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ABSTRACT

The message passing–readout framework has become the de facto standard for
material property prediction. However, most existing readout functions are built
on an atom-decomposable inductive bias, i.e. the material-level property or fea-
ture can be reasonably assigned to contributions of individual atoms. This is a
strong bias and may not hold for all properties, limiting the application scenar-
ios. In this work, we propose a region-based decomposition perspective, refor-
mulating material properties as integrals over space and pooling contributions
from spatial regions rather than atoms. Specifically, we propose a novel read-
out function named SpatialRead. SpatialRead introduces additional spatial nodes
to represent a voxelized space, transforming the atomic isomorphic graph into a
heterogeneous atom–space graph with unidirectional message flow from atoms
to spatial nodes. To combine the two types of inductive bias, multimodal meth-
ods can be used to fuse the features of atoms the spatial nodes. Such a region-
based readout function is especially suited for spatial properties such as gas ad-
sorption capacity, separation ratio. Extensive experiments demonstrate that a
simple PaiNN–Transformer-based SpatialRead trained from scratch outperforms
state-of-the-art pre-trained foundation models on these special tasks. Our re-
sults highlight the importance of designing physically grounded readout func-
tions tailored to the target property. The code can be found in anonymous github
https://anonymous.4open.science/r/SpatialRead-8E92 and dataset will be released
after the double-blind review.

1 INTRODUCTION

The field of material artificial intelligence is fundamentally shaped by the task of material property
prediction. Accurate predictions can significantly accelerate the screening and design of novel mate-
rials by bypassing costly and time-consuming experiments. In this domain, Message Passing Neural
Networks (MPNNs) have emerged as the state-of-the-art paradigm for both property prediction and
material generation. MPNNs represent a material as a graph, with atoms as nodes and edges con-
necting neighboring atoms. A typical MPNN consists of two stages: (1) message passing, where
node features are iteratively updated through local aggregation, and (2) readout, where the final node
features are aggregated into a graph-level property.

Readout is a critical component of this architecture. Simple pooling functions, such as global sum
or mean, have proven remarkably successful and even scaled to foundation models with hundreds
of millions of training samples (Gasteiger et al., 2020; 2021; Shoghi et al., 2024). More complex
readout functions, such as GraphTrans (Wu et al., 2021) and GMT (Baek et al., 2021), introduce
architectural sophistication but ultimately still treat nodes as the fundamental units of aggregation.
These designs reflect the implicit node (atom)-decomposable inductive bias: a graph-level property
or feature can be decomposed into node contributions. While it works well for many tasks, its
broader applicability has not been carefully examined.

A typical counterexample of the atom-decomposable inductive bias arises in porous materials such
as metal–organic frameworks (MOFs). Being promising to applications such as gas adsorption and
clean energy storage (Snyder et al., 2023; Nugent et al., 2013; Datta et al., 2015; Zhao et al., 2018;
Yang et al., 2012; Zhou et al., 2022), these materials attract broad research interest. One of the key
properties of such material - the gas adsorption capacity - can naturally be expressed as the summa-
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tion of the adsorption capacities of all regions within the material. Other similar examples include
accessible pore volume, adsorption heat, gas selectivity ratio, etc. In these cases, the target prop-
erty, which we named as Spatial Properties should be decomposed into contributions of each spatial
region instead of atom. The inherent mismatch between these properties and node-decomposable
readouts highlights a critical blind spot in current graph learning methods for materials.

To correctly consider such region-based inductive bias, we propose a novel perspective to reformu-
late the node-decomposable property as the integral over space. We first prove the equivalence of
the two expressions. Thus the reformulation is simply a kind of inductive bias without harming the
expressivity of the model. Based on this, we propose a novel readout module named SpatialRead.
The central idea is introducing spatial nodes that represent voxelized space. This transforms the
conventional atomic graph into a heterogeneous atom–space graph. Messages are passed unidirec-
tionally from atoms to spatial nodes. However, pooling features from spatial nodes may compromise
the performance on those non-spatial properties. To make the network adaptively select the correct
inductive bias of atomic and space-decomposition, We use attention-based multimodal method to
process both atom and spatial node features. This approach enables SpatialRead to maintain com-
parable performance in non-spatial attributes, thus providing a general flexible option.

SpatialRead is especially suited for spatial properties such as gas adsorption capacity without harm-
ing the performance on other tasks such as the MatBench dataset (Dunn et al., 2020). To evaluate the
performance for spatial properties, we collect and release a dataset, covering 4 porous materials and
27 downstream tasks. Remarkably, on these special properties, a simple PaiNN–Transformer archi-
tecture equipped with SpatialRead, trained from scratch, outperforms a GemNet-based foundation
model pretrained on 120 million samples (Shoghi et al., 2024).

In summary, our contributions are:

• We reformulate the node-decomposable property as the integral over space and prove the
equivalence. Such perspective provide a new inductive bias that the target property can be
decomposed into contributions of each spatial region instead of atom.

• We propose SpatialRead, which use spatial nodes to construct heterogeneous atom–space
graph and then use multimodal method to achieve adaptive selection of the two kinds of
inductive bias. SpatialRead achieves the state-of-the-art performance on spatial properties
without pre-training and maintains comparable performance on non-spatial properties.

• We release a collected benchmark, covering 4 porous materials and 27 downstream tasks.

2 PRELIMINARY AND RELATED WORKS

Message Passing Neural Networks (MPNNs) are first formally defined by Gilmer et al. (2017) and
have since achieved great success in fields like chemistry and material science. In these domains, a
molecule or a material is represented as a graph G = (V,E), where V is the set of nodes (atoms)
and E is the set of edges. Each node vi ∈ V is typically represented by its atomic number xi and
coordinates posi. Edges are usually constructed based on a distance cutoff rcut between adjacent
atoms, often with an additional limit on the maximum number of neighbors to ensure computational
efficiency.

An MPNN consists of two main stages: a message passing process and a readout process. In the
message passing process, each atom updates its own feature vector by aggregating “messages” from
its neighbors. For a typical T -layer MPNN, this process can be formally expressed as:

ht+1
vi = Ut(h

t
vi , {h

t
vj , e

t
vi,vj}vj∈N (vi)) (1)

where ht
vi is the feature vector of atom vi at layer t, N (vi) denotes the set of its neighbors, evi,vj

represents the edge feature between vi and vj , and Ut is the node feature update function of the tth

layer neural network. More advanced MPNNs may also incorporate edge updates, as seen in models
like DimeNet (Gasteiger et al., 2020) and GemNet (Gasteiger et al., 2021), which use angular and
dihedral information to enrich edge features. After T layers of message passing, each node possesses
a rich representation vector hT

vi . The final step is the readout process, which pools these node
features to generate a graph-level property. The two most common readout strategies are:
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Feature-level: hgraph = Pool({hT
vi}vi∈V ), p = MLP(hgraph) (2)

Numeric-level: oi = MLP(hT
vi), p = Pool({oi}vi∈V ) (3)

Since the numeric value can be regarded as a one-dimension feature, we will not distinguish between
two pooling methods hereafter. Although a variety of alternative readout functions exist, such as
Set2Set (Vinyals et al., 2015) and diffpool (Ying et al., 2018), most state-of-the-art methods like
DimeNet (Gasteiger et al., 2020), GemNet (Gasteiger et al., 2021), ViSNet Wang et al. (2024), and
JMP (Shoghi et al., 2024) still rely on these simple pooling forms for most tasks.

