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ABSTRACT

Currently, extensive efforts have been made to defend against poisoning attacks
in Federated Learning (FL). However, most existing defenses fall short in a more
general and practical scenario, i.e., Non-IID FL. The core problem of current de-
fenses lies in the fact that they all basically identify poisoned gradients by observ-
ing the inter-client gradient distribution difference. However, the inherent data
heterogeneity in Non-IID FL naturally induces such gradient variations, render-
ing malicious gradients indistinguishable from benign ones. To address this, we
propose FLCatcher, a novel defense framework tailored to Non-IID poisoning at-
tacks from a two-perspective consideration. First, we observe that despite the data
heterogeneity of Non-IID FL, the gradient evolution trajectory of benign clients
tends to follow a consistent direction over time, whereas malicious clients persis-
tently generate gradients deviating from expected trajectories to degrade the global
model. Leveraging this insight, FLCatcher designs an adaptive discriminative
gap amplification mechanism, which dynamically calibrates per-client detection
thresholds by tracking long-term behavioral biases. Second, FLCatcher proposes
a Wasserstein distance-based distributional alignment strategy to quantify subtle,
layer-wise gradient deviations, enabling the identification of malicious perturba-
tions that may be obscured within normal client variability. Extensive experiments
on standard FL benchmarks evaluate the effectiveness of FLCatcher. Specifically,
under Non-IID settings, FLCatcher achieves an average TPR exceeding 94.47%
and an average FPR below 0.72%, significantly outperforming state-of-the-art de-
fenses.

1 INTRODUCTION

Federated Learning (FL) (Pei et al., 2024) has emerged as a promising paradigm for distributed ma-
chine learning, enabling multiple clients to collaboratively train a global model without exposing
their local data. In practice, client data in FL is often Non-Independent and Identically Distributed
(Non-IID), due to user-specific behaviors, diverse sensing conditions, and task-driven data gen-
eration (Lu et al., 2024). This intrinsic statistical heterogeneity not only complicates global model
convergence but also introduces significant security vulnerabilities—especially to poisoning attacks.

Poisoning attacks (Khuu et al., 2024) exploit the inherent vulnerabilities of FL (Martı́nez Beltrán
et al., 2023; Beltrán et al., 2023), particularly its decentralized nature and lack of visibility into the
local training, to compromise model integrity. In poisoning attacks, adversaries intentionally ma-
nipulate local data or craft malicious updates, often disguising them to resemble benign ones in both
direction and magnitude (Krauß et al., 2024; Ma et al., 2025), thereby circumventing conventional
similarity-based or norm-based aggregation rules in FL (Fung et al., 2020). These threats are further
amplified by the emergence of adaptive poisoning attacks (Yang et al., 2024; Zhang & Huang, 2024),
where adversaries carefully tune the direction, magnitude, and timing of malicious updates to mimic
benign client behavior. Such sophisticated evasion strategies significantly undermine existing de-
fense techniques (Zhang et al., 2022; Cao et al., 2020; Yin et al., 2018) that rely on static heuristics
or single-round observations, posing serious threats to FL. Moreover, the inherent Non-IID nature of
FL introduces significant statistical variability across client updates, making it increasingly difficult
to distinguish between malicious and honest behavior.
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From the attacker’s perspective, Non-IID heterogeneity offers a natural camouflage. Malicious
clients can exploit the inherent variability in client updates to perform slow-drift or distribution-
mimicking attacks, in which poisoned gradients closely imitate the update patterns of honest
clients (Liu et al., 2024; Rong et al., 2022). By gradually deviating from historical gradients or
imitating the distributional patterns of honest clients, attackers can insert backdoors or corrupt the
global model without triggering outlier detection (Liu et al., 2024; Rong et al., 2022). More ad-
vanced threats include adaptive poisoning attacks (Fang et al., 2020) or Sybil attacks (Werthenbach
& Pouwelse, 2023), where multiple colluding adversaries submit aligned gradients consistent with
the benign statistical noise, further challenging existing defenses.

