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Abstract

Instruction-following is crucial for building AI agents with large language models
(LLMs), as these models must adhere strictly to user-provided guidelines. How-
ever, LLMs often fail to follow even simple instructions. To improve instruction-
following behavior and prevent undesirable outputs, we need a deeper understand-
ing of how LLMs’ internal states relate to these outcomes. Our analysis of LLM
internal states reveal a dimension in the input embedding space linked to success-
ful instruction-following. We demonstrate that modifying representations along
this dimension improves instruction-following success rates compared to random
changes, without compromising response quality. This work provides insight into
the internal workings of LLMs’ instruction-following, paving the way for reliable
LLM agents.

1 Introduction

Instruction-following is critical in the development of AI agents with LLMs as these models must
adhere to constraints and guidelines to ensure safe and trustworthy interactions.[Li et al., 2024a,
Wang et al., 2023, Tu et al., 2024]. For example, an LLM that is building a personal fitness plan for a
user with knee problems that has been instructed to avoid risky exercises must follow the instructions
and not recommend any exercises that require knee-intensive movements that could lead to injury.

However, LLMs often fail to follow even non-ambiguous and simple instructions [Zhou et al., 2023,
Qin et al., 2024, Xia et al., 2024, Kim et al., 2024, Yan et al., 2024] like avoiding including keywords
or following formatting guidelines. GPT-4 achieves around an 80% success rate on IFEval[Zhou
et al., 2023], a instruction-following benchmark dataset, while smaller models have success rates
around 30% to 40%.

To gain a better understanding of instruction-following outcomes, we analyze the internal state of
LLMs, focusing on the differences in representations between success and failure cases of instruction-
following across different tokens and layers. Our approach involves disentangling the effects of tasks
and instructions in input prompts, where the instruction specifies the action (e.g., "please do not
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Figure 1: Overview of the paper. Left: an example of success and failure cases in instruction-
following of personal AI agents. Middle: training a linear probe on representations from success
and failure cases, and testing the model on unseen tasks and instruction types. Right: representation
engineering to shift failure cases into success.

use keywords") and the task provides the context for executing the instruction (e.g., "please write a
resume"). Our analyses identified a dimension within the input embedding representation space that
is associated with instruction-following. Using a linear probe, we demonstrate that this dimension can
generalize to unseen tasks, indicating that it captures a fundamental aspect of instruction-following in
LLMs. In addition to identifying this dimension, we apply representation engineering techniques to
modify failure cases, with the aim of converting them into successes.

This work sheds light on the underlying mechanisms of instruction-following in LLMs by uncovering
a critical dimension in the model’s representation space. These insights not only enhance our
understanding of LLM behavior but also offer practical approaches to improving instruction adherence,
bringing us closer to developing more reliable and trustworthy AI agents.

2 Do LLMs internally know when they succeed or fail to follow instructions?

2.1 IFEval-simple

The IFEval dataset[Zhou et al., 2023] comprises 23 instruction types, with each instruction type paired
with a distinct set of tasks — approximately 20 tasks per instruction type. Because of the relatively
small number of tasks per instruction type, internal model states resulting from these prompts contain
a mix of both instruction-following and task-specific details.

To isolate the dimension related specifically to instruction-following, we generated a modified version
of the IFEval data, called IFEval-simple. First, we selected 5 instruction types that are likely to
be used in real-world applications for AI agents. For example, ensuring that certain keywords are
included or excluded, generating responses with placeholders, and finishing responses with specific,
pre-defined sentences. Second, we generated 100 tasks using GPT-4, similar to the original tasks
in IFEval, where each instruction type is paired with the same set of 100 tasks. By pairing each
instruction type with the same set of 100 tasks, we ensure that linear probes trained on the model’s
representations are more likely to capture information solely related to instruction-following, without
the confounding influence of varying tasks.