The main requirement of the readout function is the permutation invariance, i.e., the output should
be independent with the input order of the atomic features. Formally, the readout function takes an
unordered set of feature as input, i.e. p = readout({hT

vi}), vi ∈ V . The specific form of the readout
functions varies. In summary, these readout methods can be broadly classified into three categories:
(1) Flat Pooling Methods. (2) Node Clustering Pooling Methods and (3) Node Drop Pooling Meth-
ods. Flat Pooling Methods directly pool the features of all atoms. Typically, GMT (Baek et al., 2021)
and GraphTrans (Wu et al., 2021) aggregate the features of all atoms through the attention mecha-
nism in a manner similar to the [CLS] token. The clustering-based pooling method first divides the
nodes into multiple sets, pools the nodes in each set into set features, and constructs multiple layers
of features through multiple layers of clustering. This method is relatively commonly used in large
graphs with obvious hierarchical structures such as social networks. DiffPool (Ying et al., 2018),
MinCutPool (Bianchi et al., 2020), SEP (Wu et al., 2022) are representative methods of clustering
based methods. More recently, Cluster-wise Graph Transformer (Huang et al., 2024) do not pool
feature of node clusters. They regard each cluster as node sets and enable the feature interaction
between cluster feature and node feature. ORC-Pool (Feng & Weber, 2024) develops a new cluster
methods based on Ricci Flow. K-MIS-Pool (Bacciu et al., 2023) develop a general downsampling
method between regular data and graph data to maintain the main topological structure of graph
data. GPN (Song et al., 2024) automatically designs the pooling structure for each graph, avoiding
the need to predefine the number of pooling layers or ratios. Node Drop Pooling Methods first select
a series of nodes to construct a subgraph and then pool the subgraph. TopKPool Gao & Ji (2019);
Cangea et al. (2018); Knyazev et al. (2019) first select K nodes from the original graph through atten-
tion score and then pool the high-attention nodes. Quan et al. (2024) mixes the TopK Selection and
Clustering methods to construct effective and efficient representation of protein. A similar research
topic is the aggregation of messages from neighbor nodes. SSMA (Keren Taraday et al., 2024)
treats the neighbor features as 2D discrete signals and sequentially convolves them, enhancing the
ability to mix features attributed to distinct neighbors. Xu et al. (2018a) uses jumping-knowledge
connection (Xu et al., 2018b) to enhance the graph-level feature.

3 SPATIAL READ

3.1 EMPIRICAL MOTIVATION: IMPLICIT REGION-BASED BEHAVIOR IN STANDARD GNNS

Before introducing spatial nodes, we examine how conventional atom-based GNNs behave when
predicting spatial properties such as gas adsorption in MOFs. To investigate this, we trained a
standard PaiNN model on MOF adsorption tasks and computed per-atom contributions using the
scalar outputs of its readout (see equation 3). We then compared these contributions with each
atom’s distance to the nearest pore. Fig. 1 A demonstrate the contribution versus distance to the
pore (experiment details can be found in Appendix A.6). We observed a strong alignment between
high contributions and pore-adjacent atoms. Among the top 1% of atoms with the highest contri-
bution rate, 86% of them are located within 0.05 angstroms of the pores. Visualization in Fig. 1 B
demonstrates a case study, showing that the model attributes most predictive weight to atoms lining
the pore channels. These results indicate that when predicting properties that are clearly spatially
decomposable, GNNs implicitly learn the key regions and the surrounding atoms. Introducing di-
rect representations of regions may reduce the learning burden of the network and thereby lead to
performance improvement.
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Figure 1: Contribution of atoms for the adsorption capacity predicted by GNN. (A) Scatter
plot between contribution and distance to the nearest pore. 100 materials from the test set from
the CoREMOF dataset. Each dot represents an atom. The horizontal axis shows the distance of
the atom from the nearest pore, while the vertical axis indicates the contribution of the atom to the
target property. (B) Visualization of the IFEPUG07 in the CoREMOF dataset. Top 5% high-
contribution atoms are marked in red star.

3.2 FROM NODE DECOMPOSITION TO SPATIAL INTEGRATION

Given that atom types and positions fully determine a material structure, the property of a material
G = (V,E) can be regarded as a function of its vertices V . A typical MPNN applies a local
description function c with a limited receptive field: the feature of an atom is determined solely by
atoms within a finite radius. To obtain a material-level representation, these atom-level features are
aggregated. Formally,

hgraph =
∑

f(hvi | H), (4)

hvi
= c({vj}), vj ∈ N (vi), (5)

where f is the readout function and H = {hvi | vi ∈ V } is the set of node features. Here, we
reformulate the graph-level feature hgraph as an integral over the continuous spatial domain. To this
end, we introduce a contribution function g(r | S), where S denotes the material structure. Similar
to c, the function g also has a limited receptive field. The graph-level representation can then be
written in the integral form

hgraph =

∫
g(r | S) d3r =

∫
g(N (r)) d3r. (6)

We refer to properties that admit such a region-based representation as spatial properties.
Definition 3.1. A property p is called a spatial property if it can be expressed as a functional of
a contribution function g(r | S), where S is the material structure. For instance, gas adsorption
capacity is a spatial property: one may define g(r) as the density of adsorbed gas molecules at
position r, and the total adsorption capacity is then given by the spatial integral of g(r).

Despite this formulation, spatial properties are not fundamentally different from other properties in
terms of their mathematical or neural representability.
Theorem 3.1. If the readout function f has a limited receptive field, the formulations in equation 4
and equation 6 are equivalent in expressivity. That is, any target property expressible by equation 4
can also be expressed by equation 6, and vice versa.

A proof is provided in Appendix A.1.1. Theorem 3.1 ensures that under a limited receptive field,
reformulating the graph-level representation as a spatial integral does not reduce neural expressivity.
When f has an infinite receptive field, the graph-level feature in general cannot be obtained via a
simple integral, and a neural architecture with a global receptive field must be applied directly to the
contribution function g(r). A detailed discussion is given in Appendix A.1.2.
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3.3 MODEL ARCHITECTURE

The core idea of our method is to correctly decompose the target property into contributions of
discrete spatial regions. To achieve this, we first discretize the spatial property p, which is defined
as an integral over a continuous domain, into a summation over a set of discrete regions.

p =

∫
R3

g(r)d3r ≈
Ns∑
j=1

g(rj)∆Vj (7)

Here, the continuous space is partitioned into Ns discrete regions (e.g., voxels), each with a volume
∆Vj centered at position rj . To computationally represent these regions, we introduce spatial nodes
in addition to original atomic nodes. Each spatial node is placed at a specific coordinate rj and
represents the corresponding spatial region.

Figure 2: Architecture of SpatialRead. The top part represents the traditional method, while
the bottom part shows SpatialRead. The material structure is taken as input. For clarity, the lattice
vector and boundary is drawn. The traditional method constructs an atom-based isomorphic graph
for message passing, and then pools the atomic features to obtain material-level features. In contrast,
SpatialRead first uniformly sample spatial nodes (the red triangle nodes) within the lattice. The atom
nodes (the blue round nodes) and spatial nodes form a heterogeneous graph. In the message passing
process, messages flow between atom nodes (blue lines) and from atom nodes to spatial nodes (red
lines). Note there are no messages from spatial nodes to atom nodes. The heterogeneous graph
neural network produce an unordered feature list of atom nodes and ordered feature list of spatial
nodes. Position embedding can be added to the feature list of spatial nodes. Finally, taking the atom
node features as “memory”, a decoder of Transformer are used to process both feature lists (Vaswani
et al., 2017). An additional [CLS] token is added to the sequence of spatial nodes (Devlin et al.,
2019), which can be used to predict spatial properties such as adsorption capacity, separation ratio,
or other properties like topology type and pore limited diameter.