From the defender’s perspective, Non-IID heterogeneity poses significant challenges to existing de-
fenses. Existing aggregation rules, such as RFA (Pillutla et al., 2022), and Norm Clipping (McMa-
han et al., 2017)—rely on basic geometric or norm-based metrics that assume benign updates cluster
closely in the parameter space. However, Non-IID data causes honest clients to produce diverse gra-
dients, blurring the distinction between benign and malicious updates. Similarity-based defenses
like FoolsGold (Fung et al., 2020) and FLTrust (Cao et al., 2020), which assume independence
among clients or rely on similarity scoring, become fragile when adversaries coordinate or manipu-
late trust metrics. Methods such as Trmean (Yin et al., 2018), Bulyan (Guerraoui et al., 2018), and
Mkrum (Blanchard et al., 2017) require fixed assumptions about attacker ratios or hand-tuned hyper-
parameters, which limit their adaptability to adaptive attacks that subtly adjust perturbation strength.
The existing methods, FLDectector (Zhang et al., 2022) and FedRecover (Cao et al., 2023), assume a
constant distribution of client data. However, in Non-IID scenarios, the data may change at any time,
which can lead to misjudgments and a lack of monitoring of client-qua-round consistency (Zhang
et al., 2024). Existing defense strategies predominantly rely on inter-client gradient distribution
analysis to identify outliers. Yet, in Non-IID FL, benign gradient updates inherently exhibit sig-
nificant variability due to divergent data distributions. This overlap between natural and malicious
deviations renders many current defenses ineffective, as poisoned updates can easily be masked by
natural gradient fluctuations.

Our contributions. To tackle these challenges, we propose FLCatcher, a novel federated behav-
ior embedding framework that robustly distinguishes between benign heterogeneity and malicious
perturbations by jointly modeling the spatial distribution and temporal evolution of client gradients.
The main contributions are summarized as follows:

• Wasserstein Distance-based Distributional Alignment: To capture subtle, layer-wise de-
viations, FLCatcher employs a Wasserstein distance metric to measure distributional shifts
across client gradients, effectively identifying malicious perturbations even when they are
camouflaged within natural variability.

• Adaptive Discriminative Gap Amplification : By analyzing gradient evolution trajecto-
ries, we observe that benign clients tend to follow consistent update directions over time,
while adversarial clients generate persistent deviations. FLCatcher exploits this insight
through an adaptive discriminative gap amplification mechanism, which dynamically ad-
justs per-client detection thresholds based on long-term behavioral patterns.

• Superior Performance in Non-IID FL. We conducted extensive experiments on stan-
dard FL benchmarks, demonstrating that FLCatcher consistently achieves superior detec-
tion performance and robustness. Under Non-IID settings, FLCatcher attains an average
TPR exceeding 94.47% and an average FPR below 0.72%, significantly outperforming
state-of-the-art methods.

2 PROBLEM FORMULATION

2.1 THREAT MODEL.

We consider a model poisoning adversary that controls a subset M ⊆ {1, . . . , N} of clients in
FL. The adversary’s objective is to degrade the performance of the global model W while evading
detection by robust aggregation methods such as Krum or RFA. The adversary has full control over
the local training process and can arbitrarily manipulate the model updates {∆wi}i∈M submitted
by the compromised clients. Model poisoning attacks can generally be categorized as follows:
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Non-adaptive attacks: In these attacks, the adversary either modifies local training data or directly
crafts malicious gradients or updates without dynamically reacting to the aggregation process. Ex-
amples include label-flipping, which flips training labels by a fixed offset to mislead model train-
ing (Han et al., 2012), and the LIE attack, where the attacker adds a small fixed perturbation to the
average benign gradient to evade detection (Gilad et al., 2019).

Adaptive attacks: These attacks balance stealthiness and effectiveness by specifically targeting
robust aggregation defenses under non-IID data distributions; representative methods include the
Fang attack, which crafts scaled perturbations opposing benign gradients to bypass robust aggrega-
tion (Fang et al., 2020), the Min-Max and Min-Sum attacks that respectively maximize perturbation
while keeping malicious gradients close to benign ones and minimize the total distance to benign
gradients to pass aggregation filters (Shejwalkar & Houmansadr, 2021), and FedGhost, which gen-
erates data-free, stealthy malicious updates that maximize attack impact while minimizing vari-
ance (Ma et al., 2025).

2.2 DESIGN GOALS.

In FLCatcher, we consider a standard FL system, specifically following the FedAvg protocol, con-
sisting of a central server and a set of C = {c1, c2, . . . , cN}. Each client ci holds a private local
dataset Di and participates in collaborative model training without sharing its raw data. The ob-
jective of FLCatcher is to enhance the robustness of Non-IID FL under model poisoning attacks,
including:

Robustness to Non-IID Heterogeneity: We aim to effectively handle the inherent statistical het-
erogeneity of client data distributions. This heterogeneity often causes benign gradients to exhibit
significant variance, making it challenging to differentiate natural variations from adversarial per-
turbations. FLCatcher must therefore minimize both false positives (classifying benign updates as
malicious) and false negatives (missing actual malicious updates).

