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Abstract

Bridging the gap between diffusion models and
human preferences is crucial for their integration
into practical generative workflows. While opti-
mizing downstream reward models has emerged
as a promising alignment strategy, concerns arise
regarding the risk of excessive optimization with
learned reward models, which potentially compro-
mises ground-truth performance. In this work, we
confront the reward overoptimization problem in
diffusion model alignment through the lenses of
both inductive and primacy biases. We first iden-
tify a mismatch between current methods and the
temporal inductive bias inherent in the multi-step
denoising process of diffusion models, as a po-
tential source of reward overoptimization. Then,
we surprisingly discover that dormant neurons in
our critic model act as a regularization against
reward overoptimization while active neurons re-
flect primacy bias. Motivated by these observa-
tions, we propose Temporal Diffusion Policy Op-
timization with critic active neuron Reset (TDPO-
R), a policy gradient algorithm that exploits the
temporal inductive bias of diffusion models and
mitigates the primacy bias stemming from active
neurons. Empirical results demonstrate the supe-
rior efficacy of our methods in mitigating reward
overoptimization. Code is avaliable at https:
//github.com/ZiyiZhang27/tdpo.

1. Introduction
Diffusion models (Sohl-Dickstein et al., 2015) represent the
state-of-the-art in generative modeling for continuous data,
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Figure 1. TDPO-R first samples trajectories (xT , xT−1, ..., x0)
from the denoising process of a fixed diffusion model parame-
terized by θold for each epoch. At each timestep t, it performs a
one-step denoising using the current diffusion model parameter-
ized by θ, estimates a temporal reward Tϕ(xt) using a temporal
critic parameterized by ϕ, and updates the gradients for both θ and
ϕ according to the corresponding objective functions. Additionally,
TDPO-R resets active neurons of ϕ at the end of every F epochs.

particularly excelling in text-to-image generation (Rombach
et al., 2022). Traditional training methodologies for diffu-
sion models predominantly adhere to a maximum likelihood
objective. However, such approaches may not inherently pri-
oritize the optimization of downstream objectives, such as
image aesthetic quality (Schuhmann et al., 2022) or human
preferences (Xu et al., 2023; Wu et al., 2023a). To align
pre-trained diffusion models with downstream objectives,
researchers have explored using learned or handcrafted re-
ward functions to finetune these models. Typical solutions
along this research direction can be categorized into super-
vised learning (Lee et al., 2023; Wu et al., 2023b; Dong
et al., 2023), reinforcement learning (RL) (Fan et al., 2023;
Black et al., 2024), and backpropagation through sampling
(Clark et al., 2024; Prabhudesai et al., 2023).

Despite the promise of reward-driven approaches, re-
ward overoptimization remains a fundamental and under-
researched challenge. This phenomenon, characterized by
overfitting learned or handcrafted reward models, stems
from the inherent limitations of these models in capturing
the full spectrum of human intent. In image generation,
reward overoptimization typically manifests as fidelity de-
terioration or continual degradation in cross-reward gen-
eralization against out-of-domain reward functions. Addi-
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tionally, sample efficiency further complicates this issue.
Notably, while RL-based methods (Fan et al., 2023; Black
et al., 2024) exhibit relatively lower susceptibility to reward
overoptimization, this advantage comes at the expense of
diminished sample efficiency due to the extra sampling pro-
cess isolated from training. This further entails a trade-off
between sample efficiency and reward overoptimization.

Regrettably, the underlying causes of reward overoptimiza-
tion in diffusion model alignment remain unclear, which is
the primary concern of this work. To this end, we systemati-
cally investigate this problem from the perspective of both
inductive and primacy biases. Firstly, within the context of
deep RL, the consistency between the inductive bias of an al-
gorithm and the solving task plays a crucial role in achieving
robust generalization (Zhang et al., 2018). However, current
reward-driven alignment approaches for diffusion models
exclusively focus on maximizing rewards computed from
the final generated images, while overlooking the sequen-
tial nature of diffusion models and valuable intermediate
information within the multi-step denoising process. This
mismatch between the reward structure and the model’s
inherent temporal inductive bias potentially leads to overfit-
ting and misalignment between the desired outcome (high
reward) and the actual quality of the generation process.

Secondly, primacy bias (Nikishin et al., 2022), the tendency
of deep RL agents to overfit early training experiences, poses
another potential source of reward overoptimization. To this
end, we investigate the neuron states as internal indicators
of primacy bias. Although Sokar et al. (2023) suggest that
dormant neurons in deep RL agents have a negative effect
on the model capacity and resetting dormant neurons re-
duces this effect, we surprisingly discover that dormant
neurons instead act as an adaptive regularization against
reward overoptimization, while active neurons appear to be
susceptible to the primacy bias towards this phenomenon.

Motivated by the above observations, we propose Tempo-
ral Diffusion Policy Optimization with critic active neuron
Reset (TDPO-R), a novel policy gradient algorithm that ex-
ploits the temporal inductive bias inherent in the denoising
process of diffusion models and mitigates the primacy bias
stemming from active neurons. As illustrated in Figure 1, to
exploit the temporal inductive bias, TDPO-R assigns each
intermediate denoising timestep a temporal reward, which is
derived by learning a temporal critic function. The diffusion
model and the temporal critic are then optimized simul-
taneously via gradient descent with a per-timestep update
strategy. Accordingly, the consistent temporal granularity
between the temporal rewards and the per-timestep gradi-
ent updates not only mitigates reward overoptimization, but
also improves sample efficiency by striking a balance be-
tween update frequency and stability. To counteract the
primacy bias, TDPO-R employs a periodic reset strategy

that specifically targets active neurons within the critic, fur-
ther alleviating the reward overoptimization problem.

We deploy the proposed TDPO-R with Stable Diffusion v1.4
(Rombach et al., 2022) and conduct empirical evaluations us-
ing multiple reward functions over a variety of prompt sets.
We first employ individual reward functions to quantitatively
measure the sample efficiency and model performance per
task. Then we introduce a novel metric of cross-reward
generalization as a proxy for the quantitative evaluation of
reward overoptimization. Evaluation results demonstrate
the superior efficacy of our algorithms in the trade-off be-
tween sample efficiency and cross-reward generalization
compared to state-of-the-art methods. In addition, we show
that our critic active neuron reset strategy significantly con-
tributes to a further mitigation of reward overoptimization
during the RL process of our general training framework
(i.e., TDPO), as evidenced by the outstanding performance
in cross-reward generalization, as well as the fidelity and
diversity observed in high-reward qualitative results. The
main contributions of this paper are summarized as follows:

• To the best of our knowledge, this is the first work that
investigates the underlying causes of reward overop-
timization in diffusion model alignment from the per-
spective of inductive and primacy biases.

