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ABSTRACT

It has long been hypothesised that causal reasoning plays a fundamental role in
robust and general intelligence. However, it is not known if agents must learn
causal models in order to generalise to new domains, or if other inductive biases are
sufficient. We answer this question, showing that any agent capable of satisfying a
regret bound for a large set of distributional shifts must have learned an approximate
causal model of the data generating process, which converges to the true causal
model for optimal agents. We discuss the implications of this result for several
research areas including transfer learning and causal inference.

1 INTRODUCTION

What capabilities are necessary for general intelligence (Legg & Hutter, 2007)? One candidate is
causal reasoning, which plays a foundational role in human cognition (Gopnik et al., 2007; Sloman &
Lagnado, 2015). It has even been argued that human-level AI is impossible without causal reasoning
(Pearl, 2018). However, recent years have seen the development of agents that do not explicitly learn
or reason on causal models, but nonetheless are capable of adapting to a wide range of environments
and tasks (Reed et al., 2022; Team et al., 2023; Brown et al., 2020).

This raises the question, do agents have to learn causal models in order to adapt to new domains, or
are other inductive biases sufficient? To answer this question, we have to be careful not to assume that
agents use causal assumptions a priori. For example, transportability theory determines what causal
knowledge is necessary for transfer learning when all assumptions on the data generating process
(inductive biases) can be expressed as constraints on causal structure (Bareinboim & Pearl, 2016).
However, deep learning algorithms can exploit a much larger set of inductive biases (Neyshabur et al.,
2014; Battaglia et al., 2018; Rahaman et al., 2019; Goyal & Bengio, 2022) which in many real-world
tasks may be sufficient to identify low regret policies without requiring causal knowledge.

The main result of this paper is to answer this question by showing that,

Any agent capable of adapting to a sufficiently large set of distributional shifts

must have learned a causal model of the data generating process.

Here, adapting to a distributional shift means learning a policy that satisfies a regret bound following
an intervention on the data generating process—for example, changing the distribution of features or
latent variables. It is known that a causal model of the data generating process can be used to identify
regret-bounded policies following a distributional shift (sufficiency), with more accurate models
allowing lower regret policies to be found. We prove the converse (necessity)—given regret-bounded
policies for a large set of distributional shifts, we can learn an approximate causal model of the data
generating process, with the approximation becoming exact for optimal policies. Hence, learning a
causal model of the data generating process is both necessary and sufficient for robust adaptation.

This equivalence has consequences for a number of fields and questions. For one, it implies that causal
identification laws also constrain domain adaptation. For example, we show that adapting to covariate
and label shifts is only possible if the causal relations between features and labels can be identified
from the training data—a non-trivial causal discovery problem. This provides further theoretical
justification for causal representation learning (Schölkopf et al., 2021), showing that learning causal
representations is necessary for achieving strong robustness guarantees. Our result also implies that
we can learn causal models from adaptive agents. We demonstrate this by solving a causal discovery
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task on synthetic data by observing the policy of a regret-bounded agent under distributional shifts.
More speculatively, our results suggest that causal models could play a role in emergent capabilities.
Agents trained to minimise a loss function across many domains are incentivized to learn a causal
world model, which could enable them to solve a much larger set of decision tasks they were not
explicitly trained on.

Outline of paper. In Section 2 we introduce concepts from causality and decision theory used to
derive our results. We present our main theoretical results in Section 3 and discuss their interpretation
in terms of adaptive agents, transfer learning and causal inference. In Section 4 we discuss limitations,
as well as implications for a number of fields and open questions. In section 5 we discuss related work
including transportability (Bareinboim & Pearl, 2016) and the causal hierarchy theorem (Bareinboim
et al., 2022), and recent empirical work on emergent world models. In Appendix B we describe
experiments applying our theoretical results to causal discovery problems.