3.3.1 REGION-WISE HETEROGENEOUS MESSAGE PASSING

To model the interactions between atoms and these new spatial regions (i.e. g(r)), we convert the
original isomorphic atomic graph into a heterogeneous graph composed of both atomic nodes and
spatial nodes. We denote the spatial node and its feature vector as sj and hsj . The formulation of
our Region-wise Heterogeneous Message Passing is as follows:

5
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ht+1
sj = U ′

t(h
t
sj , {h

t
vi , evi,sj}vi∈N (sj)[, {h

t
sk
, esk,sj}sk∈N (sj)]) (8)

ht+1
vi = Ut(h

t
vi , {h

t
vj , evi,vj}vj∈N (vj)) (9)

Here, U ′
t and Ut are the update function for spatial and atomic nodes. The new feature vector

ht+1
sj aggregates messages not only from nearby atoms (vi ∈ N (sj)) but also from adjacent spatial

nodes (sk ∈ N (sj)). In practice, the method for constructing spatial node adjacency nodes is ex-
actly the same as that for atoms, which is based on cutoff and the maximum number of neighbors.
This inter-spatial node message passing is optional and depends on the physical nature of the target
property. For example, when predicting gas adsorption capacity, message passing between spatial
nodes is physically meaningful as it captures the cooperative interactions between guest molecules
in adjacent regions. In contrast, for a property like accessible volume, where adjacent regions are
independent, such interactions have no physical meaning and can be omitted. In this work, because
that the global receptive field of the adopted multi-modal Transformer method already enables in-
teraction between spatial nodes (see Sec. 3.3.2), we ignore the message passing process between
spatial nodes.

3.3.2 PROPERTY-ADAPTIVE READOUT VIA MULTI-MODAL ATTENTION

After obtaining atom and spatial node representations, one may directly pool the spatial-node fea-
tures via

p =

Ns∑
j=1

MLP(hsj ), (10)

which already improves performance on spatial properties (Sec. 4). However, spatial nodes are
specifically designed for spatially decomposable properties, whereas many widely used material
properties remain atom-decomposable. Using spatial pooling alone introduces a mismatched in-
ductive bias and degrades performance on these non-spatial tasks. Thus, an effective readout must
adaptively combine atomic and spatial information.

To achieve this, we impose an ordering on spatial nodes with positional embeddings and feed the or-
dered spatial features together with unordered atomic features into a Transformer decoder (Vaswani
et al., 2017). The attention-based decoder selectively integrates the two types of representations,
enabling SpatialRead to retain the gains on spatial properties without sacrificing performance on
conventional non-spatial tasks. A detailed architecture is provided in App. A.2.

4 EXPERIMENTS

Our experiments are designed to address the following three questions: (1) Does SpatialRead outper-
form node-decomposable methods on spatial properties? (2) What types of material features benefit
most from SpatialRead? (3) For non-spatial properties, does the spatial inductive bias introduce any
degradation? Across all benchmarks, a clear pattern emerges. For integral-type spatial properties,
pooling over spatial nodes already provides most of the performance gain while the Transformer
module provide limited influence. For non-spatial properties, however, relying solely on spatial
pooling introduces a mismatched inductive bias and reduces accuracy. In this case, the multimodal
Transformer module automatically adjusting the relative contributions of atomic and spatial features
and thus maintains similar performance with the backbone GNN. In summary, spatial nodes en-
hance GNNs on spatial properties, and the Transformer module works as an adaptivity mechanism,
preventing performance degradation of SpatialRead in non-spatial properties and making the full
SpatialRead a robust module across different properties.

4.1 DATASET OF SPATIAL PROPERTIES

We first construct a dataset of spatial properties to evaluate the effectiveness of SpatialRead. The
dataset mainly consists of four material types: (1) Metal Organic Frameworks (MOFs), (2) Covalent
Organic Frameworks (COFs) (3) Porous Polymer Networks (PPNs), (4) zeolites, and two types of
properties: (1) Geometric features such as topology type and pore-limiting diameter, computed using
zeo++ (Willems et al., 2012). (2) Gas-related properties such as adsorption capacity and separation

6
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ratio, simulated through molecular dynamics. In total, the dataset contains 44,157 labeled samples
spanning four classes of porous materials. These materials are specifically selected because most of
their properties, including adsorption capacity and separation ratio, are inherently spatial. Detailed
descriptions of the dataset are provided in App. A.3.

4.2 BASELINES

For spatial property prediction, we compare against the following baselines: (1) CGCNN (Xie &
Grossman, 2018), a widely used MPNN designed for crystals. (2) GemNet (Gasteiger et al., 2021),
an advanced invariant graph neural network that incorporates angular information, substantially im-
proving performance over other MPNNs. (3) MOFormer (Cao et al., 2023), a contrastive pre-trained
variant of CGCNN using SMILES representations. (4) MOFTransformer (Kang et al., 2023), a mul-
timodal framework with large-scale pre-training tailored for MOFs. We use the improved weights
from PMTransformer (Park et al., 2023), which extends the pre-training dataset and enhances per-
formance. (5) JMP (Shoghi et al., 2024), a GemNet-based foundation model pre-trained on 120
million molecular and material samples. Training details are provided in App. A.4. Another kind of
baselines are different readout functions. However, as in most case for material / molecule property
prediction (Schütt et al., 2017; Xie & Grossman, 2018; Gasteiger et al., 2020; 2021; 2022; Shoghi
et al., 2024; Wang et al., 2024), modern GNNs in this field focus on the design of complex message
passing process, while adopting the simple sum or mean pooling. Nevertheless, in order to ensure
the completeness of the work, here we compare SpatialRead with two most typical readout function
GraphTrans (Wu et al., 2021) and GMT (Baek et al., 2021).

4.3 ABLATIONS

In the following experiments, we consider three types of ablation settings. (1) Backbone GNN with
simple sum / mean pooling of atom nodes, i.e. Base GNN. (2) Backbone GNN enhanced with Spatial
Nodes, the graph feature will be pooled from all spatial nodes, i.e. Base GNN + SN (Spatial Node)
(3) Backbone GNN processes heterogeneous graph of atom node and spatial node. A Multi-Modal
Transformer architecture is used to process both atom features and spatial node features, i.e. Base
GNN + SN + MM (Multi Modal).

Table 1: Performance (R2 Score) of SpatialRead on spatial properties in integral form

Model
MOF

C3H6/C3H8 sep.
MOF

N2 ads.
MOF

CH4/N2 sep.
COF

CH4 ads.
PPN

CH4 ads.
zeolite

CH4 heat.

Scratch CGCNN 0.663 0.760 0.718 0.556 0.692 0.411
GemNet (JMP from scratch) 0.729 0.968 0.924 0.816 0.932 0.836

GemNet + SN + MM 0.753 0.979 0.921 0.986 0.923 0.881

Pretrain
MOFormer 0.616 0.754 0.698 0.541 0.636 0.388

MOFTransformer 0.817 0.918 0.905 0.967 0.942 0.836
JMP 0.774 0.971 0.908 0.884 0.947 0.874

JMP + SN + MM 0.792 0.988 0.941 0.982 0.969 0.945

Scratch

PaiNN 0.691 0.925 0.867 0.736 0.856 0.791
PaiNN + GraphTrans 0.712 0.912 0.870 0.750 0.847 0.801

