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ABSTRACT

We propose a method for inferring an egocentric dense depth map from an RGB
image and a sparse point cloud. The crux of our method lies in modeling the
3D scene implicitly within the latent space and learning an inductive bias in an
unsupervised manner through principles of Structure-from-Motion. To force the
learning of this inductive bias, we propose to optimize for an ill-posed objective
during training: predicting latent features that are not observed in the input view,
but exist in the 3D scene. This is facilitated by means of rigid warping of la-
tent features from the input view to a nearby or adjacent (co-visible) view of the
same 3D scene. “Empty” regions in the latent space that correspond to regions
occluded from the input view are completed by a Contextual eXtrapolation (Con-
teXt) mechanism based on features visible in input view. The learned inductive
bias of ConteXt can be transferred to modulate the features of the input view to
improve fidelity. We term our method “Occluded Region Completion as Super-
vision” or ORCaS. We evaluate ORCaS on VOID1500 and NYUv2 benchmark
datasets, where we improve over the best existing method by 8.91% across all
metrics. ORCaS also improves generalization from VOID1500 to ScanNet and
NYUv2 by 15.7% and robustness to low density inputs by 31.2%.

1 INTRODUCTION

Depth completion is the task of inferring an egocentric 2.5D dense depth map from a set of sparse
points and an RGB image. The mechanism behind this process can be interpreted in two ways: (1)
it propagates depth values from a set of sparse points to a denser lattice defined by pixels, while
using the image as a condition to guide propagation; or (2) it uses the image to reconstruct a scale-
ambiguous dense depth map, while using sparse depth values to calibrate the scale of the recon-
struction. While they might appear to be merely two symmetric perspectives describing the same
functional mapping, and the roles of the two input modalities seem superficially interchangeable,
they differ fundamentally in the underlying principles. The former, (1), can be conceptualized as
interpolation, leveraging natural image statistics (e.g., color, texture, edges) as regularization and
therefore does not require induction. The latter, (2), on the contrary, relies on induction, as it at-
tempts to impute a 3D scene from a single view, which is inherently ill-posed.

In general, (1) does not require learning, e.g., it is sufficient with handcrafted rules (Ku et al., 2018),
but, if one wishes, can be easily learned by networks with limited capacity (Wong et al., 2020). How-
ever, it quickly faces saturation as one attempts to generalize the methodology to novel 3D scenes.
Hence, it becomes inevitable to shift focus towards (2), whose ill-posedness necessitates learning
an inductive bias – through which we subscribe to unsupervised learning, as ground truth required
for supervised learning is expensive to acquire. The training signal comes from minimizing recon-
struction error of the observed (input) image and sparse points by means of rigid warping from other
(adjacent) views of the same 3D scene, e.g., Structure-from-Motion. Any region with sufficiently
exciting textures that are co-visible between the input and adjacent views can be corresponded; while
homogeneous regions and occluding boundaries are ambiguous and cannot be uniquely determined.
Generic regularizers, such as local smoothness, are typically employed to learn the induction bias.
Yet, these regularizers are akin to those in (1); hence, what would be learned is the use of image
for guided propagation. Instead, we consider a different supervision signal that cannot be modeled
by generic regularizers: regions occluded from observed input view, which necessitates a stronger
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inductive bias beyond that of the 2D image, and of the 3D scene. We hypothesize that incorporating
this as a learning objective will lead to higher fidelity predictions for egocentric depth completion.

One may question, given that depth completion only requires estimating depth for visible surfaces,
how tasking the model to predict occluded regions (i.e., what is not visible) could aid in the recon-
struction. Predicting occluded regions facilitates learning representations of the observations in 3D
as opposed to typical 2D feature maps (Wong et al., 2021; Wong & Soatto, 2021; Ma et al., 2019;
Lopez-Rodriguez et al., 2020; Yan et al., 2023) of visible regions. This offers a few advantages:
given the shape of an “object” in 3D, attributing (metric) scale requires only a single sparse point,
allowing one to be less sensitive to the density of the sparse point cloud; additionally, predicting
unseen portions of the 3D scene also facilitates learning higher levels of abstraction, e.g., “objects”,
which improves generalization.

To this end, we propose Occluded Region Completion as Supervision (ORCaS) for unsupervised
depth completion. ORCaS is a simple-yet-effective framework to enable learning from occluded
regions in an input view. Like existing unsupervised depth completion methods, we encode the
inputs as 2D features maps, but predict a probability distribution over depth planes for each feature
vector and broadcast the features into a 3D volume through an orthogonal backprojection. During
training, given an image and sparse depth map of an input view, its adjacent view, and a relative pose
matrix between the two views, we perform a rigid warping to transfer the 3D features from the input
view to the adjacent view. As the 3D features will only populate the co-visible regions between the
two views, the “empty” regions could be empty or occupied by surfaces. Our method learns a set of
parameters that populate the empty feature regions based on their location. When used to modulate
the 3D features belonging to the input view (e.g., a single image and sparse depth map) at test time,
ORCaS serves as an inductive bias and augments the volume based on its context. When the 3D
features are mapped back to 2D, they can be seamlessly decoded to an egocentric dense depth map.

Training ORCaS is straight-forward; like existing unsupervised methods, we also assume access
to image and sparse depth pairs of adjacent (forward and backward) views. However, rather than
only reconstructing input image and sparse depth map from adjacent views, we also reconstruct
the adjacent views by predicting their features from the input view using ORCaS. This naturally
translates to supervision signals in both the latent feature and output spaces, and can be trained end-
to-end in an alternating fashion, where we optimize the entire network in one alternation and only
the parameter of ORCaS in another. While we utilize relative pose between input and adjacent views
during training, we operate with the same input requirements as standard depth completion methods
at inference: an RGB image and sparse depth map.