• We exploit the temporal inductive bias of diffusion
models to design TDPO, an RL-based diffusion align-
ment framework with consistent temporal granularity
of rewards and gradients, not only mitigating reward
overoptimization but also improving sample efficiency.

• Building on TDPO, we identify the susceptibility of
the critic’s active neurons to primacy bias, which con-
tributes to overoptimization, and address it with TDPO-
R, which enhances TDPO with a periodic neuron reset
strategy to further mitigate reward overoptimization.

• We develop a quantitative metric of cross-reward gener-
alization as a proxy for the evaluation of reward overop-
timization, and demonstrate the superior efficacy of our
methods in trading off efficiency and generalization.

2. Related Work
Reward finetuning of diffusion models. Lee et al. (2023)
and Wu et al. (2023b) finetune diffusion models on rewards
using supervised learning. Dong et al. (2023) present an
online variant of these supervised learning-based methods.
Fan et al. (2023) and Black et al. (2024) explore using policy
gradient-based RL algorithms to align diffusion models with
arbitrary rewards. Clark et al. (2024) and Prabhudesai et al.
(2023) finetune diffusion models by backpropagating gra-
dients of differentiable reward functions and truncate back-
propagation to a few sampling steps. All these works use
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timestep-independent rewards based on fully-generated im-
ages, precluding intermediate samples in the denoising pro-
cess. In contrast, we introduce timestep-dependent rewards
for intermediate samples, and optimize diffusion models on
these rewards at temporal granularity. More importantly,
none of these works explicitly address reward overoptimiza-
tion, which is the main focus of our work.

Reward hacking and overoptimization. Reward overop-
timization (Gao et al., 2023; Moskovitz et al., 2024), also
termed “reward hacking” (Skalse et al., 2022; Miao et al.,
2024), refers to the detrimental phenomenon where opti-
mizing too much on imperfect reward functions hinders the
model performance on the true objectives. To address this
issue, two widely employed strategies are early stopping
(Black et al., 2024) and Kullback-Leibler (KL) regulariza-
tion (Fan et al., 2023). However, there still exists a lack
of statistical evidence and understanding of their efficacy
in reducing overoptimization. In this work, we investigate
the underlying causes of reward overoptimization from the
perspective of inductive and primacy biases. In addition, we
are the first to design large-scale quantitative evaluations
based on the cross-reward generalization metric for reward
overoptimization in diffusion model alignment.

Primacy bias and plasticity loss. Primacy bias (Nikishin
et al., 2022) is also identified by a variety of other termi-
nologies, including implicit under-parameterization (Kumar
et al., 2020), capacity loss (Lyle et al., 2021), and dormant
neuron phenomenon (Sokar et al., 2023). All of these can
be generalized as plasticity loss (Lyle et al., 2023; Kumar
et al., 2023; Ma et al., 2024), i.e., loss of ability to learn
and generalize. Resetting the last layer of an agent network
(Nikishin et al., 2022) retrieves plasticity, but may cause
knowledge forgetting. Sokar et al. (2023) suggest that dor-
mant neurons in agent networks have a negative effect on
model plasticity, which can be mitigated by resetting these
neurons. However, our empirical findings present a surpris-
ing twist in the context of reward overoptimization, which
reveals that dormant neurons act as an adaptive regulariza-
tion that benefits our model, offering a novel perspective on
understanding neuron states and overcoming primacy bias.

3. Preliminaries
3.1. Denoising Diffusion Probabilistic Models

This work is built upon Denoising Diffusion Probabilistic
Model (DDPM) (Ho et al., 2020), a well-established diffu-
sion backbone that learns to model a probability distribution
p(x0) by reversing a Markovian forward process q(xt|xt−1)
that iteratively adds Gaussian noise towards the desired sam-
ple x0 at each diffusion timestep t. The reverse process is
modeled by a denoising neural network µθ(xt, t) to predict
its posterior mean µ̃(x0, xt), which is a weighted average of

x0 and xt. The network is parameterized by θ and trained
using the following objective:

Ex0∼p(x0),t∼[1,T ],xt∼q(xt|x0)

[
∥µ̃(x0, xt)− µθ(xt, t)∥2

]
. (1)

Additionally, DDPM is readily extended to the conditional
generative modeling of p(x0|c), where c is a conditional
signal, such as a text prompt, processed by a conditional
denoising network µθ(xt, t, c). To sample from a learned
denoising process pθ(xt−1|xt, c), one begins by drawing
a Gaussian noisy sample xT ∼ N (0, I), and then em-
ploys a specific sampling scheduler (Ho et al., 2020; Song
et al., 2021), which iteratively generates subsequent samples
xT−1, ..., x0 according to outputs from the denoising net-
work µθ. An intermediate timestep of the denoising process
with the noise variance σ2

t can be written as:

pθ(xt−1|xt, c) = N (xt−1;µθ(xt, t, c), σ
2
t I). (2)

3.2. Reinforcement Learning

Markov Decision Process (MDP). MDP provides a math-
ematical framework for modeling decision-making prob-
lems. We consider finite MDP in this work, where the agent
acts iteratively at each of a sequence of discrete timesteps
t ∈ (0, 1, 2, ...), up to a maximum timestep T . At each
timestep t, the agent perceives a state st ∈ S, and selects
an action at ∈ A by a policy π(at|st), where S,A are state
and action spaces respectively. One timestep later, the agent
receives a numerical reward r(st, at) as a consequence of its
action, and finds itself in a new state st+1 ∼ P (st+1|st, at),
where P denotes the transition probability function.