PaiNN + GMT 0.740 0.924 0.866 0.742 0.863 0.803
PaiNN + SN

(ours) 0.794 0.978 0.936 0.979 0.978 0.886
PaiNN + SN + MM

(ours) 0.784 0.987 0.941 0.987 0.977 0.969

4.4 SPATIAL PROPERTIES

We first evaluate SpatialRead on six representative spatial properties, including: (1) gas adsorption
in MOFs, (2) two gas separation tasks in MOFs, (3) gas adsorption in COFs, (4) gas adsorption
in PPNs, and (5) adsorption heat in zeolites. Results are summarized in Table 1. Among the three
representative MPNNs (CGCNN, GemNet, PaiNN), the ranking GemNet > PaiNN > CGCNN high-
lights the critical role of backbone design. Using complex readout functions including GraphTrans
and GMT marginally improves the performance. Nonetheless, all pure MPNN approaches underper-
form MOFTransformer. While PaiNN lags behind MOFTransformer and JMP, augmenting it with
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spatial nodes (+SN) yields notable improvements across tasks. Adding the attention mechanism
(MultiModal, +MM) does not lead to further consistent gains. This can be attributed to the fact that
these properties can naturally be expressed as the sum of regional contributions. Hence, equation 10
is already physically grounded, and introducing additional global receptive fields has limited phys-
ical justification. This stands in contrast to the results in Sec. 4.6, where global receptive fields are
indispensable. Overall, these results highlight the effectiveness of spatial nodes in modeling spatial
properties: by decomposing properties into regional contributions, performance can be substantially
enhanced without altering the backbone architecture.

4.5 BENEFIT FROM ALREADY-PRE-TRAINED FOUNDATION MODEL

Despite being designed for general GNNs such as PaiNN, it is also important to assess whether
SpatialRead can be directly applied to a pre-trained foundation model like JMP (Shoghi et al.,
2024). Surprisingly, although JMP is pre-trained with a simple sum-pooling readout, it can be
seamlessly enhanced by SpatialRead. As shown in Table 1, both GemNet (i.e., JMP trained from
scratch) and JMP experience substantial performance gains when equipped with SpatialRead, and
JMP+SpatialRead further outperforms GemNet+SpatialRead, demonstrating that large-scale pre-
training remains beneficial even when the downstream readout differs from that used during pre-
training. These results highlight the versatility of SpatialRead with complex multi-body and pre-
trained GNNs. We note that JMP+SpatialRead does not always surpass PaiNN+SpatialRead, likely
due to the higher computational cost of GemNet’s four-body interactions and the resulted limited
hyperparameter settings, as discussed in Appendix A.5.

Table 2: Performance (R2 Score) of SpatialRead on geometric properties

Model ASA VF PLD LCD

Scratch CGCNN 0.984 0.883 0.536 0.565
GemNet 0.994 0.977 0.586 0.667

Pretrain
MOFormer 0.979 0.894 0.563 0.624

MOFTransformer 0.916 0.989 0.966 0.970
JMP 0.995 0.985 0.585 0.650

Scratch
PaiNN 0.993 0.951 0.594 0.631

PaiNN + SN (ours) 0.974 0.999 0.856 0.913
PaiNN + SN + MM (ours) 0.996 0.999 0.965 0.975

4.6 GLOBAL GEOMETRIC PROPERTIES

In the previous section, we demonstrated that for spatial properties that can be naturally expressed
in integral form, SpatialRead provides significant improvements by reformulating the readout as a
summation over spatial regions. However, not all spatial properties admit such a simple integral
formulation. To further examine this distinction, we evaluate SpatialRead on several representative
geometric properties, as reported in Table 2. For accessible surface area (ASA), the property is
essentially node-decomposable: surface area is determined primarily by the atoms located at the
boundary. In this case, directly introducing spatial nodes provides negative influence. Nevertheless,
since our multimodal architecture adaptively balances atom- and space-decomposable inductive bi-
ases, SpatialRead still achieves a slight improvement over the pure PaiNN baseline. Void fraction
(VF) can be expressed in integral form, but the task itself is relatively simple (Kang et al., 2023),
and thus most models already achieve high performance. Here, SpatialRead again yields marginal
improvements, confirming its robustness without incurring degradation. The situation is markedly
different for pore-limiting diameter (PLD) and largest cavity diameter (LCD). These descriptors
cannot be represented as integrals over local contributions, but are instead better understood as func-
tionals of the signed distance function (SDF) of the material geometry. Their values depend on the
global shape of the pore space rather than additive regional properties. In such cases, equation 10
is no longer physically meaningful. The introduction of spatial nodes already provides significant
gains, while the Transformer-based multimodal architecture further enhances performance through
its global receptive field and expressive capacity. These results suggest that SpatialRead is effective
not only for integral-type spatial properties, but also for more complex forms.
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Table 3: Performance of SpatialRead on MatBench
Task MODNet coGN JMP JMP + SpatialRead
JDFT2D (meV/atom) 25.55 22.25 20.72 18.17
Phonons (cm−1) 34.77 32.12 26.6 25.8
Dielectric (unitless) 0.169 0.178 0.133 0.133
Log GVRH (log10(GPa)) 0.073 0.068 0.06 0.06
Log KVRH (log10(GPa)) 0.054 0.052 0.044 0.047
Perovskites (eV/unitcell) 0.093 0.027 0.029 0.030
MP Gap (eV) 0.215 0.153 0.119 0.107
MP Formation Energy (meV/atom) 40.2 17.4 13.6 15.3

4.7 MATBENCH RESULTS FOR OTHER COMMON MATERIAL PROPERTIES

While the primary strength of SpatialRead lies in modeling spatial properties, it is also important to
ensure that it does not degrade performance on standard material-property benchmarks. As shown
in Table 3, the foundation model JMP already surpasses leading baselines on the MatBench dataset.
Adding SpatialRead maintains comparable performance across most tasks. Two tasks behave differ-
ently. For MP–E–Form, SpatialRead slightly reduces accuracy, whereas for bandgap, SpatialRead
leads to an improvement. This difference is consistent with the inherent nature of the two quantities.
Formation energy is an atom-decomposable property, making a simple summation pooling scheme,
such as the one used in JMP, a suitable inductive bias. In contrast, the bandgap is defined as the
energy difference between the valence band maximum (VBM) and the conduction band minimum
(CBM). These frontier electronic states are formed by collective contributions from multiple atoms
and cannot be meaningfully represented as a sum or average over atom-wise descriptors. Therefore,
simple atom pooling provides an inappropriate inductive bias for bandgap prediction. An attention-
based readout, which allows the model to selectively weight atoms according to their relevance to
the VBM and CBM, is naturally more suitable. This improvement is attributable to the attention
mechanism rather than the presence of spatial nodes. These results further reflect the importance of
designing physically-grounded readout function. In summary, SpatialRead preserves performance
on non-spatial tasks even when combined with a strong pre-trained model, confirming its versatility
across diverse material-property settings.

4.8 INTERPRETATION OF SPATIAL NODES

Figure 3: Visualization of spatial nodes
with high contribution. Those spa-
tial nodes with top 10% contributions are
drawn as red cubes. The drawn important
spatial nodes are mainly located in the pore
regions of the material.