Our contributions: We propose (1) a novel supervision signal for unsupervised depth comple-
tion – to the best of our knowledge, we are the first to exploit regions occluded from the input
view as means of learning an inductive bias for depth completion. This is made possible by (2) a
simple-yet-effective architecture that enables transformation of features to adjacent views for learn-
ing parameters of ORCaS, which is used to modulate features of input view to improve fidelity. To
do so, we introduce (3) ORCaS loss function to force the learning of the inductive bias in an alter-
nating fashion. (4) Our method improves the state-of-the-art unsupervised depth completion on the
VOID1500 and NYUv2 benchmarks by an average of 8.91%. ORCaS also demonstrates superior
generalization, improving zero-shot transfer from VOID1500 to NYUv2 and ScanNet by an average
of 15.7% and performance on low-density inputs on VOID150 by 31.2%.

2 RELATED WORK

Supervised depth completion approaches utilize the ground truths from range sensors (e.g., ToF,
Light, Stereo cameras and LiDAR). (Huang et al., 2019; Uhrig et al., 2017) craft sparsity-invariant
convolution layers to preserve sparse details. Guided Depth Completion supplies RGB image as a
secondary input. (Jaritz et al., 2018) late-fuses dense RGB and depth. (Li et al., 2020) utilizes multi-
scale processing through a cascade hourglass network. (Yang et al., 2019; Eldesokey et al., 2018;
2020; Qu et al., 2021; 2020) leverge the uncertainty of prediction. (Qiu et al., 2019; Xu et al., 2019;
Zhang & Funkhouser, 2018) use surface normals to refine the depth prediction. (Merrill et al., 2021;
Sartipi et al., 2020; Zuo et al., 2021) capitalize on SLAM/VIO’s camera data. (Krishna & Vandrotti,
2023) takes temporarily into consideration. Affinity-based frameworks are developed to refine depth
map prediction. Spatial Propagation Networks (SPNs) (Liu et al., 2017; Cheng et al., 2018; 2020;
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Park et al., 2020; Lin et al., 2022) utilize learned affinity matrix to propagate the dense depth. (Chen
et al., 2019) presents a 2D-3D feature fusion. (Kam et al., 2022) is capable of presenting a richer
scene topology by lifting 2D feature up to 3D representation. They process 3D volume features
obtained by 3D point cloud and 2D RGB image embedding.

Unsupervised depth completion. (Ma et al., 2019) designs an early fusion, self-supervised training
framework using Perspective-n-Point (PnP) (Lepetit et al., 2009) with Random Sample Consensus
(RANSAC, (Fischler & Bolles, 1981)) and pose estimation to deduce photometric consistency loss.
(Van Gansbeke et al., 2019) proposes the late fusion of global and local branch features to refine
the depth prediction. (Shivakumar et al., 2019) leverages a depth prior learned using supervised
training on an additional dataset. (Yang et al., 2019) learns a prior on shapes found in synthetic
scenes, while (Lopez-Rodriguez et al., 2020) uses low-level features learned from synthetic data as
guidance for the real domain. (Wong et al., 2020; 2021) have proposed lightweight, VIO-compatible
frameworks with dense input depth achieved by Scaffolding (Wong et al., 2020) and Spatial Pyramid
Pooling (SPP, (He et al., 2015)) trained on synthetic scenes (Wong et al., 2021). A line of studies
have utilized 3D feature. (Wong & Soatto, 2021) upgrades SPP to Sparse-2-Depth and imposes an
inductive bias of backprojecting the feature representations onto RGB 3D space using approximated
depths and input camera intrinsic matrix. (Yan et al., 2023) learns relative depth and predicts ab-
solute scale separately. (Jeon et al., 2022) leverages line features rather than point features from
visual SLAM. (Liu et al., 2022) distills knowledge from a blind ensemble of teachers by selecting
the teachers that minimize reconstruction error. (Yu et al., 2023) uses self-attention for encoding and
cross-attention for one-pass depth propagation. (Wu et al., 2024) proposes a framework to enable
use of previously inviable photometric and geometric augmentations.

The unsupervised methods have employed multi-view images to supervise the depth and pose pre-
dictions through reconstruction losses. The reconstruction relies on inverse warping, which projects
the only “visible” points from the adjacent views onto the input view, discarding the occluded re-
gions. In contrast, our method leverages the “invisible” regions-beyond what is available in the input
view-by predicting the occluded region’s feature in the adjacent views from the co-visible regions,
thus improving the predictions for the input view. The adjacent views’ features provide additional
supervision, guiding the prediction of the adjacent view from the co-visible region’s representation
of the input view. This inductive process further improves the proposed method ORCaS’s perfor-
mance on input view.

Multiple Plane Images (MPIs). The previous works utilizing MPI (Tucker & Snavely, 2020; Zhao
et al., 2022; Abdelkareem et al., 2023) shares the similar vein of idea broadcasting and warping 2D
features to discrete 3D planes. While MPIs have been primarily used in synthesizing images, our
method learns an inductive bias with occlusion prediction as a regularizer for depth completion.

3 METHOD FORMULATION

Given an RGB image I : Ω ⊂ R2 → R3
+, where Ω is the image domain, and its synchronized sparse

point cloud z : Ωz ⊂ Ω → R+ projected onto the image plane, the depth completion aims to learn
the function d̂ = f(I, z) that reconstructs a dense depth map d̂ : Ω ⊂ R2 → R+ of the 3D scene.