2.2 Methods

Representations We analyze four language models: LLaMA-2-7B-chat-hf[Touvron et al., 2023],
LLaMA-2-13B-chat-hf[Touvron et al., 2023], Mistral-7B-Instruct-v0.3[Jiang et al., 2023], and Phi-
3-mini-128k-instruct[Abdin et al., 2024]. For each model, we look at the representations between
tokens – the first, middle, and last tokens, representing the LLMs before, during, and after they
generate responses. We also examine three layers (early, middle, last) to identify when and where
instruction-following information is more encoded in the model’s internal state.
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Model Task generalization Instruction-type generalization
Early token Middle token Last token Early token Middle token Last token

LLaMA-2-chat-7B (14 lyr) 0.77 ± 0.04 0.55 ± 0.07 0.79 ± 0.03 0.53 ± 0.03 0.50 ± 0.07 0.52 ± 0.05
LLaMA-2-chat-13B (16 lyr) 0.83 ± 0.03 0.58 ± 0.06 0.81 ± 0.03 0.56 ± 0.06 0.58 ± 0.06 0.53 ± 0.03
Mistral-7B-inst-v0.3 (14 lyr) 0.74 ± 0.02 0.54 ± 0.05 0.74 ± 0.02 0.50 ± 0.05 0.51 ± 0.05 0.51 ± 0.05
Phi-3-mini-128k (14 lyr) 0.88 ± 0.03 0.56 ± 0.04 0.66 ± 0.03 0.55 ± 0.04 0.48 ± 0.03 0.50 ± 0.03

Table 1: Task and Instruction Generalization: AUC scores based on a 70-30 train-test split for task
generalization with unseen tasks, and average AUC scores from leave-one-out experiments across
different instruction types for instruction generalization. The standard deviation is calculated across 5
runs with different seeds for task generalization, and across inst types for inst-type generalization.
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Figure 2: PCA plot of early-layer representations across four LLMs on three instruction types within
the keyword category

Linear Probes We train linear probes on the representations to identify the instruction-following
dimension. A simple linear model was trained on instruction-following success outcome, optimized
for 1000 epochs with AdamW, a 0.001 learning rate, 0.1 weight decay.

Train-test split We assess task generalization and instruction-type generalization by splitting the
data into training and testing sets, as shown in Figure 1, We measure the Area Under the Receiver
Operating characteristic Curve (AUC) for each model on unseen tasks and instruction types.

2.3 Results and Discussion

The task generalization results in Table 1 show that the linear probes perform well across different
tasks with the same instruction type, with AUC scores ranging from 0.70 to 0.80. The principal
components analysis (PCA) in Figure 2 for three instruction types in the keyword category shows
that the data points are almost linearly separable in those scenarios. Task generalization of the probe
is relevant because of a consistent set of instructions is used in personal AI agents. For example,
the identified instruction-following dimension would be relevant for an instruction to avoid certain
keywords across tasks – for example, in creating a warm-up plan without knee-intensive exercises or
sending an encouraging message without mention of weight loss.

The first and last tokens—representing the model’s state before and after response generation—show
high AUC scores, implying that instruction adherence may be determined early in model processing.
In contrast, middle tokens have lower scores. This may be because the model is more focused more
on token generation than on the instruction in the middle. Early layers slightly outperform middle
and last layers (Full results in Appendix).

However, there is no clear generalization across unseen instruction types, with AUC scores around
0.50 to 0.55, close to chance. This indicates that models struggle to generalize instruction-following
across different instruction types, implying the absence of a ‘global’ instruction-following dimension
that can be leveraged regardless of the instruction type, which may be due to varying representation
geometries.

3 Representation Engineering (RE)

We evaluate whether representation engineering [Marks and Tegmark, 2023, Zou et al., 2023] can be
used with the aim of converting instruction-following failure cases into successful ones to validate
the significance of a identified instruction-following dimension.

3



Model Original SR Inst-follow SR Random SR Original QR Inst-follow QR Random QR
LLaMA-2-7B-chat 0.57 ± 0.00 0.59 ± 0.00 0.55 ± 0.00 0.87 ± 0.09 0.87 ± 0.08 0.85 ± 0.10
LLaMA-2-13B-chat 0.61 ± 0.00 0.65 ± 0.02 0.54 ± 0.12 0.92 ± 0.00 0.94 ± 0.00 0.91 ± 0.02
Mistral-7B-Inst 0.58 ± 0.00 0.64 ± 0.02 0.56 ± 0.02 0.95 ± 0.02 0.98 ± 0.06 0.86 ± 0.02
Phi-3-mini-128k-inst 0.71 ± 0.00 0.74 ± 0.01 0.63 ± 0.04 0.76 ± 0.01 0.78 ± 0.00 0.76 ± 0.01

Table 2: Representation engineering on the last layer of four models: Success rate (SR) for instruction-
following and quality ratio (QR) for response quality in task execution, with standard deviations
across 3 runs.