RL objective. Within the MDP framework, the interaction
between the agent and the environment give rise to trajec-
tories τ = (s0, a0, s1, a1, ..., sT , aT ), where each element
represents a state-action pair at a specific timestep. Then the
RL objective under this formulation is to find the policy that
maximizes the expected accumulation of trajectory rewards:

max
π

Eτ∼p(τ |π)

[
T∑

t=0

r(st, at)

]
. (3)

4. Method
Now we delve into our approaches to addressing the reward
overoptimization problem in diffusion model alignment, fo-
cusing on the exploration of both inductive and primacy
biases. First, we will address the general concern of induc-
tive bias mismatch for reward-driven diffusion model align-
ment methods, by introducing a novel RL-based training
framework, i.e., TDPO. Subsequently, we will investigate
the primacy bias, a more specific issue within TDPO that
may also contribute to reward overoptimization, and further
tackle this issue by incorporating a novel periodic reset strat-
egy for active neurons within our critic model, leading to an
enhanced version of TDPO, i.e., TDPO-R.
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4.1. Temporal Diffusion Policy Optimization

In this section, we aim to address the mismatch between
current reward-driven alignment approaches for diffusion
models and the temporal inductive bias inherent in the multi-
step denoising process of diffusion models. We first extend
the standard multi-step MDP formulation of the denoising
process as in (Fan et al., 2023; Black et al., 2024) by in-
troducing timestep-dependent rewards for each denoising
operation, along with an efficient approach to approximate
these temporal rewards during diffusion model alignment.
Building upon this new MDP formulation, we develop a
novel RL framework for diffusion model alignment, i.e.,
Temporal Diffusion Policy Optimization (TDPO), which ex-
ploits the temporal inductive bias of the multi-step denoising
process to perform temporal reward-driven optimization of
diffusion polices via a per-timestep gradient update strategy.

Temporal inductive bias. To perform RL-based diffusion
model alignment, Fan et al. (2023) and Black et al. (2024)
map the denoising process of diffusion models to a multi-
step MDP, in which the trajectories (xT , xT−1, ..., x0) cor-
respond to the intermediate images sampled during the de-
noising process. In their settings, the cumulative rewards for
all trajectories are condensed into a singular value R(x0, c),
which is exclusively computed on the final sample x0, pre-
cluding the noisy samples xt obtained at each intermediate
timestep t. This timestep-independent reward definition
creates a mismatch with the temporal inductive bias inher-
ent in the multi-step denoising process of diffusion models,
thereby posing a potential risk of overfitting to R(x0, c).

Denoising as MDP with temporal rewards. To inherit
and exploit the temporal inductive bias within the denoising
process, we characterize this process as a multi-step MDP
with timestep-dependent trajectory rewards T (xt, c):

st ≜ (xT−t, t, c), ρ0(s0) ≜ (p(c), δ0,N (0, I)),

at ≜ xT−t−1, P (st+1|st, at) ≜ (δc, δt+1, δxT−t−1
),

r(st, at) ≜ T (xT−t−1, c), π(at|st) ≜ pθ(xT−t−1|xT−t, c),

(4)

where ρ0 is the initial state distribution, δz is the Dirac delta
distribution at z, and optimizing the policy π is equivalent
to finetuning the diffusion model parameterized by θ. This
formulation diverges from the ones presented in (Fan et al.,
2023; Black et al., 2024), in terms of the timestep-dependent
definition of trajectory rewards. We refer T (xt, c) to the
intermediate reward w.r.t. the noisy image xt from each
timestep t of the denoising process.

This new MDP formulation leads to a temporal reward-
driven optimization of the diffusion policy, and thus exploits
the aforementioned temporal inductive bias. This optimiza-
tion procedure is driven by the objective of maximizing the
expected temporal rewards at each denoising timestep, i.e.,

max
θ

Ep(c)Epθ(x0:T |c) [T (xt, c)] . (5)

Temporal reward approximation. Prevalent reward mod-
els such as aesthetic predictor (Schuhmann et al., 2022) and
ImageReward (Xu et al., 2023) are usually trained on the dis-
tributions of the final clean images rather than intermediate
noisy samples within the denoising process. Consequently,
it is not feasible to derive the temporal rewards directly from
these reward models. An intuitive solution for this problem
involves retraining reward models on noisy images, but it
restricts the direct utilization of off-the-shelf reward models
and imposes excessive additional training overhead.

To address this issue, we present an efficient approach in
this section. In particular, we first utilize off-the-shelf re-
ward models to compute the reward function for each final
clean image x0, denoted as R(x0, c). Then we approximate
the temporal reward T (xt, c) for each intermediate noisy
image xt by learning a temporal critic function Tϕ(xt, c)
parameterized by ϕ. To facilitate the learning process, we
further use R(x0, c) as an anchor and compute Tϕ(xt, c) as:

T (xt, c) ≈ Tϕ(xt, c) ≜ R(x0, c)−Rϕ(xt, c). (6)

where Rϕ(xt, c) is the prediction function of a temporal
residual for each temporal reward, which is trained in con-
junction with the policy over all denoising timesteps.

Nonetheless, learning Rϕ(xt, c) presents a non-trivial chal-
lenge, since we need to evaluate temporal rewards at each
timestep. A naive implementation of the temporal critic with
a comparable number of training parameters as the reward
model can incur significant training complexity. To address
this challenge, we leverage the encoders of target reward
models to extract embeddings from the decoded images
w.r.t. each intermediate latent feature across all timesteps of
the denoising process. These embeddings serve as the input
to a lightweight Multi-Layer Perceptron (MLP) with only
5 linear layers, of which the final output forms the residual
prediction for each temporal reward, i.e.,

Rϕ(xt, c) = MLPϕ

(
EncoderR(xt, c)

)
. (7)

Encoder alignment. This practice of reusing encoders es-
tablishes an alignment between the encoders of both the
reward model and the temporal critic. This alignment tends
to be critical for overall performance, as it ensures consis-
tency in feature representations and enables the temporal
critic to inherit the inductive bias of the reward model during
initial training. This inductive bias is further dynamically
refined during subsequent training, adapting to the evolving
intermediate states encountered during the denoising pro-
cess. Beyond performance gains, encoder alignment also
offers a compelling advantage in memory efficiency, as the
need to store a separate encoder for the temporal critic is
eliminated. Implementation details and extended analysis
of encoder alignment are provided in Appendix E.
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Temporal gradient estimation. Given the temporal re-
wards in Eq. (6) and (7), we can estimate the gradient of the
objective in Eq. (5) w.r.t. the policy parameters θ at temporal
granularity. We first sample trajectories (xT , xT−1, ..., x0)
from the denoising process pθ(x0:T |c), and collect the like-
lihood gradients with respect to θ, i.e., ∇θpθ(xt−1|xt, c).
To reuse the trajectories sampled by an old policy parame-
terized by θold, we employ importance sampling (Kakade
& Langford, 2002), which reweights the temporal rewards
by the corresponding probability ratio. Then the temporal
gradient at each denoising timestep reads:

Ep(c)Epθ(x0:t|c)

[
−Tϕ(xt, c)∇θ

pθ(xt−1|xt, c)

pθold(xt−1|xt, c)

]
. (8)

The temporal critic is optimized by the objective below:

Ep(c)Epθ(x0:t|c)

[(
R̂ϕ(xt, c)−R(x0, c)

)2
]
, (9)

where R̂ denotes the new residual prediction computed
during the training phase and is used to estimate gradients
for the critic model, while the old residual prediction R
in Eq. (6) is computed during the sampling phase with no
gradient and is used to estimate temporal rewards.