Unsupervised depth completion leverages photometric reconstruction objectives and sparse depth
consistency as supervision signals. Following recent approaches (Wong et al., 2020; Wong & Soatto,
2021), we assume (1) an input pair of RGB image and associated sparse depth map (It, zt) captured
at input view t and (2) an adjacent view τ , where τ ∈ {t− 1, t+1} provides sufficient parallax and
co-visibility to view t. The reconstruction Ît←τ is obtained by reprojecting image Iτ into the image
It’s view, using the predicted depth d̂t := f(It, zt) and the relative camera poses gτ←t := ρ(It, Iτ )
between adjacent views and the input view, where ρ(·) estimates the camera pose:

Ît←τ (x) = Iτ (πgτ←tK
−1x̄d̂t(x)), (1)

where gτ←t denotes the relative camera pose matrix from time t to time τ , x̄ represents the homo-
geneous coordinates of x ∈ Ω, K ∈ R3×3 is the intrinsic calibration matrix of the camera, and π
denotes the canonical perspective projection. Using this reconstructed image, a depth completion
network fθ minimizes:

argmin
θ

∑
τ∈T

∑
x∈Ω

λIP
(
Ît←τ (x), It(x)

)
+

∑
x∈Ωz

λzψ
(
d̂t(x), zt(x)

)
+ λrR(It, d̂t), (2)
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where P denotes the photometric reconstruction objective that minimizes the L1 difference in pixel
values and structural similarity (SSIM), ψ the sparse depth reconstruction error, and R the smooth-
ness regularization objective that biases the depth map to be piece-wise smooth with discontinuities
aligned with edges in the image, following (Ma et al., 2019; Wong et al., 2020; Wong & Soatto,
2021). λI , λz and λr are the weightings for their respective loss terms.

3.1 MOTIVATION

3D reconstruction is an ill-posed problem; hence, its solution hinges on the choice of regularizers or
assumptions made about the 3D scene. While one can employ generic (hand-crafted) regularizers,
such as local smoothness conditioned on intensity changes within the image Ma et al. (2019); Wong
et al. (2020); Wong & Soatto (2021), regularities are imposed up to the appearance patterns present
in the image: They may correspond to a discontinuity within the 3D scene or just the textures of
an object. Hence, there is a need to force the learning of higher levels of abstractions, such as the
shape of the objects. In order to learn this, we consider the under-constrained task of predicting or
completing occluded regions from an observed view. Because occluded regions, by definition, are
not visible, it necessitates an inductive process, where the underlying latent variable shared across
projections of objects onto 2D images is the 3D object itself. We hypothesize that the inductive bias
learned can be used to enrich the features of observations to aid completion of “missing” points –
which is precisely the task of depth completion.

3.2 ORCAS ARCHITECTURE

To facilitate the learning of this inductive bias, we aim to predict the occluded regions in view t that
correspond to visible regions in view τ , given an input RGB image and sparse depth map in view
t. To achieve this, we pass them through an encoder to extract 2D feature maps. Given the depth
imputed from these feature maps, we (i) backproject them into a 3D volume composed of depth
planes. The 3D volume is then (ii) rigidly warped from the input view t to an adjacent view τ using
the relative pose gτ←t. Note that the warped volume covers only the regions co-visible in both views
t and τ , leaving regions occluded in t “empty” in τ . Naturally, (iii) the task of reconstructing the
empty regions from the co-visible regions emerges as an auxiliary supervision signal. To this end,
(iv) an RGB image and sparse depth map in an adjacent view τ can also be encoded to be directly
used as supervision through our proposed ORCaS loss function during training. The overview of
the ORCaS is illustrated in Fig. 1. We detail these steps below.

(i) Broadcasting 2D features to 3D voxels. To backproject 2D features into a 3D volume, we model
the discrete probability distribution of depth at position x over the D depth planes as d̃[x]. Given
D uniformly distributed depth planes, each with pre-defined depth d̄ based on the lower and upper
bounds of the prediction range, the probability distribution is estimated by applying the learnable
transformation Φ(·) : RC → RD to the 2D feature vector h[x] ∈ RC , followed by the softmax
operation over D dimensions:

d̃[x] = σ(Φ(h[x])), (3)
where σ denotes the softmax operation and h the features obtained after fusing the encodings of
image and sparse depth inputs. The vector output d̃[x] indicates the probability distribution of a
feature vector at location x over the discretized D depth planes. In contrast to 2D backprojection
that produces sparse 3D samples, our broadcasting distributes 2D features to voxels across depth
planes using the estimated probability distribution d̃ following Eq.(3), yielding a full 3D scene rep-
resentation from the input view.

The broadcasted 3D features of the input view t can be directly fed to the 3D convolutional decoder
to predict the dense depth at t, and the network learns from the losses computed with the prediction
of the input view as the conventional depth completion methods. This process is straightforward
since the encoded features, including the features from different levels of skip connections, are
aligned with the same viewpoint as the input view.

3.3 LEARNING FROM OCCLUDED REGIONS

The main challenge lies in learning to predict the adjacent view τ , where the encoder features are
captured from the input view t. To address the difference in perspectives of t and τ , we first warp
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Figure 1: Overview of Occluded Region Completion as Supervision (ORCaS). Inference of ORCaS
for the input view only requires a single input view (t), and an identity camera pose matrix. Training
ORCaS involves two different views (input view t, and target view τ ) and their relative camera pose
gτ←t. The input view 3D feature is warped to align with the adjacent view. Empty regions due
to occlusion are predicted by the ConteXt layer, and the inductive bias is learned by minimizing
ORCaS loss, which leverages the extracted 3D feature from the adjacent view inputs.

the view from t to τ and then complete the empty regions that were occluded in t but are visible in
τ . Learning to complete these empty regions in τ results in an inductive bias.

(ii) 3D feature warping is feasible under the assumptions that the scene is stationary. 3D warping
transfers the co-visible features from a view t to τ , by aligning them spatially to the adjacent view.
Given the 3D features Ft from the input view t and the relative camera pose gτ←t between views t
and τ , and the depth planes with the predefined depths d̄, the 3D feature warping operation can be
denoted as:

Fτ←t(x) = Ft(π
′gt←τ X̄), (4)

where X̄ are homogeneous 3D coordinates of the 3D volume that will be projected to x by the
canonical projection π′ assigning features to the nearest voxel location.

