

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FROM ATOM TO SPACE: A REGION-BASED READOUT FUNCTION FOR SPATIAL PROPERTIES OF MATERIALS

Anonymous authors

Paper under double-blind review

ABSTRACT

The message passing–readout framework has become the de facto standard for material property prediction. However, most existing readout functions are built on an atom-decomposable inductive bias, i.e. the material-level property or feature can be reasonably assigned to contributions of individual atoms. This is a strong bias and may not hold for all properties, limiting the application scenarios. In this work, we propose a region-based decomposition perspective, reformulating material properties as integrals over space and pooling contributions from spatial regions rather than atoms. Specifically, we propose a novel readout function named SpatialRead. SpatialRead introduces additional spatial nodes to represent a voxelized space, transforming the atomic isomorphic graph into a heterogeneous atom–space graph with unidirectional message flow from atoms to spatial nodes. To combine the two types of inductive bias, multimodal methods can be used to fuse the features of atoms the spatial nodes. Such a region-based readout function is especially suited for spatial properties such as gas adsorption capacity, separation ratio. Extensive experiments demonstrate that a simple PaiNN–Transformer-based SpatialRead trained from scratch outperforms state-of-the-art pre-trained foundation models on these special tasks. Our results highlight the importance of designing physically grounded readout functions tailored to the target property. The code can be found in anonymous github <https://anonymous.4open.science/r/SpatialRead-8E92> and dataset will be released after the double-blind review.

1 INTRODUCTION

The field of material artificial intelligence is fundamentally shaped by the task of material property prediction. Accurate predictions can significantly accelerate the screening and design of novel materials by bypassing costly and time-consuming experiments. In this domain, Message Passing Neural Networks (MPNNs) have emerged as the state-of-the-art paradigm for both property prediction and material generation. MPNNs represent a material as a graph, with atoms as nodes and edges connecting neighboring atoms. A typical MPNN consists of two stages: (1) message passing, where node features are iteratively updated through local aggregation, and (2) readout, where the final node features are aggregated into a graph-level property.

Readout is a critical component of this architecture. Simple pooling functions, such as global sum or mean, have proven remarkably successful and even scaled to foundation models with hundreds of millions of training samples (Gasteiger et al., 2020; 2021; Shoghi et al., 2024). More complex readout functions, such as GraphTrans (Wu et al., 2021) and GMT (Baek et al., 2021), introduce architectural sophistication but ultimately still treat nodes as the fundamental units of aggregation. These designs reflect the implicit node (atom)-decomposable inductive bias: a graph-level property or feature can be decomposed into node contributions. While it works well for many tasks, its broader applicability has not been carefully examined.

A typical counterexample of the atom-decomposable inductive bias arises in porous materials such as metal–organic frameworks (MOFs). Being promising to applications such as gas adsorption and clean energy storage (Snyder et al., 2023; Nugent et al., 2013; Datta et al., 2015; Zhao et al., 2018; Yang et al., 2012; Zhou et al., 2022), these materials attract broad research interest. One of the key properties of such material - the gas adsorption capacity - can naturally be expressed as the summa-

054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 158

108

109 Feature-level: $h_{graph} = \text{Pool}(\{h_{v_i}^T\}_{v_i \in V}), \quad p = \text{MLP}(h_{graph}) \quad (2)$

110 Numeric-level: $o_i = \text{MLP}(h_{v_i}^T), \quad p = \text{Pool}(\{o_i\}_{v_i \in V}) \quad (3)$

112 Since the numeric value can be regarded as a one-dimension feature, we will not distinguish between
 113 two pooling methods hereafter. Although a variety of alternative readout functions exist, such as
 114 Set2Set (Vinyals et al., 2015) and diffpool (Ying et al., 2018), most state-of-the-art methods like
 115 DimeNet (Gasteiger et al., 2020), GemNet (Gasteiger et al., 2021), ViSNet Wang et al. (2024), and
 116 JMP (Shoghi et al., 2024) still rely on these simple pooling forms for most tasks.

117 The main requirement of the readout function is the permutation invariance, i.e., the output should
 118 be independent with the input order of the atomic features. Formally, the readout function takes an
 119 unordered set of feature as input, i.e. $p = \text{readout}(\{h_{v_i}^T\}), v_i \in V$. The specific form of the readout
 120 functions varies. In summary, these readout methods can be broadly classified into three categories:
 121 (1) Flat Pooling Methods. (2) Node Clustering Pooling Methods and (3) Node Drop Pooling Meth-
 122 ods. Flat Pooling Methods directly pool the features of all atoms. Typically, GMT (Baek et al., 2021)
 123 and GraphTrans (Wu et al., 2021) aggregate the features of all atoms through the attention mecha-
 124 nism in a manner similar to the [CLS] token. The clustering-based pooling method first divides the
 125 nodes into multiple sets, pools the nodes in each set into set features, and constructs multiple layers
 126 of features through multiple layers of clustering. This method is relatively commonly used in large
 127 graphs with obvious hierarchical structures such as social networks. DiffPool (Ying et al., 2018),
 128 MinCutPool (Bianchi et al., 2020), SEP (Wu et al., 2022) are representative methods of clustering
 129 based methods. More recently, Cluster-wise Graph Transformer (Huang et al., 2024) do not pool
 130 feature of node clusters. They regard each cluster as node sets and enable the feature interaction
 131 between cluster feature and node feature. ORC-Pool (Feng & Weber, 2024) develops a new cluster
 132 methods based on Ricci Flow. K-MIS-Pool (Bacciu et al., 2023) develop a general downsampling
 133 method between regular data and graph data to maintain the main topological structure of graph
 134 data. GPN (Song et al., 2024) automatically designs the pooling structure for each graph, avoiding
 135 the need to predefine the number of pooling layers or ratios. Node Drop Pooling Methods first select
 136 a series of nodes to construct a subgraph and then pool the subgraph. TopKPool Gao & Ji (2019);
 137 Cangea et al. (2018); Knyazev et al. (2019) first select K nodes from the original graph through atten-
 138 tion score and then pool the high-attention nodes. Quan et al. (2024) mixes the TopK Selection and
 139 Clustering methods to construct effective and efficient representation of protein. A similar research
 140 topic is the aggregation of messages from neighbor nodes. SSMA (Keren Taraday et al., 2024)
 141 treats the neighbor features as 2D discrete signals and sequentially convolves them, enhancing the
 142 ability to mix features attributed to distinct neighbors. Xu et al. (2018a) uses jumping-knowledge
 143 connection (Xu et al., 2018b) to enhance the graph-level feature.

144

145 3 SPATIAL READ

146

147 3.1 EMPIRICAL MOTIVATION: IMPLICIT REGION-BASED BEHAVIOR IN STANDARD GNNs

148

149 Before introducing spatial nodes, we examine how conventional atom-based GNNs behave when
 150 predicting spatial properties such as gas adsorption in MOFs. To investigate this, we trained a
 151 standard PaiNN model on MOF adsorption tasks and computed per-atom contributions using the
 152 scalar outputs of its readout (see equation 3). We then compared these contributions with each
 153 atom’s distance to the nearest pore. Fig. 1 A demonstrate the contribution versus distance to the
 154 pore (experiment details can be found in Appendix A.6). We observed a strong alignment between
 155 high contributions and pore-adjacent atoms. Among the top 1% of atoms with the highest contribu-
 156 tion rate, 86% of them are located within 0.05 angstroms of the pores. Visualization in Fig. 1 B
 157 demonstrates a case study, showing that the model attributes most predictive weight to atoms lining
 158 the pore channels. These results indicate that when predicting properties that are clearly spatially
 159 decomposable, GNNs implicitly learn the key regions and the surrounding atoms. Introducing di-
 160 rect representations of regions may reduce the learning burden of the network and thereby lead to
 161 performance improvement.

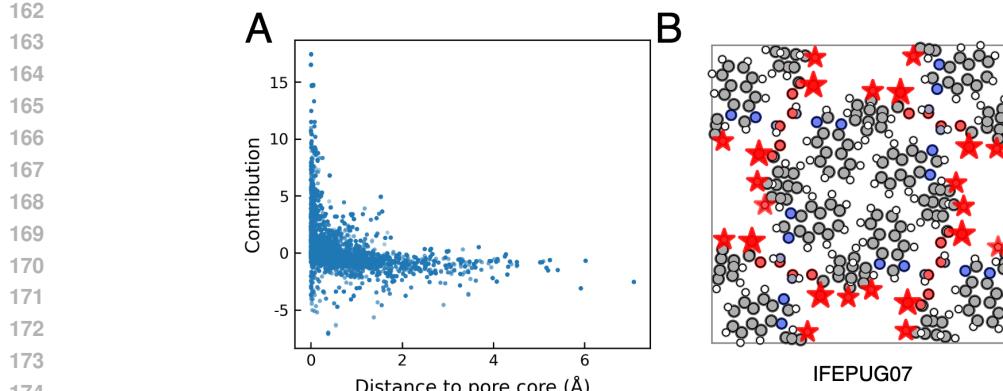


Figure 1: **Contribution of atoms for the adsorption capacity predicted by GNN.** (A) Scatter plot between contribution and distance to the nearest pore. 100 materials from the test set from the CoREMOF dataset. Each dot represents an atom. The horizontal axis shows the distance of the atom from the nearest pore, while the vertical axis indicates the contribution of the atom to the target property. (B) **Visualization of the IFEPUG07 in the CoREMOF dataset.** Top 5% high-contribution atoms are marked in red star.

3.2 FROM NODE DECOMPOSITION TO SPATIAL INTEGRATION

Given that atom types and positions fully determine a material structure, the property of a material $G = (V, E)$ can be regarded as a function of its vertices V . A typical MPNN applies a local description function c with a limited receptive field: the feature of an atom is determined solely by atoms within a finite radius. To obtain a material-level representation, these atom-level features are aggregated. Formally,

$$h_{\text{graph}} = \sum f(h_{v_i} \mid H), \quad (4)$$

$$h_{v_i} = c(\{v_j\}), \quad v_j \in \mathcal{N}(v_i), \quad (5)$$

where f is the readout function and $H = \{h_{v_i} \mid v_i \in V\}$ is the set of node features. Here, we reformulate the graph-level feature h_{graph} as an integral over the continuous spatial domain. To this end, we introduce a contribution function $g(\mathbf{r} \mid \mathcal{S})$, where \mathcal{S} denotes the material structure. Similar to c , the function g also has a limited receptive field. The graph-level representation can then be written in the integral form

$$h_{\text{graph}} = \int g(\mathbf{r} \mid \mathcal{S}) d^3\mathbf{r} = \int g(\mathcal{N}(\mathbf{r})) d^3\mathbf{r}. \quad (6)$$

We refer to properties that admit such a region-based representation as *spatial properties*.

