contrast
to the symplectic case, contact dynamics are inherently non-
conservative: the Hamiltonian function H(t) varies with
time, introducing an additional degree of freedom. Let us
denote the contact manifold (T ∗R×R, η) as the augmented
cotangent bundle of a Riemannian manifold (R, ĝ). In this
setting, contact dynamics corresponds not to geodesic mo-
tion directly on R, but rather on an augmented state-time
manifold R × R. The projection of these geodesics onto
R yields a family of trajectories, each corresponding to a

specific time-dependent energy profile H(t) (Di Cairano
et al., 2019). The additional variable defined on R is the
Lagrangian action s, introduced in Equation (24), which
represents the geodesic length. In the contact setting, the
Hamiltonian function also depends on s, making the La-
grangian action functional implicit:

s =

∫ t1

t0

α(t) · ẋ(t)−H(x(t), α(t), s) dt. (29)

This dependence renders the associated Jacobi metric s–
dependent, thereby transforming the geodesic computation
problem into:

x(s) = argmin
ẋ

∫ s1

s0

√
ĝ(ẋ(s), ẋ(s), s) ds. (30)

Thus, the length s of the geodesic on R directly influences
the metric ĝ, reflecting the non-conservative nature of
contact dynamics. The proposed Geometric Contact
Flows build on this foundation, modeling the dynamics
by harnessing the contact interpretation on the full state
manifold while generalizing it through the Riemannian
perspective on the configuration manifold.
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B. Methodology Details
This section presents the training algorithms for the single
contactomorphism and ensemble approaches. We also
outline the integration method for a contact Hamiltonian
dynamics, essential to implementing contactomorphism net-
works. Finally, we examine the implications of preserving
the contact structure for the physical interpretability of the
ambient dynamics.

B.1. Training Algorithms

Algorithm 1 Training a Contactomorphism φr(T )

Input: Dataset: {x̄b(t)}t∈[0,tb]
b∈[1,B]

Output: A trained contactomorphism φr(T )
1: for e = 1 to E do ▷ Iterate over epochs
2: for b = 1 to B do ▷ Iterate over trajectories

3: {z̄b(t)}t∈[0,tb] = φr(T )
(
{x̄b(t)}t∈[0,tb]

)
;

▷ Map the trajectories into the latent space using (9)

4: {zb(t)}t∈[0,tb] = φg(t) ({z̄b(0)}) ;
▷ Integrate the latent dynamics according to flow (6)

5: {xb(t)}t∈[0,tb] = φ−1
r (T )

(
{zb(t)}t∈[0,tb]

)
;

▷ Map back to the ambient space with (9)

6: argmin ℓ(xb(t), x̄b(t), zb(t), z̄b(t));
▷ Update φr(T ) by minimizing loss (12)

7: end for
8: end for

Algorithm 2 Training the Ensemble {φrn(T )}n∈[1,N ]

Input: Dataset: {x̄b(t)}t∈[0,tb]
b∈[1,B]

Output: A trained ensemble {φrn(T )}n∈[1,N ]

1: for e = 1 to E do ▷ Iterate over epochs
2: for b = 1 to B do ▷ Iterate over trajectories

3: for n = 1 to N do
4: {z̄nb (t)}t∈[0,tb] = φrn(T )

(
{x̄b(t)}t∈[0,tb]

)
▷ Map the trajectories into the latent space using (14a)

5: end for

6: {znb (t)}t∈[0,tb] = φg(t) ({z̄nb (0)}) ;
▷ Integrate the latent dynamics according to flow (6)

7: for j ∼ RandomShuffle(1, 2, . . . , N) do
8: {xj

b(t)}t∈[0,tb] = φ−1
rj (T )

(
{znb (t)}t∈[0,tb]

)
▷ Map back to the ambient space with (14b)

9: end for

10: argmin 1
N

∑N
n,j=1 ℓ(x

j
b(t), x̄b(t), z

n
b (t), z̄

n
b (t));

▷ Update the ensemble by minimizing loss (12)
11: end for
12: end for

B.2. Integrating a Contact Hamiltonian Flow

A contact Hamiltonian dynamic system can be defined using
a contact Hamiltonian function H on a contact manifold
(M, η). The contact form η establishes a connection be-
tween H and its associated vector field XH via Equation (2).
In local coordinates, the vector field XH is expressed as,

XH :


q̇i =

∂H
∂pi

,

ṗi = −∂H
∂qi

− pi
∂H
∂s ,

ṡ = pi
∂H
∂pi

−H.

(31)

This vector field generates a flow φ satisfying

d

dt
φt(x) = XH(φt(x)), φ0(x) = x. (32)

The flow preserves the contact form η up to a scaling fac-
tor a ∈ R, such that φ∗η′ = aη. Therefore, the resulting
transformation x(t) = φ(t)(x0) is formally a contactomor-
phism within (M, η). However, the numerical integration
of this flow can introduce errors, depending on the method
used. Contact splitting integrators are a family of numerical
algorithms to integrate contact Hamiltonian flows while pre-
serving the contact structure (Zadra, 2023). This algorithm
applies to Hamiltonian functions that can be expressed as
a sum of separate terms, with the state {q,p, s} updated in
a corresponding number of steps. In our case, the Hamilto-
nian function (11) of the individual contactomorphism φrθk
consists of three terms, resulting in the following three-step
update process,

1.


qj+1 = qj ,

pj+1 = pj −
(
pjFj +∇Fjsj

)
τ,

sj+1 = sj − Fjsjτ,

(33a)

2.


qj+2 = qj+1,

pj+2 = pj+1 −∇Vj+1τ,

sj+2 = sj+1 − Vj+1τ,

(33b)

3.


qj+3 = qj+2 +

(
Mj+2 + p⊤

j+2∇Mj+2

)
pj+2τ,

pj+3 = pj+2,

sj+3 = sj+2 + p⊤
j+2

(
p⊤
j+2∇Mj+2 +Mj+2

)
pj+2τ,

(33c)

where Mj = M(pj), Vj = V (qj), and Fj = F (qj). This
integration method has the key advantage of being analyt-
ically invertible. As a result, a contactomorphism imple-
mented according to this scheme can be efficiently reversed
with minimal computational cost.