(iii) Predicting the adjacent view feature from the contexts. The warped 3D feature Fτ←t con-
tains empty voxels (i.e., occluded regions from t, presented in τ ). To learn an inductive bias by
predicting the features in the empty voxels, we propose a Contextual eXtrapolation (ConteXt) block
as a local context descriptor that extracts a context feature using Fτ←t along with nearby co-visible
regions and their positions, to predict occluded features that appear in the adjacent view.

To derive the context feature from nearby co-visible regions, we propose a context pooling operation,
denoted as CP (·), which aggregates non-empty voxel features through a masked average pool, then
upsamples the pooled output by repetition to recover the original feature resolution. Consider each
non-overlapping pooling region R of size ku × kv × kw. The context derived after the proposed
context pool can be denoted as:

CP (Fτ←t)(u, v, w) = U

 ∑
(u,v,w)∈R

M ⊙Fτ←t(u, v, w)

M(u, v, w) + ϵ

 , (5)

where M is defined by M(x) = 1{Fτ←t(x)̸=0}. U represents the upsampling operation, repeating
the pooled feature within the pooling regions by factors ku, kv, and kw. After context pooling, the
context feature from Eq. 5 is added to the empty regions of the warped feature Fτ←t:

F
′

τ←t = Fτ←t + M̄ ⊙ CP (Fτ←t), (6)
where M̄ denotes the inverse mask of M , which indicates the positions of originally empty voxels
in the warped feature with 1.

To condition the prediction of the adjacent feature on local voxel positions, we encode the 3D si-
nusoidal positional embedding ϕ with F ′τ←t. For a single spatial dimension of u the positional
embedding PEu is illustrated as:

PEu(2n) = sin
( u

ε2n/N

)
, PEu(2n+ 1) = cos

( u

ε2n/N

)
, (7)
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where ε is the frequency constant, and N is the positional embedding dimension. Then, the 3D
sinusoidal positional embedding in (u, v, w) is:

ϕ(u, v, w) = concat(PEu, PEv, PEw) ∈ R3N . (8)

Finally, we estimate the adjacent view feature F̂τ from the local contexts via a linear projection
layer g(·), which fuses the non-empty region’s feature context and the positional context:

F̂τ = g(F
′

τ←t, ϕ, M̄). (9)

Here, F ′τ←t includes the global context extracted by the proposed ConteXt pooling, and ϕ works as
a local positional bias. Additionally, we include the inverse mask M̄ . While the input view at time t
provides features for the co-visible regions, completing the features in the occluded regions requires
an inductive bias introduced through an additional supervision signal learned by the network.

When ConteXt operates on input view features, F ′t←t is identical to Ft; however, the learned posi-
tional bias ϕ is used to augment these features to modulate Ft.

(iv) Guiding occluded region completion. Given the unsupervised learning framework, obtaining
a supervision signal for the inductive bias through predictions is a natural approach. However,
training signals derived from the input data are often limited in quality: they may be sparse (i.e.,
sparse depth consistency loss) or noisy due to accumulated errors in both estimated camera pose and
the predictions (i.e., image reconstruction loss). In this work, we utilize adjacent view features Fτ

as supervision. The loss of ORCaS serves as an auxiliary supervision signal for training ConteXt to
learn inductive bias. Specifically, ORCaS leverages synchronized input pairs from the adjacent view
to infer its complete features. The proposed loss, ℓORCaS, enforces consistency between the inferred
adjacent view features F̂τ and the encoded adjacent view features, Fτ . Formally, this loss function
that enforces consistency between Fτ and F̂τ is denoted as:

ℓORCaS-p =

X∑
x

||F̂τ [x]− sg(Fτ [x])||p, (10)

where || · ||p denotes the L-p norm, sg(·) indicates the stop gradient operation, and X denotes the
3D coordinates in the 3D features.

To predict the adjacent view τ , where relative camera pose gτ←t is non-identity, ConteXt can be
applied to the features from both the bottleneck and skip connections to align the viewpoint at view
t to the view τ . Importantly, the goal of learning from occlusion is not necessarily to produce
high-quality predictions for the adjacent view τ , but to learn an informative inductive bias that
enhances the prediction of the input view in t, which we can verify by visualizing the adjacent view
predictions, as discussed in Sec. 5.

Predicting the depth from 3D features. Once the 3D features are extracted, they are projected
onto a 2D feature space to predict the depth for the adjacent view. To do this, we vectorize the 3D
features v over the depth planes in each location of the image coordinate x ∈ Ω, denoted as:

r[x] = vec(F̂τ [x]) ∈ RC·D, (11)

where vec(·) denotes the vectorization operation, C is the channel dimension, and D is the number
of depth planes. The vectorized feature v is directly fed into the 3D-to-2D projection function
P : RC·D → RD, which determines each depth plane’s contribution in the 2D features. Next, for
each location x, these 3D features are weighted by softmax function σ over P (r[x]). Each element
σ(P (r[x]))[d] indicates the contribution of the RC vector on the d-th depth plane. The 3D-to-2D
projection to the 2D features reads:

F̂t[x] =

D∑
d=1

F̂t[x][d] · σ(P (r[x]))[d], (12)

where F̂t[x][d] refers to the estimated feature at location x and depth plane d. The resulting F̂t ∈
RC×H×W is the predicted 2D feature map. Finally, the 2D depth d̂t is predicted by the output layer
o(·), which can be formulated as d̂t = o(F̂t).

6
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Table 1: Quantitative results on VOID1500 and NYUv2 test sets. ORCaS outperforms the baselines
across all metrics. Compared to (Wu et al., 2024), we improve by an average of 8.91%.