Effective Malicious Update Mitigation: We aim to design a defense strategy that can accurately
identify and mitigate malicious updates. This includes scenarios where attackers adaptively craft
poisoned gradients to mimic benign behavior, especially in complex Non-IID settings where benign
client updates naturally vary significantly.

3 METHODOLOGY
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Figure 1: FLCatcher Framework.

In FL, the distributed nature and the intrinsic heterogeneity of client data make FL highly vulnera-
ble to model poisoning attacks, especially in Non-IID environments. In such settings, benign client
gradients naturally exhibit significant variance, which blurs the boundary between benign and ma-
licious updates. Adversaries exploit this heterogeneity by crafting poisoned updates that mimic
extreme benign behavior, effectively evading existing robust aggregation mechanisms. To address
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these challenges, FLCatcher proposes a federated behavior embedding fingerprinting framework
(See Figure 1), achieving high-precision detection of unknown attacks with federated behavior em-
bedding and adaptive discriminative gap amplification.

• Federated Behavior Embedding: FLCatcher embeds static distribution alignment and dy-
namic temporal evolution mechanisms to capture spatial distribution and temporal evolu-
tion features of gradients.

• Adaptive Discriminative Gap Amplification: We design a prior-free dynamic threshold
strategy that adaptively amplifies the gap between benign and malicious behaviors.

3.1 CONSTRUCTION OF FLCATCHER

3.1.1 WASSERSTEIN DISTANCE-BASED DISTRIBUTIONAL ALIGNMENT.

Existing defense methods identify malicious gradients by analyzing the overall direction or numeri-
cal differences of the gradient. However, the combination of the spatial location of the gradient and
the corresponding numerical values can truly determine the correctness of the model update.

To distinguish malicious clients from benign ones with extreme Non-IID behaviors, FLCatcher first
quantifies each client’s distributional deviation from the median of all clients. Let the gradient of
i-th client at round t be gti = [f

(1)
i , f

(2)
i , . . . , f

(L)
i ], where f

(l)
i is the gradient vector at layer l.

We model f (l)
i as a probability distribution: µ

(l)
i = (α(l), Xi[l]), where Xi[l] denotes the support

(e.g., neuron gradients), and α(l) is the weighting (initially uniform or importance-weighted). For
each layer l, we compute the Wasserstein distance between i-th client’s gradient distribution and the
median distribution ν(l):

W(l)
i = OT (µ

(l)
i , ν(l), DS),

where OT denotes the optimal transport solver and DS is the ground distance metric. We aggregate
the distances across layers to obtain the total deviation score:

dti =

L∑
l=1

αl · W(l)
i ,

where αl is the layer-specific weight.

Nietert et al. (2023) performs robust distribution estimation at the Wasserstein distance, which allows
a certain proportion of outliers to be removed from the observation distribution to reduce the impact
of malicious noise pollution.So we assume benign deviation scores approximately follow a Gaussian
distribution and estimate the mean µd and standard deviation σd of di at each round. Clients with
dti > µd + kσd are flagged as suspicious.

To further refine detection under Non-IID conditions, we calculate the cosine similarity between
each client pair to reduce the dimension and sharpen its gradient characteristics. then cluster benign
clients and suspicious clients using DBSCAN to capture semantic consistency and differentiate truly
malicious updates from benign extremes. As a result, we obtain benign clusters Cb and suspicious
clusters Cs, which serves the adaptive discriminative gap amplification mechanism.

3.1.2 ADAPTIVE DISCRIMINATIVE GAP AMPLIFICATION

To eliminate reliance on pre-defined thresholds or attacker ratio assumptions, FLCatcher designs a
prior-free and dynamic thresholding mechanism, which amplifies the behavioral gap between benign
and malicious clusters by jointly considering temporal stability and distributional deviations.

i) Federated Behavior Embedding. FLCatcher constructs a joint behavior embedding for each client
by combining: a temporal anomaly score that captures deviations over time, and a static distribu-
tional deviation score that reflects instantaneous discrepancies. The temporal score is combined with
the static distributional deviation score to form a joint behavior embedding for each client.