Definition 3.1. A property p is called a spatial property if it can be expressed as a functional of a contribution function $g(\mathbf{r} \mid \mathcal{S})$, where \mathcal{S} is the material structure. For instance, gas adsorption capacity is a spatial property: one may define $g(\mathbf{r})$ as the density of adsorbed gas molecules at position \mathbf{r} , and the total adsorption capacity is then given by the spatial integral of $g(\mathbf{r})$.

Despite this formulation, spatial properties are not fundamentally different from other properties in terms of their mathematical or neural representability.

Theorem 3.1. If the readout function f has a limited receptive field, the formulations in equation 4 and equation 6 are equivalent in expressivity. That is, any target property expressible by equation 4 can also be expressed by equation 6, and vice versa.

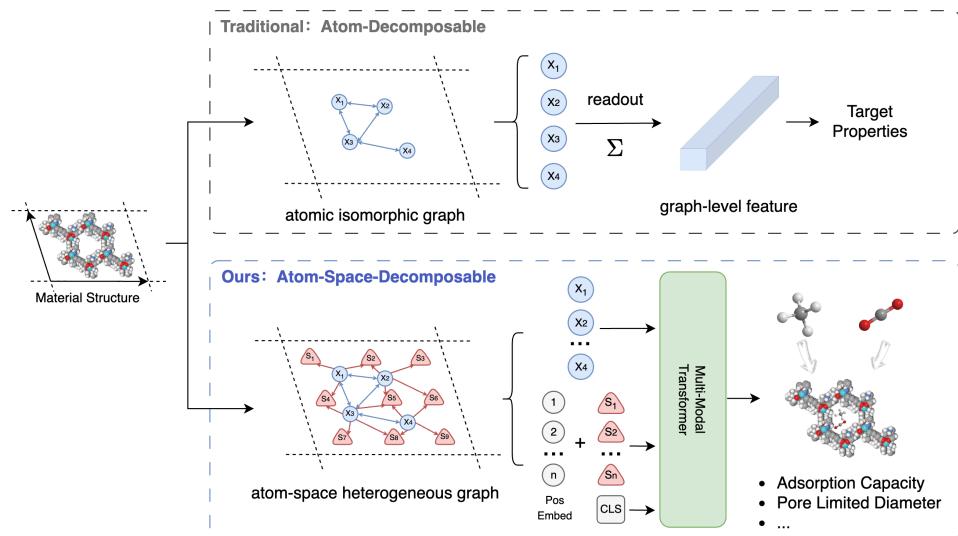
A proof is provided in Appendix A.1.1. Theorem 3.1 ensures that under a limited receptive field, reformulating the graph-level representation as a spatial integral does not reduce neural expressivity. When f has an infinite receptive field, the graph-level feature in general cannot be obtained via a simple integral, and a neural architecture with a global receptive field must be applied directly to the contribution function $g(\mathbf{r})$. A detailed discussion is given in Appendix A.1.2.

216 3.3 MODEL ARCHITECTURE
217

218 The core idea of our method is to correctly decompose the target property into contributions of
219 discrete spatial regions. To achieve this, we first discretize the spatial property p , which is defined
220 as an integral over a continuous domain, into a summation over a set of discrete regions.
221

$$222 \quad 223 \quad 224 \quad 225 \quad p = \int_{\mathbb{R}^3} g(\mathbf{r}) d^3 \mathbf{r} \approx \sum_{j=1}^{N_s} g(\mathbf{r}_j) \Delta V_j \quad (7)$$

226 Here, the continuous space is partitioned into N_s discrete regions (e.g., voxels), each with a volume
227 ΔV_j centered at position \mathbf{r}_j . To computationally represent these regions, we introduce spatial nodes
228 in addition to original atomic nodes. Each spatial node is placed at a specific coordinate \mathbf{r}_j and
229 represents the corresponding spatial region.
230



249 **Figure 2: Architecture of SpatialRead.** The top part represents the traditional method, while
250 the bottom part shows SpatialRead. The material structure is taken as input. For clarity, the lattice
251 vector and boundary is drawn. The traditional method constructs an atom-based isomorphic graph
252 for message passing, and then pools the atomic features to obtain material-level features. In contrast,
253 SpatialRead first uniformly sample spatial nodes (the red triangle nodes) within the lattice. The atom
254 nodes (the blue round nodes) and spatial nodes form a heterogeneous graph. In the message passing
255 process, messages flow between atom nodes (blue lines) and from atom nodes to spatial nodes (red
256 lines). Note there are no messages from spatial nodes to atom nodes. The heterogeneous graph
257 neural network produce an unordered feature list of atom nodes and ordered feature list of spatial
258 nodes. Position embedding can be added to the feature list of spatial nodes. Finally, taking the atom
259 node features as ‘memory’, a decoder of Transformer are used to process both feature lists (Vaswani
260 et al., 2017). An additional [CLS] token is added to the sequence of spatial nodes (Devlin et al.,
261 2019), which can be used to predict spatial properties such as adsorption capacity, separation ratio,
262 or other properties like topology type and pore limited diameter.
263
264

265 3.3.1 REGION-WISE HETEROGENEOUS MESSAGE PASSING
266

267 To model the interactions between atoms and these new spatial regions (i.e. $g(\mathbf{r})$), we convert the
268 original isomorphic atomic graph into a heterogeneous graph composed of both atomic nodes and
269 spatial nodes. We denote the spatial node and its feature vector as s_j and h_{s_j} . The formulation of
our *Region-wise Heterogeneous Message Passing* is as follows:

270

$$h_{s_j}^{t+1} = \mathcal{U}'_t(h_{s_j}^t, \{h_{v_i}^t, e_{v_i, s_j}\}_{v_i \in \mathcal{N}(s_j)}, \{h_{s_k}^t, e_{s_k, s_j}\}_{s_k \in \mathcal{N}(s_j)}) \quad (8)$$

$$h_{v_i}^{t+1} = \mathcal{U}_t(h_{v_i}^t, \{h_{v_j}^t, e_{v_i, v_j}\}_{v_j \in \mathcal{N}(v_i)}) \quad (9)$$

Here, \mathcal{U}'_t and \mathcal{U}_t are the update function for spatial and atomic nodes. The new feature vector $h_{s_j}^{t+1}$ aggregates messages not only from nearby atoms ($v_i \in \mathcal{N}(s_j)$) but also from adjacent spatial nodes ($s_k \in \mathcal{N}(s_j)$). In practice, the method for constructing spatial node adjacency nodes is exactly the same as that for atoms, which is based on cutoff and the maximum number of neighbors. This inter-spatial node message passing is optional and depends on the physical nature of the target property. For example, when predicting gas adsorption capacity, message passing between spatial nodes is physically meaningful as it captures the cooperative interactions between guest molecules in adjacent regions. In contrast, for a property like accessible volume, where adjacent regions are independent, such interactions have no physical meaning and can be omitted. In this work, because that the global receptive field of the adopted multi-modal Transformer method already enables interaction between spatial nodes (see Sec. 3.3.2), we ignore the message passing process between spatial nodes.

3.3.2 PROPERTY-ADAPTIVE READOUT VIA MULTI-MODAL ATTENTION

After obtaining atom and spatial node representations, one may directly pool the spatial-node features via

$$p = \sum_{j=1}^{N_s} \text{MLP}(h_{s_j}), \quad (10)$$

which already improves performance on spatial properties (Sec. 4). However, spatial nodes are specifically designed for spatially decomposable properties, whereas many widely used material properties remain atom-decomposable. Using spatial pooling alone introduces a mismatched inductive bias and degrades performance on these non-spatial tasks. Thus, an effective readout must *adaptively* combine atomic and spatial information.

To achieve this, we impose an ordering on spatial nodes with positional embeddings and feed the ordered spatial features together with unordered atomic features into a Transformer decoder (Vaswani et al., 2017). The attention-based decoder selectively integrates the two types of representations, enabling SpatialRead to retain the gains on spatial properties *without sacrificing* performance on conventional non-spatial tasks. A detailed architecture is provided in App. A.2.

4 EXPERIMENTS

Our experiments are designed to address the following three questions: (1) Does SpatialRead outperform node-decomposable methods on spatial properties? (2) What types of material features benefit most from SpatialRead? (3) For non-spatial properties, does the spatial inductive bias introduce any degradation? Across all benchmarks, a clear pattern emerges. For integral-type spatial properties, pooling over spatial nodes already provides most of the performance gain while the Transformer module provide limited influence. For non-spatial properties, however, relying solely on spatial pooling introduces a mismatched inductive bias and reduces accuracy. In this case, the multimodal Transformer module automatically adjusting the relative contributions of atomic and spatial features and thus maintains similar performance with the backbone GNN. In summary, spatial nodes enhance GNNs on spatial properties, and the Transformer module works as an *adaptivity mechanism*, preventing performance degradation of SpatialRead in non-spatial properties and making the full SpatialRead a robust module across different properties.

4.1 DATASET OF SPATIAL PROPERTIES

We first construct a dataset of spatial properties to evaluate the effectiveness of SpatialRead. The dataset mainly consists of four material types: (1) Metal Organic Frameworks (MOFs), (2) Covalent Organic Frameworks (COFs) (3) Porous Polymer Networks (PPNs), (4) zeolites, and two types of properties: (1) Geometric features such as topology type and pore-limiting diameter, computed using zeo++ (Willems et al., 2012). (2) Gas-related properties such as adsorption capacity and separation

ratio, simulated through molecular dynamics. In total, the dataset contains 44,157 labeled samples spanning four classes of porous materials. These materials are specifically selected because most of their properties, including adsorption capacity and separation ratio, are inherently spatial. Detailed descriptions of the dataset are provided in App. A.3.