We now provide an interpretation of how spatial nodes
function within SpatialRead. In summary, those sparse
regions with few or no atoms are hard to be described
by conventional atom-decomposable methods. How-
ever, these regions are critical for some spatial prop-
erties. Thus, when a material or graph is highly non-
uniform, one should consider adding spatial nodes to
those sparse regions. To illustrate this, we employ
SchNet (Schütt et al., 2017) as a simple backbone
with an MLP readout (equation 10), trained to predict
gas adsorption capacity. In this setting, the predic-
tion is obtained by averaging node outputs, allowing
each node’s output to be interpreted as its contribu-
tion. We visualize the top 10% most contributing spa-
tial nodes in Fig. 3. These nodes are predominantly
located within the pore channels of MOFs, highlight-
ing that SpatialRead effectively identifies the struc-
tural regions most relevant to adsorption. Under a
purely node-decomposable inductive bias, such pore-
level contributions will be implicitly learned to be as-

signed to the nearby atoms, which may increase the difficulty of learning on the network and its
generalization ability. In addition to the case study, we also conducted statistical analysis in the
Appendix A.8.
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4.9 PHYSICAL-GROUNDED INDUCTIVE BIAS FOR BETTER GENERALIZATION

Figure 4: Out of distribution generaliza-
tion. (A) Out of distribution generalization for
PaiNN+SumPooling. (B) Out of distribution
generalization for PaiNN+SpatialRead. The ad-
sorption capacity data is separated according to
the void fraction. We choose 1/7 materials with
the most high void fraction as the test set to test the
out-of-distribution generalization ability of dif-
ferent readout function. PaiNN+SpatialRead is
trained for 3 epochs while PaiNN+SumPooling is
trained for 40 epochs to make sure their precision
on in-distribution data is similar. PaiNN + Spatial-
Read maintains better spearman correlation coef-
ficient in out-of-distribution data.

A natural way to examine whether a model
has learned physically meaningful features is to
test its behavior under distribution shift. For a
spatial property, although a typical GNN can
implicitly infer critical regions from atomic
environments, this atom-based decomposition
becomes unstable when faced with distribu-
tion shift. To validate this, we construct an
out-of-distribution (OOD) split by placing the
highest-porosity 1/7 MOFs entirely into the
test set. To ensure fairness, we early-stop
PaiNN+SpatialRead such that its in-distribution
accuracy matches that of the base PaiNN. De-
tails of the calculation method, data split, and
validation metric can be found in A.7. While
both models experience increased error due to
the severe shift in porosity, PaiNN+SpatialRead
maintains significantly higher ranking stabil-
ity (Spearman 0.92/0.95 vs. 0.76). Fig. 4
also demonstrates that the prediction vari-
ance of PaiNN+SpatialRead is smaller than
PaiNN+SumPooling, indicating the robust pre-
diction. This ability is of crucial importance
for the screening of new materials. Because
for high-throughput screening, people are more

concerned about whether the performance ranking of different materials is correct rather than the
actual prediction error. In summary, the benefit of SpatialRead lies in guiding the model toward
physically plausible solutions within this function class, thereby improving robustness of predic-
tion, especially under distribution shift.

4.10 SAMPLING STRATEGY AND COMPUTATIONAL COST

Since the position of the introduction of spatial nodes is not unique. The sampling strategy will
significantly affect the model performance. Besides the sampling strategy based on grid/fractional
coordinates, another method is to sample based on resolution. The resolution-based method allocates
different numbers of spatial nodes for different-sized cells. Resolution-based sampling results in
better performance on large systeml like COFs. Detailed experiment can be found in Appendix A.9.

Due to space limitations, computational cost are discussed in Appendix A.5 and A.10. For a typical
MOF material containing about 300 atoms, adding SpatialRead adds about 30% computational bur-
den. Increasing the number of spatial nodes consistently improve the performance. 8 ∗ 8 ∗ 8 points
provide a well balance between computational burden and performance.

5 CONCLUSION

In this work, we revisited the inductive bias of MPNN readouts, noting that the common assumption
of node-decomposability is insufficient for many spatial properties. To address this, we proposed
SpatialRead, which augments the atomic graph with spatial nodes and employs a multimodal Trans-
former to adaptively select between atomic- and spatial-decomposable representations. Extensive
experiments show that SpatialRead substantially improves predictions of spatial properties such as
gas adsorption capacity, pore limiting diameter (PLD), etc, while remaining the performance of
the backbone MPNN in other non-spatial properties. Contribution analysis demonstrates that spa-
tial nodes naturally capture critical regions. These benefits incur only modest computational over-
head, establishing SpatialRead as a practical, scalable framework that incorporates spatial inductive
bias into graph neural networks. SpatialRead emphasizes the importance of designing physically-
grounded readout function for the target property, which is commonly ignored in current MPNNs.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Davide Bacciu, Alessio Conte, and Francesco Landolfi. Generalizing downsampling from regular
data to graphs. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp.
6718–6727, 2023.

Jinheon Baek, Minki Kang, and Sung Ju Hwang. Accurate learning of graph representations with
graph multiset pooling. arXiv preprint arXiv:2102.11533, 2021.

Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering with graph neural
networks for graph pooling. In International conference on machine learning, pp. 874–883.
PMLR, 2020.

N Scott Bobbitt, Kaihang Shi, Benjamin J Bucior, Haoyuan Chen, Nathaniel Tracy-Amoroso, Zhao
Li, Yangzesheng Sun, Julia H Merlin, J Ilja Siepmann, Daniel W Siderius, et al. Mofx-db: An
online database of computational adsorption data for nanoporous materials. Journal of Chemical
& Engineering Data, 68(2):483–498, 2023.
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A APPENDIX

A.1 PROOFS

A.1.1 PROOF OF THE EQUIVALENCE BETWEEN LOCAL DESCRIPTION FUNCTION AND
CONTRIBUTION FUNCTION

Consider a graph G = (V,E) with node set V . The target property p is assumed to be a function
of the nodes, i.e. p = p(V ). A message-passing graph neural network (MPNN) can be regarded as
consisting of a local description function c and a readout function f . Each node can only perceive
the information within its receptive field rmp. Formally,

hvi = c({vj | vj ∈ V, r(vi, vj) < rmp}) (11)
H = {hvi | vi ∈ V } (12)

hgraph = f(H) (13)

Without loss of generality, the readout function can always be written in a node-decomposable form:
hgraph = f(H) =

∑
vi∈V

f(hvi | H) (14)

This is because when f has an unlimited receptive field, its output can at least be evenly distributed
to each node. In practice, for most target properties (such as total energy and most properties in
QM9 except dipole moment), f is implemented as an MLP depending only on hvi . More generally,
when f has a finite receptive field rread, there always exists an equivalent local description function
c′ defined on an expanded neighborhood N (posi) = {vj | r(vi, vj) < max(rmp, rread)} such that

h′
vi = f(hvi | H) = c′(N (posi)) (15)

hgraph =
∑
vi∈V

h′
vi (16)

Region-decomposable formulation. We now reformulate the graph-level feature as an integral
over space:

hgraph =

∫
g(r) d3r (17)

g(r) = g(N (r)) where N (r) = {vj | ∥r− posj∥ < rg} (18)
We will show that equation 16 and equation 17 are equivalent in expressive power, by constructively
defining a mapping from one form to the other and vice versa.

From node-decomposable to region-decomposable. Define g using Dirac delta functions:
g(r) =

∑
vi∈V,vi∈N (r)

h′
vi δ(r− posi) (19)

Since
∫
δ(r− posi)d

3r = 1, we have∫
g(r) d3r =

∑
vi∈V

h′
vi

∫
δ(r− posi)d

3r

=
∑
vi∈V

h′
vi = hgraph (20)

Thus any node-decomposable form can be expressed as a region-decomposable form.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

From region-decomposable to node-decomposable. Assume g(r) has a finite receptive field rg .
For each position r, define a normalized weight over nearby nodes:

ŵi(r) =

{
1

∥r−posi∥
, ∥r− posi∥ < rg

0, otherwise
(21)

wi(r) =
ŵi(r)∑

vj∈V,vj∈N (r) ŵj(r)
(22)

For any r we have
∑

vi∈V wi(r) = 1. Therefore,∫
g(r) d3r =

∫
g(r)

∑
vi∈V

wi(r) d
3r

=
∑
vi∈V

∫
g(r)wi(r) d

3r

=
∑
vi∈V

∫
∥r−posi∥<rg

g(r)wi(r) d
3r (23)

We can thus define a local description function for each node as

c(vi) =

∫
∥r−posi∥<rg

g(r)wi(r) d
3r (24)

This gives a node-decomposable representation that is equivalent to the original region-
decomposable one.