VOID1500 NYUv2

Method MAE ↓ RMSE ↓ iMAE ↓ iRMSE ↓ MAE ↓ RMSE ↓ iMAE ↓ iRMSE ↓
SS-S2D (Ma et al., 2019) 178.85 243.84 80.12 107.69 - - - -

DDP (Yang et al., 2019) 151.86 222.36 74.59 112.36 - - - -

Struct-MDC (Jeon et al., 2022) 111.33 216.50 - - 141.87 245.55 - -

VOICED (Wong et al., 2020) 85.05 169.79 48.92 104.02 127.61 228.38 28.89 54.70

ScaffNet (Wong et al., 2021) 59.53 119.14 35.72 68.36 117.49 199.31 24.89 44.06

KBNet (Wong & Soatto, 2021) 39.80 95.86 21.16 49.72 105.76 197.77 21.37 42.74

DesNet (Yan et al., 2023) 37.41 93.31 19.17 45.57 103.42 188.26 21.44 38.57

AugUndo (Wu et al., 2024) 33.32 85.67 16.61 41.24 96.73 188.70 18.95 39.18

ORCaS (Ours) 30.90 80.12 15.34 37.19 86.50 158.10 18.27 35.39

Image Sparse depth Ground truth

KBNet AugUndo ORCaS

Figure 2: Qualitative results on VOID1500. ORCaS improves on homogeneous regions (a leather
sofa) in left; and discontinuities (monitors and desks) in right.

4 EXPERIMENTS

Results on VOID1500. We present the quantitative results of ORCaS on VOID1500 compared to
unsupervised depth completion baseline models in Tab. 1. By using an auxiliary supervision signal
from the adjacent views in ORCaS, we observe an improvement across all evaluation metrics of
62.34% over VOICED (Wong et al., 2020), 45.87% over ScaffNet, 22.87% over KBNet (Wong &
Soatto, 2021), 17.68% over DesNet (Yan et al., 2023), and 7.81% over AugUndo (Wu et al., 2024),
which is the current state of the art. These gains are primarily driven by a key innovation in ORCaS’s
design: the inductive bias in the ConteXt block learned by predicting adjacent view features as an
auxiliary supervision signal, enabling more accurate depth prediction.

Fig. 2 illustrates the qualitative results on the VOID1500 dataset, emphasizing the strengths of OR-
CaS in both homogeneous regions and areas with sharp depth discontinuities. In the left example,
ORCaS demonstrates its ability to accurately complete depth in smooth, textureless regions, outper-
forming the KBNet and AugUndo baselines by leveraging the inductive bias learned from ORCaS
loss. In such large regions with a relatively greater number of sparse depth points, ORCaS is able to
learn depth from various views, improving its generalization abilities in large, homogeneous regions
compared to baseline methods that learn from a single view. In the right example, ORCaS notably
outperforms the baselines in handling depth discontinuities, such as object boundaries and edges.
These challenging regions are often problematic due to the sparsity of point clouds, but ORCaS’s
training strategy—aligning features across views and predicting occluded regions with inductive
biases—enables it to predict sharper transitions and more accurate depth in these critical regions.

Results on NYUv2. We present the quantitative results of ORCaS on NYUv2 compared to unsu-
pervised depth completion baseline models in Tab. 1. we observe an improvement across all metrics
of 33.76% over VOICED (Wong et al., 2020), 23.33% over ScaffNet, 17.49% over KBNet (Wong
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Image Sparse depth Ground truth

KBNet AugUndo ORCaS

Figure 3: Qualitative results on NYUv2. ORCaS improves on homogeneous surfaces (a smoothness
of the countertop) in the right; and discontinuities in the left (a chair) and right (windows).

& Soatto, 2021), and 13.85% over DesNet (Yan et al., 2023), 10.01% over AugUndo (Wu et al.,
2024). NYUv2 contains diverse scenes with clutter. Within this challenging scenario, a strong prior
is necessary to infer the whole 3D scene. This is precisely the strength of ORCaS, which learns an
inductive bias by predicting adjacent views from a single input view. This is evident in the improve-
ment over the state of the art, AugUndo. The qualitative improvements are shown in Fig. 3, where
we consistently improve over existing methods as seen by the overall darker (lower) error maps,
especially in the homogeneous regions and discontinuous regions, and this may be attributed to the
ORCaS’s ability to extrapolate using the contextual features.

Ablation study. We ablate the each component in ORCaS in Tab. 2. The base network (Row
1) is KBNet with a transformer block at the bottleneck. The 3D broadcasting (Row 2) improved

Table 2: Ablation study on VOID1500 test set. 2D-3D broadcast denotes 2D-
to-3D broadcasting, Warping refers to 2D or 3D warping with relative camera
pose, and ℓORCaS refers to ORCaS loss.

Method 2D-to-3D Warping ℓORCaS MAE ↓ RMSE ↓ iMAE ↓ iRMSE ↓
Base model 35.31 91.32 16.61 41.13

ORCaS

✓ 33.56 86.72 16.46 41.02
✓ 52.60 125.88 28.12 66.30

✓ ✓ 40.52 98.87 20.61 45.51
✓ ✓ 36.37 90.95 17.81 43.18

✓ ✓ ✓ 30.90 80.12 15.34 37.19

it by 2.79%. In Row 5, we
choose to warp 3D features
(with the depth prediction
directly from 2D feature)
and warp with ORCaS loss.
This is worse than the pro-
posed 3D warping with-
out ORCaS loss (Row 3),
which is detrimental. No-
tably, ORCaS loss accounts
for 21.6% gain (Rows 4,6) and finally surpasses the Row 1 and 2, which demonstrates the effective-
ness of ORCaS loss to learn an inductive bias from completing the occluded feature. This validates
the necessity of ORCaS loss to connect the separate components (2D-to-3D broadcast, 3D warping
with relative camera pose) to learn from the occlusion as supervision.