4.2 BASELINES

For spatial property prediction, we compare against the following baselines: (1) CGCNN (Xie & Grossman, 2018), a widely used MPNN designed for crystals. (2) GemNet (Gasteiger et al., 2021), an advanced invariant graph neural network that incorporates angular information, substantially improving performance over other MPNNs. (3) MOFormer (Cao et al., 2023), a contrastive pre-trained variant of CGCNN using SMILES representations. (4) MOFTransformer (Kang et al., 2023), a multimodal framework with large-scale pre-training tailored for MOFs. We use the improved weights from PMTransformer (Park et al., 2023), which extends the pre-training dataset and enhances performance. (5) JMP (Shoghi et al., 2024), a GemNet-based foundation model pre-trained on 120 million molecular and material samples. Training details are provided in App. A.4. Another kind of baselines are different readout functions. However, as in most case for material / molecule property prediction (Schütt et al., 2017; Xie & Grossman, 2018; Gasteiger et al., 2020; 2021; 2022; Shoghi et al., 2024; Wang et al., 2024), modern GNNs in this field focus on the design of complex message passing process, while adopting the simple sum or mean pooling. Nevertheless, in order to ensure the completeness of the work, here we compare SpatialRead with two most typical readout function GraphTrans (Wu et al., 2021) and GMT (Baek et al., 2021).

4.3 ABLATIONS

In the following experiments, we consider three types of ablation settings. (1) Backbone GNN with simple sum / mean pooling of atom nodes, i.e. Base GNN. (2) Backbone GNN enhanced with Spatial Nodes, the graph feature will be pooled from all spatial nodes, i.e. Base GNN + SN (Spatial Node) (3) Backbone GNN processes heterogeneous graph of atom node and spatial node. A Multi-Modal Transformer architecture is used to process both atom features and spatial node features, i.e. Base GNN + SN + MM (Multi Modal).

Table 1: Performance (R2 Score) of SpatialRead on spatial properties in integral form

	Model	MOF C ₃ H ₆ /C ₃ H ₈ sep.	MOF N ₂ ads.	MOF CH ₄ /N ₂ sep.	COF CH ₄ ads.	PPN CH ₄ ads.	zeolite CH ₄ heat.
Scratch	CGCNN	0.663	0.760	0.718	0.556	0.692	0.411
	GemNet (JMP from scratch)	0.729	0.968	0.924	0.816	0.932	0.836
	GemNet + SN + MM	0.753	0.979	0.921	0.986	0.923	0.881
Pretrain	MOFormer	0.616	0.754	0.698	0.541	0.636	0.388
	MOFTransformer	0.817	0.918	0.905	0.967	0.942	0.836
	JMP	0.774	0.971	0.908	0.884	0.947	0.874
	JMP + SN + MM	0.792	0.988	0.941	0.982	0.969	0.945
Scratch	PaiNN	0.691	0.925	0.867	0.736	0.856	0.791
	PaiNN + GraphTrans	0.712	0.912	0.870	0.750	0.847	0.801
	PaiNN + GMT	0.740	0.924	0.866	0.742	0.863	0.803
	PaiNN + SN (ours)	<u>0.794</u>	0.978	<u>0.936</u>	0.979	0.978	0.886
	PaiNN + SN + MM (ours)	0.784	<u>0.987</u>	0.941	0.987	<u>0.977</u>	0.969

4.4 SPATIAL PROPERTIES

We first evaluate SpatialRead on six representative spatial properties, including: (1) gas adsorption in MOFs, (2) two gas separation tasks in MOFs, (3) gas adsorption in COFs, (4) gas adsorption in PPNs, and (5) adsorption heat in zeolites. Results are summarized in Table 1. Among the three representative MPNNs (CGCNN, GemNet, PaiNN), the ranking GemNet > PaiNN > CGCNN highlights the critical role of backbone design. Using complex readout functions including GraphTrans and GMT marginally improves the performance. Nevertheless, all pure MPNN approaches underperform MOFTransformer. While PaiNN lags behind MOFTransformer and JMP, augmenting it with

378 spatial nodes (+SN) yields notable improvements across tasks. Adding the attention mechanism
 379 (MultiModal, +MM) does not lead to further consistent gains. This can be attributed to the fact that
 380 these properties can naturally be expressed as the sum of regional contributions. Hence, equation 10
 381 is already physically grounded, and introducing additional global receptive fields has limited phys-
 382 ical justification. This stands in contrast to the results in Sec. 4.6, where global receptive fields are
 383 indispensable. Overall, these results highlight the effectiveness of spatial nodes in modeling spatial
 384 properties: by decomposing properties into regional contributions, performance can be substantially
 385 enhanced without altering the backbone architecture.

386 4.5 BENEFIT FROM ALREADY-PRE-TRAINED FOUNDATION MODEL

387 Despite being designed for general GNNs such as PaiNN, it is also important to assess whether
 388 SpatialRead can be directly applied to a pre-trained foundation model like JMP (Shoghi et al.,
 389 2024). Surprisingly, although JMP is pre-trained with a simple sum-pooling readout, it can be
 390 seamlessly enhanced by SpatialRead. As shown in Table 1, both GemNet (i.e., JMP trained from
 391 scratch) and JMP experience substantial performance gains when equipped with SpatialRead, and
 392 JMP+SpatialRead further outperforms GemNet+SpatialRead, demonstrating that large-scale pre-
 393 training remains beneficial even when the downstream readout differs from that used during pre-
 394 training. These results highlight the versatility of SpatialRead with complex multi-body and pre-
 395 trained GNNs. We note that JMP+SpatialRead does not always surpass PaiNN+SpatialRead, likely
 396 due to the higher computational cost of GemNet’s four-body interactions and the resulted limited
 397 hyperparameter settings, as discussed in Appendix A.5.

398 Table 2: Performance (R2 Score) of SpatialRead on geometric properties

	Model	ASA	VF	PLD	LCD
Scratch	CGCNN	0.984	0.883	0.536	0.565
	GemNet	0.994	0.977	0.586	0.667
Pretrain	MOFormer	0.979	0.894	0.563	0.624
	MOFTransformer	0.916	0.989	0.966	0.970
	JMP	<u>0.995</u>	0.985	0.585	0.650
Scratch	PaiNN	0.993	0.951	0.594	0.631
	PaiNN + SN (ours)	0.974	0.999	0.856	0.913
	PaiNN + SN + MM (ours)	0.996	0.999	<u>0.965</u>	0.975

412 4.6 GLOBAL GEOMETRIC PROPERTIES

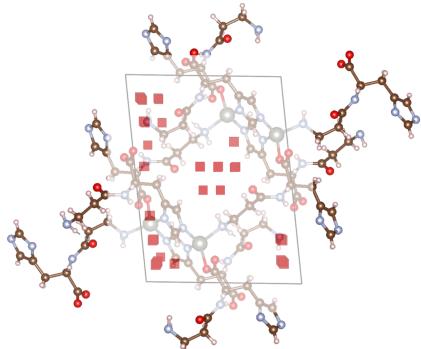
413 In the previous section, we demonstrated that for spatial properties that can be naturally expressed
 414 in integral form, SpatialRead provides significant improvements by reformulating the readout as a
 415 summation over spatial regions. However, not all spatial properties admit such a simple integral
 416 formulation. To further examine this distinction, we evaluate SpatialRead on several representative
 417 geometric properties, as reported in Table 2. For accessible surface area (ASA), the property is
 418 essentially node-decomposable: surface area is determined primarily by the atoms located at the
 419 boundary. In this case, directly introducing spatial nodes provides negative influence. Nevertheless,
 420 since our multimodal architecture adaptively balances atom- and space-decomposable inductive bi-
 421 ases, SpatialRead still achieves a slight improvement over the pure PaiNN baseline. Void fraction
 422 (VF) can be expressed in integral form, but the task itself is relatively simple (Kang et al., 2023),
 423 and thus most models already achieve high performance. Here, SpatialRead again yields marginal
 424 improvements, confirming its robustness without incurring degradation. The situation is markedly
 425 different for pore-limiting diameter (PLD) and largest cavity diameter (LCD). These descriptors
 426 cannot be represented as integrals over local contributions, but are instead better understood as func-
 427 tionals of the signed distance function (SDF) of the material geometry. Their values depend on the
 428 global shape of the pore space rather than additive regional properties. In such cases, equation 10
 429 is no longer physically meaningful. The introduction of spatial nodes already provides significant
 430 gains, while the Transformer-based multimodal architecture further enhances performance through
 431 its global receptive field and expressive capacity. These results suggest that SpatialRead is effective
 not only for integral-type spatial properties, but also for more complex forms.

432
433 Table 3: Performance of SpatialRead on MatBench
434

Task	MODNet	coGN	JMP	JMP + SpatialRead
JDFT2D (meV/atom)	25.55	22.25	<u>20.72</u>	18.17
Phonons (cm ⁻¹)	34.77	32.12	<u>26.6</u>	25.8
Dielectric (unitless)	<u>0.169</u>	0.178	0.133	0.133
Log GVRH (log10(GPa))	0.073	<u>0.068</u>	0.06	0.06
Log KVRH (log10(GPa))	0.054	0.052	0.044	0.047
Perovskites (eV/unitcell)	0.093	0.027	<u>0.029</u>	0.030
MP Gap (eV)	0.215	0.153	<u>0.119</u>	0.107
MP Formation Energy (meV/atom)	40.2	17.4	13.6	<u>15.3</u>

444 4.7 MATBENCH RESULTS FOR OTHER COMMON MATERIAL PROPERTIES
445

446 While the primary strength of SpatialRead lies in modeling spatial properties, it is also important to
447 ensure that it does not degrade performance on standard material-property benchmarks. As shown
448 in Table 3, the foundation model JMP already surpasses leading baselines on the MatBench dataset.
449 Adding SpatialRead maintains comparable performance across most tasks. Two tasks behave differently.
450 For MP-E-Form, SpatialRead slightly reduces accuracy, whereas for bandgap, SpatialRead
451 leads to an improvement. This difference is consistent with the inherent nature of the two quantities.
452 Formation energy is an atom-decomposable property, making a simple summation pooling scheme,
453 such as the one used in JMP, a suitable inductive bias. In contrast, the bandgap is defined as the
454 energy difference between the valence band maximum (VBM) and the conduction band minimum
455 (CBM). These frontier electronic states are formed by collective contributions from multiple atoms
456 and cannot be meaningfully represented as a sum or average over atom-wise descriptors. Therefore,
457 simple atom pooling provides an inappropriate inductive bias for bandgap prediction. An attention-
458 based readout, which allows the model to selectively weight atoms according to their relevance to
459 the VBM and CBM, is naturally more suitable. This improvement is attributable to the attention
460 mechanism rather than the presence of spatial nodes. These results further reflect the importance of
461 designing physically-grounded readout function. In summary, SpatialRead preserves performance
462 on non-spatial tasks even when combined with a strong pre-trained model, confirming its versatility
463 across diverse material-property settings.