B.3. Approximation Error of the Contactomorphism

We experimentally evaluate the numerical error introduced
by our implementation of the mapping between the ambient
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and latent states by leveraging the analytical contact trans-
formation conditions established in (Bravetti et al., 2017),

pi
dŝ

ds
− pip̂i

dq̂i
ds

= − dŝ

dqi
+ p̂i

dq̂i
dqi

, (34a)

dŝ

dpi
− p̂i

dq̂i
dpi

= 0. (34b)

Here, the coordinates (qi, pi, s) and (q̂i, p̂i, ŝ) represent the
variables before and after the contact transformation, re-
spectively. The partial derivatives correspond to entries in
the Jacobian of the contactomorphism. By computing the
difference between the left-hand and right-hand sides of the
conditions above, we consistently observe a numerical error
lower than 1e−5, confirming that the implemented transfor-
mation closely satisfies the contactomorphism conditions.

B.4. Physical Interpretability

Equipping the latent dynamics with a contactomorphism
allows us to model a dynamical system directly in ambient
coordinates. To predict the ambient trajectory from an initial
point x0, we first map it to the latent space via the learned
contactomorphism, z0 = φr(T )(x0). We then integrate the
latent dynamics to obtain z(t) = φg(t)(z0), and finally map
the result back to the ambient space using the inverse contac-
tomorphism, x(t) = φ−1

r (T )(z(t)). Formally, this process
is expressed as a composition of contact Hamiltonian flows,

x(t) = φ−1
r (T ) ◦ φg(t) ◦ φr(T )(x0), t ∈ [0, t1]. (35)

Note that the composition of Hamiltonian paths is itself a
Hamiltonian path. The corresponding Hamiltonian function,
associated with the Riemannian metric m̂, can be derived
using (Polterovich, 2012, Proposition 1.4.D),

Hm = Hr +Hg(φ
−1
r )−Hr(φ

−1
g ), (36)

where the Hamiltonian of the contactomorphism Hr is,

Hr = Hr1 +

K∑
k=1

Hrk(φrk−1
◦ · · · ◦ φr1). (37)

Preserving the contact structure ensures that the predicted
ambient dynamics follow a contact Hamiltonian form,
making them physically interpretable. Specifically, using
a contactomorphism instead of a generic diffeomorphism
allows for the derivation of an analytical expression for the
Hamiltonian function in the ambient space. The damping
coefficient, ∂Hm/∂s, embedded in the contact form,
quantifies energy dissipation or absorption as described by
Equation (8), and governs the interplay between conjugate
variables. While GCF morphs the latent contact form η′ and
modulates the damping coefficient, it also preserves their
relationship, ensuring physical consistency. Figure 1 shows
that GCF yields a damping coefficient consistent with
the real system demonstrating its robustness in modeling
conjugate variable interactions.

C. Implementation Details
C.1. Importance of Contact Structure Preservation

The transformation φr : (M, η) → (N , η′) is designed to
preserve the contact structure, ensuring that the physical
relationships between conjugate variables in the latent base-
line dynamics are conserved. The theoretical justification
for this is provided in Section 3 and Appendix A B.4. Here,
we empirically evaluate its importance by examining the
consequences of replacing contactomorphisms by standard
diffeomorphisms. This substitution disrupts the underly-
ing physical coherence, leading to degraded reconstruction
and generalization performance. Figure 11 qualitatively
illustrates the impact of replacing contactomorphisms by
diffeomorphisms, highlighting distortions in both the recon-
struction and generalization of the LEAF 2 character from
the LASA dataset. Figure 12 shows a more elaborated com-
parison of generalization performance, by considering pre-
dicted trajectories initialized from a grid of points in the state
space. The use of contactomorphisms shows significantly
faster convergence toward the data manifold, measured as
the percentage of time steps spent near the demonstrations
over the trajectory’s duration. Tables 7 and 8 quantitatively
confirm the degradation in reconstruction and generaliza-
tion accuracy when contact structure preservation is not
enforced.