Remarks. Note that the mapping from region to node is not unique, because the choice of weights
wi(r) is arbitrary. This implies that inductive bias is crucial in practice. For example, when pre-
dicting total energy, because node-level labels are unavailable, one could (in principle) assign all
the energy of a methyl group to its carbon atom and zero to its hydrogens. Although this rule is
learnable, it is physically incorrect. Therefore, additional inductive biases such as bond length, bond
angle, or dihedral angle are typically introduced to guide the model.

Conclusion. In summary, any node-decomposable representation can be mapped to a region-
decomposable one, and vice versa. Hence, these two formulations are expressively equivalent: they
do not change the representational power of GNNs, but merely reflect different inductive biases.

A.1.2 PROOF OF THE GLOBAL RECEPTIVE FIELD

On realizing a global readout with local encoders. Even when the readout function f possesses
a global receptive field, the local description function c can still be restricted to have only a local
receptive field. This can be achieved by the following construction.

For each node vi, let its local descriptor be
hvi = c(vi), (25)

which depends only on a bounded neighborhood of vi. Assign hvi to a small spatial region Ri

surrounding the node position posi, and define the spatial field
g(r) =

∑
vi∈V

hvi χRi
(r), (26)

where χRi
(r) is the indicator function of region Ri.

Because the number of nodes is finite, one can always choose regions Ri that are sufficiently small
and pairwise disjoint. Let the volume of each region be Vi = |Ri|. Then, within Ri the field is
constant:

g(r) = hvi , r ∈ Ri. (27)

The field g(r) can be discretized as a finite-resolution 3D image by sampling on a grid with voxel
size δV such that each Ri occupies at least one voxel. This yields a tensor representation {g(rj)}Ns

j=1
of finite spatial resolution. Although this representation cannot capture ideal Dirac delta functions
(which would require infinite resolution), it can losslessly represent the piecewise-constant field
constructed above because each Ri is non-overlapping.
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Finally, the global readout can be realized as a general function operating on this spatial field:
p = f

(
{hvi}i∈V

)
≡ F

(
{g(rj)}Ns

j=1

)
, (28)

where F can be any architecture with a global receptive field (e.g. a Transformer or a CNN operating
on the 3D grid). In this way, the local descriptors c(vi) remain strictly local, while the global
dependency is handled solely by the subsequent global network F . This shows that even if the target
readout f is global, it can be implemented by composing a local encoder c (on the graph) with a
global readout F (on the discretized spatial field), without violating the locality constraint on c.

A.2 DETAILED ARCHITECTURE OF SPATIALREAD

Given a material G = (V,E) with atomic positions {ri}, atomic types {xi}, and lattice vectors L,
SpatialRead operates as follows.

We place spatial nodes on a uniform M × M × M grid inside the unit cell, resulting in a total of
M3 spatial nodes. The fractional coordinates of the spatial node indexed by (i, j, k) are given by

rs(i, j, k) =

(
i

M
,

j

M
,

k

M

)
, i, j, k = 0, . . . ,M − 1. (29)

Next, we transform the fractional coordinates to cartesian coordinates according to the lattice vector.
This uniform sampling scheme provides full coverage of the 3D domain with a spatial resolution
controlled by M .

Next, we construct a heterogeneous graph composed of two types of nodes: atomic nodes (vi ∈
V ) and spatial nodes (sj). Edges are built based on Euclidean distance with a cutoff radius rcut,
typically set to 5–8 Å, and respecting a maximum neighbor limit for efficiency. Crucially, we allow
two types of edges:

• Atom–atom edges: (vi, vj) if ∥ri − rj∥ ≤ rcut

• Atom–spatial edges: (vi, sj) if ∥ri − rsj∥ ≤ rcut

No edges are allowed from spatial nodes to atomic nodes, enforcing unidirectional information flow:
atoms influence space, but not vice versa. Notably, periodic boundary conditions were taken into
account, as the materials being dealt with in this work are all crystals.

Message passing is performed using a PaiNN-style MPNN (Schütt et al., 2021), which jointly up-
dates scalar and vector node features through interactions along edges. The process runs for T
layers, updating atomic and spatial node features, without altering the original MPNN backbone. At
the final layer, we obtain:

• An unordered set of atomic feature vectors: {hT
vi}

|V |
i=1

• An ordered list of spatial node feature vectors: {hT
sj}

512
j=1

To process these heterogeneous features, we adopt a multi-modal Transformer decoder (Vaswani
et al., 2017). Since the number of spatial nodes is fixed (i.e., M3), and their order is determined by
the i, j, k index of each node in equation 29, we can train a learnable position embedding p of shape
[M3, F ]. We add the learnable positional embedding to each spatial node feature:

h̃sj = hT
sj + pj , (30)

where pj is a learnable embedding encoding the 3D index of the voxel. A [CLS] token with a
learned initial embedding h[CLS] is prepended to the sequence of spatial node features.

The atomic features are padded to a fixed maximum length M (e.g., M = 200) to handle variable-
sized crystals. The full input to the Transformer decoder is:

Input =
[
h[CLS], h̃s1 , . . . , h̃s512

]
,
[
hv1 , . . . , hv|V | , 0, . . . , 0

]
(31)

The Transformer decoder, consisting of L attention layers, processes this sequence via self-attention
and cross-attention mechanisms. Importantly, no causal masking is applied, allowing full interaction
among all tokens. After processing, the final state of the [CLS] token is used for prediction:

hout
[CLS] = TransformerDecoder(Input), p = MLP(hout

[CLS]) (32)
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where p is the predicted property.

In the ablation setting spnode mlp, we bypass the Transformer and instead use a simpler readout:
each spatial node feature is processed independently by an MLP to yield a scalar output oj =
MLP(hT

sj ), and the final prediction is the average:

p =
1

Ns

Ns∑
j=1

oj (33)

When spatial nodes are absent, this reduces to averaging atomic outputs—equivalent to conventional
numeric-level pooling ( equation 3).

Table 4: Hyperparameters of the PaiNN backbone and Transformer decoder used in SpatialRead.

Component Parameter Value

PaiNN

Number of layers 6
Hidden dimension 128
Filter dimension 128

Cutoff radius rcut 6.0 Å
Maximum neighbors 30

Transformer Decoder

Number of layers 6
Hidden dimension 128

Number of attention heads 8
Feed-forward dimension 512

dropout 0.15
Maximum atomic count (padding) 1024

Spatial Nodes Number of spatial nodes Ns 512 (83)
Position embedding size 128

Table 5: Training strategy and optimization hyperparameters used in SpatialRead.

Training Parameter Value
Total epochs 80
Optimizer AdamW
Learning rate (initial) 1× 10−4

Learning rate scheduler ReduceLROnPlateau
Monitor metric val loss
Mode min
Patience 10
Factor 0.8
Threshold 1× 10−4

Minimum learning rate 1× 10−6

Weight decay 0.0
Batch size 8

A.3 DATASETS

The dataset mainly includes four material types:

• Metal Organic Frameworks (MOFs): 23157 samples from Chung et al. (2019), Tang et al.
(2021), Gulbalkan et al. (2023), and Kang et al. (2023).

• Covalent Organic Frameworks (COFs): 7000 samples from Hu et al. (2015) and Deeg et al.
(2020).

• Porous Polymer Networks (PPNs): 7000 samples from Martin et al. (2014).