Per-timestep gradient update. We concurrently update the
policy parameters θ and the critic parameters ϕ via gradient
descent. In particular, we perform each update in a per-
timestep manner, in contrast to other methods that employ
per-batch updates, emphasizing the temporal granularity
of our approach. A per-timestep gradient update for θ or
ϕ within our general RL-based training framework (i.e.,
TDPO) is performed via the averaged batch gradient below:

1

B

B∑
i=1

∇αGα(x
i
t, ci), α ∈ {θ, ϕ}. (10)

where B is the batch size, and ∇αGα(x
i
t, ci) is the objective

gradient estimate with respect to θ or ϕ at each timestep t
in each mini-batch i. The motivation and advantages of this
per-timestep update strategy are described as follows:

Remark on per-timestep update. In most cases of deep
RL, a higher gradient update frequency often results in faster
convergence but worse stability. In our settings, we operate
on samples spanning two dimensions: timesteps and mini-
batches, allowing us to elevate the gradient update frequency
by reducing the sizes of these dimensions. However, reduc-
ing the dimension sizes introduces lower variance in sample
distributions, potentially leading to overfitting. Intuitively,
the variance of sample distributions within a per-timestep
context (encompassing all mini-batches) exceeds that within
a per-minibatch context (covering all timesteps derived from
a shared Gaussian distribution). This suggests that reducing
the number of timesteps per update represents a relatively

Algorithm 1 TDPO-R: Temporal diffusion policy optimiza-
tion (with critic active neuron reset)

Input: Diffusion model parameters θ, critic model param-
eters ϕ, context distribution p(c), epochs E, denoising
timesteps T , batch size B, and neuron reset frequency F
for e = 1, ..., E do

Obtain samples {ci ∼ p(c), xi
0:T ∼ pθ(x0:T |ci)}Bi=1

Compute temporal rewards according to Eq. (6)
for t = T, ..., 1 do

Update θ, ϕ at timestep t according to Eq. (10)
end for
if e mod F == 0 then

Obtain neuron masks for ϕ according to Eq. (12)
Reinitialize ϕ where the neuron mask is true

end if
end for
Output: Optimized diffusion model parameters θ

secure approach for expediting convergence, while it still
poses a risk of overfitting to the timestep-independent re-
ward exclusively based on the final image. To mitigate
this risk, our TDPO incorporates the temporal rewards as
fine-grained guidance for the per-timestep updates, thereby
improving sample efficiency while ensuring overall stability.

4.2. Primacy Bias within TDPO

While TDPO mitigates reward overoptimization by incor-
porating the temporal inductive bias of diffusion models,
primacy bias, a more specific factor contributing to reward
overoptimization, may arise due to the limited model ca-
pacity of the temporal critic in the TDPO framework. In
this section, we investigate how the state of neurons in our
model reflects such primacy bias and how it contributes to
reward overoptimization during diffusion model alignment.

Neuron activations and states. Following Sokar et al.
(2023), we use neuron activation in deep neural networks
to categorize the states of neurons. We first consider each
feature map between two layers within a network module as
the state of a neuron. For an input x of distribution D, we
denote the activation of a neuron n in a module m as amn (x),
and compute an activation score Am

n for each neuron n in
the module m as:

Am
n =

Ex∈D|amn (x)|
1

Nm

∑
n∈Nm Ex∈D|amn (x)|

, (11)

where Nm is the number of neurons in the module m, and
the expected activation over D is normalized by the average
of all activations. Then we set a threshold for this activa-
tion score to categorize all neurons in our models into two
opposite states. If the activation score of a neuron is above
the threshold, we say the neuron is active, otherwise it is
regarded as dormant.
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Pre-trained AlignProp DDPO-2 DDPO-100 TDPO (Ours) TDPO-R (Ours)

Figure 2. Image generation results sampled from models that are either pre-trained or further finetuned on Aesthetic Score via AlignProp,
DDPO-2, DDPO-100, as well as our TDPO and TDPO-R. For a fair comparison, all images are generated using a fixed random seed of 42.
Additionally, for the fine-tuned models, the aesthetic scores of the generated images achieve similar values around 7 ± 0.1.

Dormant neurons are indispensable. Accordingly, we
conduct empirical evaluations to investigate the effects of
different neuron states on reward overoptimizaiton during
the training process of TDPO. We detect the percentage of
dormant neurons in our critic model, and observe a slow
ascent of this percentage during training. To directly influ-
ence the neuron states during training, we periodically reset
neurons of a given state by reinitializing its parameters to
the original distributions. Surprisingly, we find that while
resetting dormant neurons periodically reduces the dormant
percentage at all training steps, it actually exacerbates re-
ward overoptimizaiton. This deviates from the conclusion
in (Sokar et al., 2023) where dormant neurons in deep RL
were found to hinder model capacity and necessitate resets.

Active neurons reflect primacy bias. We further explore
resetting active neurons in the critic. Although this does
not reduce the dormant percentage, it effectively mitigates
reward overoptimizaiton. Interestingly, resetting all neurons
in the critic also exacerbates reward overoptimization, albeit
to a lesser degree compared to solely resetting dormant neu-
rons. We posit that dormant neurons in the critic model act
as an adaptive regularization mechanism against overopti-
mization to imperfect rewards, which suggests resetting dor-
mant neurons may damage this implicit regularization. Our
findings imply that, within the context of reward overopti-
mization, primacy bias manifests primarily in active neurons.
Consequently, periodically resetting these neurons offers a
potential mitigation strategy, encouraging the model to learn
new regularization patterns without forgetting crucial past
regularization. Further details and analyses supporting this
observation are provided in Section 5.3 and Appendix B.

We further analyze the effect of the neuron states in the pol-

icy model. Since we adopt Low-Rank Adaptation (LoRA)
(Hu et al., 2022) for the policy, only neurons within the
LoRA layers can be reset. We detect very few dormant
neurons, and resetting them makes no significant difference
to the results. In this case, resetting active neurons causes
catastrophic forgetting and heavily hinders learning.