FLCatcher incorporates a dynamic layer that models the temporal evolution of client updates using
Exponential Moving Average (EMA):

ĝti = βĝt−1
i + (1− β)gt−1

i ,

4
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where ĝti is the predicted gradient and β is the decay factor.

The temporal anomaly score is defined as St
i , which quantifies the deviation between gti and ĝti .

Benign clients typically exhibit low St
i values because their update patterns remain stable over

time (Wang et al., 2025). In contrast, malicious clients while adapting their attack strategies tend
to produce higher deviations from the EMA predicted gradients, resulting in larger St

i . To further
amplify the distinction between malicious and Non-IID clients, FLCatcher aggregates scores at the
cluster level:

S̄
(k1)
b =

1

|C(k1)
b |

∑
i∈C(k1)

b

St
i , S̄(k2)

s =
1

|C(k2)
s |

∑
j∈C(k2)

s

St
j .

ii) Dynamic Fluctuation Score. For each suspicious cluster C(k2)
s , a fluctuation score F (k2) is com-

puted by quantifying its stability deviation from all benign clusters C(k1)
b (k1 = 1, 2, . . . ,Kb), where

Kb is the number of benign clusters:

F (k2) =
1

Kb

Kb∑
k1=1

∣∣S̄(k2)
s − S̄

(k1)
b

∣∣,
where S̄

(k2)
s and S̄

(k1)
b denote the average temporal stability scores of the k2-th suspicious cluster

and k1-th benign cluster, respectively.

iii) Adaptive Threshold. A suspicious cluster C(k2)
s is classified as malicious if:

C(k2)
s ∈ Malicious if F (k2) > τ,

where τ is a dynamically learned threshold updated from the empirical distribution of fluctuation
scores F (k2) over historical rounds. To mitigate false positives from natural gradient volatility un-
der Non-IID settings, FLCatcher maintains a client-mark queue that accumulates suspicion counts,
flagging only clients with persistent abnormality as malicious. The details are shown in Algorithm 1.

Algorithm 1 Adaptive Threshold Decision (ATD)
Input: Cluster dictionary Dben/sus = {(Lk, Sk, Ik) | k = 1, 2, . . . ,K}, suspicion counter Cs.
Output: Updated suspicion counter Cs.

1: Identify most anomalous suspicious cluster:
(L∗, S∗)← argmax(L,S)∈Dsus

S
2: Compute adaptive thresholds:

∆1 ← S∗ −max(Dben) // gap between top suspicious and benign max
∆2 ← max(Dben)−min(Dben) // benign range

3: if l∗ ̸= −1 and ∆1 > max(∆2, R) then
4: Update dynamic range: R← max(∆2, R)
5: Identify suspicious clients:

Isus ← {Ci | Li = L∗}
6: Increment suspicion count for each suspicious client:

Cs += 1 ∀j ∈ Isus
7: end if
8: return Cs

4 EXPERIMENTS

We conduct extensive experiments to evaluate the effectiveness of FLCatcher under both IID and
Non-IID settings.

4.1 EXPERIMENTAL SETUP

Datasets and Models. We evaluate FLCatcher on three widely-used image classification datasets:
MNIST, CIFAR-10, and Fashion-MNIST. For CIFAR-10, we adopt AlexNet as the backbone model,
while for MNIST and Fashion-MNIST we use a multi-layer perceptron (MLPNet) as the backbone.

5
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Dataset Attack Mkrum Bulyan DnC Ours
TPR FPR TPR FPR TPR FPR TPR FPR

LIE 0.007 0.5483 0.0472 0.4882 0.0003 0.2499 0.9867 0
Label-Flip 0.4957 0.4261 0.5585 0.3604 0.9435 0.0141 0.9635 0

Fang 0.7146 0.3713 0.0495 0.4876 0.2997 0.4251 0.9867 0.1292
Min-Max 0.6409 0.3898 0.4312 0.3922 0.9900 0.0025 0.9834 0
Min-Sum 0.0003 0.5499 0.0000 0.5000 0.0000 0.2500 0.9867 0

CIFAR-10
(AlexNet)

FedGhost 0.6409 0.3898 0.3252 0.4187 0.4449 0.1388 0.8808 0
LIE 0.0608 0.5348 0.0223 0.4944 0.0003 0.2499 0.9893 0