• zeolites: 7000 samples from Kim et al. (2020).
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Figure 5: Dataset of spatial properties for porous materials. (A) Distribution of material types.
The dataset contains four types of porous materials: (1) Metal Organic Frameworks, (2) Covalent
Organic Frameworks, (3) Porous Polymer Networks, (4) zeolites. (B) Distribution of task types.
Tasks mainly include five types: (1) Geometric Features, such as void fraction, accessible surface
area etc. (2) Gas adsorption capacity, (3) Separation ratio, (4) adsorption heat, (5) Henry’s constant.

Task types include:

• Topology Type

• Void Fraction

• Accessible Surface Area

• Pore Limited Diameter

• Largest Cavity Diameter

The geometric features are calculated by Willems et al. (2012). The probe radius is set to 0.5. The
number of sampling points are set to 2, 000 for surface area and 50, 000 for volume. These datasets
are randomly split into train, validation and test set according to 5 : 1 : 1. All material structures
can be found in Bobbitt et al. (2023), which are collected from Wilmer et al. (2012) and Chung et al.
(2019).

The source of the dataset, as well as the sizes of the training, validation and test sets, are shown in
Table 6.

A.4 TRAINING DETAILS OF BASELINE MODELS

CGCNN (Xie & Grossman, 2018): CGCNN is one of the most typical MPNN for crystal. But as
a kind of graph convolutional neural network, the performance has lagged behind modern methods.
Despite, it still reflect the basic feature of Graph Convolutional Network. The model architecture
follows the original CGCNN. We train CGCNN for 300 epochs, the learning rate is set to 0.01 and
decays to 0.001 and 0.0001 in 100 and 200 epochs. Other settings follow the original CGCNN.

MOFormer (Cao et al., 2023): MOFormer is a kind of pre-training method, which use contrastive
learning in material structure and SMILES code. MOFormer pretrain CGCNN in about 300,000
MOFs. To achieve full training, we fine-tune the pre-trained CGCNN for 60 epochs instead of the
default 30 epochs.

JMP (Shoghi et al., 2024): JMP is a GemNet (Gasteiger et al., 2021) pre-trained on 120 million
material and molecule. We fine-tune JMP for 80 epochs. All training strategy and model ar-
chitecture follows the default setting. Nevertheless, the default setting of JMP on qMOF Rosen
et al. (2021; 2022) dataset is not suitable for our task. Most MOFs in the qMOF dataset is
smaller than CoREMOF. In original settings, JMP adopts an adaptive strategy to set cutoff and
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Table 6: Details of the dataset

Dataset Source Task Unit Training data Val Data Test Data

Geo
Kang et al. (2023)

Willems et al. (2012)

Topology - 4,900 1,050 1,050
VF - 4,900 1,050 1,050

ASA m2/g 4,900 1,050 1,050
PLD Å 4,900 1,050 1,050
LCD Å 4,900 1,050 1,050

CoREMOF Chung et al. (2019) N2 Ads. cm3(STP)/g 5,000 1,000 1,000
Ar Ads. cm3(STP)/g 5,000 1,000 1,000

CH4/N2 Gulbalkan et al. (2023)

CH4 Henry mol/kg/Pa 5,000 1,000 1,000
N2 Henry mol/kg/Pa 5,000 1,000 1,000

CH4/N2 Sel. (0.1bar) - 5,000 1,000 1,000
CH4/N2 Sel. (1bar) - 5,000 1,000 1,000

CH4/N2 Sel. (10bar) - 5,000 1,000 1,000

C3H6/C3H8 Tang et al. (2021)

C3H6 Ads. mol/kg 1354 170 170
C3H8 Ads. mol/kg 1354 170 170

C3H6/C3H8 Sel. (1bar) - 1354 170 170
C3H6/C3H8 Sel. (infinite) - 1354 170 170

TSN S (1bar) - 1354 170 170
C3H6 Henry (298K) log(mol/kg/Pa) 1354 170 170
C3H8 Henry (298K) log(mol/kg/Pa) 1354 170 170

PPN Martin et al. (2014) CH4 Ads. (65bar) cm3 (STP) / cm3 5,000 1,000 1,000
CH4 Ads. (1bar) cm3 (STP) / cm3 5,000 1,000 1,000

COF
Mercado et al. (2018)

Deeg et al. (2020)

CH4 Ads. (65bar) v (STP) / v 5,000 1,000 1,000
CH4 Ads. (5.8bar) v (STP) / v 5,000 1,000 1,000

CO2 Ads. Heat. kj/mol 5,000 1,000 1,000
CO2 Henry log(mol/kg/Pa) 5,000 1,000 1,000

zeolite Kim et al. (2020) CH4 Henry - 5,000 1,000 1,000
CH4 Ads. Heat kj/mol 5,000 1,000 1,000

max num neighbors. The cutoff is fixed to 19.0 Å. But when the number of atoms is larger than
300, the max num neighbors is set to 5, which is too small. A large number of MOFs in the CoRE-
MOF (where most structures are real and obtained by experiments) dataset is larger than 300. We
fixed the max num neighbors to 8, which achieves balance between performance and computation
cost.

GemNet (Gasteiger et al., 2021): Considering that JMP is a re-implementation of GemNet, we use
the same code of JMP instead of the original implementation. We train the code of JMP without
loading the pre-trained checkpoint to obtained the results of GemNet. Other strategies are the same
as JMP.

MOFTransformer/PMTransformer (Kang et al., 2023; Park et al., 2023): MOFTransformer is a
transformer-based multimodal network pre-trained on about 1 million MOFs. The subsequent work
PMTransformer further uses 1.9 million porous materials as the pre-training dataset. Here we use
the checkpoint of PMTransformer and the original implementation. The only difference is that the
default setting finetune the model for 30 epochs, which is insufficient to converge. Thus we finetune
the model for 60 epochs.

A.5 COMPLEXITY OF SPATIAL NODES AND SCALABILITY TO LARGER SYSTEM

SpatialRead extends conventional MPNNs by introducing spatial nodes and a multimodal Trans-
former head, raising the question of computational overhead. Using SchNet (Schütt et al., 2017)
as a backbone for controlled experiments, we find that increasing spatial node resolution improves
performance until convergence around 8 × 8 × 8 nodes, corresponding to roughly 1 Å3 per node
for typical porous materials. Based on this, we recommend 512 spatial nodes for materials such as
MOFs, COFs, PPNs, and zeolites. Table 7 shows that adding spatial nodes increases training time by
about 30% compared with the baseline PaiNN, while the full SpatialRead remains lightweight (2.9
MB, 2.78 min/epoch), with most overhead arising from message passing rather than the Transformer
head. Overall, SpatialRead delivers substantial performance gains with only modest computational
cost.
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Table 7: Computational cost in the CoREMOF dataset

Model Params (MB) Training time / epoch (min)

JMP/GemNet 38.5 3.77
PaiNN 1.3 2.01

PaiNN + SN (ours) 1.3 2.61
PaiNN + SN + MM (ours) 2.9 2.78

As demonstrated in A.2, the graph construction behavior of spatial nodes is similar to atoms. Each
spatial node receive message from the neighboring atoms, which are determined by cutoff and max-
imum number of neighbors. The complexity of modern GNNs is commonly linearly related to the
number of atoms. For example, for a GNN like PaiNN (Schütt et al., 2021) that takes into account
the interaction between two bodies, its complexity is O(Nk), where N is the number of atoms and
k is the number of neighboring nodes. For a model like GemNet that takes into account interactions
among up to four bodies, its complexity is approximately O(Nk3). Therefore, when the number
of spatial nodes is fixed as a constant M , the model complexity is increased to O(N + M)k or
O(N + M)k3. As the system becomes larger, the additional complexity brought about by the in-
crease in spatial nodes can be almost negligible. However, it should be noted that a larger system
typically implies a larger space, and therefore may require more spatial nodes to maintain a reliable
resolution.