TDPO with critic active neuron Reset (TDPO-R). Moti-
vated by the above analyses, we present TDPO-R, a variant
of TDPO that periodically resets the active neurons in the
critic model with a frequency F . In practice, to reinitial-
ize the model parameters ϕa corresponding to the active
neurons, we compute a neuron mask for each module m:

Maskm = [Am
n > 0]

Nm

n=1 , (12)

where each boolean value in it is set to true if the correspond-
ing activation score Am

n > 0. This neuron mask is used
to reinitialize the weights of both the incoming and outgo-
ing layers corresponding to the active neurons in module m.
The pseudo-code of TDPO-R is summarized in Algorithm 1.

In neuroscience, there are several studies (Rotheneichner
et al., 2018; Ovsepian, 2019; Benedetti & Couillard-Despres,
2022) investigating the function of dormant neurons. Ac-
cording to Ovsepian (2019), most neurons in the brain do
not fire action potentials and remain dormant for a long time.
These dormant neurons are formed during evolution, but are
far from the scope of natural selection as they avoid regular
functional tasks. However, under the influence of stress and
disease, they occasionally become active, which can lead to
various neurological and psychological disease symptoms
and behavioral abnormalities. Interestingly, this conclu-
sion mirrors our observation that resetting dormant neurons
could be harmful for mitigating reward overoptimization.
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Figure 3. Out-of-domain evaluation results via cross-reward generalization against ImageReward (left), PickScore (middle), and HPSv2
(right) when finetuning the diffusion model on Aesthetic Score (left), HPSv2 (middle), and PickScore (right), respectively.
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Figure 4. Quantitative evaluation results for the efficacy of our TDPO and TDPO-R in improving sample efficiency when finetuning the
diffusion model on the reward functions of PickScore (left), HPSv2 (middle), and Aesthetic Score (right), compared to DDPO with the
update frequencies of 2 (DDPO-2) and 100 (DDPO-100) per epoch.

5. Empirical Evaluations
We conduct comprehensive experiments to validate the effi-
cacy of our algorithms on both sample efficiency and reward
overoptimization alleviation when aligning text-to-image
diffusion models with diverse reward functions.

5.1. Implementation Details

Baselines. We compare our algorithms with state-of-the-art
baselines1, including pre-trained Stable Diffusion (Rom-
bach et al., 2022), Denoising Diffusion Policy Optimization
(DDPO) (Black et al., 2024), and AlignProp (Prabhudesai
et al., 2023). We use the official PyTorch codebase of DDPO
for result reproduction. Following DDPO, we use Stable
Diffusion v1.4 as the base generative model. For a fair com-
parison, we reproduce AlignProp using Stable Diffusion
v1.4, while their reported results are based on v1.5.

Reward functions. To demonstrate the generalizability of
our method, we perform training and evaluation on diverse

1Additional baselines, including DRaFT (Clark et al., 2024)
that lacks open-source code, and DPOK(Fan et al., 2023) and
ReFL(Xu et al., 2023) that underperform DDPO and AlignProp,
are omitted in our reproductions due to the resource constraints.

reward functions, in which (a) Aesthetic Score is computed
using the LAION aesthetic predictor (Schuhmann et al.,
2022) and a text prompt set consisting of 45 animal names
consistent with that in (Black et al., 2024); (b) PickScore
(Kirstain et al., 2023) is employed as an objective reward
function for human preference learning, using the same
prompt set as for Aesthetic Score; (c) Human Preference
Score v2 (HPSv2) (Wu et al., 2023a) presents another re-
ward function for human preference learning, along with
802 prompts drawn from Human Preference Dataset v2; (d)
ImageReward (Xu et al., 2023) is employed as an evalua-
tion score function for cross-reward generalization.

To establish a consistent benchmark, the training procedures
and configurations of our algorithms are based on the official
PyTorch implementation of DDPO, which adopts LoRA (Hu
et al., 2022) to reduce memory and computation cost.

5.2. Sample Efficiency in Diffusion Model Alignment

We employ TDPO and TDPO-R to separately finetune
Stable Diffusion v1.4 on Aesthetic Score, PickScore, and
HPSv2. We report the average reward over samples at each
training interval w.r.t. specific number of reward queries, as
the indicator of sample efficiency. TDPO(-R) performs each
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gradient update in a per-timestep manner with all batch sam-
ples averaged, resulting in a higher update frequency (100
gradient updates per epoch) compared to the original DDPO
implementation (2 gradient updates per epoch). Thus, for a
direct comparison, we further reproduce DDPO using the
same update frequency as ours. Figure 4 shows that our
algorithms consistently outperform both implementations
of DDPO on each of the three rewards, demonstrating their
effectiveness in improving sample efficiency. Notably, the
high-frequency updates also accelerate training for DDPO,
albeit at the cost of exacerbating reward overoptimization, as
highlighted in Figure 3 and further discussed in Section 5.3.

5.3. Reward Overoptimization and Generalization

Cross-reward generalization. To quantitatively assess re-
ward overoptimization, we introduce cross-reward general-
ization, where the model is evaluated against out-of-domain
reward functions after being finetuned on a specific reward
function. As shown in Figure 3, the X-axis represents the
training objective reward, while the Y-axis represents the
evaluation score calculated by out-of-domain reward func-
tions. Reward overoptimization typically leads to a decline
or slow rise in the evaluation score as the training reward
increases. In Figure 3, TDPO and TDPO-R exhibit superior
performance in three sets of cross-reward evaluations com-
pared to DDPO and AlignProp, demonstrating the effective-
ness of our methods in mitigating reward overoptimization.

Generalization to unseen prompts. As shown in Figure 5,
TDPO and TDPO-R maintain their superior performance
of cross-reward generalization even on novel text prompts
unseen during the finetuning process, which further em-
phasizes their effectiveness and robustness against reward
overoptimization. Implementation details and more evalua-
tion results on unseen prompts are provided in Appendix C.
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Figure 5. Cross-reward generalization results evaluated on a text
prompt set of unseen animals when finetuning the diffusion model
on Aesthetic Score.

Effects of neuron states. As mentioned in Section 4.2, we
investigate the effects of neuron states on reward overopti-
mizaiton by comparing TDPO and its variants with different
reset strategies. In Figure 6, we present the results of cross-
reward generalization to ImageReward for the variants that
reset all, dormant, and active neurons in our critic model
with the activation score threshold set to 0. For the variant
that resets dormant neurons in our policy model, we set the
threshold to 0.1, as using a threshold of 0 shows negligible
differences from the standard TDPO. The results are con-
sistent with the effects discussed in Section 4.2. Further
analyses and evaluation results are provided in Appendix B.