Qualitative results of the adjacent view predictions. While ORCaS’s objective is to learn an
inductive bias to improve an egocentric depth prediction, we also present the qualitative results on
the adjacent view predictions on VOID 1500 test dataset to evaluate the learned inductive bias in
Fig. 4. The relative camera poses between the input and the adjacent views are achieved by the
pose network finetuned on the test dataset while the depth network being frozen. The evaluation on
adjacent views MAE of 79.43, RMSE of 159.82, which outperforms four baselines in Tab. 1. Fig.
4 shows that ORCaS indeed learns an informative inductive bias to predict an adjacent view that
aligns well to its scene, depsite not having access.

Zero-shot Transfer and Sensitivity on Sparsity. We evaluate the zero-shot capability of ORCaS
trained on VOID1500 to NYUv2 and ScanNet, and conduct a sparsity study on VOID150. The
results are presented in Tab. 3. For zero-shot, ORCaS shows an average improvement of 12.1%
on NYUv2 and 19.2% on ScanNet, compared to the current state-of-the-art model (AugUndo (Wu
et al., 2024)). ORCaS predicting the adjacent views from a single view greatly enhances the general-
izability to both NYUv2 and ScanNet. Learning to predict the occluded region requires an inductive
bias to the single-view feature to represent not only input views but also adjacent views, where the
inductive bias is necessary to infer the shapes populating novel datasets. For VOID150 (10× reduc-
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Prediction on t at time tPrediction on t-1 at time t Prediction on t+1 at time t Prediction on t at time tPrediction on t-1 at time t Prediction on t+1 at time t

Figure 4: Qualitative results of ORCaS’s predicted adjacent views on VOID1500 test.
Table 3: Zero-shot transfer from VOID1500 to NYUv2 and ScanNet, and Sensitivity study on Spar-
sity from VOID1500 to VOID150.

Method NYUv2 ScanNet VOID150

MAE ↓ RMSE ↓ iMAE ↓ iRMSE ↓ MAE ↓ RMSE ↓ iMAE ↓ iRMSE ↓ MAE ↓ RMSE ↓ iMAE ↓ iRMSE ↓
VOICED 2240 2427 211 238 1562 1764 270 311 209.59 329.71 130.45 229.79

FusionNet 132.24 236.16 28.68 61.87 109.47 206.33 55.45 122.52 158.03 284.23 113.67 223.41

KBNet 138.31 257.99 25.48 51.77 103.05 217.12 36.23 76.55 149.13 306.30 70.74 136.75

AugUndo 118.60 231.13 22.06 47.07 82.53 175.30 29.87 63.78 117.93 239.49 58.13 112.78

ORCaS 107.68 197.48 20.05 39.85 68.86 132.93 25.23 50.77 81.89 163.06 40.16 77.38

tion), the method demonstrates its superior robustness, with average metric improvements of 31.2%
over the state-of-the-art model (AugUndo). Notably, the most significant improvements over the
baselines are observed in the RMSE and iRMSE metrics, with 31.9% and 31.4% improvements re-
spectively. Improvements in MAE and iMAE are also substantial, at 30.6% and 30.9%, respectively
over AugUndo. The robustness of the proposed approach under varying levels of input point cloud
sparsity can be attributed to the inductive bias learned from the occluded regions. These weights for
completing the occluded view are shared across both the input and adjacent views’ features, Ft and
F̂τ , which force the model to learn the underlying scene structure and enable more effective feature
reconstruction not only when populating missing regions, but also when the input point clouds are
more sparse (yielding also sparser features). Our learning mechanism naturally allows ORCaS to
perform completion for extremely sparse point clouds of only 150 point (0.05% of pixels).

5 DISCUSSION AND LIMITATIONS

Although the task of depth completion focuses on estimating depth values for visible surfaces,
our work demonstrates that incorporating features in 3D space—predicting beyond visible sur-
faces—can lead to significant improvements in accuracy. Notably, at inference time, our network
operates under the same common setting as standard depth completion methods, relying solely on a
single RGB image and sparse depth input. We attribute the observed performance gains to the induc-
tive biases the model learns by mapping features into 3D space and leveraging occlusion knowledge
derived from multiple views of the same scene during training, enabled by camera calibration.

This finding is particularly intriguing because, in principle, depth completion does not necessarily
require learning. A simple heuristic approach, such as segmenting an image into local surfaces (e.g.,
using superpixels) and assigning depth values through sparse depth interpolation, could accomplish
the task. However, learning-based methods consistently dominate the benchmarks we test on, rais-
ing the question: what additional “hints” do depth completion networks uncover during training
beyond simply assigning depth values to surfaces? Our results provide a compelling perspective on
this question. By integrating 3D feature mappings, the network acquires a higher-level understand-
ing of the scene—capturing semantic and geometric contexts that go beyond surface-level depth
interpolation. This enriched understanding serves as a robust prior, improving the accuracy and
generalization of depth estimation as validated by improved performance in the experiments.

Limitations. While ORCaS achieves state-of-the-art performance on depth completion benchmarks,
the fundamental reliance on intrinsic calibration may cause sensitivity to noise in these parameters.
This dependency could limit ORCaS’s applicability in real-world scenarios where camera calibration
is error-prone or even unavailable. While from the egocentric view, we observe performance gain,
there is no barring that the synthesized occluded view will be free of artifacts.
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ETHICS STATEMENT

The research in this paper focuses on depth completion for multimodal 3D reconstruction. The
intended applications are for beneficial technologies such as autonomous vehicles, robotics, and ex-
tended reality (XR). The work was conducted using publicly available datasets and does not involve
human subjects or personally identifiable information.