2 PRELIMINARIES

2.1 CAUSAL MODELS

We use capital letters for random variables V , and lower case for their values v 2 dom(V ). For
simplicity, we assume each variable has a finite number of possible values, |dom(V )| < 1. Bold
face denotes sets of variables V = {V1, . . . , Vn}, and their values v 2 dom(V ) = ⇥idom(Vi). A
probabilistic model specifies the joint distribution P (V ) over a set of variables V . These models
can support associative queries, for example P (Y = y | X = x) for X,Y ✓ V . Interventions
describe external changes to the data generating process (and hence changing the joint distribution),
for example a hard intervention do(X = x) describes forcing the set of variables X ✓ V to take
value x. This generates a new distribution P (V | do(X = x)) = P (Vx) where Vx refers to the
variables V following this intervention. The power of causal models is that they specify not only
P (V ) but also the distribution of V under all interventions, and hence these models can be used to
evaluate both associative and interventional queries e.g. P (Y = y | do(X = x)).

For the derivation of our results we focus on a specific class of causal models—causal Bayesian
networks (CBNs). There are several alternative models and formalisms that are studied in the
literature, including structural equation models (Pearl, 2009) and the Neyman-Rubin causal models
(Rubin, 2005), and results can be straightforwardly adapted to these.

Definition 1 (Bayesian networks). A Bayesian network M = (G,P ) over a set of variables V =
{V1, . . . , Vn} is a joint probability distribution P (V ) that factors according to a directed acyclic

graph (DAG) G, i.e. P (V1, . . . , Vn) =
Qn

i=1 P (Vi | PaVi), where PaVi are the parents of Vi in G.

A Bayesian network is causal if the graph G captures the causal relationships between the variables
or, formally, if the result of any intervention do(X = x) for X ✓ V can be computed from the
truncated factorisation formula:

P (v | do(x)) =

(Q
i:vi 62x P (vi | pavi) if v consistent with x

0 otherwise.

More generally, a soft intervention �vi = P 0(Vi | Pa⇤
i ) replaces the conditional probability distribu-

tion for Vi with a new distribution P 0(Vi | Pa⇤i ), possibly resulting in a new parent set Pa⇤
i 6= Pai

as long as no cycles are introduced in the graph. We refer to �vi as a domain indicator (Correa &
Bareinboim, 2020) (it has also been called an environment index, Arjovsky et al., 2019). The updated
distribution is denoted P (v;�v0) =

Q
i:vi2v0 P 0(vi | pa⇤

vi)
Q

i:vi 62v0 P (vi | pavi).

In general, soft interventions cannot be defined without knowledge of G. For example, the soft
intervention �Y = P 0(y | x) is incompatible with the causal structure Y ! X as it would induce a
causal cycle. As our results are concerned with learning causal models (and hence causal structure),
we focus our theoretical analysis on a subset of the soft interventions, local interventions, that are
compatible with all causal structures and so can be used without tacitly assuming knowledge of G.
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Definition 2 (Local interventions). Local intervention � on Vi 2 V involves applying a map to

the states of Vi that is not conditional on any other endogenous variables, vi 7! f(vi). We use

the notation � = do(Vi = f(vi)) (variable Vi is assigned the state f(vi)). Formally, this is a soft

intervention on Vi that transforms the conditional probability distribution as,

P (vi | pai;�) =
X

v0
i:f(v

0
i)=vi

P (v0i | pai) (1)

Example: Hard interventions do(Vi = v0i) are local interventions where f(vi) is a constant function.

Example: Translations are local interventions as do(Vi = vi + k) = do(Vi = f(vi)) where
f(vi) = vi + k. Examples include changing the position of objects in RL environments (Shah et al.,
2022) and images (Engstrom et al., 2019).

Example: Logical NOT operation X 7! ¬X for Boolean X is a local intervention.

We also consider stochastic interventions, noting that mixtures of local interventions can also be
defined without knowledge of G. For example, adding noise to a variable X = X + ✏, ✏ ⇠ N (0, 1),
is a soft intervention on X described by a mixture over local interventions (translations).
Definition 3 (Mixtures of interventions). A mixed intervention �⇤ =

P
i pi�i for

P
pi = 1 performs

intervention �i with probability pi. Formally, P (v | �⇤) =
P

i piP (v | �i).