464 4.8 INTERPRETATION OF SPATIAL NODES
465

466
467
468
469
470
471
472
473
474
475
476
477
478 Figure 3: **Visualization of spatial nodes**
479 **with high contribution.** Those spatial
480 nodes with top 10% contributions are
481 drawn as red cubes. The drawn important
482 spatial nodes are mainly located in the pore
483 regions of the material.

484 signed to the nearby atoms, which may increase the difficulty of learning on the network and its
485 generalization ability. In addition to the case study, we also conducted statistical analysis in the
Appendix A.8.

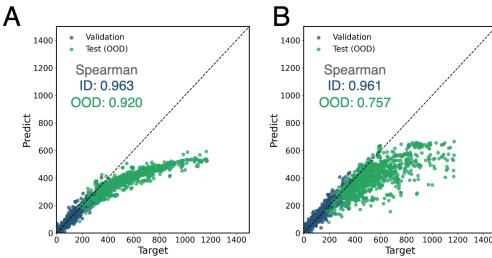
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
4.9 PHYSICAL-GROUNDED INDUCTIVE BIAS FOR BETTER GENERALIZATION

Figure 4: **Out of distribution generalization.** (A) **Out of distribution generalization for PaiNN+SumPooling.** (B) **Out of distribution generalization for PaiNN+SpatialRead.** The adsorption capacity data is separated according to the void fraction. We choose 1/7 materials with the most high void fraction as the test set to test the out-of-distribution generalization ability of different readout function. PaiNN+SpatialRead is trained for 3 epochs while PaiNN+SumPooling is trained for 40 epochs to make sure their precision on in-distribution data is similar. PaiNN + SpatialRead maintains better spearman correlation coefficient in out-of-distribution data.

concerned about whether the performance ranking of different materials is correct rather than the actual prediction error. In summary, the benefit of SpatialRead lies in guiding the model toward physically plausible solutions within this function class, thereby improving robustness of prediction, especially under distribution shift.

4.10 SAMPLING STRATEGY AND COMPUTATIONAL COST

Since the position of the introduction of spatial nodes is not unique. The sampling strategy will significantly affect the model performance. Besides the sampling strategy based on grid/fractional coordinates, another method is to sample based on resolution. The resolution-based method allocates different numbers of spatial nodes for different-sized cells. Resolution-based sampling results in better performance on large system like COFs. Detailed experiment can be found in Appendix A.9.

Due to space limitations, computational cost are discussed in Appendix A.5 and A.10. For a typical MOF material containing about 300 atoms, adding SpatialRead adds about 30% computational burden. Increasing the number of spatial nodes consistently improve the performance. $8 * 8 * 8$ points provide a well balance between computational burden and performance.

5 CONCLUSION

In this work, we revisited the inductive bias of MPNN readouts, noting that the common assumption of node-decomposability is insufficient for many spatial properties. To address this, we proposed SpatialRead, which augments the atomic graph with spatial nodes and employs a multimodal Transformer to adaptively select between atomic- and spatial-decomposable representations. Extensive experiments show that SpatialRead substantially improves predictions of spatial properties such as gas adsorption capacity, pore limiting diameter (PLD), etc, while remaining the performance of the backbone MPNN in other non-spatial properties. Contribution analysis demonstrates that spatial nodes naturally capture critical regions. These benefits incur only modest computational overhead, establishing SpatialRead as a practical, scalable framework that incorporates spatial inductive bias into graph neural networks. SpatialRead emphasizes the importance of designing physically-grounded readout function for the target property, which is commonly ignored in current MPNNs.

A natural way to examine whether a model has learned physically meaningful features is to test its behavior under distribution shift. For a spatial property, although a typical GNN can implicitly infer critical regions from atomic environments, this atom-based decomposition becomes unstable when faced with distribution shift. To validate this, we construct an out-of-distribution (OOD) split by placing the highest-porosity 1/7 MOFs entirely into the test set. To ensure fairness, we early-stop PaiNN+SpatialRead such that its in-distribution accuracy matches that of the base PaiNN. Details of the calculation method, data split, and validation metric can be found in A.7. While both models experience increased error due to the severe shift in porosity, PaiNN+SpatialRead maintains significantly higher ranking stability (Spearman 0.92/0.95 vs. 0.76). Fig. 4 also demonstrates that the prediction variance of PaiNN+SpatialRead is smaller than PaiNN+SumPooling, indicating the robust prediction. This ability is of crucial importance for the screening of new materials. Because for high-throughput screening, people are more

540 REFERENCES
541

542 Davide Bacciu, Alessio Conte, and Francesco Landolfi. Generalizing downsampling from regular
543 data to graphs. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp.
544 6718–6727, 2023.

545 Jinheon Baek, Minki Kang, and Sung Ju Hwang. Accurate learning of graph representations with
546 graph multiset pooling. *arXiv preprint arXiv:2102.11533*, 2021.

547 Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering with graph neural
548 networks for graph pooling. In *International conference on machine learning*, pp. 874–883.
549 PMLR, 2020.

550 N Scott Bobbitt, Kaihang Shi, Benjamin J Bucior, Haoyuan Chen, Nathaniel Tracy-Amoroso, Zhao
551 Li, Yangzesheng Sun, Julia H Merlin, J Ilja Siepmann, Daniel W Siderius, et al. Mofx-db: An
552 online database of computational adsorption data for nanoporous materials. *Journal of Chemical
553 & Engineering Data*, 68(2):483–498, 2023.

554 Cătălina Cangea, Petar Veličković, Nikola Jovanović, Thomas Kipf, and Pietro Liò. Towards sparse
555 hierarchical graph classifiers. *arXiv preprint arXiv:1811.01287*, 2018.

556 Zhonglin Cao, Rishikesh Magar, Yuyang Wang, and Amir Barati Farimani. Moformer: self-
557 supervised transformer model for metal–organic framework property prediction. *Journal of the
558 American Chemical Society*, 145(5):2958–2967, 2023.

559 Yongchul G Chung, Emmanuel Haldoupis, Benjamin J Bucior, Maciej Haranczyk, Seulchan Lee,
560 Hongda Zhang, Konstantinos D Vogiatzis, Marija Milisavljevic, Sanliang Ling, Jeffrey S Camp,
561 et al. Advances, updates, and analytics for the computation-ready, experimental metal–organic
562 framework database: Core mof 2019. *Journal of Chemical & Engineering Data*, 64(12):5985–
563 5998, 2019.

564 Shuvo Jit Datta, Chutharat Khumnoon, Zhen Hao Lee, Won Kyung Moon, Son Docao, Thanh Huu
565 Nguyen, In Chul Hwang, Dohyun Moon, Peter Oleynikov, Osamu Terasaki, et al. Co₂ capture
566 from humid flue gases and humid atmosphere using a microporous coppersilicate. *Science*, 350
567 (6258):302–306, 2015.

568 Kathryn S Deeg, Daiane Damasceno Borges, Daniele Ongari, Nakul Rampal, Leopold Talirz, Aliak-
569 sandr V Yakutovich, Johanna M Huck, and Berend Smit. In silico discovery of covalent organic
570 frameworks for carbon capture. *ACS Applied Materials & Interfaces*, 12(19):21559–21568, 2020.

571 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
572 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of
573 the North American chapter of the association for computational linguistics: human language
574 technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

575 Alexander Dunn, Qi Wang, Alex Ganose, Daniel Dopp, and Anubhav Jain. Benchmarking materials
576 property prediction methods: the matbench test set and automatminer reference algorithm. *npj
577 Computational Materials*, 6(1):138, 2020.

578 Amy Feng and Melanie Weber. Graph pooling via ricci flow. *arXiv preprint arXiv:2407.04236*,
579 2024.

580 Hongyang Gao and Shuiwang Ji. Graph u-nets. In *international conference on machine learning*,
581 pp. 2083–2092. PMLR, 2019.

582 Johannes Gasteiger, Janek Groß, C Hi Gündemann, Stephan, and Hi Hi. Directional message passing
583 for molecular graphs. *arXiv preprint arXiv:2003.03123*, 2020.

584 Johannes Gasteiger, Florian Becker, and Stephan Gündemann. Gemnet: Universal directional graph
585 neural networks for molecules. *Advances in Neural Information Processing Systems*, 34:6790–
586 6802, 2021.

587 Johannes Gasteiger, Muhammed Shuaibi, Anuroop Sriram, Stephan Gündemann, Zachary Ulissi,
588 C Lawrence Zitnick, and Abhishek Das. Gemnet-oc: developing graph neural networks for large
589 and diverse molecular simulation datasets. *arXiv preprint arXiv:2204.02782*, 2022.

594 Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
 595 message passing for quantum chemistry. In *International conference on machine learning*, pp.
 596 1263–1272. PMLR, 2017.

597 Hasan Can Gulbalkan, Alper Uzun, and Seda Keskin. Evaluating ch4/n2 separation performances
 598 of hundreds of thousands of real and hypothetical mofs by harnessing molecular modeling and
 600 machine learning. *ACS Applied Materials & Interfaces*, 2023.

601 Jinghao Hu, Jianfei Zhao, and Tianying Yan. Methane uptakes in covalent organic frameworks with
 602 double halogen substitution. *The Journal of Physical Chemistry C*, 119(4):2010–2014, 2015.

603 Siyuan Huang, Yunchong Song, Jiayue Zhou, and Zhouhan Lin. Cluster-wise graph transformer
 604 with dual-granularity kernelized attention. *Advances in Neural Information Processing Systems*,
 605 37:33376–33401, 2024.

606 Yeonghun Kang, Hyunsoo Park, Berend Smit, and Jihan Kim. A multi-modal pre-training trans-
 607 former for universal transfer learning in metal–organic frameworks. *Nature Machine Intelligence*,
 609 5(3):309–318, 2023.

610 Mitchell Keren Taraday, Almog David, and Chaim Baskin. Sequential signal mixing aggregation
 611 for message passing graph neural networks. *Advances in Neural Information Processing Systems*,
 612 37:93985–94021, 2024.

613 Baekjun Kim, Sangwon Lee, and Jihan Kim. Inverse design of porous materials using artificial
 614 neural networks. *Science Advances*, 6(1):eaax9324, 2020.

615 Boris Knyazev, Graham W Taylor, and Mohamed Amer. Understanding attention and generalization
 617 in graph neural networks. *Advances in neural information processing systems*, 32, 2019.

618 Richard L Martin, Cory M Simon, Berend Smit, and Maciej Haranczyk. In silico design of porous
 619 polymer networks: high-throughput screening for methane storage materials. *Journal of the Amer-
 620 ican Chemical Society*, 136(13):5006–5022, 2014.