3.1 Methods

We adjusted each input representation Ri in the direction D using R̂i = Ri + α × D, where α
is a scaling hyper-parameter. The direction D is the weights w of a linear probes trained on all
IFEval-simple dataset. This adjustment was applied to the representations in the last layer of the
model, which was more robust to variations in α. We selected α for each model and instruction type
using a validation set comprising of 10% of the instruction data.

We measured the success rate (SR) of instruction-following using predefined evaluation functions
from IFEval[Zhou et al., 2023]. Additionally, we assessed the quality of the responses using GPT-4
on a 0-9 scale. The prompt used for quality evaluation is provided in Appendix. We defined quality
ratio (QR) as the number of responses scoring above 8 divided by the total number of true responses
(defined based on the distribution of quality scores). F2T and T2T show how many failed responses
became successful and how many successful ones remained so after modification. We compare the
instruction-following directions with random directions to assess if the identified direction was more
meaningful than random perturbations.

3.2 Results and discussion

RE on instruction-following direction improves success rate while keeping quality Our exper-
iments demonstrate that applying the RE direction generally improves the instruction-following
success rate (SR) across most models and instruction types. As shown in Table 2, the SR with the
instruction-following direction usually outperforms the original success rate and is lower bounded
by the the original SR – that is, the instruction-following dimension does not lead to worse than
original SRs. Additionally, the QR remains equal to or higher than the original, indicating that RE
can be applied with minimal risk of reducing response quality. Figure 4 in the Appendix shows an
example of RE can enhancing instruction adherence, in the case of modifying a response to include
all required keywords.

Instruction-following direction is better than random directions Comparing RE to random
directions, RE consistently yields higher SRs across all instruction types and models, as shown
in Table 2 and Figure 5 in Appendix. The ratios of True-to-True (T2T) and False-to-True (F2T)
transitions are also generally higher, indicating more reliable improvements.

4 Related work

Instruction-following of LLMs Recent research has introduced benchmark datasets to evaluate
LLMs’ instruction-following abilities across various scenarios[Zhou et al., 2023, Qin et al., 2024,
Xia et al., 2024, Kim et al., 2024, Yan et al., 2024]. Additionally, methods for enhancing instruction-
following have been proposed, including altering attention scores[Zhang et al., 2023], and fine-tuning
approaches[He et al., 2024, Sun et al., 2024].

Linear Probing and Representation engineering on LLMs Linear probes are introduced for
interpreting and analyzing representations of neural network[Alain and Bengio, 2016] and language
models[Belinkov, 2022, Elazar et al., 2021]. Especially, probing for trustfulness of LLMs has been
actively researched[Azaria and Mitchell, 2023, Marks and Tegmark, 2023, MacDiarmid et al., 2024,
Li et al., 2024b, Burns et al., 2022, Zou et al., 2023, Rimsky et al., 2023]. Probing methods closely
related to representation engineering and editing methods of model knowledge and behaviour[Zou
et al., 2023, Rimsky et al., 2023, Li et al., 2024b, Park et al., 2023, Chen and Yang, 2023].

4



5 Conclusion

Broader impacts We analyzed instruction-following in LLMs, finding that the internal state of LLMs
can be used to infer instruction following while generalizing across tasks. Using representation
engineering, we identify a key dimension within the input embedding space linked to successful
instruction-following. This dimension generalizes to unseen tasks, and representation engineering
can leverage it to boost success rates without sacrificing response quality.

Limitations and Future Work Exploring additional models and expanding datasets could strengthen
the generalizability of our findings. Enhancing probe training techniques and exploring advanced
methods in representation engineering are also areas of future work. Finally, additional analyses are
needed to better understand the meaning of the identified dimensions and deepen the understanding
of LLMs in instruction-following.
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A Appendix

A.1 Success rate
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A.2 Task generalization: detailed results

AUC Early layers Middle layers Last layers
first token middle token last token first token middle token last token first token middle token last token