2.2 DECISION TASKS

Decision tasks involve a decision maker (agent) choosing a policy so as to optimise an objective
function (utility). To give a causal description of decision tasks we use the causal influence diagram
(CID) formalism (Howard & Matheson, 2005; Everitt et al., 2021), which extend a CBN of the
environment (chance) variables by introducing decision and utility nodes (see Figure 1 for examples).
For simplicity we focus on tasks involving a single decision and a single utility function.
Definition 4 (Causal influence diagram). A (single-decision, single-utility) causal influence diagram
(CID) is a CBN M = (G,P ) where the variables V are partitioned into decision, utility, and chance

variables, V = ({D}, {U},C). The utility variable is a real-valued function of its parents, U(paU ).

Single-decision single-utility CIDs can represent most decision tasks such as classification and
regression as they specify what decision should be made (d 2 D), based on what information (paD),
with objective (E[U ]). They can also describe some multi-decision tasks such as Markov decision
processes1. The utility is any real-valued function including standard loss and reward functions.

We assume that the environment is described by a set of random variables C that interact via causal
mechanisms2, and where C satisfies causal sufficiency (Pearl, 2009) (includes all common causes),
noting that such a choice of C always exists. We refer to the CBN over C as the ‘true’ or ‘underlying’
CBN. Note we do not assume the agent has any knowledge of the underling CBN, nor do we assume
which variables in C are observed or unobserved by the agent, beyond that the agent can observe
PaD ✓ C. We also assume knowledge of the utility function U(PaU ).
The conditional probability distribution for the decision node ⇡(d | paD) (the policy) is not a fixed
parameter of the model but is set by the agent so as to maximise its expected utility, which for a policy
⇡ is E⇡[U ] = E[U | do(D = ⇡(paD))]. A policy ⇡⇤ is optimal if it maximises E⇡⇤

[U ]. Typically,
agents do not behave optimally and incur some regret �, which is the decrease in expected utility
compared to an optimal policy � := E⇡⇤

[U ]� E⇡[U ].

To simplify our theoretical analysis, we focus on a widely studied class of decision tasks where the
agents decision does not causally influence the environment (e.g. Figure 1).
Assumption 1 (Unmediated decision task). DescD \ AncU = ;.

In unmediated decision tasks, the agent is provided some (partial) observations of the environment
and chooses a policy, which is then evaluated using the utility function which is a function of the

1Note Markov decision processes can be formulated as a single-decision single-utility CID, by modelling the
choice of policy as a single decision and the cumulative discounted reward as a single utility variable.

2This assumption follows from Reichenbach (1956), and we discuss further in Appendix A.3
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Figure 1: CID for a supervised learning task during (a) training and (b) testing following a distribu-
tional (covariate) shift (unsupervised domain adaptation, Wilson & Cook, 2020). The agent chooses
a label prediction D = Ŷ given features X , with the goal of minimising loss U = �Loss(Y, Ŷ ).
Decision variables are depicted as square nodes, chance variables as circular nodes and utilities as
diamond nodes. Information edges (dashed) show the variables the agent conditions their policy on.
In this example the labels cause the features Y ! X (for examples where features cause labels see
Castro et al., 2020; Schölkopf et al., 2012). The black square (‘regime node’ (Correa & Bareinboim,
2020)) in (b) and (c) denotes a distributional shift induced by an intervention on X . Diagram (c)
depicts the idealised case where the agent knows what domain shift has occurred. By theorem 1,
if the agent can return an optimal decision boundary for known covariate and label shifts, then it
must have learned the CBN over C = {X,Y }. Note that even if the agent has sufficient training data
to learn P (X,Y ), the causal structure Y ! X is in general non-identifiable given P (X,Y ) and so
domain adaptation requires that the agent solves a non-trivial causal discovery problem.

environment state and the agent’s decision. Examples of unmediated decision tasks include prediction
tasks such as classification and regression, whereas examples of mediated decision tasks that are
not covered by our theorems include Markov decision processes where the agent’s decision (action)
influences the utility via the environment state.

2.3 DISTRIBUTIONAL SHIFTS

We focus on generalisation that goes beyond the iid assumption, where agents are evaluated in
domains that are distributionally shifted from the training environment. Distributional shifts can
be changes to the environment (domain shifts), as in domain adaptation and domain generalisation
(Farahani et al., 2021; Wilson & Cook, 2020), or changes to the objective (task shifts) as in zero shot
learning (Xian et al., 2018), in-context learning (Brown et al., 2020) and multi-task reinforcement
learning (Reed et al., 2022). Our analysis focuses on domain shifts that involve changes to the causal
data generating process, and hence can be modelled as interventions (Schölkopf et al., 2021). This
does not assume that all shifts an agent will encounter can be modelled as interventions, but requires
that the agent is at least capable of adapting to these shifts.