REPRODUCIBILITY STATEMENT

We provide the methodology in Section 3 of the main paper and the implementation details in Ap-
pendix D. This will be sufficient to reproduce the results. Furthermore, we will release the code and
the pretrained weights.
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A FURTHER ORCAS ARCHITECTURE DETAIL

Upsampling on the prediction. Unlike the previous methods, ORCaS utilizes dense 3D convolution
operations to process the broadcasted feature, which poses a huge computational cost. To address
the computational overhead from 3D convolution, we predict the output depth at 1/8 of the original
resolution to mitigate the computational overhead, and the prediction is upsampled to the original
resolution by the convex combination of the prediction in location x and its eight neighbors of
location x.

With an upsampling factor of α, we apply a strategy similar to (Teed & Deng, 2020). This method
predicts an upsampling mask of dimensions α× α× 3× 3 from 2D feature Ft[x]. The upsampling
process refines the location x by α × α using a weighted combination of predictions around x,
incorporating the eight neighboring locations to enhance accuracy.

B DATASETS

We evaluate the proposed Occlusion Completion Network (ORCaS) with the two unsupervised
depth completion benchmarks, VOID (Wong et al., 2020) and NYUv2 (Nathan Silberman & Fergus,
2012).

VOID (Wong et al., 2020) consists of synchronized RGB images and sparse depth maps with 640×
480 resolution. We use VOID-1500, 104 and 8 sequences for training and testing with varying
camera motion and ≈ 1500 points of a sparse point cloud per instance. The testing set comprises 800
frames. We follow the evaluation protocol of (Wong et al., 2020), where the output depth is assessed
against the ground truth points within the range between 0.2 and 5.0 meters. For computational
efficiency, two adjacent views are sampled: the frames 10 steps forward and backward from the
current frame, ensuring co-visible points between them. We utilize the same number of datapoints
for occlusion.

NYUv2 (Nathan Silberman & Fergus, 2012) consists of 372K synchronized RGB images and sparse
point clouds for 464 indoor scenes, with 640×480 resolution. The training and testing split consists
of 249 and 215 scenes, respectively. Following the evaluation protocol in (Wong et al., 2020),
ORCaS is evaluated on the test set of 654 images with the ≈ 1500 points from the depth map
sampled by Harris corner detector (Harris et al., 1988) to generate the sparse depth produced by
SLAM/VIO (Wong et al., 2020) where output depth is evaluated where ground truth exists between
0.2 and 5.0 meters. For the same as VOID, the adjacent views are sampled 10 frames before and
after the current frame. The two adjacent views are selected based on the availability of sparse depth
input, where the instances with the adjacent view’s input data are discarded. After processing the
dataset, 400k samples are utilized to train ORCaS, whereas the other models are trained with 409k
samples.

C COMPUTATIONAL COST AND INFERENCE SPEED

On VOID1500 with an input size of 640 × 480, during inference, ORCaS takes 17.5ms per image
(57 FPS). As a reference, KBNet takes 8.6ms per image (115 FPS). Both surpass the real-time
threshold of 30 FPS on an Nvidia RTX 3080 GPU. The trade-off is that ORCaS performs 8.91%
better than AugUndo over the whole metrics on two depth completion benchmarks, VOID1500 and
NYUv2. ORCaS has 24.9M parameters compared to KBNet’s 6.96M. However, this amounts to
only a 0.34GB difference in GPU memory usage for inference (ORCaS takes 2.35GB memory,
KBNet takes 2.01GB), which can easily be handled by commercial GPUs. Also, to validate the
baseline with similar number of parameters, we conduct the experiment with a state-of-the-art model
(AugUndo (Wu et al., 2024)) with doubled channel size, which amounts to 28.3M parameters. The
result shows that even with 12% fewer parameters, ORCas improves 5.16% in MAE, and 6.00% in
RMSE on VOID1500.
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Table 4: Evaluation of adjacent views predicted
by ORCaS on the VOID 1500 test set.

Method MAE ↓ RMSE ↓ iMAE ↓ iRMSE ↓
VOICED 85.05 169.79 48.92 104.02

ORCaS-adj-test 79.43 159.82 62.01 91.21

Table 5: Comparison of the VOID1500 test re-
sult to a state-of-the-art method, AugUndo×2.

Method # Param MAE ↓ RMSE ↓ iMAE ↓ iRMSE ↓
AugUndo (×2) 28.3M 32.58 85.24 16.01 40.19
ORCaS 24.9M 30.90 80.12 15.34 37.19

D IMPLEMENTATION DETAILS

ORCaS training. We implemented our method based on the open-sourced code in (Wong & Soatto,
2021) in Pytorch. ORCaS model is optimized by Adam (Kingma & Ba, 2015) with β1 = 0.9 and
β2 = 0.999. For VOID, we used a batch size of 12, with a random crop size of 416 × 512. We
trained ORCaS for 40 epochs with the initial learning rate of 5×10−5 for 20 epochs and 2×10−5 for
20 epochs. We utilized the number of depth planes of D = 8. For NYUv2, a batch size of 12 and a
random crop size of 416× 512 has been utilized. The sparse depth samples are processed following
the open-sourced code in (Wong & Soatto, 2021), which generates a total of 409,343 samples. We
trained ORCaS for 12 epochs with the initial learning rate of 1 × 10−4 for 4 epochs, 5 × 10−5 for
an epoch, and 2 × 10−5 for 2 epochs, and 5 × 10−6 for 5 epochs sequentially. We utilized D = 8
depth planes. ORCaS followed the augmentation strategy of AugUndo (Wu et al., 2024).

Details in sampling adjacent frames. Following (Wong & Soatto, 2021), the adjacent views are
sampled from frames 10 before and 10 after the input frame. Given that VOID and NYUv2 have
approximately 30 FPS frame rate, the forward and backward adjacent views are ≈0.33 seconds off
from the input view. Note that the adjacent view is generated from the input frame by warping with
the input camera pose and inferring the adjacent features. As discussed in the main paper, the adja-
cent view prediction is not free from artifacts. While our training method affords us the capability
of predicting depth maps of different views using inputs only from a single input view, the induc-
tive bias learned through ORCaS also improves generalization to unseen datasets and robustness to
various input point cloud sparsity levels.