Label-Flip 0.9701 0.3075 0.9372 0.2657 0.8256 0.0436 0.8641 0
Fang 0.0120 0.5470 0.0193 0.4952 0.2262 0.4434 0.9643 0

Min-Max 0.8339 0.3415 0.5508 0.3623 0.9967 0.0008 0.9357 0
Min-Sum 0.4096 0.4476 0.2648 0.4338 0.0179 0.2455 0.9250 0

MNIST
(MLPNet)

FedGhost 0.3930 0.4517 0.3279 0.4180 0.5186 0.1203 0.8779 0
LIE 0.1296 0.5176 0.0784 0.4804 0.0073 0.2482 0.9867 0

Label-Flip 0.9811 0.3047 0.9329 0.2668 0.1771 0.2057 0.8704 0
Fang 0.0100 0.5475 0.0435 0.4891 0.2359 0.4410 0.9559 0

Min-Max 0.9375 0.3156 0.9066 0.2733 0.9980 0.0005 0.9834 0
Min-Sum 0.7535 0.3616 0.8814 0.2797 0.0000 0.2500 0.9668 0

Fashion-MNIST
(MLPNet)

FedGhost 0.5664 0.4084 0.5037 0.3741 0.2818 0.1795 0.8979 0
Average 0.4754 0.4312 0.3822 0.4044 0.3869 0.1949 0.9447 0.0072

Table 1: TPR and FPR comparison of different defense methods under various attacks across
datasets.

FL Setup. By default, we consider N = 50 clients, of which 20% (i.e., attacker = 10) are malicious
and the effect of attack ratio (r) is compared for r = [0.1, 0.2, 0.3, 0.4]. For each dataset, we
reserve 20% of the training samples as each client’s local validation set. Each client trains its local
model using stochastic gradient descent (SGD) with a batch size of 125 per communication round.
Following prior works, the learning rate is set to 0.1 for MNIST and Fashion-MNIST, and to 0.5
for CIFAR-10, with exponential decay at a rate of c. We run FL for 800 communication rounds in
total. We generate both IID and Non-IID data distributions for each dataset. To simulate a realistic
Non-IID setup, we utilize a Dirichlet distribution (Minka, 2000) in which the Non-IID degree (d) is
set to 0.5. It is important to note that smaller values of d indicate more heterogeneous data, and the
effect of Non-IID degree is compared for d = [0.1, 0.3, 0.5, 0.7, 0.9].

Attack Setup. We perform two non-adaptive and four adaptive poisoning attacks on three standard
datasets and evaluate five representative aggregation-based defense methods. The evaluation focuses
on three key dimensions: effectiveness, stability, and robustness under adversarial settings. For
attack detection, we select representative attacks and assess detection effectiveness, outcomes, and
impact on model performance. We report True Positive Rate (TPR) and False Positive Rate (FPR)
as primary detection metrics. To assess the impact on model utility, we measure clean accuracy
degradation relative to an attack-free baseline.

Evaluation Metrics. We evaluated the performance of FLCatcher using the following metrics:
True Positive Rate, False Positive Rate, and Accuracy. TPR is the proportion of malicious clients
correctly identified as malicious, and FPR is the proportion of benign clients incorrectly classified
as malicious. Accuracy (Acc) refers to the global model’s classification accuracy on the clean test
set, measured as the fraction of correctly predicted test examples. Compared Methods. FLCatcher
is benchmarked against several representative defenses: Mkrum, Bulyan, Trmean, Median and DnC.
For Mkrum, Bulyan, Trmean, the gradient ratio selected for aggregation is set as 60%. For DnC,
the tolerance rate τ is tuned to detect the maximum number of malicious clients without degrading
model utility.

4.2 EXPERIMENTAL RESULTS

We evaluated FLCatcher against multiple defense aggregation schemes under diverse poisoning at-
tacks.
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FLCatcher Outperforms State-of-the-Art Defenses. Poisoning attack in FL. As shown in Fig-
ure 2, existing adaptive poisoning attacks severely compromise FL on CIFAR-10, with Min-Max
and Min-Sum attacks degrading accuracy by 45.76% and 39.87%, respectively. As shown in Ta-
ble 2, on simpler datasets such as MNIST and Fashion-MNIST, the impact is less severe due to
the relative robustness of the models. Specifically, Min-Max causes accuracy drops of 39.85% and
45.7%, while Min-Sum results in reductions of only 12.34% and 4.01%, respectively.