Examples of interventionally generated shifts include translating objects in images (Engstrom et al.,
2019), noising inputs and adversarial robustness (Hendrycks & Dietterich, 2019), and changes to the
initial conditions or transition function in Markov decision processes (Peng et al., 2018). Examples
of shifts that are not naturally represented as interventions include changing the set of environment
variables C, and introducing selection biases (Shen et al., 2018). See Appendix A.3 for discussion.

Our main results restrict to local domain shifts, which correspond to local interventions on the chance
variables C. We do not consider shifts that change the agent’s decision D, although we include shifts
that drop inputs to the policy PaD ! Pa0

D ✓ PaD (e.g. masking) as local interventions. We do not
consider task shifts i.e. changing the utility function.

As we are interested in determining the capabilities necessary for domain adaptation, we restrict
our attention to decision tasks where domain adaptation is non-trivial, i.e. where the optimal policy
depends on the environment distribution P (C = c).
Assumption 2 (Domain dependence). There exists P (C = c) and P 0(C = c) compatible with M
such that ⇡⇤ = argmax⇡ E⇡

P [U ] implies ⇡⇤
6= argmax⇡ E⇡

P 0 [U ].

Assumption 2 implies the existence of domain shifts that change the optimal policy. As shown in
Appendix A.1, domain independence holds if and only if AncU ✓ PaD, i.e. when there are no latent
variables (Lemma 1). It is simple to show that in this case the optimal policy is invariant under all
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domain shifts. Hence, Assumption 2 is equivalent to assuming the presence of latent variables that
are strategically relevant (Koller & Milch, 2003).

3 EQUIVALENCE OF LEARNING POLICIES AND CAUSAL MODELS

We now present our results, showing that learning the underlying CBN is necessary and sufficient for
learning regret bounded policies under a large set of domain shifts. In Section 3.2 we interpret these
results by considering their consequences for transfer learning, causal inference and adaptive agents.

First we focus on the idealised case where we assume optimality. We show for almost all decision
tasks the underlying CBN can be reconstructed given optimal policies for a large set of domain shifts.

Theorem 1. For almost all CIDs M = (G,P ) satisfying Assumptions 1 and 2, we can identify

the directed acyclic graph G and joint distribution P over all ancestors of the utility AncU given

{⇡⇤
�(d | paD)}�2⌃ where ⇡⇤

�(d | paD) is an optimal policy in the domain � and ⌃ is the set of all

mixtures of local interventions. Proof in Appendix C.

The parameters P (vi | pai), U(paU ) of the underlying CBN define a parameter space and the
condition for almost all CIDs means that the subset of the parameter space for which the Theorem 1
does not hold is Lebesgue measure zero (see Appendix A.2 for discussion). This condition is
necessary because there exist finely-tuned environments for which the CBN cannot be identified given
the agent’s policy due to variables X 2 AncU that do not affect the expected utility. For example
consider X ! Y ! U , Y = N (0, x) and U = D + Y , then changing X can only change the
variance of U while leaving its expected value (and hence the optimal policy) constant. However, this
only occurs for very specific choices of the parameters P and U .

In Appendix B we give a simplified overview of the proof with a worked example. We assume access
to an oracle for optimal policies ⇡⇤

� for any given local intervention on C. Note, this assumes the
agent is robust to distributional shifts on a causally sufficient set of variables C, not that the set of
variables the agent observes is causally sufficient. We devise an algorithm that queries this oracle with
different mixtures of local interventions and identifies the mixtures for which the optimal policies
changes. We then show that these critical mixtures identify the parameters of the CBN, specifying
both the graph G(AncU ) and the joint distribution P (AncU ).