E ADDITIONAL KITTI EXPERIMENTS

Table 6: Quantitative result on the KITTI DC
test set. ORCaS outperforms the previous
SOTA unsupervised depth completion method
by 3.44% across all metrics.

KITTI DC

Method MAE ↓ RMSE ↓ iMAE ↓ iRMSE ↓

VOICED 318.59 1213.60 1.30 3.72
FusionNet 285.55 1174.47 1.20 3.45
AugUndo 256.37 1114.53 1.01 3.13
ORCaS 253.17 1053.34 1.01 2.92

The quantitative result of ORCaS on the KITTI
depth completion test set is shown in Tab. 6.
We observe an improvement across all metrics
of VOICED by 19.39%, FusionNet by 13.32%,
and AugUndo by 3.36%, where we constantly
improve over all metrics. The improvement can
be attributed to the key strength of ORCaS: its
ability to learn an inductive bias by predicting oc-
cluded adjacent views and their relative camera
poses from a single input.

F EVALUATION METRICS

The evaluation metrics used for unsupervised
depth completion benchmarks are defined in Tab. 7. The depth completion models are evaluated
with Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), inverse Mean Absolute Er-
ror (iMAE), and inverse Root Mean Squared Error (iRMSE).

G FURTHER DISCUSSIONS

Sensitivity Study on Sparsity. In Table 8, we present a sensitivity analysis on the impact of input
point cloud sparsity. The VOID500 dataset contains approximately 500 sparse input point clouds.

For VOID500 (upper table, 3× reduction), the proposed method achieves average improvements
across all metrics of 20.3%, 28.5%, 32.1%, 48.4%, and 57.7% compared to AugUndo, DesNet,
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Table 7: Error metrics for depth completion. d denotes ground truth, and the prediction d̂ is
evaluated where d values are available for a given image.

Metric Definition

MAE 1
|Ω|

∑
x∈Ω |d̂(x)− d(x)|

RMSE
(

1
|Ω|

∑
x∈Ω |d̂(x)− d(x)|2

)1/2
iMAE 1

|Ω|
∑

x∈Ω |1/d̂(x)− 1/d(x)|
iRMSE

(
1

|Ω|
∑

x∈Ω |1/d̂(x)− 1/d(x)|2
)1/2

Table 8: Quantitative results on VOID500. The depth completion models are trained on VOID1500
and are tested on VOID500 with different input point cloud sparsity, ORCaS shows average im-
provement over the baselines of 37.4% on VOID500 across every metric under varying sparsity.

VOID500

Method MAE ↓ RMSE ↓ iMAE ↓ iRMSE ↓
VOICED 137.01 235.80 71.36 130.63

FusionNet 97.73 194.32 58.65 122.95

KBNet 78.44 178.17 37.56 83.43

DesNet 74.89 170.32 35.62 78.30

AugUndo 66.97 151.55 31.63 71.90

ORCaS 54.05 119.69 25.69 56.04

Table 9: Sensitivity study on camera calibration noise. The calibration noise of 10% and 30% are
assumed and evaluated on VOID1500 test set.

ORCaS, ±10% noise, VOID ORCaS, ±30% noise, VOID

f 31.52 80.62 16.10 38.38 33.92 82.37 16.58 42.89
c 30.94 80.19 15.37 37.25 31.18 80.61 15.56 37.59
f, c 31.64 80.75 16.23 38.59 36.71 85.49 17.60 47.83

KBNet, FusionNet, and VOICED, respectively. Notably, the most significant improvements are
observed in the inverse metrics, with 39.7% and 39.0% improvements in iMAE and iRMSE, high-
lighting enhanced performance on closer surfaces. Improvements in MAE and RMSE are also sub-
stantial, at 36.7% and 34.2%, respectively. The robustness of the proposed approach under varying
levels of input point cloud sparsity can be attributed to its inductive bias learned by predicting oc-
cluded region’s features. This weight for predicting the occluded view is shared across the features
of both the input view and adjacent view, Ft and F̂τ , which forces the model to learn the under-
lying scene geometry and enables it to effectively reconstruct features and populate sparse regions.
Our learning mechanism naturally allows ORCaS to perform completion for extremely sparse point
clouds of only 500 point (0.16% of the image space) as illustrated in the bottom section of Tab. 8.

Sensitivity Study on Camera Calibration Noise. We assume noise in focal length (f ) and principal
point offset (cx, cy). We scale the intrinsics by {±10%, ±30%} to simulate calibration error. Tab.
9 shows ORCaS is tolerant of noise up to 30%, which is beyond typical calibration error (e.g.,
≈0.6-1.1% using [c]), where performance begins to degrade.

Visualization on the depth plane probability. We provide the visualization of the predicted depth
plane in Fig. 5. The visualized map presents the predicted depth plane with the highest probability.

Robustness to Dynamic Objects. Our training data includes dynamic objects, primarily humans.
Their movement can create inconsistencies when features are warped under a static-world assump-
tion. However, ConteXt is trained to correct these artifacts. When an object moves, causing its
features to be warped to an incorrect position, ConteXt modulates them to match the object’s actual
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Image Output Depth Plane

Figure 5: The visualization of depth planes.
Table 10: Study on the effect of the moving object masking during training.

VOID

Setting MAE ↓ RMSE ↓ iMAE ↓ iRMSE ↓
ORCaS 30.90 80.12 15.34 37.19

w/o moving 30.84 80.34 15.20 37.31

appearance as observed in the adjacent view. An alternative explored by existing work is masking
moving objects, which we tested in Tab. 10. The difference is marginal.
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