621 Rocío Mercado, Rueih-Sheng Fu, Aliaksandr V Yakutovich, Leopold Talirz, Maciej Haranczyk,
 622 and Berend Smit. In silico design of 2d and 3d covalent organic frameworks for methane storage
 624 applications. *Chemistry of Materials*, 30(15):5069–5086, 2018.

625 Patrick Nugent, Youssef Belmabkhout, Stephen D Burd, Amy J Cairns, Ryan Luebke, Katherine
 626 Forrest, Tony Pham, Shengqian Ma, Brian Space, Lukasz Wojtas, et al. Porous materials with
 628 optimal adsorption thermodynamics and kinetics for co2 separation. *Nature*, 495(7439):80–84,
 629 2013.

630 Hyunsoo Park, Yeonghun Kang, and Jihan Kim. Enhancing structure–property relationships in
 631 porous materials through transfer learning and cross-material few-shot learning. *ACS Applied
 632 Materials & Interfaces*, 15(48):56375–56385, 2023.

633 Ruijie Quan, Wenguan Wang, Fan Ma, Hehe Fan, and Yi Yang. Clustering for protein representation
 634 learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 635 pp. 319–329, 2024.

636 Andrew S Rosen, Shaelyn M Iyer, Debmalya Ray, Zhenpeng Yao, Alan Aspuru-Guzik, Laura
 638 Gagliardi, Justin M Notestein, and Randall Q Snurr. Machine learning the quantum-chemical
 639 properties of metal–organic frameworks for accelerated materials discovery. *Matter*, 4(5):1578–
 640 1597, 2021.

641 Andrew S Rosen, Victor Fung, Patrick Huck, Cody T O’Donnell, Matthew K Horton, Donald G
 642 Truhlar, Kristin A Persson, Justin M Notestein, and Randall Q Snurr. High-throughput predictions
 643 of metal–organic framework electronic properties: theoretical challenges, graph neural networks,
 644 and data exploration. *npj Computational Materials*, 8(1):1–10, 2022.

645 Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre
 646 Tkatchenko, and Klaus-Robert Müller. Schnet: A continuous-filter convolutional neural network
 647 for modeling quantum interactions. *Advances in neural information processing systems*, 30, 2017.

648 Kristof Schütt, Oliver Unke, and Michael Gastegger. Equivariant message passing for the prediction
 649 of tensorial properties and molecular spectra. In *International Conference on Machine Learning*,
 650 pp. 9377–9388. PMLR, 2021.

651

652 Nima Shoghi, Adeesh Kolluru, John R Kitchin, Zachary Ward Ulissi, C Lawrence Zitnick, and Bran-
 653 don M Wood. From molecules to materials: Pre-training large generalizable models for atomic
 654 property prediction. In *The Twelfth International Conference on Learning Representations*, 2024.

655 Benjamin ER Snyder, Ari B Turkiewicz, Hiroyasu Furukawa, Maria V Paley, Ever O Velasquez,
 656 Matthew N Dods, and Jeffrey R Long. A ligand insertion mechanism for cooperative nh₃ capture
 657 in metal–organic frameworks. *Nature*, 613(7943):287–291, 2023.

658

659 Yunchong Song, Siyuan Huang, Xinbing Wang, Chenghu Zhou, and Zhouhan Lin. Graph parsing
 660 networks. *arXiv preprint arXiv:2402.14393*, 2024.

661

662 Hongjian Tang, Qisong Xu, Mao Wang, and Jianwen Jiang. Rapid screening of metal–organic
 663 frameworks for propane/propylene separation by synergizing molecular simulation and machine
 664 learning. *ACS Applied Materials & Interfaces*, 13(45):53454–53467, 2021.

665

666 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 667 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in Neural Infor-
 668 mation Processing Systems*, 30, 2017.

669

670 Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to sequence for sets.
 671 *arXiv preprint arXiv:1511.06391*, 2015.

672

673 Yusong Wang, Tong Wang, Shaoning Li, Xinheng He, Mingyu Li, Zun Wang, Nanning Zheng,
 674 Bin Shao, and Tie-Yan Liu. Enhancing geometric representations for molecules with equivariant
 675 vector-scalar interactive message passing. *Nature Communications*, 15(1):313, 2024.

676

677 Thomas F Willems, Chris H Rycroft, Michael Kazi, Juan C Meza, and Maciej Haranczyk. Al-
 678 gorithms and tools for high-throughput geometry-based analysis of crystalline porous materials.
 679 *Microporous and Mesoporous Materials*, 149(1):134–141, 2012.

680

681 Christopher E Wilmer, Omar K Farha, Youn-Sang Bae, Joseph T Hupp, and Randall Q Snurr.
 682 Structure–property relationships of porous materials for carbon dioxide separation and capture.
 683 *Energy & Environmental Science*, 5(12):9849–9856, 2012.

684

685 Junran Wu, Xueyuan Chen, Ke Xu, and Shangzhe Li. Structural entropy guided graph hierarchical
 686 pooling. In *International conference on machine learning*, pp. 24017–24030. PMLR, 2022.

687

688 Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion Stoica.
 689 Representing long-range context for graph neural networks with global attention. *Advances in
 690 neural information processing systems*, 34:13266–13279, 2021.

691

692 Tian Xie and Jeffrey C Grossman. Crystal graph convolutional neural networks for an accurate and
 693 interpretable prediction of material properties. *Physical Review Letters*, 120(14):145301, 2018.

694

695 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 696 networks? *arXiv preprint arXiv:1810.00826*, 2018a.

697

698 Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
 699 Jegelka. Representation learning on graphs with jumping knowledge networks. In *International
 700 conference on machine learning*, pp. 5453–5462. pmlr, 2018b.

701

702 Sihai Yang, Junliang Sun, Anibal J Ramirez-Cuesta, Samantha K Callear, William IF David,
 703 Daniel P Anderson, Ruth Newby, Alexander J Blake, Julia E Parker, Chiu C Tang, et al. Se-
 704 lectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host.
 705 *Nature Chemistry*, 4(11):887–894, 2012.

706

707 Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hier-
 708 archical graph representation learning with differentiable pooling. *Advances in neural information
 709 processing systems*, 31, 2018.

702 Xiang Zhao, Yanxiang Wang, Dong-Sheng Li, Xianhui Bu, and Pingyun Feng. Metal-organic
 703 frameworks for separation. *Advanced Materials*, 30(37):1705189, 2018.
 704

705 Sheng Zhou, Osama Shekhah, Adrian Ramírez, Pengbo Lyu, Edy Abou-Hamad, Jiangtao Jia,
 706 Jiantang Li, Prashant M Bhatt, Zhiyuan Huang, Hao Jiang, et al. Asymmetric pore windows
 707 in mof membranes for natural gas valorization. *Nature*, 606(7915):706–712, 2022.
 708

711 A APPENDIX

714 A.1 PROOFS

716 A.1.1 PROOF OF THE EQUIVALENCE BETWEEN LOCAL DESCRIPTION FUNCTION AND 717 CONTRIBUTION FUNCTION

718 Consider a graph $G = (V, E)$ with node set V . The target property p is assumed to be a function
 719 of the nodes, i.e. $p = p(V)$. A message-passing graph neural network (MPNN) can be regarded as
 720 consisting of a *local description function* c and a *readout function* f . Each node can only perceive
 721 the information within its receptive field r_{mp} . Formally,

$$722 h_{v_i} = c(\{v_j \mid v_j \in V, r(v_i, v_j) < r_{mp}\}) \quad (11)$$

$$723 H = \{h_{v_i} \mid v_i \in V\} \quad (12)$$

$$724 h_{\text{graph}} = f(H) \quad (13)$$

726 Without loss of generality, the readout function can always be written in a node-decomposable form:

$$727 h_{\text{graph}} = f(H) = \sum_{v_i \in V} f(h_{v_i} \mid H) \quad (14)$$

728 This is because when f has an unlimited receptive field, its output can at least be evenly distributed
 729 to each node. In practice, for most target properties (such as total energy and most properties in
 730 QM9 except dipole moment), f is implemented as an MLP depending only on h_{v_i} . More generally,
 731 when f has a finite receptive field r_{read} , there always exists an equivalent local description function
 732 c' defined on an expanded neighborhood $\mathcal{N}(\mathbf{pos}_i) = \{v_j \mid r(v_i, v_j) < \max(r_{mp}, r_{read})\}$ such that

$$733 h'_{v_i} = f(h_{v_i} \mid H) = c'(\mathcal{N}(\mathbf{pos}_i)) \quad (15)$$

$$735 h_{\text{graph}} = \sum_{v_i \in V} h'_{v_i} \quad (16)$$

737 **Region-decomposable formulation.** We now reformulate the graph-level feature as an integral
 738 over space:

$$740 h_{\text{graph}} = \int g(\mathbf{r}) d^3\mathbf{r} \quad (17)$$

$$742 g(\mathbf{r}) = g(\mathcal{N}(\mathbf{r})) \quad \text{where } \mathcal{N}(\mathbf{r}) = \{v_j \mid \|\mathbf{r} - \mathbf{pos}_j\| < r_g\} \quad (18)$$

743 We will show that equation 16 and equation 17 are *equivalent in expressive power*, by constructively
 744 defining a mapping from one form to the other and vice versa.