3.1 RELAXING THE ASSUMPTION OF OPTIMALITY

We now relax the assumption of optimality, considering the case where the policies ⇡� satisfy a
regret bound E⇡� [U ] � E⇡⇤

� [U ]� �. We show that for � > 0 we can recover an approximation of the
environment CBN, with error that grows linearly in � for � ⌧ E⇡⇤

[U ].
Theorem 2. For almost all CIDs M = (G,P ) satisfying Assumptions 1 and 2, we can iden-

tify an approximate causal model M 0 = (P 0, G0) given {⇡�(d | paD)}�2⌃ where E⇡� [U ] �

E⇡⇤
� [U ] � � and ⌃ is the set of mixtures of local interventions. The parameters of M 0

satisfy

|P 0(vi | pai)� P (vi | pai)|  �(�) 8 Vi 2 V where �(0) = 0 and �(�) grows linearly in � for

small regret � ⌧ E⇡⇤
[U ]. Proof in Appendix D.

The worst-case error bounds �(�) for the parameter errors are detailed in Appendix D. For � > 0 it
may not be possible to identify G perfectly as some weak causal relations cannot be resolved due
to these error bounds. We describe in Appendix D how we can learn a sub-graph G0

✓ G that may
exclude directed edges corresponding to weak causal relations.

Theorem 2 shows that we can learn a (sparse) approximate causal models of the data generating
process from regret bounded policies under domain shifts, where the approximation becoming exact
as � ! 0. In Appendix F we demonstrate learning the underlying CBN from regret-bounded policies
using simulated data for randomly generated CIDs similar to Figure 1, and explore how the accuracy
of the approximate CBN scales with the regret bound (Figure 3).

Finally, we prove sufficiency, i.e. that having an (approximate) causal model of the data generating
process is sufficient to identify regret-bounded policies. The result is well-known for the non-
approximate case (Bareinboim & Pearl, 2016).
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(a) Error rate for learned DAG v.s. regret bound (b) Mean error for P (x, y) v.s. regret bound

Figure 3: Comparing the model-average error rates for a) the learned DAG G0 and b) learned joint
distribution P 0(x, y), v.s. the (normalised) regret bound �/

��E[u | D = 1]� E[u | D = 0]
��. Average

error taken over 1000 randomly generated environments with binary decision D and two binary latent
variables X,Y . Comparison to error rate for random guess (green) See Appendix F for details.

Theorem 3. Given the CBN M = (P,G) that is causally sufficient we can identify optimal policies

⇡⇤
�(d | paD) for any given U where PaU ✓ C and for all soft interventions �. Given an approximate

causal model M 0 = (P 0, G0) for which |P 0(vi | pai)� P (vi | pai)|  ✏ ⌧ 1, we can identify

regret-bounded policies where the regret � grows linearly in ✏. Proof in Appendix E.

Together, Theorems 2 and 3 imply that learning an approximate causal model of the data generating
process is necessary and sufficient for learning regret-bounded policies under local interventions.

3.2 INTERPRETATION

We interpret Theorems 1 to 3 through three lenses; transfer learning, adaptive agents and causal
inference.

Transfer learning. In transfer learning (Zhuang et al., 2020), models are trained on a set of source
domains and evaluated on held-out target domains where i) the data distribution differs from the source
domains, and ii) the data available for training is restricted compared to the source domains (Wang
et al., 2022). For example, in unsupervised domain adaptation the learner is restricted to samples
of the input features from the target domains paD ⇠ P (PaD;�), whereas in domain generalisation
typically no data from the target domain is available during training (Farahani et al., 2021).

Let DS denote the training data from the source domains and D� denote the training data available
from a given target domain �. Let there exist a transfer learning algorithm that returns a policy ⇡�

satisfying a regret bound for a given target domain �, provided this training data. As ⇡� is a function
of the training data, then by Theorems 1 and 2 the existence of this algorithm implies that we can
identify the underlying CBN from DS [ {D�}�2⌃. To see that this imparts non-trivial constraints on
the existence of the transfer learning algorithm, we can consider the following simple example.