Table 7. Reconstruction error via DTWD for the ablation study on
the structure of the ambient space–latent space mapping

Character Contactomorphism Diffeomorphism

0.44±0.12 1.15±0.64

0.43±0.07 0.96±0.49

Table 8. Generalization measured as average ratio of convergence
for the ablation study on the structure of the mapping between the
ambient space and the latent space

Character Contactomorphism Diffeomorphism

0.61±0.21 0.08±0.25

0.62±0.13 0.12±0.23

C.2. Training Details and Weights Ablation

The weights employed in the loss function (12) are wx = 1
and wz = 0.01. Training is conducted for 5000 epochs,
taking approximately 4 hours on average. Details of the
machine used for training are provided in Appendix D.1.
The initial learning rate is 1 × 10−3 and is reduced by a
factor of 0.9 on plateaus observed for 200 epochs. The loss
is clipped at 1 × 103, and the gradient is clipped at 0.1.
Optimization is performed using the Adam optimizer with
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Figure 11. This figure illustrates the reconstruction and generaliza-
tion results for the character LEAF 2 when the contactomorphism
connecting the ambient and latent spaces is replaced by a diffeo-
morphism. As a result, the Hamiltonian structure of the ambient
dynamics is lost, removing the physical bias that aids in accurately
reconstructing the dynamics. Consequently, the trajectories in the
ambient space appear more distorted, especially near the target.

default hyperparameters, and L2 regularization is applied to
the weights with a coefficient of 1×10−10. While the ambi-
ent weighting factor wx focuses on the reconstruction of the
demonstrations in the ambient space, the latent weighting
factor wz plays a crucial role in regularizing the deformation
of the latent space.

During training, as detailed in Algorithm 1, the integration
of the latent dynamics zb(t) depends only on the initial ref-
erence state z̄b(0) and remains independent of the rest of
the latent demonstrations z̄b(t). The inverse contactomor-
phism φ−1

r is applied at each point along zb(t) to recover the
corresponding ambient trajectory x̄b(t), while the forward
contactomorphism φr is used only to map the initial states
of the demonstrations to the latent space. As a result, if train-
ing relies solely on the ambient loss term, the latent space
receives limited structural guidance. Since the contactomor-
phism defines the mapping from ambient to latent space,
this can lead to irregularities or lack of smoothness in the la-
tent representation. In contrast, the latent loss term enforces
alignment between the reference trajectory z̄b(t) and the in-
tegrated dynamics zb(t), thereby promoting a smoother and
more coherent latent mapping. This regularization improves
the latent space structure, leading to more accurate ambient
reconstructions and mitigating unpredictable behavior out-
side the data manifold. Ultimately, it supports a more stable
and generalizable representation. Figure 13 compares the
ambient and latent reconstructions of the demonstrations for
three different values of wz , illustrating how a small weight
can serve as a trade-off to enhance both reconstructions. A
quantitative analysis of this ablation study is reported in
Table 16.

C.3. Hamiltonian Function Parametrization

Each individual parametrized flow φrθk
, which collectively

defines the contactomorphism φr, integrates the vector field
associated with the Hamiltonian function in Equation (11).
The functions Mθk(p), Vθk(q), Fθk(q) are learned compo-
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Figure 12. The top plots show trajectory predictions from grid
points for the character LEAF 2, comparing a model using a sin-
gle contactomorphism (left) to one using a naive diffeomorphism
without physical structure (right). The bottom chart summarizes
these trajectories by representing them as points based on the ratio
of time steps spent within the data manifold to the total number of
time steps. Removing the physical structure disrupts the relation-
ships between state components in the ambient space, negatively
impacting generalization.

Table 9. Reconstruction error via DTWD for weight loss ablation

wz Ambient Space Latent Space

0 0.89±0.11 5.1±0.53

0.001 0.50±0.10 4.9±0.43

0.01 0.44±0.07 1.9±0.27

0.1 0.56±0.06 1.6±0.19

1 0.69±0.06 0.96±0.15

nents representing the inertia, potential energy, and damping
coefficient of the Hamiltonian system, respectively. Learn-
ing all these components enables the resulting contactomor-
phism to effectively model a wide range of target dynam-
ics. Table 10 reports reconstruction scores for the character
LEAF 2 from the LASA dataset, comparing the performance
of the full Hamiltonian with that of simplified versions us-
ing fewer parametrized components. The fully parametrized
Hamiltonian consistently achieves the best reconstruction
accuracy. These functions are implemented using Random
Fourier Features Networks (RFFNs), which were selected
due to their superior performance in the ablation study re-
ported in Table 11. RFFNs provide a strong balance of
expressivity and smoothness, making them particularly well-
suited for gradient-based training in this context.
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Figure 13. Demonstration reconstruction in the ambient space (left)
and latent space (right) for different values of the latent weighting
factor wz: wz = 0 (top), wz = 0.01 (middle), and wz = 1
(bottom).

Table 10. Reconstruction error of character LEAF 2 via DTWD
for different parametrization of the contact Hamiltonian

Hamiltonian Score
1
2p

⊤M(p)p+ V (q) + F (q)s 0.44±0.12
1
2p

⊤p+ V (q) + F (q)s 0.61±0.08
1
2p

⊤M(p)p+ V (q) 0.94±0.18
1
2p

⊤p+ V (q) 2.14±0.52

Table 11. Reconstruction error via DTWD for different learning
models used to reconstruct the contact Hamiltonian.

Character MLP RBF RFFN

0.94±0.18 0.58±0.15 0.44±0.12

0.69±0.11 0.48±0.09 0.43±0.07

D. Experimental Setup
D.1. System Configuration and Architectural Settings

The framework runs on a machine equipped with 13th Gen
Intel Core i7-13850HX CPUs. Positional data is normal-
ized to the range [−0.5, 0.5]. Other coordinates are adjusted
accordingly to maintain physical coherence. Additionally,
velocity data is normalized to [−1, 1] by scaling the dura-
tion of the trajectory. In the experiments, the input to our
framework is the current system state at tk, while the output
is the next state at tk+1. This prediction is repeated at each
time step to reconstruct the full dynamics. Our approach
treats the dynamical system as autonomous, excluding time
as an explicit input. The number of contactomorphisms
N used in the ensemble depends on the task, whether it
involves reconstructing a dynamical system or generalizing
a demonstrated trajectory for control execution. In the first
case (e.g., the spring mesh and quantum system), a single
contactomorphism (N = 1) is used. In the second case (e.g.,
the handwriting dataset and robotics tests), the ensemble
consists of N = 5 contactomorphisms. In the latent space,
the stable baseline dynamics given by Equation (7b) is used
in all experiments. Additionally, for the execution of the
robotics tasks, the safe dynamics from Equation (7c) is also
employed to leverage its energy-aware behavior.