746 **From node-decomposable to region-decomposable.** Define g using Dirac delta functions:

$$748 g(\mathbf{r}) = \sum_{v_i \in V, v_i \in \mathcal{N}(\mathbf{r})} h'_{v_i} \delta(\mathbf{r} - \mathbf{pos}_i) \quad (19)$$

750 Since $\int \delta(\mathbf{r} - \mathbf{pos}_i) d^3\mathbf{r} = 1$, we have

$$751 \int g(\mathbf{r}) d^3\mathbf{r} = \sum_{v_i \in V} h'_{v_i} \int \delta(\mathbf{r} - \mathbf{pos}_i) d^3\mathbf{r} \\ 752 = \sum_{v_i \in V} h'_{v_i} = h_{\text{graph}} \quad (20)$$

755 Thus any node-decomposable form can be expressed as a region-decomposable form.

756 **From region-decomposable to node-decomposable.** Assume $g(\mathbf{r})$ has a finite receptive field r_g .
 757 For each position \mathbf{r} , define a normalized weight over nearby nodes:

$$\hat{w}_i(\mathbf{r}) = \begin{cases} \frac{1}{\|\mathbf{r} - \mathbf{pos}_i\|}, & \|\mathbf{r} - \mathbf{pos}_i\| < r_g \\ 0, & \text{otherwise} \end{cases} \quad (21)$$

$$w_i(\mathbf{r}) = \frac{\hat{w}_i(\mathbf{r})}{\sum_{v_j \in V, v_j \in \mathcal{N}(\mathbf{r})} \hat{w}_j(\mathbf{r})} \quad (22)$$

763 For any \mathbf{r} we have $\sum_{v_i \in V} w_i(\mathbf{r}) = 1$. Therefore,

$$\begin{aligned} 764 \int g(\mathbf{r}) d^3\mathbf{r} &= \int g(\mathbf{r}) \sum_{v_i \in V} w_i(\mathbf{r}) d^3\mathbf{r} \\ 765 &= \sum_{v_i \in V} \int g(\mathbf{r}) w_i(\mathbf{r}) d^3\mathbf{r} \\ 766 &= \sum_{v_i \in V} \int_{\|\mathbf{r} - \mathbf{pos}_i\| < r_g} g(\mathbf{r}) w_i(\mathbf{r}) d^3\mathbf{r} \end{aligned} \quad (23)$$

772 We can thus define a local description function for each node as

$$773 c(v_i) = \int_{\|\mathbf{r} - \mathbf{pos}_i\| < r_g} g(\mathbf{r}) w_i(\mathbf{r}) d^3\mathbf{r} \quad (24)$$

775 This gives a node-decomposable representation that is equivalent to the original region-decomposable one.

778 **Remarks.** Note that the mapping from region to node is not unique, because the choice of weights
 779 $w_i(\mathbf{r})$ is arbitrary. This implies that *inductive bias is crucial* in practice. For example, when pre-
 780 dicting total energy, because node-level labels are unavailable, one could (in principle) assign all
 781 the energy of a methyl group to its carbon atom and zero to its hydrogens. Although this rule is
 782 learnable, it is physically incorrect. Therefore, additional inductive biases such as bond length, bond
 783 angle, or dihedral angle are typically introduced to guide the model.

784 **Conclusion.** In summary, any node-decomposable representation can be mapped to a region-
 785 decomposable one, and vice versa. Hence, these two formulations are *expressively equivalent*: they
 786 do not change the representational power of GNNs, but merely reflect different inductive biases.

788 A.1.2 PROOF OF THE GLOBAL RECEPITIVE FIELD

790 **On realizing a global readout with local encoders.** Even when the readout function f possesses
 791 a *global* receptive field, the local description function c can still be restricted to have only a *local*
 792 receptive field. This can be achieved by the following construction.

793 For each node v_i , let its local descriptor be

$$794 h_{v_i} = c(v_i), \quad (25)$$

795 which depends only on a bounded neighborhood of v_i . Assign h_{v_i} to a small spatial region R_i
 796 surrounding the node position \mathbf{pos}_i , and define the spatial field

$$797 g(\mathbf{r}) = \sum_{v_i \in V} h_{v_i} \chi_{R_i}(\mathbf{r}), \quad (26)$$

799 where $\chi_{R_i}(\mathbf{r})$ is the indicator function of region R_i .

801 Because the number of nodes is finite, one can always choose regions R_i that are sufficiently small
 802 and pairwise disjoint. Let the volume of each region be $V_i = |R_i|$. Then, within R_i the field is
 803 constant:

$$804 g(\mathbf{r}) = h_{v_i}, \quad \mathbf{r} \in R_i. \quad (27)$$

806 The field $g(\mathbf{r})$ can be discretized as a finite-resolution 3D image by sampling on a grid with voxel
 807 size δV such that each R_i occupies at least one voxel. This yields a tensor representation $\{g(\mathbf{r}_j)\}_{j=1}^{N_s}$
 808 of finite spatial resolution. Although this representation cannot capture ideal Dirac delta functions
 809 (which would require infinite resolution), it can losslessly represent the piecewise-constant field
 constructed above because each R_i is non-overlapping.

Finally, the global readout can be realized as a general function operating on this spatial field:

$$p = f(\{h_{v_i}\}_{i \in V}) \equiv F(\{g(\mathbf{r}_j)\}_{j=1}^{N_s}), \quad (28)$$

where F can be any architecture with a global receptive field (e.g. a Transformer or a CNN operating on the 3D grid). In this way, the local descriptors $c(v_i)$ remain strictly local, while the global dependency is handled solely by the subsequent global network F . This shows that even if the target readout f is global, it can be implemented by composing a local encoder c (on the graph) with a global readout F (on the discretized spatial field), without violating the locality constraint on c .

A.2 DETAILED ARCHITECTURE OF SPATIALREAD

Given a material $G = (V, E)$ with atomic positions $\{\mathbf{r}_i\}$, atomic types $\{x_i\}$, and lattice vectors \mathbf{L} , SpatialRead operates as follows.

We place spatial nodes on a uniform $M \times M \times M$ grid inside the unit cell, resulting in a total of M^3 spatial nodes. The fractional coordinates of the spatial node indexed by (i, j, k) are given by

$$\mathbf{r}_s(i, j, k) = \left(\frac{i}{M}, \frac{j}{M}, \frac{k}{M} \right), \quad i, j, k = 0, \dots, M - 1. \quad (29)$$

Next, we transform the fractional coordinates to cartesian coordinates according to the lattice vector. This uniform sampling scheme provides full coverage of the 3D domain with a spatial resolution controlled by M .

Next, we construct a heterogeneous graph composed of two types of nodes: atomic nodes ($v_i \in V$) and spatial nodes (s_j). Edges are built based on Euclidean distance with a cutoff radius r_{cut} , typically set to 5–8 Å, and respecting a maximum neighbor limit for efficiency. Crucially, we allow two types of edges:

- **Atom–atom edges:** (v_i, v_j) if $\|\mathbf{r}_i - \mathbf{r}_j\| \leq r_{\text{cut}}$
- **Atom–spatial edges:** (v_i, s_j) if $\|\mathbf{r}_i - \mathbf{r}_{s_j}\| \leq r_{\text{cut}}$

No edges are allowed from spatial nodes to atomic nodes, enforcing unidirectional information flow: *atoms influence space, but not vice versa*. Notably, periodic boundary conditions were taken into account, as the materials being dealt with in this work are all crystals.

Message passing is performed using a PaiNN-style MPNN (Schütt et al., 2021), which jointly updates scalar and vector node features through interactions along edges. The process runs for T layers, updating atomic and spatial node features, without altering the original MPNN backbone. At the final layer, we obtain:

- An unordered set of atomic feature vectors: $\{\mathbf{h}_{v_i}^T\}_{i=1}^{|V|}$
- An ordered list of spatial node feature vectors: $\{\mathbf{h}_{s_j}^T\}_{j=1}^{512}$

To process these heterogeneous features, we adopt a multi-modal Transformer decoder (Vaswani et al., 2017). Since the number of spatial nodes is fixed (i.e., M^3), and their order is determined by the i, j, k index of each node in equation 29, we can train a learnable position embedding p of shape $[M^3, F]$. We add the learnable positional embedding to each spatial node feature:

$$\tilde{\mathbf{h}}_{s_j} = \mathbf{h}_{s_j}^T + \mathbf{p}_j, \quad (30)$$

where \mathbf{p}_j is a learnable embedding encoding the 3D index of the voxel. A [CLS] token with a learned initial embedding $\mathbf{h}_{[\text{CLS}]}$ is prepended to the sequence of spatial node features.

The atomic features are padded to a fixed maximum length M (e.g., $M = 200$) to handle variable-sized crystals. The full input to the Transformer decoder is:

$$\text{Input} = [\mathbf{h}_{[\text{CLS}]}, \tilde{\mathbf{h}}_{s_1}, \dots, \tilde{\mathbf{h}}_{s_{512}}], [\mathbf{h}_{v_1}, \dots, \mathbf{h}_{v_{|V|}}, \mathbf{0}, \dots, \mathbf{0}] \quad (31)$$

The Transformer decoder, consisting of L attention layers, processes this sequence via self-attention and cross-attention mechanisms. Importantly, no causal masking is applied, allowing full interaction among all tokens. After processing, the final state of the [CLS] token is used for prediction:

$$\mathbf{h}_{[\text{CLS}]}^{\text{out}} = \text{TransformerDecoder}(\text{Input}), \quad p = \text{MLP}(\mathbf{h}_{[\text{CLS}]}^{\text{out}}) \quad (32)$$

864 where p is the predicted property.
 865

866 In the ablation setting `spnode_mlp`, we bypass the Transformer and instead use a simpler readout:
 867 each spatial node feature is processed independently by an MLP to yield a scalar output $o_j =$
 868 $\text{MLP}(\mathbf{h}_{s_j}^T)$, and the final prediction is the average:

$$869 \quad p = \frac{1}{N_s} \sum_{j=1}^{N_s} o_j \quad (33)$$

870 When spatial nodes are absent, this reduces to averaging atomic outputs—equivalent to conventional
 871 numeric-level pooling (equation 3).
 872

873 Table 4: Hyperparameters of the PaiNN backbone and Transformer decoder used in SpatialRead.
 874

876 Component	877 Parameter	878 Value
879 PaiNN	880 Number of layers	881 6
	882 Hidden dimension	883 128
	884 Filter dimension	885 128
	886 Cutoff radius r_{cut}	887 6.0 Å
	888 Maximum neighbors	889 30
890 Transformer Decoder	891 Number of layers	892 6
	893 Hidden dimension	894 128
	895 Number of attention heads	896 8
	897 Feed-forward dimension	898 512
	899 dropout	900 0.15
901 Spatial Nodes	902 Maximum atomic count (padding)	903 1024
	904 Number of spatial nodes N_s	905 512 (8 ³)
	906 Position embedding size	907 128

908 Table 5: Training strategy and optimization hyperparameters used in SpatialRead.
 909

910 Training Parameter	911 Value
912 Total epochs	913 80
914 Optimizer	915 AdamW
916 Learning rate (initial)	917 1×10^{-4}
918 Learning rate scheduler	919 ReduceLROnPlateau
920 Monitor metric	921 val_loss
922 Mode	923 min
924 Patience	925 10
926 Factor	927 0.8
928 Threshold	929 1×10^{-4}
930 Minimum learning rate	931 1×10^{-6}
932 Weight decay	933 0.0
934 Batch size	935 8

908 A.3 DATASETS

909 The dataset mainly includes four material types:
 910

- 911 • Metal Organic Frameworks (MOFs): 23157 samples from Chung et al. (2019), Tang et al.
 912 (2021), Gulbalkan et al. (2023), and Kang et al. (2023).
- 913 • Covalent Organic Frameworks (COFs): 7000 samples from Hu et al. (2015) and Deeg et al.
 914 (2020).
- 915 • Porous Polymer Networks (PPNs): 7000 samples from Martin et al. (2014).
- 916 • zeolites: 7000 samples from Kim et al. (2020).