Example: Consider the CID for the supervised learning task depicted in Figure 1. Let DS =
{(xi, yi) ⇠ P (X,Y )}ni=1, so for sufficiently large n the agent can learn the P (X,Y ) from DS .
However, Y ! X must also be identifiable from the training data DS [ {D�}�2⌃. In other words,
the transfer learning problem contains a hidden causal discovery problem. If D� = ; then Y ! X
must be identifiable from P (x, y) alone, which is impossible unless the causal data generating process
obeys additional assumptions (see for example Hoyer et al., 2008). If unlabelled features from the
target domain are included in the training data D� = {xi

⇠ P (X;�)}n�
i=1, Y ! X can in principle

be identified as P (X;�Y ) 6= P (X).

Adaptive agents are goal-directed systems whose outputs are ‘moved by reasons’ (Dennett, 1989),
meaning they choose an action because they expect it to achieve some desired outcome, and would
act differently if they knew the consequences of their actions would be different. For example, a firm
sets prices to maximise profit, and adapts pricing to changes in demand (Kenton et al., 2023).
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Consider the transfer learning setting where an agent has to generalise to a target domain using only
its previous experience (i.e. zero-shot adaptation), enabled by the fact that it has perfect knowledge
of what domain shift has occurred D� = {�} (e.g. the agent conditions their policy on the domain
indicator3 ⇡� = ⇡(d | paD,�)). If the policy ⇡� satisfies a tight regret bound then by Theorem 2 we
can reconstruct the underlying CBN from the agent’s policy alone (following the procedure described
in Appendix C). Hence, any agent that is capable of adapting to known domain shifts has also learned
a causal model of their environment.

Example: Doctors are one such agent, as they are expected to make low regret decisions under
a wide range of known distributional shifts without re-training in the shifted environment. For
example, consider a doctor tasked with risk-stratifying patients based on their signs and medical
history. The doctor may be transferred to a new ward where patients have received a treatment (known
distributional shift) that has a stochastic effect on latent variables (mixed intervention) such as curing
diseases and causing side effects. The doctor cannot re-train in this new domain, e.g. taking random
decisions and observing outcomes. To be capable of this, Theorem 2 implies the doctor must have
learned the causal relations between the relevant latent variables—how the treatment affects diseases,
how these diseases and their symptoms are causally related, and so on. Likewise, any medical AI that
hopes to replicate this capability must have learned a similarly accurate causal model, and the better
the agent’s performance the more accurate its causal model must be.

Where is the causal model? When we say this agent has learned the underlying CBN, we mean
that the agent has learned the policy ⇡(d | paD,�) which is functionally equivalent to learning the
underlying CBN, as any query that can be answered using the CBN can also be answered using
⇡(d | paD,�), which follows from the fact that the CBN is identified by ⇡(d | paD,�) (Theorem 1).

Causal inference. Theorem 1 can also be interpreted purely in terms of causal inference. We can
compare to the causal hierarchy theorem (CHT) (Bareinboim et al., 2022), which states that an oracle
for L1 queries (observational) is almost always insufficient to evaluate all L2 queries (interventional).
Our Theorem 1 can be stated in an analogous way; an oracle for optimal policies under mixtures of
local interventions ⇧⇤

⌃ : � 7! ⇡⇤(�), can evaluate all L2 queries, which follows from the fact that the
oracle identifies the underlying CBN which in turn identifies all L2 queries. Note ⇧⇤

⌃ is a strict subset
of L2, and we describe a subset of L2 as being L2-complete if evaluating these queries is sufficient to
evaluate all L2 queries. Hence Theorem 1 can be summarised as ⇧⇤

⌃ is L2-complete. It would be
interesting in future work to determine what other strict subsets of L2 are L2-complete, as identifying
these queries is sufficient to identify all interventional queries.

Why is this surprising? Firstly, we may expect the optimal policies to encode a relatively small
number of causal relations, as they can be computed from E[u | d, paD;�], which describes the
response of a single variable U to intervention �. However, Theorem 1 shows that the optimal
policies encode all causal and associative relations in AncU , including causal relations between latent
variables, for example P (Yx) for any X,Y ✓ AncU . Secondly, Theorems 2 and 3 combined imply
that learning to generalise under domain shifts is equivalent to learning a causal model of the data
generating process—problems that on the surface are conceptually distinct.