Alternate strategies for overoptimization. Both DDPO
and AlignProp apply early stopping to prevent overoptimiza-
tion, but the reliance on interactive inspection hinders its
scalability. Fan et al. (2023) conduct an analysis of KL
regularization in diffusion model alignment, while the quan-
titative evaluation on reward overoptimization is lacking.
We also report the cross-reward generalization results of
using KL regularization in Figure 6, which indicates that
our neuron reset strategy is more effective for mitigating
reward overoptimization compared to KL regularization.
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Figure 6. Evaluation results of cross-reward generalization to Im-
ageReward when finetuning the diffusion model on Aesthetic
Score, comparing different variants of TDPO.

5.4. Qualitative Comparison

In Figure 2, we compare the high-reward image results of the
alignment methods when optimizing rewards to the same de-
gree. The results from AlignProp and DDPO show notable
saturation in terms of style, background, and sunlight, while
our results manifest greater diversity in these aspects and
exhibit higher fidelity, which highlights the effectiveness
of our methods in mitigating reward overoptimization. Fur-
thermore, we also provide additional qualitative results for
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Pre-trained AlignProp DDPO-2 DDPO-100 TDPO (Ours) TDPO-R (Ours)

Color
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Figure 7. Image generation results for unseen text prompts involving color (“A green colored rabbit”), count (“Four wolves in the park”),
composition (“A cat and a dog”), and location (“A dog on the moon”) from models either pre-trained or further finetuned on Aesthetic
Score. For a fair comparison, all images are generated using a fixed random seed of 42. Additionally, for the fine-tuned models, the
aesthetic scores of the generated images achieve similar values around 7 ± 0.1.

unseen text prompts in Figure 7. In comparison with other
methods, our results are better aligned with the prompts in
terms of color, count, composition, and location, and also
exhibit higher image fidelity, indicating a lower degree of
reward overoptimization.

6. Conclusion
In this work, we confront reward overoptimization in dif-
fusion model alignment from the perspective of inductive
and primacy biases. Specifically, we identify the temporal
inductive bias of diffusion models and surprisingly discover
that active neurons in our proposed temporal critic reflect
the primacy bias. Inspired by these findings, we present
TDPO-R, which exploits the temporal inductive bias of dif-
fusion models and addresses the primacy bias during its
RL training process. Empirical evaluations validate the ef-
fectiveness of the proposed methods in mitigating reward
overoptimization.

Limitations and future work. To address computational
limitations, our TDPO-R adopts LoRA finetuning instead
of full model finetuning for diffusion models, precluding
a comprehensive analysis of the diffusion model’s internal
neuron states in this case. However, this work opens av-
enues for follow-up research on reward overoptimization of
diffusion models. Moreover, the potential of multi-reward

learning for diffusion models remains under-explored, high-
lighting a significant gap for future work. We hope that
our work will also inspire further exploration of potential
reward overoptimization in this new domain of multi-reward
learning for diffusion models.
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Impact Statement
This work contributes to the advancement of diffusion model
alignment, with the potential to impact various aspects of
society. Here, we highlight the key positive impacts:

Improved alignment of diffusion models. This work con-
fronts the issue of reward overoptimization, which hinders
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the effective alignment of diffusion models with downstream
applications. By mitigating this issue, we pave the way for
the development of more reliable and trustworthy diffusion
models that reflect human preferences, which empowers
individuals and businesses to leverage the powerful capabil-
ities of diffusion models for various creative applications.

Potential for broader applications. Beyond their direct
impacts on diffusion models, the insights and techniques
presented in this work, such as exploiting temporal inductive
bias and addressing primacy bias through active neuron
reset, may hold broader applicability in other domains of
deep reinforcement learning, where similar challenges of
overoptimization and bias hinder effective learning.

Furthermore, it is also essential to acknowledge potential
societal concerns associated with this technology, such as:

Misuse of diffusion models. As diffusion models evolve
towards enhanced alignment with human preferences and
increased controllability, concerns regarding their potential
misuse for malicious purposes, such as generating discrimi-
natory or harmful contents, become increasingly salient. It
is crucial to develop safeguards and ethical guidelines along-
side technological advancements to mitigate these risks.

Unintended biases in reward learning. The effectiveness
of diffusion model alignment relies on accurately capturing
human preferences from reward models. However, human
preferences can be subjective and biased. It’s crucial to
consider and mitigate potentially unintended biases in the
data used to train the reward model to avoid exploiting and
amplifying such biases in the generated outputs.
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A. Additional Implementation Details
In all experiments, we use Stable Diffusion v1.4 (Rombach et al., 2022) as the base generative model, which ensures
consistency with DDPO (Black et al., 2024) and allows for a direct comparison with AlignProp (Prabhudesai et al., 2023),
despite their use of v1.5 in AlignProp. In addition, we conduct diffusion model alignment on the LoRA weights (Hu et al.,
2022) of the U-Net architecture instead of the full parameter set to reduce memory and computation overheads, following
established practices and aligning with official implementations of both DDPO and AlignProp.

DDPO implementations. We use the official PyTorch codebase of DDPO for result reproduction. As discussed in
Section 5.2, our TDPO(-R) performs each gradient update in a per-timestep manner with all batch samples averaged,
resulting in a higher update frequency (100 gradient updates per epoch) compared to the original DDPO implementation
(2 gradient updates per epoch). For a fair comparison, we further reproduce DDPO using the same update frequency
(100) and learning rate (1e-4) as ours. Since the PyTorch implementation of DDPO adopts gradient accumulation to
reach larger effective batch sizes without requiring additional memory, we adjust its update frequency by reducing the
gradient accumulation steps per epoch from 16×T to 16, where T denotes the number of denoising timesteps with a
default value of 50. This leads to two variants of DDPO implementation: DDPO-2 and DDPO-100, differing exclusively in
the hyperparameters governing the update frequency and the learning rate. All experiments were conducted on a system
equipped with 8 NVIDIA A100 GPUs with 40GB of memory each.

AlignProp implementation. To facilitate a direct comparison, we reproduce AlignProp using Stable Diffusion v1.4, while
their reported results are based on v1.5. All experiments were conducted on a system equipped with 4 NVIDIA A100 GPUs
with 40GB of memory each, adhering to their default configurations, with an exception of the base model version.