Due to the consideration of three-body and four-body interactions as well as higher embedding
and edge feature encoding, the size of the memory usage and the training load increase rapidly
with the number of neighbors. For actual MOFs like in the CoREMOF (Chung et al., 2019)
dataset, the NVIDIA RTX GeForce 4090 (24 GB) only allows us to set the maximum value
of max num neighbors to 15 (as a comparison, the original setting of JMP in MOFs set the
max num neighbors to 5). Properties such as adsorption capacity are significantly influenced by
the intermolecular interactions, and therefore may be more sensitive to parameters like cutoff and
max num neighbors. Even under such a disadvantage, JMP still achieved performance comparable
to that of PaiNN. It can be expected that if the complete 30 maximum neighbors are enabled, the
effect of JMP will surpass that of PaiNN. As for PaiNN, due to its simple two-body message passing
process, we can allow each atom to have up to 30 neighboring nodes.

When attention-based modules are employed, the dominant cost arises from the O(N2) attention
over atoms, rather than from the spatial nodes themselves. Since long-sequence attention is not
the focus of this work, we evaluate the spatial-node overhead using the Spatial Node + MLP de-
sign, whose contribution remains size-independent. Specifically, we choose CoREMOF as the base
dataset, since it is the most common dataset used for MOFs. We construct supercell to enlarge the
system size and evaluate the computational cost of PaiNN (+ SpNode). We evaluate how long and
how much memory are needed to train a PaiNN (with SpNode) in 5,000 MOFs in the NVIDIA
GeForce RTX 4090.

The empirical results in Table 8 confirm that the runtime and memory overhead of spatial nodes
remain effectively constant when the number of spatial nodes is fixed. As the system size grows, the
relative impact of this overhead diminishes. Nevertheless, for sufficiently large systems, additional
spatial nodes may be required to maintain spatial resolution, in which case the total cost may scale
proportionally with the number of inserted spatial nodes.

A.6 CALCULATION DETAIL OF THE DISTANCE BETWEEN ATOM AND PORE

To quantify the distance of each atom to the nearest pore region, we first identify materials that
contain sufficiently large pores. For each crystal structure, we uniformly sample 32 × 32 × 32
points within the lattice using the same grid construction described in Appendix A.2. For every
sampled point, we compute its minimum distance to the surrounding atoms. Points whose nearest-
atom distance exceeds the pore threshold rpore = 2.0 Å are designated as pore points, representing
regions of locally low atomic density.
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Table 8: Training time and memory overhead introduced by spatial nodes at different system sizes.
System Size Model Time / epoch (min) Memory (MB)

294 PaiNN 4.07 484
294 PaiNN + SpNode 5.21 546
634 PaiNN 4.86 752
634 PaiNN + SpNode 5.83 819
3092 PaiNN 10.7 2475
3092 PaiNN + SpNode 11.3 2520
8476 PaiNN 29.2 5857
8476 PaiNN + SpNode 26.4 5896

Once the set of pore points is obtained, we compute for each atom its minimum Euclidean distance
to this pore point set. This value is used as the atom’s distance-to-pore metric, reflecting how deeply
the atom is embedded within dense regions of the structure.

A.7 DETAILS OF OUT-OF-DISTRIBUTION VALIDATION

To evaluate the out-of-distribution (OOD) performance of SpatialRead, we reorganized the N2 ad-
sorption dataset from CoRE-MOF (Chung et al., 2019). For each structure, we computed its void
fraction using zeo++ (Willems et al., 2012). Materials in the top one-seventh of void fraction
were selected as the OOD test set. The remaining six-sevenths were randomly split into training
and validation subsets with a 5:1 ratio, ensuring that the training and validation sets share the same
underlying distribution. This setup allows the in-distribution (ID) performance of the model to be
assessed independently from its ability to generalize to high-porosity, distribution-shifted MOFs.

Table 9: OOD evaluation on high-porosity MOFs. SpatialRead preserves ranking stability under
distribution shift.

Model MAE R2 Spearman

PaiNN (40 epoch, ID) 18.7 0.907 0.961
PaiNN+SpatialRead (3 epoch, ID) 21.5 0.904 0.963
PaiNN+SpatialRead (40 epoch, ID) 11.8 0.967 0.983

PaiNN (40 epoch, OOD) 151 -0.019 0.757
PaiNN+SpatialRead (3 epoch, OOD) 169 -0.138 0.920
PaiNN+SpatialRead (40 epoch, OOD) 96.0 0.526 0.951

As shown in Table 9, the 3-epoch SpatialRead-enhanced PaiNN model attains comparable
validation-set accuracy to the 40-epoch baseline PaiNN model, reflecting the low training cost of
our spatial node augmentation. However, both models experience substantial degradation on the
OOD test set, as high-porosity structures are absent from the training distribution. Because adsorp-
tion capacity is positively correlated with void fraction, the models systematically underestimate
adsorption for highly porous materials, leading to large drops in MAE and R2.

Despite this distribution shift, both PaiNN and SpatialRead-enhanced PaiNN preserve the relative
ordering of materials, achieving Spearman correlation coefficients of 0.76 and 0.92, respectively.
This indicates that SpatialRead substantially improves ranking stability under OOD conditions, even
when absolute prediction accuracy deteriorates.

A.8 STATISTICAL ANALYSIS OF THE INTERPRETATION OF SPATIAL NODES

Fig. 6 compares node contributions with the number of atoms contained in their regions. Strikingly,
regions with few or no atoms exhibit the largest contributions. This observation is physically con-
sistent: gas molecules cannot be adsorbed into dense atomic regions but are much more likely to be
stored in sparse pore regions.
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Figure 6: Atom count (in each region) v.s. contribution. We counted the number of atoms
contained in the area occupied by each spatial node, as well as the contribution of that spatial node.

Figure 7: Effect on sampling ratio. (A) Performance for different number of spatial nodes. We
test number of spatial nodes from 2 ∗ 2 ∗ 2 to 12 ∗ 12 ∗ 12. SchNet is adopted to test the best setting
of spatial nodes. The corresponding MAE and R2 are drawn in the line plot. (B) Distribution of
volume for different materials. The volume of a single cell is drawn.

A.9 EFFECT OF SAMPLE STRATEGY

To evaluate whether adaptive sampling improves the representation of spatial regions, we conducted
additional experiments on covalent organic frameworks (COFs), which have the largest unit-cell
volumes in our dataset and therefore serve as an appropriate test case. Spatial nodes were sampled
using a resolution-based strategy with a spatial resolution of 4.03 Å, resulting in an average of 462
nodes per structure, compared to the 512 nodes used in the fixed-grid scheme. Despite using fewer
nodes, the resolution-based sampling achieves better predictive performance on COFs, indicating
that adaptively allocating spatial nodes according to lattice size can improve spatial coverage. We
also observe that resolution-based sampling assigns more spatial nodes to larger unit cells, which
increases peak memory usage relative to the fixed-grid approach.
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Table 10: Adaptive sampling of spatial nodes on COFs. Resolution-based sampling uses an average
of 462 spatial nodes, compared to 512 in the fixed-grid setting.

Sampling Strategy MAE MSE R2

Fixed Grid 3.52 31.0 0.979
Resolution-based 2.31 18.6 0.987

A.10 EFFECT ON SAMPLING RATIO

We considered different numbers of Spatial Node sampling points, ranging from 2∗2∗2 to 12∗12∗12.
The results are presented in Fig. 7. As the number of sampling points increases, the model accuracy
gradually improves.
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