7b 0.77 ± 0.04 0.55 ± 0.07 0.73 ± 0.04 0.75 ± 0.05 0.51 ± 0.04 0.76 ± 0.04 0.73 ± 0.03 0.54 ± 0.02 0.70 ± 0.02
13b 0.83 ± 0.03 0.58 ± 0.06 0.82 ± 0.03 0.81 ± 0.02 0.56 ± 0.05 0.80 ± 0.04 0.78 ± 0.04 0.79 ± 0.03 0.49 ± 0.05
mistral 0.74 ± 0.02 0.54 ± 0.05 0.72 ± 0.04 0.71 ± 0.05 0.51 ± 0.03 0.67 ± 0.04 0.71 ± 0.03 0.49 ± 0.04 0.70 ± 0.03
phi3 0.88 ± 0.03 0.56 ± 0.04 0.86 ± 0.03 0.85 ± 0.03 0.56 ± 0.03 0.83 ± 0.02 0.65 ± 0.05 0.53 ± 0.03 0.63 ± 0.04

Table 3: AUC scores across different models and layers for first, middle, and last tokens.

A.3 Instruction generalization: detailed results

Leave one out AUC LLaMA-2-chat-7b (14 layer) LLaMA-2-chat-13b (16 layer) Mistral-7B-Instruct-v0.3 (14 layer) Phi3-mini-128k-instruct (14 layer)
instruction types first token middle token last token first token middle token last token first token middle token last token early token middle token last token
keywords:forbidden_words 0.52 0.55 0.53 0.45 0.54 0.47 0.44 0.41 0.42 0.52 0.47 0.50
keywords:existence 0.50 0.55 0.52 0.67 0.71 0.55 0.55 0.53 0.55 0.63 0.43 0.48
keywords:frequency 0.57 0.58 0.61 0.57 0.53 0.56 0.56 0.55 0.50 - - -
detectable_content:number_placeholders 0.56 0.38 0.44 0.58 0.53 0.52 0.50 0.52 0.51 0.50 0.48 0.45
startend:end_checker 0.48 0.43 0.49 0.55 0.56 0.56 0.44 0.53 0.59 0.55 0.51 0.54
AVERAGE 0.52 0.50 0.52 0.56 0.58 0.53 0.50 0.51 0.51 0.55 0.51 0.51

Table 4: Instruction Generalization: AUC scores using leave-one-out instruction types across different
models (early layer).

A.4 Prompt for scoring task quality

Prompt for scoring task quality

You are a helpful assistant in evaluating the quality of the outputs for a given instruction.
Your goal is to score a given output for the given instruction. You should give an overall score
(an integer) on a scale of 0 to 9, where a higher score indicates better overall performance.
Do NOT provide any explanation for your evaluation.

# Instruction: {Instruction-input}
# Output:{Response}
# Score of the Output (Your response should be ONLY the score, an integer between 0 and 9):

A.5 Representation Engineering: detailed results
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Figure 4: RE example. An illustrative example of modified responses. In this case, the task was to
write a resume with the instruction to include three specific keywords. The original response only
included one keyword, whereas the modified response, guided by the instruction-following direction,
successfully incorporated all three keywords, demonstrating the effectiveness of RE in enhancing
instruction adherence.
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Figure 5: Representation Engineering on the last layer of four models: Success rate (SR) only
on high quality responses in task execution. F2T (False to True) and T2T (True to True). The
metric F2T

(F2T+F2F ) indicates the proportion of originally failed responses that became successful
after modification, while T2T

(T2T+T2F ) reflects the proportion of originally successful responses that
remained successful.
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Model Original SR Inst-following SR Random SR Original QR Inst-following QR Random QR
7b model
keywords:forbidden_words 0.19 0.21 0.19 0.74 0.81 0.74
keywords:existence 0.79 0.81 0.79 0.98 0.95 0.94
keywords:frequency 0.86 0.91 0.81 0.89 0.86 0.84
detectable_content:number_placeholders 0.76 0.82 0.79 0.60 0.64 0.49
startend:end_checker 0.24 0.19 0.19 0.83 0.79 0.79

Average 0.57 0.59 0.55 0.81 0.81 0.76

13b model
keywords:forbidden_words 0.28 0.31 0.24 0.86 0.94 0.92
keywords:existence 0.87 0.88 0.88 1.00 1.00 0.99
keywords:frequency 0.92 0.91 0.91 0.96 0.97 0.97
detectable_content:number_placeholders 0.80 0.90 0.87 0.80 0.80 0.70
startend:end_checker 0.17 0.26 0.22 1.00 1.00 1.00