TDPO and TDPO-R implementations. For consistency, the training procedures and configurations of our TDPO are based
on the implementation of DDPO-100. Additionally, due to the relatively small parameter size of our temporal critic, we
opt for direct training on its entire parameter set. To isolate the effects of our neuron reset strategy, our TDPO-R mirrors
TDPO in terms of concurrent components and configurations. All experiments were conducted on a system equipped with 8
NVIDIA A100 GPUs with 40GB of memory each.

Hyperparameter configurations. In Table 1, we list the hyperparameter configurations for all implementations.

Table 1. List of hyperparameter configurations for DDPO-2, DDPO-100, TDPO, and TDPO-R.

Hyperparameters DDPO-2 DDPO-100 TDPO TDPO-R

Random seed 42 42 42 42
Denoising timesteps (T ) 50 50 50 50
Guidance scale 5.0 5.0 5.0 5.0
Policy learning rate 3e-4 1e-4 1e-4 1e-4
Policy clipping range 1e-4 1e-4 1e-4 1e-4
Maximum gradient norm 1.0 1.0 1.0 1.0
Optimizer AdamW AdamW AdamW AdamW
Optimizer weight decay 1e-4 1e-4 1e-4 1e-4
Optimizer β1 0.9 0.9 0.9 0.9
Optimizer β2 0.999 0.999 0.999 0.999
Optimizer ϵ 1e-8 1e-8 1e-8 1e-8
Samples per epoch 256×T 256×T 256×T 256×T
Training batch size 8 8 8 8
Training steps per epoch 32×T 32×T 32×T 32×T
Gradient accumulation steps 16×T 16 16 16
Gradient updates per epoch 2 2×T (100) 2×T (100) 2×T (100)

Critic learning rate - - 1e-4 1e-4
Critic clipping range - - 0.2 0.2

Neuron dormant threshold - - - 0
Neuron reset frequency (F / epochs) - - - 10
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B. Extended Analyses of Neuron States
The following is an extension of the analyses regarding neuron states discussed in Section 4.2.

Critic dormant neuron percentage. In Section 4.2, we described the effects of resetting different neurons in our critic
model on the percentage of dormant neurons. Here we present the experimental results regarding these effects. The left plot
in Figure 8 shows the percentage of dormant neurons in our critic model when finetuning the diffusion model on Aesthetic
Score. As discussed in Section 4.2, there is a slow ascent of the dormant percentage of neurons in our critic model during
training. Resetting dormant neurons consistently reduces the dormant percentage, while resetting active neurons increases it
significantly. This further substantiates a conclusion that resetting dormant neurons discourages the presence of dormant
neurons, while resetting active neurons discourages the presence of active neurons.

Overlap of dormant neurons. To validate the persistence of dormant neurons throughout training, we track the overlap
percentage between dormant neurons identified in current and previous training iterations. The right plot in Figure 8
shows that the overlap percentage of dormant neurons in our critic model remains a value of 100 through the finetuning
process. This indicates that, once a regularization with respect to dormant neurons is learned, then it will continuously affect
subsequent training process. Combining this phenomenon with the empirical result we discussed in Section 4.2, which is
that resetting dormant neurons in our critic model exacerbates overoptimization, we can further extrapolate that dormant
neurons in the critic model act as a adaptive regularization mechanism against overoptimization to imperfect rewards. While
resetting dormant neurons may damage this implicit regularization, periodically resetting active neurons offers a potential
mitigation strategy, encouraging the model to learn new regularization patterns without forgetting crucial past regularization.
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Figure 8. The dormant percentage of neurons (left) and the overlap percentage between dormant neurons of current and previous training
iterations (right) in our critic model when finetuning the diffusion model on Aesthetic Score.

Policy dormant neuron percentage. In Section 4.2, we outlined the observation that a minimal number of dormant neurons
is identified within the LoRA layers of our policy model. Accordingly, the left plot in Figure 9 shows the dormant percentage
of neurons in the LoRA layers of our policy when finetuned on Aesthetic Score. Notably, the plot indicates that the dormant
percentage remains in close proximity to zero throughout the entire training duration when employing a dormant threshold
of 0. Consequently, to discern a more pronounced proportion of dormant neurons, we elevated the threshold to 0.1, leading
to higher dormant percentages during training. Despite the reduction in dormant neurons following the resets with the
threshold of 0.1, discernible effects on cross-reward generalization are not prominently evident, as depicted in Figure 6.

Policy neuron reset. In Section 4.2, we described an effect that resetting active neurons in our policy model causes
catastrophic forgetting and heavily hinders learning. Here we present the experimental result regarding this effect. The
right plot in Figure 9 shows the effect of periodic resets of policy active neurons on the sample efficiency of TDPO when
finetuning on Aesthetic Score. Compared to the original TDPO, the TDPO variant incorporating periodic resets of policy
active neurons encounters substantial difficulty in optimizing the reward function, due to the fact that the resets of the
overwhelming majority of the model parameters result in the loss of pre-learned knowledge. This unsatisfactory effect can
be mitigated by replacing the online-updating scheme with an offline-updating scheme that incorporates a replay buffer to
preserve prior knowledge and experiences. We highlight this replacement as an extension of our work for future research.
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Figure 9. The dormant percentage of neurons in the LoRA layers of our policy (left) and the effect of periodic resets of policy active
neurons on the sample efficiency of TDPO (right) when finetuning the diffusion model on Aesthetic Score.

Additional results of cross-reward generalization. Here is an extension of the cross-reward generalization results for
different variants of TDPO presented by Figure 6 in Section 5.3. In Figure 10, we show more cross-reward generalization
results for TDPO variants with different neuron reset strategies or the KL regularization mechanism. The diffusion models in
all variants are finetuned on Aesthetic Score and evaluated on HPSv2 and PickScore. We further investigate the cross-reward
generalization capability of TDPO-R by employing an alternative evaluation with leaky ReLU (Maas et al., 2013) instead of
the standard ReLU, achieving an even superior performance when evaluating cross-reward generalization against PickScore.
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Figure 10. Additional results of cross-reward generalization against HPSv2 (left) and PickScore (right) when finetuning the diffusion
model on Aesthetic Score, comparing different variants of TDPO.

C. Generalization to Unseen Prompts
In order to further validate the effectiveness and robustness of our methods, here we extend the cross-reward evaluation to
new text prompts that are not previously seen by models during the finetuning process.