Defense Effectiveness of FLCatcher. Existing defenses are inadequate, causing accuracy drops of
up to 47.69% due to their reliance on single-dimensional features, which fail to distinguish between
Non-IID variations and malicious perturbations for CIFAR-10. In contrast, FLCatcher incurs only
a 2.6% reduction in accuracy by leveraging multi-dimensional gradient analysis. This approach
amplifies differences in poisoned gradients across multiple dimensions, enabling earlier and more
thorough detection. Detection Performance of FLCatcher. As shown in Table 1, our evaluation

Dataset Attack Methods FedAvg Mkrum Bulyan Trmean Median Ours

MNIST

LIE 96.04 93.43 81.13 96.10 91.46 96.96
Fang 96.25 94.52 62.64 95.88 95.33 97.04

Min-Max 58.28 67.51 68.18 61.67 74.21 97.14
Min-Sum 94.12 89.29 62.20 94.48 65.26 97.00

Fashion-MNIST

LIE 85.96 82.14 68.28 86.14 76.81 88.92
Fang 88.49 85.63 63.60 84.94 84.46 88.96

Min-Max 42.69 47.16 48.76 39.29 39.73 88.51
Min-Sum 76.06 56.74 38.35 77.96 48.32 88.66

Table 2: Test accuracy (%) of different aggregation methods under various attacks.

demonstrates that FLCatcher significantly outperforms state-of-the-art defenses in both effective-
ness and precision. It achieves an average TPR of 94.47%, with absolute gains of 46.93%, 56.25%,
and 55.78% over Mkrum, Bulya, and DnC, respectively. Meanwhile, FLCatchermaintains a low
average FPR of 0.72%, markedly outperforming Mkrum, Bulyan, and DnC by margins of 42.4%,
39.72%, and 18.77%. These improvements are attributed to two key components: (i) a Wasser-
stein distance-based alignment strategy that amplifies subtle malicious gradient patterns, and (ii) an
adaptive gap amplification mechanism that distinguishes persistent adversarial behavior from natural
Non-IID variations. Furthermore, FLCatcherexhibits strong robustness, maintaining TPR >94.47%
consistently across three datasets, two model architectures, and six attack types. In contrast, DnC
performs well only on Min-Max attacks (e.g., 99.00% TPR on CIFAR-10) but completely fails on
Min-Sum (0% TPR), while Mkrum is only effective on simple attacks or datasets (e.g., 98.11%
TPR for Label-Flip on Fashion-MNIST). Notably, FLCatcherachieves near-zero FPR in 10 out of
18 settings, highlighting its precision in minimizing false positives under diverse FL conditions.

Fang Min-Max Min-Sum LIE0

20

40

60

80

C
A

D
 (%

)

FedAvg
Mkrum

Trmean
Bulyan

Median
Ours

Figure 2: Clean Accuracy Drop (CAD) comparison of different defense methods on CIFAR-10 with
AlexNet.

4.2.1 ROBUSTNESS EVALUATION OF FLCATCHER.

To further evaluate the performance of FLCatcher, we analyze the impact of Wasserstein distance-
based alignment, confirming the robustness of FLCatcher under challenging FL environments.

Impact of Wasserstein Distance-based Distributional Alignment. To evaluate how different
distance metrics influence FLCatcher, we measured each client’s gradient deviation from the me-
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dian gradient at every round. Using kernel density estimation, we estimated the probability density
distributions of these deviations across various poisoning attacks. Figure 3 illustrates the Min-Sum
probability distributions for benign and malicious clients on CIFAR-10 under both IID and Non-IID
settings, computed every 30 rounds.

(a) Wasserstein distance under IID (b) Wasserstein distance under Non-IID

(c) Cosine distance under IID (d) Cosine distance under Non-IID

(e) Euclidean distance under IID (f) Euclidean distance under Non-IID

Figure 3: Visualization of gradient distance distributions under different metrics and data settings.

Under the IID setting: As shown in Figure 3(c)(e), Euclidean and cosine distances can effectively
separate benign and malicious gradients because the client data distributions are similar and homo-
geneous. This homogeneity leads to consistent gradient directions and magnitudes across benign
clients, making deviations caused by malicious updates more pronounced and easier to detect using
straightforward geometric measures such as Euclidean distance (which captures magnitude differ-
ences) and cosine similarity (which captures directional differences).