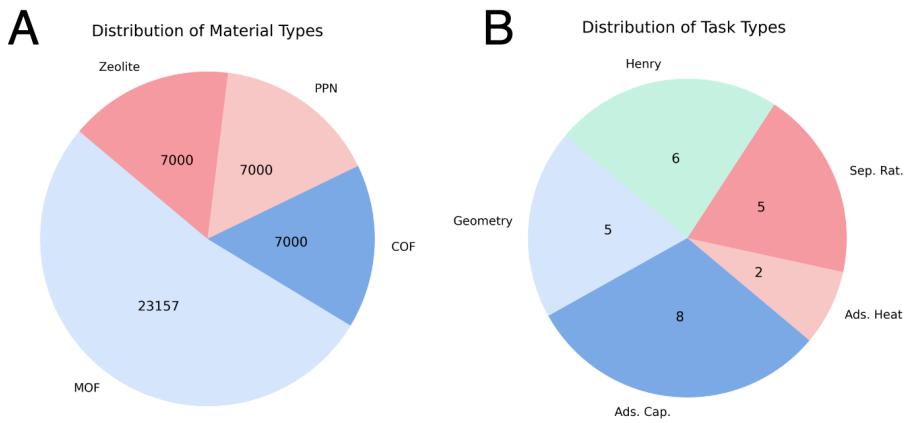


Figure 5: **Dataset of spatial properties for porous materials.** (A) **Distribution of material types.** The dataset contains four types of porous materials: (1) Metal Organic Frameworks, (2) Covalent Organic Frameworks, (3) Porous Polymer Networks, (4) zeolites. (B) **Distribution of task types.** Tasks mainly include five types: (1) Geometric Features, such as void fraction, accessible surface area etc. (2) Gas adsorption capacity, (3) Separation ratio, (4) adsorption heat, (5) Henry’s constant.

Task types include:

- Topology Type
- Void Fraction
- Accessible Surface Area
- Pore Limited Diameter
- Largest Cavity Diameter

The geometric features are calculated by Willems et al. (2012). The probe radius is set to 0.5. The number of sampling points are set to 2,000 for surface area and 50,000 for volume. These datasets are randomly split into train, validation and test set according to 5 : 1 : 1. All material structures can be found in Bobbitt et al. (2023), which are collected from Wilmer et al. (2012) and Chung et al. (2019).

The source of the dataset, as well as the sizes of the training, validation and test sets, are shown in Table 6.

A.4 TRAINING DETAILS OF BASELINE MODELS

CGCNN (Xie & Grossman, 2018): CGCNN is one of the most typical MPNN for crystal. But as a kind of graph convolutional neural network, the performance has lagged behind modern methods. Despite, it still reflect the basic feature of Graph Convolutional Network. The model architecture follows the original CGCNN. We train CGCNN for 300 epochs, the learning rate is set to 0.01 and decays to 0.001 and 0.0001 in 100 and 200 epochs. Other settings follow the original CGCNN.

MOFormer (Cao et al., 2023): MOFormer is a kind of pre-training method, which use contrastive learning in material structure and SMILES code. MOFormer pretrain CGCNN in about 300,000 MOFs. To achieve full training, we fine-tune the pre-trained CGCNN for 60 epochs instead of the default 30 epochs.

JMP (Shoghi et al., 2024): JMP is a GemNet (Gasteiger et al., 2021) pre-trained on 120 million material and molecule. We fine-tune JMP for 80 epochs. All training strategy and model architecture follows the default setting. Nevertheless, the default setting of JMP on qMOF Rosen et al. (2021; 2022) dataset is not suitable for our task. Most MOFs in the qMOF dataset is smaller than CoREMOF. In original settings, JMP adopts an adaptive strategy to set cutoff and

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Table 6: Details of the dataset

Dataset	Source	Task	Unit	Training data	Val Data	Test Data
Geo	Kang et al. (2023) Willems et al. (2012)	Topology	-	4,900	1,050	1,050
		VF	-	4,900	1,050	1,050
		ASA	m^2/g	4,900	1,050	1,050
		PLD	\AA	4,900	1,050	1,050
		LCD	\AA	4,900	1,050	1,050
CoREMOF	Chung et al. (2019)	N_2 Ads.	$\text{cm}^3(\text{STP})/\text{g}$	5,000	1,000	1,000
		Ar Ads.	$\text{cm}^3(\text{STP})/\text{g}$	5,000	1,000	1,000
CH4/N2	Gulbalkan et al. (2023)	CH_4 Henry	$\text{mol}/\text{kg}/\text{Pa}$	5,000	1,000	1,000
		N_2 Henry	$\text{mol}/\text{kg}/\text{Pa}$	5,000	1,000	1,000
		CH_4/N_2 Sel. (0.1bar)	-	5,000	1,000	1,000
		CH_4/N_2 Sel. (1bar)	-	5,000	1,000	1,000
C3H6/C3H8	Tang et al. (2021)	CH_4/N_2 Sel. (10bar)	-	5,000	1,000	1,000
		C_3H_6 Ads.	mol/kg	1354	170	170
		C_3H_8 Ads.	mol/kg	1354	170	170
		$\text{C}_3\text{H}_6/\text{C}_3\text{H}_8$ Sel. (1bar)	-	1354	170	170
		$\text{C}_3\text{H}_6/\text{C}_3\text{H}_8$ Sel. (infinite)	-	1354	170	170
PPN	Martin et al. (2014)	TSN_S (1bar)	-	1354	170	170
		C_3H_6 Henry (298K)	$\text{log}(\text{mol}/\text{kg}/\text{Pa})$	1354	170	170
		C_3H_8 Henry (298K)	$\text{log}(\text{mol}/\text{kg}/\text{Pa})$	1354	170	170
		CH_4 Ads. (65bar)	$\text{cm}^3(\text{STP})/\text{cm}^3$	5,000	1,000	1,000
COF	Mercado et al. (2018) Deeg et al. (2020)	CH_4 Ads. (1bar)	$\text{cm}^3(\text{STP})/\text{cm}^3$	5,000	1,000	1,000
		CH_4 Ads. (65bar)	$\text{v}(\text{STP})/\text{v}$	5,000	1,000	1,000
		CH_4 Ads. (5.8bar)	$\text{v}(\text{STP})/\text{v}$	5,000	1,000	1,000
		CO_2 Ads. Heat.	kj/mol	5,000	1,000	1,000
zeolite	Kim et al. (2020)	CO_2 Henry	$\text{log}(\text{mol}/\text{kg}/\text{Pa})$	5,000	1,000	1,000
		CH_4 Henry	-	5,000	1,000	1,000
		CH_4 Ads. Heat	kj/mol	5,000	1,000	1,000

max_num_neighbors. The cutoff is fixed to 19.0 \AA . But when the number of atoms is larger than 300, the max_num_neighbors is set to 5, which is too small. A large number of MOFs in the CoREMOF (where most structures are real and obtained by experiments) dataset is larger than 300. We fixed the max_num_neighbors to 8, which achieves balance between performance and computation cost.

GemNet (Gasteiger et al., 2021): Considering that JMP is a re-implementation of GemNet, we use the same code of JMP instead of the original implementation. We train the code of JMP without loading the pre-trained checkpoint to obtained the results of GemNet. Other strategies are the same as JMP.

MOFTransformer/PMTransformer (Kang et al., 2023; Park et al., 2023): MOFTransformer is a transformer-based multimodal network pre-trained on about 1 million MOFs. The subsequent work PMTransformer further uses 1.9 million porous materials as the pre-training dataset. Here we use the checkpoint of PMTransformer and the original implementation. The only difference is that the default setting finetune the model for 30 epochs, which is insufficient to converge. Thus we finetune the model for 60 epochs.

1015 A.5 COMPLEXITY OF SPATIAL NODES AND SCALABILITY TO LARGER SYSTEM

1017 SpatialRead extends conventional MPNNs by introducing spatial nodes and a multimodal Trans-
1018 former head, raising the question of computational overhead. Using SchNet (Schütt et al., 2017)
1019 as a backbone for controlled experiments, we find that increasing spatial node resolution improves
1020 performance until convergence around $8 \times 8 \times 8$ nodes, corresponding to roughly 1 \AA^3 per node
1021 for typical porous materials. Based on this, we recommend 512 spatial nodes for materials such as
1022 MOFs, COFs, PPNs, and zeolites. Table 7 shows that adding spatial nodes increases training time by
1023 about 30% compared with the baseline PaiNN, while the full SpatialRead remains lightweight (2.9
1024 MB, 2.78 min/epoch), with most overhead arising from message passing rather than the Transformer
1025 head. Overall, SpatialRead delivers substantial performance gains with only modest computational
cost.

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
Table 7: Computational cost in the CoREMOF dataset

Model	Params (MB)	Training time / epoch (min)
JMP/GemNet	38.5	3.77
PaiNN	1.3	2.01
PaiNN + SN (ours)	1.3	2.61
PaiNN + SN + MM (ours)	2.9	2.78

As demonstrated in A.2, the graph construction behavior of spatial nodes is similar to atoms. Each spatial node receive message from the neighboring atoms, which are determined by cutoff and maximum number of neighbors. The complexity of modern GNNs is commonly linearly related to the number of atoms. For example, for a GNN like PaiNN (Schütt et al., 2021) that takes into account the interaction between two bodies, its complexity is $O(Nk)$, where N is the number of atoms and k is the number of neighboring nodes. For a model like GemNet that takes into account interactions among up to four bodies, its complexity is approximately $O(Nk^3)$. Therefore, when the number of spatial nodes is fixed as a constant M , the model complexity is increased to $O(N + M)k$ or $O(N + M)k^3$. As the system becomes larger, the additional complexity brought about by the increase in spatial nodes can be almost negligible. However, it should be noted that a larger system typically implies a larger space, and therefore may require more spatial nodes to maintain a reliable resolution.