Each contactomorphism φr, is composed of a sequence of
K = 12 individual parametrized flows φrθk

, with a dura-
tion of τ = 0.2 seconds each. The scalar functions defining
each flow, Mθk(p), Vθk(q), Fθk(q), are implemented using
Random Fourier Features networks with nf = 200 hidden
units and a kernel bandwidth of 1. A tanh activation func-
tion bounds the output of these scalar functions to the range
[−2, 2]. Across experiments, the GCF networks consist of
7200 trainable parameters. The baseline models were evalu-
ated with various parameter configurations, ranging from the
original author-released versions to implementations with
parameter counts comparable to that of GCF. Ultimately, we
selected the architecture that yielded the best performance
for each method (EF: 2000, NCDS: 2000, DHNN: 4572,
HNN: 2286, MLP: 7168).

D.2. Robot setup.

The WRAP-AND-PULL and the DISHWASHER LOADING
robotics tasks employ a 7-DoF Franka Emika Panda robot
as the test platform, with ROS2 acting as the middleware
to interface either the GCF or the state-of-the-art bench-
mark method with the robot. The trajectory predicted by
the GCF or the benchmark method is sent to a low-level
Cartesian Impedance Controller, which is built on top of the
Franka torque control system using libfranka functionalities.
Via the Franka Control Interface (FCI), motor signals are
sent to the robotic manipulator in real-time at a rate of 1
KHz. The GCF learning model, trained according to the
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task demonstrations, is loaded by a control node operating
at a frequency of 10 Hz. This node receives state measure-
ments from the robot, normalizes the data, and computes
the Lagrangian action before calling the model to predict dy-
namics for the subsequent 2 seconds. At each timestep, the
GCF node checks whether the GCF learning model is avail-
able for computation. If the model is not already engaged,
it processes the latest robot state. The node then updates
the Impedance Controller with a new frame of the predicted
dynamics. Whenever a new trajectory becomes available,
the previously executed trajectory is replaced and updated
accordingly. The control node used for the state-of-the-art
benchmarks shares the same features.

D.3. Conversion to Canonical Coordinates

In classical mechanics, the state of physical systems is typi-
cally described using positions and velocities {q, q̇}, rather
than the canonical coordinates {q,p, s}, required in the con-
tact Hamiltonian formulation. Therefore, prior to inferring
the network, it is necessary to perform a conversion and
estimate the action Lagrangian value s, which is not directly
observable in many applications.

Spring Mesh System and Handwriting Datasets. The
spring mesh dataset, along with the LASA and DigiLeTs
handwriting datasets, represent the system dynamics using
the state variables q, q̇. To transform these data into canon-
ical coordinates, we assume that the dynamical system is
characterized by a unitary mass, implying q̇ = p, and gov-
erned by a contact Hamiltonian in mechanical form, defined
as,

H =
1

2
p⊤p+ β(q) + γ(q)s, (38)

where β(q) is the potential energy, and γ(q) denotes the
damping coefficient. Depending on its sign, γ(q) can ac-
count for either energy dissipation (γ > 0) or energy genera-
tion (γ < 0). In this context, the dynamics are characterized
by an attraction point, and we model the potential function
during demonstrations as linearly decreasing toward zero.
In order to compute the Lagrangian action s, the potential
energy is parametrized as β(q) = T −t, where T represents
the final time of the trajectory.

According to the Maupertuis’ principle of least action, the
variation of s is,

ṡ =
1

2
q̇⊤q̇− β(q)− γ(q)s. (39)

In addition, as derived from Noether (1918), the variation
of the contact Hamiltonian function (38) is regulated by,(

1

2
q̇⊤q̇+ β(q) + γ(q)s

)
= H0e

−
∫ T
0

γ(q)dt. (40)

By substituting Equation (39) into (40), we obtain,(
q̇⊤q̇− ṡ

)
= H0e

−
∫ T
0 ( 1

2 q̇
⊤q̇−β(q)−ṡ)/s dt. (41)

Differentiating this equation with respect to time, we derive,

e−
∫ T
0 ( 1

2 q̇
⊤q̇−β(q)−ṡ)/s dt(ρ(s, ṡ, q̇, q̈)− s̈) = 0, (42a)

ρ(s, ṡ, q̇, q̈) =
1
2 q̇

⊤q̇− β(q)− ṡ

s

(
q̇⊤q̇− ṡ

)
+ 2q̇⊤q̈,

(42b)

which implies:

s̈ =
1
2 q̇

⊤q̇− β(q)− ṡ

s

(
q̇⊤q̇− ṡ

)
+ 2q̇⊤q̈. (43)

This differential equation can be integrated forward to obtain
the full time series of Lagrangian actions s, given the initial
conditions,

s̈0 = 0, ṡ0 = q̇0
⊤q̇0, s0. (44)

Through this process, we obtain a description of the dynam-
ics in canonical coordinates {q,p, s}.