Average 0.61 0.65 0.62 0.92 0.94 0.92

Mistral model
keywords:forbidden_words 0.36 0.50 0.39 1.00 1.00 0.89
keywords:existence 0.86 0.90 0.82 0.99 0.99 0.98
keywords:frequency 0.91 0.93 0.89 0.97 0.98 0.99
detectable_content:number_placeholders 0.51 0.52 0.44 0.79 0.94 0.96
startend:end_checker 0.25 0.35 0.28 1.00 1.00 0.96

Average 0.58 0.64 0.56 0.95 0.98 0.96

Phi model
keywords:forbidden_words 0.32 0.34 0.26 0.67 0.66 0.70
keywords:existence 0.94 0.98 0.90 0.81 0.84 0.83
keywords:frequency 1.00 1.00 1.00 0.77 0.81 0.70
detectable_content:number_placeholders 0.87 0.95 0.85 0.55 0.57 0.56
startend:end_checker 0.14 0.22 0.16 1.00 1.00 1.00

Average 0.65 0.70 0.63 0.76 0.78 0.76

Table 5: Success rates (SR) and quality ratios (QR) across four LLMs

Model Original SR Inst-f SR Random SR Detect Ratio Inst-f F2T Random F2T Inst-f T2T Random T2T
7b model
keywords:forbidden_words 0.16 0.18 0.16 1.00 0.09 0.09 0.63 0.50
keywords:existence 0.78 0.80 0.78 1.00 0.32 0.27 0.94 0.93
keywords:frequency 0.85 0.89 0.79 1.00 0.67 0.43 0.93 0.85
detectable_content:number_placeholders 0.64 0.70 0.69 1.00 0.38 0.38 0.88 0.86
startend:end_checker 0.24 0.19 0.19 1.00 0.10 0.13 0.46 0.38

Average 0.53 0.55 0.52 1.00 0.31 0.26 0.77 0.70

13b model
keywords:forbidden_words 0.24 0.27 0.23 0.64 0.10 0.03 0.88 0.83
keywords:existence 0.70 0.70 0.67 0.35 0.03 0.06 0.99 0.93
keywords:frequency 0.85 0.85 0.82 0.13 0.00 0.00 1.00 0.97
detectable_content:number_placeholders 0.71 0.72 0.67 0.13 0.07 0.03 0.99 0.96
startend:end_checker 0.17 0.26 0.22 0.67 0.12 0.06 1.00 1.00

Average 0.53 0.56 0.52 0.39 0.06 0.04 0.97 0.94

Mistral model
keywords:forbidden_words 0.36 0.50 0.37 1.00 0.25 0.13 1.00 1.00
keywords:existence 0.79 0.86 0.81 0.67 0.33 0.14 1.00 1.00
keywords:frequency 0.86 0.90 0.89 0.64 0.29 0.15 1.00 1.00
detectable_content:number_placeholders 0.36 0.41 0.36 0.83 0.15 0.15 0.86 0.73
startend:end_checker 0.25 0.35 0.28 0.97 0.13 0.07 1.00 1.00

Average 0.52 0.60 0.54 0.82 0.23 0.13 0.97 0.95

Phi3 model
keywords:forbidden_words 0.11 0.21 0.16 0.97 0.12 0.11 0.91 0.55
keywords:existence 0.77 0.79 0.69 0.91 0.46 0.30 0.91 0.81
keywords:frequency 0.84 0.89 0.70 0.81 0.42 0.39 0.99 0.79
detectable_content:number_placeholders 0.47 0.48 0.48 0.93 0.26 0.30 0.73 0.70
startend:end_checker 0.14 0.22 0.16 1.00 0.18 0.08 0.64 0.43

Average 0.47 0.52 0.44 0.92 0.29 0.24 0.84 0.65

Table 6: Success rates, detection ratios, and F2T/T2T ratios across models for high-quality answers
(score above 8).

9



NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, the abstract and introduction accurately reflect the paper’s contributions
and scope

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Yes, we discussed in conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We do not have theoretical result in this paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, we provide the details of experiment settings.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release soon.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, we include all the training and test details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, we include standard deviation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, we checked it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Yes, included in conclusion part.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We analyze open-source pretrained language models, but do not release new
models.
Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited dataset and models and checked their license.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, we provide the details of the modified data used in the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: Not related.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not needed.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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