Figure 4: The set L2 (Bareinboim et al., 2022) contains all casual queries including the set of optimal
policies under domain ⇡⇤

C and task shifts ⇡⇤
U . We show that ⇡⇤

C also contains L2, i.e. learning
optimal policies under all shifts for a single utility U is sufficient to identify L2

3Domain indicator � is equivalent to an environment index (Gupta et al., 2023; Arjovsky et al., 2019)
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4 DISCUSSION

Here we discuss the consequences for several fields and open questions, as well as limitations.

Causal representation learning. Causal representation learning (CRL) aims to learn representations
of data that capture unknown causal structure (Schölkopf et al., 2021), with the aim of exploiting
causal invariances to achieve better generalisation across domains. Theorems 1 and 2 show that any
method that enables generalisation across many domains necessarily involves learning an (approxi-
mate) causal model of the data generating process—i.e. a causal representation. Hence, our results
provide theoretical justification for CRL by showing it is necessary for strong robustness guarantees.

Causal bounds on transfer learning. As described in Section 3.2, Theorems 1 and 2 imply
fundamental causal constraints on certain transfer learning tasks. For example in the supervised
learning task depicted in Figure 1, identifying regret-bounded policies under covariate and label
shifts requires learning the causal relations between features and labels. Causal discovery problems
such as this are well understood in many settings (Vowels et al., 2022), and in general identifying
this causal structure (e.g. that Y ! X in Figure 5 a)) is impossible without interventional data
and/or additional assumptions. This connection allows us to convert (im)possibility results for causal
discovery to (im)possibility results for transfer learning. Future work could explore this for smaller
sets of distributional shifts and derive more general causal bounds on transfer learning.

Good regulator theorem. The good regulator theorem is often interpreted as saying that any good
controller of a system must have a model of that system (Conant & Ross Ashby, 1970). However,
some imagination is needed to take this lesson from the actual theorem, which technically only states
that there exists an optimal regulator that is a deterministic function of the state of the system (which
could be trivial, Wentworth (2021)). Our theorem less ambiguously states that any robust agent must
have learned an (approximate) causal model of the environment, as described in Section 3.2. It can
therefore be interpreted as a more precise, causal good regulator theorem.

Emergent capabilities. Causal models enable a kind of general competency—an agent can use a
causal model of its environment to identify regret-bounded policies for any objective U(PaU ✓ V )
without additional data (Theorem 3). This suggests that causal world models could help explain
how general competence can arise from narrow training objectives (Brown et al., 2020; Silver et al.,
2021). By Theorems 1 and 2, agents trained to maximise reward across many environments are
incentivized to learn a causal world model (as they cannot generalise without one), which can in
turn be used to solve any other decision task in the environment. This incentive does not imply that
training an agent with a simple reward signal is sufficient to learn causal world models. E.g. it will
still be impossible for an agent to learn a causal model (and therefore to generalise) if the model is
not causally identifiable from its training data. The question is then if current methods and training
schemes are sufficient for learning causal world models. Early results suggest that transformer models
can learn world models capable of out-of-distribution prediction (Li et al., 2022) (see Section 6 for
discussion). While foundation models are capable of achieving state of the art accuracy on causal
reasoning benchmarks (Kıcıman et al., 2023), how they achieve this (and if it constitutes bona fide
causal reasoning) is debated (Zečević et al., 2023).

Causal discovery. Theorems 1 and 2 involve learning the causal structure of the environment
by observing the agent’s policy under interventions. It is perhaps surprising that the response of
this single variable to interventions is sufficient to identify all associative and causal relations in
AncU . Typically, causal discovery algorithms involve measuring the response of many variables to
interventions (Vowels et al., 2022). Also, many causal discovery algorithms assume independent
causal mechanisms (Schölkopf et al., 2021), which is equivalent to assuming no agents are present in
the data generating process (Kenton et al., 2023). However, our results suggest that agents could be
powerful resources for causal discovery. In Appendix B we use the proof of Theorem 2 to derive a
causal discovery algorithm for learning causal structure over latents, and test it on synthetic data.