Robotic Tasks. The dynamical system under consider-
ation consists of the Franka-Emika Panda robot and its
workspace and manipulated objects, represented by the rope.
We have access to the end-effector position and velocity, de-
noted as {q, q̇}. To transform these variables into canonical
coordinates in real time, we first use the dynamical model
of the robot to compute the workspace inertia matrix Λ. As-
suming a Hamiltonian in mechanical form, the canonical
momentum is obtained as p = Λq̇. The total energy of the
system at a given time t can be modeled as the sum of the
robot kinetic energy, the dissipation term, and the energy
stored in the environment, which is represented by the dis-
placement of the rope as a result of the work performed by
the robot. The total energy is therefore expressed as,

H(t) =
1

2
q̇⊤Λq̇+ s−

∫ t

0

f⊤e δq dτ, (45)

where fe represents the external force applied at the end-
effector and δq denotes an infinitesimal robot motion. The
integral term

∫ t

0
f⊤e δq dτ is negative during a pulling action

and includes both the conservative and non-conservative
components of the robot interaction with the environment.

The evolution of the Lagrangian action s is governed by
the Maupertuis’ principle of least action according to the
equation,

ṡ =
1

2
q̇⊤Λq̇− s+

∫ t

0

f⊤e δq dτ. (46)

This differential equation shows how s can be updated at
every time instant according to the measured values of q̇
and fe. Through this process, we obtain a description of the
dynamics in canonical coordinates {q,p, s}.
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E. Extended Results
E.1. Spring Mesh System

Spring networks are meshes of particles connected by
springs, effectively modeling deformable surfaces and solid
materials (Pfaff et al., 2021). They serve as simple yet
versatile proxies for a wide range of physical scenarios in-
volving deformable solids and cloth, including mechanical
simulations of material deformation such as finite element
modeling, as well as robotics tasks and computer graph-
ics applications. By benchmarking on a spring mesh, we
can examine how Geometric Contact Flows learns large de-
formations, wave propagation through a membrane, or the
impact of damping. Each pair of connected particles (a, b)
exchanges spring forces regulated by the Hooke’s law, as

fab = −k · (∥qa − qb∥2 − lab)
qa − qb

∥qa − qb∥2
− γq̇a, (47)

where lab is the rest length of the spring, γ is the damping
coefficient, and k is the stiffness. The coupling of multi-
ple springs leads to complex large-scale deformations and
oscillatory behavior.

In this assessment, we use the 60-dimensional dataset origi-
nally introduced by Otness et al. (2021), as part of a com-
prehensive benchmark for learning physical systems. The
system comprises a 2D square grid of particles (4× 4), con-
nected by springs, with the top row of particles fixed in
place. Springs are placed along both the axis-aligned edges
and the diagonals of each grid square. The rest lengths
of the springs are chosen such that the uniformly spaced
particles remain at equilibrium in their initial configuration.
Initial conditions are generated by perturbing the positions
of all non-fixed particles. These perturbations are drawn
as uniform random vectors within a circle of radius r, en-
suring that all sampled initial conditions have zero initial
momentum. The training dataset comprises 20 spring-mesh
systems, each characterized by a distinct set of initial con-
ditions. The system parameters are detailed in Table 12.
Each system is simulated over a time horizon of 8 seconds,
capturing the complete trajectories of particle displacements
and momenta. The resulting dataset offers a comprehensive
representation of the system’s dynamical behavior across
the explored parameter space. Figure 14 illustrates the os-
cillatory behavior of the first three nodes in position space,
comparing the true dynamics with the predictions of the
GCF approach and baseline models. Quantitative metrics
evaluating the accuracy of the dynamics prediction are pre-
sented in Table 1. The GCF model achieves a 57% reduction
in reconstruction error compared to DHNN, the next-best
baseline, owing to the convergence biases integrated into
the network architecture.

Table 12. Spring Mesh Parameters

Parameter Values

damping coefficient γ [kg/s] 0.1
mass [kg] 1

stiffness k [N/m] 1
initial displacement r [m] Uniform(0.1, 0.35)
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Figure 14. Dynamics reconstruction of the first three nodes in the
spring mesh experiment. The reference dynamics (dashed gray
line) is compared against the predictions from GCF and other
baseline models.

E.2. Quantum Mechanical System

Contact Hamiltonian formulation of quantum systems.
The versatility of the contact Hamiltonian framework ex-
tends its applicability beyond classical mechanics, enabling
the description of thermodynamic processes (Bravetti, 2019;
Simoes et al., 2020) and certain aspects of quantum mechan-
ical systems (Woit et al., 2017; Herczeg & Waldron, 2018).
Although this formulation cannot account for decoherence
or other effects characteristic of open quantum systems,
it provides a natural extension of the Schrödinger equa-
tion for the evolution of pure states in finite-level quantum
systems (Ciaglia et al., 2018). Some authors (Cruz, 2018;
Bravetti et al., 2017) proposed to use the contact formulation
in the context of canonical quantization in position repre-
sentation. However, this approach has the drawback of not
preserving the norm of the wave function in the Schrödinger
equation.