Unseen animals. We first employ a novel text prompt set consisting of 8 unseen animal names, including “snail”,
“hippopotamus”, “cheetah”, “crocodile”, “lobster”, “octopus”, “elephant”, and “jellyfish”. We conduct evaluations of
cross-reward generalization over samples generated using these unseen animal prompts during the finetuning process. In
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Figure 11, we show the evaluation results when finetuning the diffusion model on Aesthetic Score via AlignProp, DDPO-2,
DDPO-100, as well as our TDPO and TDPO-R. Notably, our TDPO and TDPO-R still maintain superior performance in
cross-reward generalization compared to DDPO and AlignProp. These out-of-domain evaluations demonstrate the robust
capabilities of TDPO-R in mitigating reward overoptimization, generalizing effectively to out-of-domain prompts.
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Figure 11. Cross-reward generalization results evaluated on a text prompt set of unseen animals when finetuning the diffusion model on
Aesthetic Score.

Color, count, composition, and location. Furthermore, we adopt a set of complex text prompts involving specific color (“A
green colored rabbit”), count (“Four wolves in the park”), composition (“A cat and a dog”), and location (“A dog on the
moon”) as introduced in (Fan et al., 2023). In (Fan et al., 2023), these prompts are originally used as training text prompts,
meaning that they are seen by models during the finetuning process. In contrast, we utilize them as unseen prompts for
cross-reward evaluations while finetuning models on Aesthetic Score, as illustrated in Figure 12.
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Figure 12. Cross-reward generalization results evaluated over unseen text prompts involving color (“A green colored rabbit”), count (“Four
wolves in the park”), composition (“A cat and a dog”), and location (“A dog on the moon”) while finetuning on Aesthetic Score.

D. Additional Qualitative Results
Here is an extension of the qualitative results presented by Figure 2 in Section 5.4. In Figure 13, we present additional
qualitative results with high-reward images on Aesthetic Score. The results from AlignProp and DDPO show notable
saturation in terms of style, background, and sunlight, while our generation results manifest greater diversity in these aspects.
Specifically, AlignProp generates images characterized by a fixed painting style, while the results from DDPO exhibit a
photographic style with similar sunlight angles and similar grassy backgrounds, even in response to prompts like “shark”
and “fish”. Conversely, our TDPO and TDPO-R demonstrate the capacity to generate images encompassing both painting
and photographic styles, and exhibit an enhanced proficiency in generating diverse and coherent backgrounds aligned
with given prompts. In our interpretation, Aesthetic Score characterizes a preference for images that exhibit a stylistic
amalgamation, comprising elements reminiscent of both painting and photography. Accordingly, our algorithms ensure
effective optimization towards this preference against overfitting a fixed style.
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Figure 13. Additional qualitative results sampled from models that are either pre-trained or further finetuned on Aesthetic Score via
AlignProp, DDPO-2, DDPO-100, as well as our TDPO and TDPO-R. For a fair comparison, all images are generated using a fixed random
seed of 42. Additionally, for the fine-tuned models, the aesthetic scores of the generated images achieve similar values around 7 ± 0.1.

E. Extended Analysis of Encoder Alignment in Temporal Critic
Reward model encoders. Following established practices (Schuhmann et al., 2022; Black et al., 2024), we leverage a
pre-trained CLIP model (Radford et al., 2021) as the encoder of the reward model for Aesthetic Score. For the HPSv2
and PickScore reward models, we adopt their official PyTorch implementations, each of which utilizes a customized
OpenCLIP-H model (Beaumont et al., 2022) finetuned on their specific preference data as the encoder. This ensures
consistency with the established rewarding procedures associated with these models.

Temporal critic encoders. As introduced in 4.1, while finetuning on a specific reward function (Aesthetic Score, HPSv2,
or PickScore), we incorporate the corresponding encoder from the respective reward model into our temporal critic. This
encoder extracts embeddings from the decoded images w.r.t. each intermediate latent feature across all timesteps of the
denoising process. These embeddings serve as the input to a lightweight Multi-Layer Perceptron (MLP) containing only
5 linear layers, with progressively decreasing output dimensionalities of 1024, 128, 64, 16, and 1 unit in the final layer.
Crucially, this practice of reusing encoders establishes an alignment between the encoders of both the reward model
and the temporal critic. This alignment tends to be critical for overall performance, as it ensures consistency in feature
representations and enables the temporal critic to inherit the inductive bias of the reward model during initial training.
Beyond performance gains, encoder alignment also offers a compelling advantage in memory efficiency, as the need to store
a separate encoder for the temporal critic is eliminated, especially for large pre-trained models like CLIP (Radford et al.,
2021) and OpenCLIP-H(Beaumont et al., 2022).

Impact of misaligned encoders. To delve deeper into the impact of misaligned encoders, we conduct an additional
experiment where we replace the HPSv2 encoder in the temporal critic with a misaligned encoder from Aesthetic Score
while finetuning the diffusion model on HPSv2. As illustrated in Figure 14, this misalignment of the encoders lead to
a significant decline in TDPO’s reward optimization performance. This finding highlights the critical role of encoder
alignment between the reward model and the temporal critic for effective reward finetuning, as discrepancies in feature
representations can hinder the critic’s ability to guide optimization towards the desired reward.
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Figure 14. Evaluation results of TDPO’s reward optimization performance when finetuning the diffusion model on HPSv2 and replacing
the HPSv2 encoder in the temporal critic with a misaligned encoder from Aesthetic Score.

F. Extended Related Work
Generation control of diffusion models. Following prior works (Black et al., 2024; Clark et al., 2024) on diffusion model
alignment, we incorporate Classifier-Free Guidance (CFG) (Ho & Salimans, 2021) to perform conditional generation of
diffusion models. Prior works (Black et al., 2024; Clark et al., 2024) provided compelling evidence that the alignment
methods with CFG-based generation control outperform other approaches including prompt engineering and classifier
guidance (Dhariwal & Nichol, 2021; Bansal et al., 2023). Accordingly, to maintain clarity and emphasize our improvements
in diffusion model alignment, we refrain from conducting comparative analyses on various generation control techniques.

Reinforcement learning for diffusion models. Fan & Lee (2023) first utilize reinforcement learning to train diffusion
models. Subsequent studies by Fan et al. (2023) and Black et al. (2024) delve into the utilization of policy gradient-based
algorithms to align text-to-image diffusion models with arbitrary reward functions. Instead of finetuning model parameters,
Hao et al. (2023) apply reinforcement learning to optimize prompts for text-to-image diffusion models. Wang et al. (2023)
leverage diffusion models to create policies for offline reinforcement learning beyond the context of text-to-image generation.

18