Applicability of causal methods. Causal models have been used to formally define concepts such as
intent (Halpern & Kleiman-Weiner, 2018; Ward et al., 2024), harm (Richens et al., 2022), deception
(Ward et al., 2023b), manipulation (Ward et al., 2023a) and incentives (Everitt et al., 2021), and are
required for approaches to explainability (Wachter et al., 2017) and fairness (Kusner et al., 2017).
Methods for designing safe and ethical AI systems that build on these definitions require causal
models of the data generating process, which are typically hard to learn, leading some to doubt
their practicality (Fawkes et al., 2022; Rahmattalabi & Xiang, 2022). However, our results show
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that learning a causal model of the data generating process is necessary, and demonstrate that these
models can be elicited from sufficiently robust agents. These could in turn be used to support causal
methods for safety and fairness.

Limitations. Theorems 1 and 2 require agents to be robust to a large set of domain shifts (local
interventions on all environment variables). Theorem 2 shows that loosening regret bounds results
in some causal relations being unidentifiable from the agent’s policy. Hence, we expect it is still
possible to learn some casual knowledge of the environment from agents that are robust to a smaller
set of domain shifts, albeit less complete that the full underlying CBN. Finally, our results only apply
to unmediated decision tasks (Assumption 1). We expect Theorems 1 and 2 can be extended to active
decision tasks, as Assumption 1 does not play a major role beyond simplifying the proofs.

5 RELATED WORK

Several recent empirical works have explored if deep learning models learn ‘surface statistics’ (e.g.
correlations between inputs and outputs) or learn internal representations of the world (McGrath
et al., 2022; Abdou et al., 2021; Li et al., 2022; Gurnee & Tegmark, 2023). Our results offer some
theoretical clarity to this discussion, tying an agents performance to the fidelity its world model,
and that going beyond ‘surface statistics’ to learning causal relations is fundamentally necessary
for robustness. One study in particular (Li et al., 2022) found that a GPT model trained to predict
legal next moves in the board game Othello learned a linear representation of the board state (Nanda,
2023). Further, this internal representation of the board state could be changed by intervening on
the intermediate activations, with the model updating its predictions consistent with the intervention,
including interventions that take the board state outside of the training distribution. This indicates
that the network is learning and utilising a representation of the data generating process that can
support out-of-distribution generalisation under interventions—much like a causal model.

The problem of evaluating policies under distributional shifts has been studied extensively in causal
transportability (CT) theory (Bareinboim & Pearl, 2016; Bellot & Bareinboim, 2022). CT aims to
provide necessary and sufficient conditions for policy evaluation under known domain shifts when all
assumptions on the data generating process (i.e. inductive biases) can be expressed as constraints
on causal structure (Bareinboim & Pearl, 2016). However, deep learning algorithms can exploit a
much larger set of inductive biases (Neyshabur et al., 2014; Battaglia et al., 2018; Rahaman et al.,
2019; Goyal & Bengio, 2022) which in many real-world tasks may be sufficient to identify low regret
policies without requiring causal knowledge. Thus, CT does not imply that agents must learn causal
models in order to generalise unless we assume agents only use causal assumptions to begin with,
which would be proof by assumption. See Appendix G for further discussion.

A similar result to Theorems 1 and 2 is the causal hierarchy theorem (CHT) (Bareinboim et al.,
2022; Ibeling & Icard, 2021), which shows that observational data is almost always insufficient for
identifying all causal relations between environment variables, whereas our results state that the set of
optimal policies is almost always sufficient to identify all causal relations. In Section 3.2 we discuss
the similarities between these theorems, and in Appendix G we discuss their differences.

6 CONCLUSION

Causal reasoning is foundational to human intelligence, and has been conjectured to be necessary for
achieving human level AI (Pearl, 2019). In recent years, this conjecture has been challenged by the
development of artificial agents capable of generalising to new tasks and domains without explicitly
learning or reasoning on a causal model. And while the necessity of causal models for solving causal
inference tasks has been established (Bareinboim et al., 2022), their role in decision tasks such as
classification and reinforcement learning is less clear.

We have resolved this conjecture in a model-independent way, showing that any agent capable of
robustly solving a decision task must have learned a causal model of the data generating process,
regardless of how the agent is trained or the details of its architecture. This hints at an even deeper
link between causality and general intelligence, as this causal model can be used to simulate the
environment and do policy evaluation for any given objective function. By establishing this formal
connection between causality and generalisation, our results show that causal world models are a
necessary ingredient for robust and general AI.
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