In order to facilitate the application of contact geometry in
quantum mechanics, we eliminate the detrimental effects of
dissipation on the probability distribution by reformulating
the Schrödinger equation in terms of the Madelung repre-
sentation. Starting from the standard Schrödinger equation,

iℏ
∂Ψ

∂t
= ĤΨ, (48)

where ℏ is the reduced Planck constant, Ψ is the wave func-
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tion, and the Hamiltonian operator is given by

Ĥ =
p̂2

2m
+ V (q̂), (49)

expressed in terms of the position and momentum operators,
q̂ and p̂, we rewrite the wave function in polar form as

Ψ =
√
ρ eis/ℏ, (50)

where the probability density function, ρ = |Ψ|2, corre-
sponds to the squared amplitude of the wave function, while
s represents the phase, related to the classical action. Sub-
stituting this expression into the Schrödinger equation and
separating real and imaginary components, we obtain two
real-valued equations. The first one is the continuity equa-
tion,

∂ρ

∂t
+∇q · (ρ∇qs) = 0. (51)

The second one is the quantum Hamilton-Jacobi equation,

∂s

∂t
+

(∇qs)
2

2m
+ V +Q = 0, (52)

where,

Q = − ℏ2

2m

∆q
√
ρ

√
ρ

(53)

is the quantum potential, with the operator ∆q denoting the
Laplacian. The Madelung equations are particularly suitable
for adaptation within the contact Hamiltonian framework,
as the extension of the Hamiltonian operator (49) to the
contact Hamiltonian operator,

Ĥ =
p̂2

2m
+ V (q̂) + γs, (54)

modifies the quantum Hamilton-Jacobi equation (52) to,

∂s

∂t
+

(∇qs)
2

2m
+ V +Q+ γs = 0. (55)

This introduces dissipation into the contact system’s evolu-
tion without altering the properties of the probability distri-
bution, which remain governed by the continuity equation
(51).

Quantum dynamics reconstruction In this test, we focus
on reconstructing the dynamics of a single-mode bosonic
system, whose Hamiltonian consists of a linear term rep-
resenting the free evolution of the mode, a squeezing-like
interaction, and a cubic nonlinearity. Expressed in terms of
the position and momentum operators, the contact Hamilto-
nian is given by,

Ĥ =
1

2
ω(p̂2 + q̂2)− 2χq̂p̂+

2

3
βq̂(q̂2 − p̂2) + γs. (56)

To account for small fluctuations arising from experimental
imperfections, calibration errors, and unavoidable environ-
mental disturbances, we introduce a stochastic perturbation
to the system’s evolution. Unlike open quantum system ap-
proaches, this modification does not lead to decoherence, en-
suring that the system remains in a pure state while incorpo-
rating realistic uncertainties. The deterministic Schrödinger
equation (48) is therefore extended to,

iℏ dΨ = dtĤΨ+ iℏ δ dWtΨ, (57)

where dWt is a Wiener process representing stochastic fluc-
tuations, and δ determines their magnitude. In this experi-
ment, 20 dynamical systems have been generated by inte-
grating the Madelung representation of Equation 57 for 8
seconds, i.e.,

∂ρ

∂t
= −∇q · (ρ∇qs) + δ2

ℏ
2
∆qρ; (58a)

∂s

∂t
+

(∇qs)
2

2m
+ V +Q+ γs = 0. (58b)

The parameters of the quantum system were sampled from
uniform distributions, as detailed in Table 13. We evaluate
the performance of GCF in reconstructing the dynamics of
the expected values of the position and momentum operators,
q̂ and p̂, as well as the phase variable s, in comparison to
the baselines. Unlike other tests, the HNN and DHNN
frameworks cannot be applied to the quantum case, as they
operate only in even-dimensional phase spaces and cannot
model the additional odd variable s. Stochastic results are
summarized in Table 2. GCF reduces reconstruction error
by 60% in modeling the system’s evolution. Figure 15
illustrates an example of a single trajectory, comparing the
reconstructions produced by the models.
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Figure 15. Trajectories of position q, momentum p, and La-
grangian action s for the evolution of a single-phase bosonic sys-
tem. The trajectory obtained from integrating the Schrödinger
equation (gray dashed line) is compared against the predicted evo-
lution from the GCF model and the baselines.
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Table 13. Quantum Parameters

Parameter Values

Natural frequency ω Uniform(1, 2)
Interactions coupling term χ Uniform(0.05, 0.1)
Cubic non-linearity coefficient β Uniform(0.05, 0.2)
Damping coefficient γ Uniform(0.3, 0.6)
Noise magnitude δ Uniform(0.01, 0.1)

E.3. Handwriting Datasets

In motion generation frameworks, learned dynamics are
viewed as skills that an actuated system must not only im-
itate but also generalize and adapt to new scenarios. The
LASA dataset (Lemme et al., 2015), a widely used bench-
mark, contains 2D handwritten characters but lacks self-
crossing trajectories, as it was designed for first-order dy-
namics. To better showcase GCF’s capabilities, we also
include the DigiLeTs dataset (Fabi et al., 2022), which fea-
tures more diverse trajectory patterns. Since the demon-
strated dynamics converge to a target, we exclude HNN
from the baselines, as it is limited to modeling periodic
behaviors.

Dynamics reconstruction. Table 14 compares GCF and
baselines on handwriting dynamics reconstruction. It in-
cludes four characters from the LASA dataset and four from
the DigiLeTs dataset.