Under the Non-IID setting: As shown in Figure 3(b), FLCatcher leverages the Wasserstein distance,
which offers the clearest separation. This is because Non-IID data increases heterogeneity in the
global gradient distribution, obscuring the deviation between benign and malicious updates. Ex-
isting adaptive attacks exploit this by crafting poisoned gradients that mimic Non-IID variations in
direction (cosine) or magnitude (Euclidean) to evade detection (See Figure 3(d)(f)). In contrast,
FLCatcher design Wasserstein distance-based distributional alignment to measure differences be-
tween entire distributions, capturing richer statistical properties—including higher-order character-
istics—that are more difficult for attackers to replicate. Consequently, FLCatcher provides stronger
robustness and superior detection capability, even against complex adaptive attack strategies.

Impact of Varying Non-IID degrees on the defense performance of FLCatcher. Figure 4 illus-
trates the TPR and FPR of each method under varying degrees of Non-IID data distribution. As
data heterogeneity increases, baseline methods experience significant performance degradation. In
contrast, FLCatcher consistently achieves the highest TPR and lowest FPR across all values of d,
outperforming the other methods. Under the Min-Max attack setting, FLCatcher reaches nearly
100% TPR with 0% FPR. Notably, in extreme Non-IID scenarios, FLCatcher achieves an average
TPR improvement of 52.87% on CIFAR-10, demonstrating its superior scalability and robustness
across varying levels of data heterogeneity. This superior performance is attributed to FLCatcher’s
ability to leverage multi-dimensional gradient features and an adaptive compensation mechanism,
which together amplify subtle malicious patterns and accurately distinguish them from natural fluc-
tuations caused by heterogeneous data distributions. As a result, FLCatcher maintains effective
detection even as Non-IID severity increases, while baselines that rely on simpler or unidimensional
detection strategies fail to adapt to the complexities introduced by data heterogeneity.

8
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Figure 4: Impact of varying Non-IID degrees on the defense performance of FLCatcher.

Impact of Percentage of Malicious Client. We evaluate the robustness of FLCatcher against two
representative adaptive attacks—Min-Max and Fang—under varying malicious client ratios (10%-
40%). Figure 5 presents the TPR and FPR compared with baseline defenses (Mkrum, Bulyan, DnC).

Min-Max attack Min-Max attack

Fang attack Fang attack

Figure 5: Impact of Malicious Client Ratio on TPR and FPR for CIFAR-10 (AlexNet) under Min-
Max and Fang Attacks.

Under the Min-Max attack, Mkrum and Bulyan exhibit significantly increasing TPR as the malicious
client ratio increases, reaching TPR of up to 96.93% and 99.8% respectively at 40%. However, this
comes at the cost of higher FPR, which exceed 66.8% for both methods under the same condi-
tion. DnC achieves a relatively high TPR (72.5%) at moderate adversary ratios, but its FPR also
becomes non-negligible (18.33%). In contrast, FLCatcher consistently achieves near-perfect TPR
(96.99%-99.25%) across all malicious client ratios, while maintaining FPR close to zero (<0.25%),
demonstrating its robustness against adaptive poisoning attacks.

Under the Fang attack, all baseline methods suffer from increased FPR as the attacker ratio grows.
For instance, Mkrum and Bulyan reach FPR of 93.22% and 66.86% respectively at 40% adver-
saries, with only moderate TPR gains. DnC exhibits fluctuating detection accuracy, with TPR and
FPR varying unpredictably across ratios. By contrast, FLCatcher not only maintains a high TPR
(96.86%) even under 40% malicious clients, but also suppresses the FPR below 7.5%, outperforming
all baseline methods in both detection precision and stability. These results confirm that FLCatcher
effectively balances high sensitivity with strong specificity across diverse attack strengths, outper-
forming conventional defenses against adaptive attacks under varying malicious client ratios.

5 CONCLUSION

We proposed FLCatcher, a defense for Non-IID FL poisoning attacks that overcomes the limita-
tion of distribution-difference-based defenses by jointly modeling gradient spatial distributions and
temporal evolution. Through Wasserstein distance-based alignment and adaptive discriminative gap
amplification, FLCatcher robustly distinguishes malicious perturbations from benign heterogene-
ity. Experiments on standard benchmarks show its average TPR exceeds 94.47% and FPR remains
below 0.72%, outperforming state-of-the-art defenses under diverse adaptive attacks.
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