Due to the consideration of three-body and four-body interactions as well as higher embedding and edge feature encoding, the size of the memory usage and the training load increase rapidly with the number of neighbors. For actual MOFs like in the CoREMOF (Chung et al., 2019) dataset, the NVIDIA RTX GeForce 4090 (24 GB) only allows us to set the maximum value of `max_num_neighbors` to 15 (as a comparison, the original setting of JMP in MOFs set the `max_num_neighbors` to 5). Properties such as adsorption capacity are significantly influenced by the intermolecular interactions, and therefore may be more sensitive to parameters like cutoff and `max_num_neighbors`. Even under such a disadvantage, JMP still achieved performance comparable to that of PaiNN. It can be expected that if the complete 30 maximum neighbors are enabled, the effect of JMP will surpass that of PaiNN. As for PaiNN, due to its simple two-body message passing process, we can allow each atom to have up to 30 neighboring nodes.

When attention-based modules are employed, the dominant cost arises from the $O(N^2)$ attention over atoms, rather than from the spatial nodes themselves. Since long-sequence attention is not the focus of this work, we evaluate the spatial-node overhead using the Spatial Node + MLP design, whose contribution remains size-independent. Specifically, we choose CoREMOF as the base dataset, since it is the most common dataset used for MOFs. We construct supercell to enlarge the system size and evaluate the computational cost of PaiNN (+ SpNode). We evaluate how long and how much memory are needed to train a PaiNN (with SpNode) in 5,000 MOFs in the NVIDIA GeForce RTX 4090.

The empirical results in Table 8 confirm that the runtime and memory overhead of spatial nodes remain effectively constant when the number of spatial nodes is fixed. As the system size grows, the relative impact of this overhead diminishes. Nevertheless, for sufficiently large systems, additional spatial nodes may be required to maintain spatial resolution, in which case the total cost may scale proportionally with the number of inserted spatial nodes.

A.6 CALCULATION DETAIL OF THE DISTANCE BETWEEN ATOM AND PORE

To quantify the distance of each atom to the nearest pore region, we first identify materials that contain sufficiently large pores. For each crystal structure, we uniformly sample $32 \times 32 \times 32$ points within the lattice using the same grid construction described in Appendix A.2. For every sampled point, we compute its minimum distance to the surrounding atoms. Points whose nearest-atom distance exceeds the pore threshold $r_{\text{pore}} = 2.0 \text{ \AA}$ are designated as *pore points*, representing regions of locally low atomic density.

1080 Table 8: Training time and memory overhead introduced by spatial nodes at different system sizes.
1081

System Size	Model	Time / epoch (min)	Memory (MB)
294	PaiNN	4.07	484
294	PaiNN + SpNode	5.21	546
634	PaiNN	4.86	752
634	PaiNN + SpNode	5.83	819
3092	PaiNN	10.7	2475
3092	PaiNN + SpNode	11.3	2520
8476	PaiNN	29.2	5857
8476	PaiNN + SpNode	26.4	5896

1092 Once the set of pore points is obtained, we compute for each atom its minimum Euclidean distance
1093 to this pore point set. This value is used as the atom’s distance-to-pore metric, reflecting how deeply
1094 the atom is embedded within dense regions of the structure.

1097 A.7 DETAILS OF OUT-OF-DISTRIBUTION VALIDATION

1099 To evaluate the out-of-distribution (OOD) performance of SpatialRead, we reorganized the N₂ ad-
1100 sorption dataset from CoRE-MOF (Chung et al., 2019). For each structure, we computed its void
1101 fraction using zeo++ (Willems et al., 2012). Materials in the top one-seventh of void fraction
1102 were selected as the OOD test set. The remaining six-sevenths were randomly split into training
1103 and validation subsets with a 5:1 ratio, ensuring that the training and validation sets share the same
1104 underlying distribution. This setup allows the in-distribution (ID) performance of the model to be
1105 assessed independently from its ability to generalize to high-porosity, distribution-shifted MOFs.

1106 Table 9: OOD evaluation on high-porosity MOFs. SpatialRead preserves ranking stability under
1107 distribution shift.

Model	MAE	R ²	Spearman
PaiNN (40 epoch, ID)	18.7	0.907	0.961
PaiNN+SpatialRead (3 epoch, ID)	21.5	0.904	0.963
PaiNN+SpatialRead (40 epoch, ID)	11.8	0.967	0.983
PaiNN (40 epoch, OOD)	151	-0.019	0.757
PaiNN+SpatialRead (3 epoch, OOD)	169	-0.138	0.920
PaiNN+SpatialRead (40 epoch, OOD)	96.0	0.526	0.951

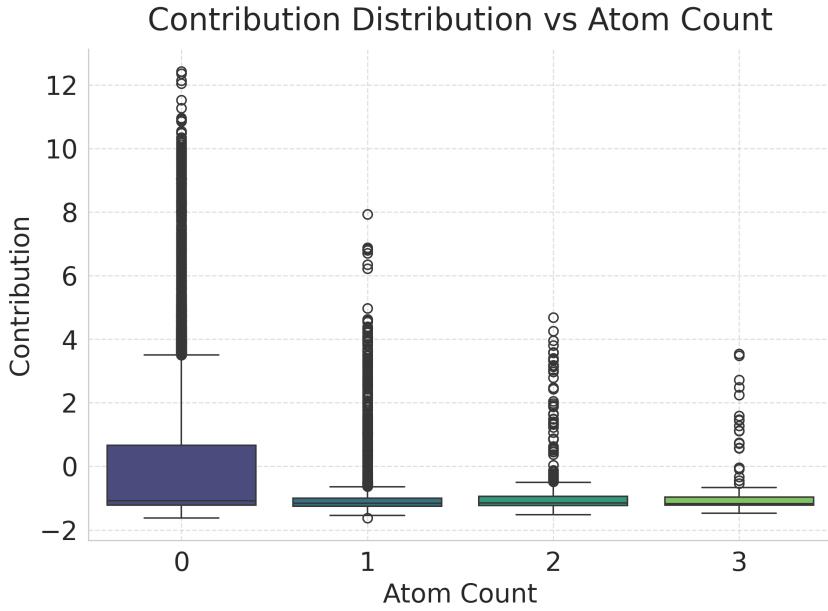
1117 As shown in Table 9, the 3-epoch SpatialRead-enhanced PaiNN model attains comparable
1118 validation-set accuracy to the 40-epoch baseline PaiNN model, reflecting the low training cost of
1119 our spatial node augmentation. However, both models experience substantial degradation on the
1120 OOD test set, as high-porosity structures are absent from the training distribution. Because adsorp-
1121 tion capacity is positively correlated with void fraction, the models systematically underestimate
1122 adsorption for highly porous materials, leading to large drops in MAE and R².

1123 Despite this distribution shift, both PaiNN and SpatialRead-enhanced PaiNN preserve the relative
1124 ordering of materials, achieving Spearman correlation coefficients of 0.76 and 0.92, respectively.
1125 This indicates that SpatialRead substantially improves ranking stability under OOD conditions, even
1126 when absolute prediction accuracy deteriorates.

1129 A.8 STATISTICAL ANALYSIS OF THE INTERPRETATION OF SPATIAL NODES

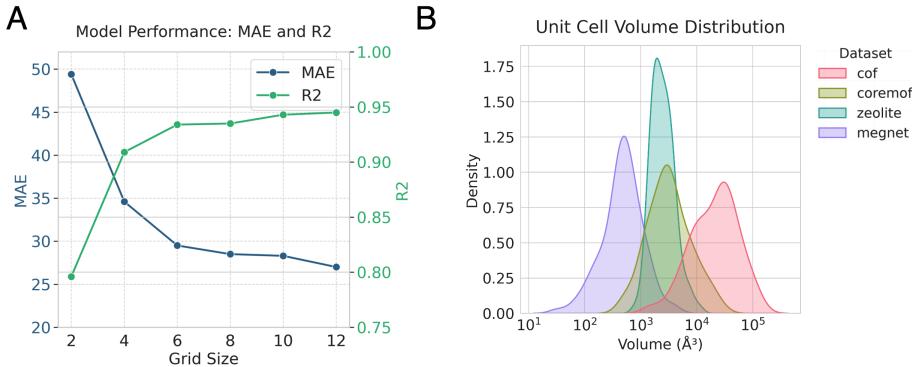
1131 Fig. 6 compares node contributions with the number of atoms contained in their regions. Strikingly,
1132 regions with few or no atoms exhibit the largest contributions. This observation is physically con-
1133 sistent: gas molecules cannot be adsorbed into dense atomic regions but are much more likely to be
stored in sparse pore regions.

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153



1154 Figure 6: **Atom count (in each region) v.s. contribution.** We counted the number of atoms
1155 contained in the area occupied by each spatial node, as well as the contribution of that spatial node.
1156

1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170



1171 Figure 7: **Effect on sampling ratio.** (A) **Performance for different number of spatial nodes.** We
1172 test number of spatial nodes from $2 \times 2 \times 2$ to $12 \times 12 \times 12$. SchNet is adopted to test the best setting
1173 of spatial nodes. The corresponding MAE and R2 are drawn in the line plot. (B) **Distribution of**
1174 **volume for different materials.** The volume of a single cell is drawn.

1175
1176
1177

A.9 EFFECT OF SAMPLE STRATEGY

1180
1181
1182
1183
1184
1185
1186
1187

To evaluate whether adaptive sampling improves the representation of spatial regions, we conducted additional experiments on covalent organic frameworks (COFs), which have the largest unit-cell volumes in our dataset and therefore serve as an appropriate test case. Spatial nodes were sampled using a resolution-based strategy with a spatial resolution of 4.03 \AA , resulting in an average of 462 nodes per structure, compared to the 512 nodes used in the fixed-grid scheme. Despite using fewer nodes, the resolution-based sampling achieves better predictive performance on COFs, indicating that adaptively allocating spatial nodes according to lattice size can improve spatial coverage. We also observe that resolution-based sampling assigns more spatial nodes to larger unit cells, which increases peak memory usage relative to the fixed-grid approach.

1188 Table 10: Adaptive sampling of spatial nodes on COFs. Resolution-based sampling uses an average
 1189 of 462 spatial nodes, compared to 512 in the fixed-grid setting.

Sampling Strategy	MAE	MSE	R^2
Fixed Grid	3.52	31.0	0.979
Resolution-based	2.31	18.6	0.987

1194 1195 A.10 EFFECT ON SAMPLING RATIO

1196 1197 We considered different numbers of Spatial Node sampling points, ranging from 2*2*2 to 12*12*12.
 1198 The results are presented in Fig. 7. As the number of sampling points increases, the model accuracy
 1199 gradually improves.

1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241