Table 14. Reconstruction error via DTWD on handwriting datasets
Character EF NCDS DHNN GCF

0.43±0.10 0.44±0.14 0.65±0.15 0.44±0.12

0.45±0.05 0.47±0.10 0.53±0.11 0.43±0.07

0.42±0.20 0.49±0.24 0.63±0.50 0.44±0.34

0.85±0.36 0.88±0.41 0.71±0.88 0.68±0.24

2.22±0.03 2.79±0.09 0.82±0.22 0.70±0.36

3.08±0.02 3.13±0.07 1.08±0.39 0.93±0.38

2.07±0.03 2.30±0.05 0.78±0.17 0.71±0.19

2.48±0.03 3.16±0.10 1.10±0.32 0.86±0.30

Dynamics generalization. Figure 16 presents generaliza-
tion tests for EF, NCDS, DHNN, and GCF using two exam-
ple handwritten characters. The position space is divided
into a grid, with each point serving as a starting location for
trajectory predictions, while the remaining state variables
are initialized to zero. For DHNN, this means starting with
zero velocities; for GCF, both velocities and the Lagrangian
action are initialized to zero. These tests evaluate how well
each model performs when dynamics are initiated outside
the data manifold. The trajectories predicted by NCDS for
the character LEAF 2 (Figure 16b) visibly converge and
remain close to the demonstrated paths. However, NCDS
operates only on first-order dynamics and fails to reconstruct
second-order trajectories, as seen in Figure 16f. In contrast,
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Figure 16. Generalization of the EF, NCDS, DHNN, and GCF
methods. Predicted trajectories starting from grid points for the
character LEAF 2 (16a, 16c, 16d) and for the character ELLE (16e,
16g, 16h). The gray dots (16i, 16j) represent these trajectories
as points based on the ratio between time steps spent within the
data manifold and the total time steps. The violin and box plots
illustrate the stochastic distribution of these ratios. A high ratio
indicates quick convergence. NCDS’s contractive properties yield
good results on LEAF 2, but struggle to converge in ELLE. In
contrast, the GCF method demonstrates reliable performance on
both characters, achieving the highest average ratio and lowest
standard deviation, indicating consistent convergence even for
trajectories initialized far from the training dataset.

GCF delivers more reliable results, maintaining consistent
performance across both types of dynamics (Figures 16h,
16d). Figures 16i and 16j provide a statistical analysis of
these results. Each point, representing a predicted trajectory,
is computed as the ratio between time steps spent within the
data manifold (in the position space) and the total time steps.
As the DHNN method imposes no constraints outside the
data manifold, only a small number of trajectories initiated
outside the data support converge, as indicated by the large
proportion of points with ratio of 0. EF guarantees asymp-
totic stability, ensuring that trajectories initiated outside the
data support eventually converge to a target. However, it
does not explicitly drive trajectories toward the data man-
ifold, leading to a uniform distribution of ratios. NCDS
improves the results for the character LEAF 2 due to its
guaranteed contractive behavior. However, GCF ensures
that all trajectories from both LEAF 2 and ELLE reliably
converge to the data manifold. On average, these trajectories
spend significantly more time within the data support than
outside it, even when initiated far from the data support.
Table 15 reports generalization statistics for a set of hand-
written characters. GCF stands out for its ability to avoid
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uncertain regions and converge to the data manifold.

Table 15. Generalization measured as average ratio of convergence
Character EF NCDS DHNN GCF

0.49±0.37 0.94±0.19 0.18±0.13 0.69±0.19

0.59±0.31 0.91±0.22 0.13±0.18 0.67±0.12

0.47±0.41 0.91±0.24 0.18±0.10 0.62±0.23

0.53±0.33 0.93±0.16 0.21±0.13 0.68±0.14

0.61±0.30 0.54±0.35 0.17±0.15 0.66±0.12

0.52±0.40 0.50±0.39 0.17±0.12 0.64±0.16

0.59±0.36 0.61±0.41 0.19±0.13 0.67±0.10

0.58±0.34 0.51±0.40 0.18±0.17 0.65±0.15

Ablation Study on Ensemble Contribution The general-
ization results achieved by GCF, previously shown in Figure
16, benefit from the ensemble of contactomorphisms. Figure
17 contrasts these results from the complete GCF framework
with those from a variant using a single contactomorphism.
The ensemble approach, which incorporates uncertainty-
aware curves, demonstrates faster convergence to the data
manifold. For trajectories initiated from points already close
to the data manifold, the difference in convergence rate is
less pronounced, as reflected in the violin plots (Figs. 17e,
17f), where the distributions of points near 1 are similar.
However, for trajectories starting farther away from the data
manifold, the effect of the ensemble uncertainty is more
evident, contributing to a higher overall aggregated metric.
Generalization statistics for a set of handwritten characters
are presented in Table 16.

Table 16. Generalization measured as average ratio of convergence

Character Single Ensemble

0.61±0.21 0.69±0.19

0.62±0.13 0.67±0.12

0.56±0.26 0.62±0.23

0.64±0.15 0.68±0.14

0.61±0.15 0.66±0.12

0.57±0.21 0.64±0.16

0.61±0.12 0.67±0.10

0.57±0.18 0.65±0.15

Unsafe Regions on the Handwriting Datasets Figure 18
shows the trajectories and the distances to both the obsta-
cle and the data manifold for the handwriting characters
LEAF 2 and ELLE.
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(a) Generalization with single
contactomorphism (LEAF 2).

0.6 0.4 0.2 0.0 0.2 0.4 0.6

0.6

0.4

0.2

0.0

0.2

0.4

0.6

(b) Generalization with the en-
semble (LEAF 2).
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(c) Generalization with single
contactomorphism (ELLE).
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(d) Generalization with the en-
semble (ELLE).
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(e) Time spent on the data
manifold for LEAF 2.
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(f) Time spent on the data man-
ifold for ELLE.

Figure 17. The ablation study highlights the performance improve-
ment in generalization capability achieved through the use of an
ensemble of contactomorphisms. Plots 17a and 17b depict trajec-
tory predictions from grid points for the character LEAF 2, while
plots 17c and 17d present predictions for the character ELLE. The
bottom charts (17e and 17f) summarize these trajectories by repre-
senting them as points based on the ratio of time steps spent within
the data manifold to the total number of time steps. The violin
plots visualize the stochastic distribution of these ratios, where a
higher ratio indicates faster convergence. The use of the ensemble
enhances convergence toward the data manifold, resulting in a
higher ratio and a lower standard deviation.

E.4. Robot Tests

In robotics, learning interaction tasks from demonstra-
tions is more challenging than learning free-space mo-
tions (Scherzinger et al., 2019; Le et al., 2021). GCF excels
in this context by modeling energy behaviors beyond simple
motion and flexibly generalizing learned dynamics when
the system encounters unforeseen regions of the state space,
such as unexpected positions, velocities, or external forces.
This makes GCF particularly well-suited for online robot
control in interaction tasks. We apply GCF to two robotics
tasks: a proof-of-concept WRAP-AND-PULL task and a more
realistic DISHWASHER LOADING task.
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Figure 18. Obstacle avoidance behavior demonstrated by the
LEAF 2 (top) and the ELLE (bottom) characters. Obstacles are
represented as red dots.
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Figure 19. Position and Lagrangian action trajectories (left and
right plots) for the unloaded WRAP-AND-PULL task when dis-
turbed by the operator’s physical intervention.

WRAP-AND-PULL Task under Physical Perturbations
Figure 19 shows the robot trajectories in the position and
Lagrangian action spaces when physically perturbed by an
operator who deviates it from its nominal path. The robot’s
ability to recover the wrapping and pulling behavior even
under physical perturbations showcases GCF’s robustness.
The Lagrangian action s, governed by the Maupertius’ prin-
ciple (see Appendix D.3), decreases during the pulling task
as a result of the work performed by the robot on the en-
vironment. However, it increases when the environment,
represented by the operator, performs work on the robot.
Consequently, the robot gains additional energy to continue
progressing through the task.

DISHWASHER LOADING Task Household environments
represent a key frontier for collaborative robotics, where
robots can assist with daily tasks, improving convenience,
safety, and quality of life, particularly for the elderly or indi-
viduals with limited mobility (Shafiullah et al., 2023). Fig-
ure 20 shows snapshots of the main task phases: the robot
reaches for and pulls out the dishwasher basket, enabling the
human operator to place a dish, then pushes the basket back
in and returns to its home position. Thanks to the robustness
of the GCF framework, the robot reliably converges to the

learned trajectory and successfully grasps the basket, even
when disturbances (such as the operator inadvertently dis-
placing the robot) cause deviations from the data manifold.
This robustness is essential in collaborative settings where
humans and robots share the same workspace and may un-
intentionally interfere with each other’s actions. Moreover,
the safe latent dynamics described in Equation (7c) allow
the robot to respond appropriately when the task cannot be
completed due to environmental contingencies. For instance,
if an object is poorly positioned and blocks the basket from
closing, the robot detects that the required energy exceeds
levels encountered during training and stops exerting force,
thereby avoiding potentially damaging overexertion. Also
this experiment is available in the video accompanying this
paper.

Figure 20. Snapshots from the collaborative DISHWASHER LOAD-
ING task, illustrating key phases: reaching the basket, pulling
(opening) the basket, operator placing a dish, pushing (closing) the
basket, and the robot returning to home position.

E.5. Scalability Evaluation with Synthetic Dynamics

To evaluate how GCF scales with varying target dimension-
alities and model sizes, we conduct experiments on synthetic
data generated from contact Hamiltonian systems with dif-
ferent numbers of degrees of freedom. The dynamics are
governed by a single contact Hamiltonian function parame-
terized by the target dimensionality d, ensuring consistent
comparison across dimensions,

H =
1

2
p⊤p+

1

2
q⊤q+

d/2∑
i

q2iq2i+1+q0

d/2∑
i

q2i+s. (59)

The summation terms couple the behavior of the various
degrees of freedom, producing unique dynamics for each di-
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Table 17. Inference time (seconds) as a function of the number of
contactomorphism components (K) and hidden units in the RFF
networks (nf ).

nf
K

5 10 15 20

200 0.194±0.003 0.204±0.003 0.216±0.003 0.221±0.002

350 0.198±0.003 0.207±0.003 0.218±0.002 0.223±0.002

500 0.195±0.003 0.206±0.002 0.218±0.002 0.224±0.001

mension. This coupling also ensures that the reconstruction
task is sufficiently challenging.

We experiment with different contactomorphisms structures
φr, by varying two key parameters: The number K of in-
dividual flows φrθk

, composing φr, and the number nh of
hidden units, parametrizing each flow via RFF networks.
The total number of parameters is computed as K×nh×nf ,
where nf = 3 is the number of learning functions per indi-
vidual flow. Figure 21 shows the reconstruction accuracy of
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Figure 21. Reconstruction results achieved by the GCF method,
evaluated across varying numbers of parameters used to model a
contactomorphism, for systems of different dimensionalities.

different high-dimensional GCF models, as a function of the
total number of parameters. Reconstruction quality, mea-
sured by DTWD, is normalized by the dimensionality value
to ensure fair comparisons across systems. Note that GCF’s
performance remains stable as the problem dimensionality
increases, with higher-dimensional target dynamics ben-
efiting from larger architectures, at the cost of increased
inference times as reported in Table 17. However, beyond
a certain size, performance may decline due to overfitting,
likely caused by the limited data available.
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