
Under review as a conference paper at ICLR 2021

ACCURATELY SOLVING ROD DYNAMICS
WITH GRAPH LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Iterative solvers are widely used to accurately simulate physical systems. These
solvers require initial guesses to generate a sequence of improving approximate
solutions. In this contribution, we introduce a novel method to accelerate itera-
tive solvers for rod dynamics with graph networks (GNs) by predicting the initial
guesses to reduce the number of iterations. Unlike existing methods that aim to
learn physical systems in an end-to-end manner, our approach guarantees long-
term stability and therefore leads to more accurate solutions. Furthermore, our
method improves the run time performance of traditional iterative solvers for rod
dynamics. To explore our method we make use of position-based dynamics (PBD)
as a common solver for physical systems and evaluate it by simulating the dynam-
ics of elastic rods. Our approach is able to generalize across different initial condi-
tions, discretizations, and realistic material properties. We demonstrate that it also
performs well when taking discontinuous effects into account such as collisions
between individual rods. Finally, to illustrate the scalability of our approach, we
simulate complex 3D tree models composed of over a thousand individual branch
segments swaying in wind fields.

1 INTRODUCTION

The numeric simulation of a dynamic system commonly comprises the derivation of the mathemati-
cal model given by the underlying differential equations and their integration forward in time. In the
context of physics-based systems, the mathematical model is usually based on first principles and
depending on the properties of the simulated system, the numerical integration of a complex sys-
tem can be very resource demanding (Nealen et al., 2006), e.g., hindering interactive applications.
Enabled by the success of deep neural networks to serve as effective function approximators, re-
searchers recently started investigating the applicability of neural networks for simulating dynamic
systems. While many physical phenomena can well be described within fixed spatial domains (e.g.,
in fluid dynamics) that can be learned with convolutional neural network (CNN) architectures (Chu
& Thuerey, 2017; Guo et al., 2016; Tompson et al., 2016; Xiao et al., 2020), a large range of physical
systems can more naturally be represented as graphs. Examples include systems based on connected
particles (Müller et al., 2007), coupled oscillators (Michels & Desbrun, 2015; Michels et al., 2014),
or finite elements (Nealen et al., 2006). Existing methods enable learning these systems often in an
end-to-end manner and with a focus on replacing the entire or a part of the integration procedure. A
number of methods show initial success in approximating physical systems; however, they often fail
to reliably simulate the state of a system over longer time horizons if significant disadvantages are
not accepted, such as the use of large datasets containing long-term simulations and the employment
of specific memory structures (Sanchez-Gonzalez et al., 2020).

In this paper, we aim to improve the performance of iterative solvers for physical systems with graph
networks (GN). An iterative solver requires an initial guess, and based on it generates a sequence
of improving approximate solutions. The initial guess can be computed by simply using values
obtained in the previous iteration or by solving a few steps of a similar but simpler physical system.
The performance of an iterative solver is significantly influenced by the calculation of the initial
guess, which we aim to replace with the prediction of a GN. To demonstrate our approach, we
use a position-based dynamics (PBD) solver that approximates physical phenomena by using sets
of connected vertices (Bender et al., 2017; 2014b; Macklin et al., 2016; Müller et al., 2007). To
simulate a physical system, PBD first computes updated locations of vertices using symplectic Euler
integration to then correct the initial position estimates so as to satisfy a set of predefined constraints.
The correction step is known as constraint projection and is commonly solved iteratively. The
explicit forward integration for predicting the system’s updated state has negligible cost, whereas
the projection step is computationally expensive. Our goal is to employ a GN to predict the outcome
of the constraint projection step as an initial guess. This way, our approach inherits the long-term
stability of a classic PBD solver, while providing better run-time performance.

1

Under review as a conference paper at ICLR 2021

Figure 1: Renderings taken from real-time simulations of the elastic deformation of a helix falling
down on the ground plane (left) and two rods colliding with each other (right).

To showcase the capabilities of our combined PBD solver, we aim to simulate the physically plau-
sible mechanics of elastic rods. Rods play an important role for a variety of application domains,
ranging from surgical simulation of sutures (Feess et al., 2016), catheters, and tendons (Pai, 2002), to
human hair (Michels et al., 2015) and vegetation (Pirk et al., 2017) in animated movies. Furthermore,
approaches exist to realistically simulate rods as sets of connected vertices accurately capturing their
mechanical properties (Bergou et al., 2008; Kugelstadt & Schoemer, 2016; Michels et al., 2015; Pai,
2002). Our approach is able to generalize across different initial conditions, rod discretizations, and
realistic material parameters such as Young’s modulus and torsional modulus (Deul et al., 2018).
Moreover, we demonstrate that our approach can handle discontinuous collisions between individ-
ual rods. Figure 1 shows examples of elastic rod deformations of a helix falling down (left) and two
colliding rods (right). Finally, we show that the data-driven prediction of the initial guesses of the
constraint projection leads to a decreased number of required iterations, which – in turn – results in
a significant increase of performance compared to canonical initial guesses.

In summary, our contributions are: (1) we show how to accelerate iterative solvers with GNs; (2) we
show that our network-enabled solver ensures long-term stability required for simulating physical
systems; (3) we showcase the effectiveness of our method by realistically simulating elastic rods;
(4) we demonstrate accuracy and generalizability of our approach by simulating different scenarios
and various mechanical properties of rods including collisions and complex topologies (dynamic
tree simulations).

2 RELATED WORK
In the following we provide an overview of the related work, which spans from data-driven physics
simulations and graph learning to position-based dynamics and elastic rods.

Data-driven Physics Simulations. It has been recognized that neural networks can be used as effec-
tive function approximators for physical and dynamic systems. To this end, early approaches focus
on emulating the dynamics of physics through learned controllers (Grzeszczuk et al., 1998) or by de-
signing subspace integrators (Barbič & James, 2005). Today, a range of approaches exist that enable
learning ordinary and partial differential equations (Lagaris et al., 1998; Raissi et al., 2019; Raissi
& Karniadakis, 2018), for example, to transform them into optimization problems (Dissanayake
& Phan-Thien, 1994), to accelerate their computation (Mishra, 2018; Sirignano & Spiliopoulos,
2018), or to solve for advection and diffusion in complex geometries (Berg & Nyström, 2018).
Other methods focus on specific data-driven solutions for non-linear elasticity (Ibañez et al., 2017),
for approximating Maxwell’s equation in photonic simulations (Trivedi et al., 2019), or for ani-
mating cloth (Wang et al., 2011), partially focusing on interactive applications (Holden et al., 2019).
More recently, research on data-driven approaches for modeling the intricacies of fluid dynamics has
gained momentum (Ladický et al., 2015; Ummenhofer et al., 2020). Due to fixed-size spatial rep-
resentation of Eulerian fluid solvers, a number of approaches rely on CNN-type architectures (Chu
& Thuerey, 2017; Guo et al., 2016; Tompson et al., 2016; Xiao et al., 2020). Furthermore, it has
been shown that data-driven approaches can even be used to approximate the temporal evolution
of fluid flows (Wiewel et al., 2018), to compute liquid splashing (Um et al., 2017), artistic style-
transfer (Kim et al., 2020), or to derive fluid dynamics from reduced sets of parameters (Kim et al.,
2019).

Graph-based Learning. Graphs have proven to be a powerful representation for learning a wide
range of tasks (Battaglia et al., 2018; Scarselli et al., 2009). In particular, it has been shown that
graphs enable learning knowledge representations (Kipf et al., 2018), message passing (Gilmer
et al., 2017), or to encode long-range dependencies, e.g., as found in video processing (Wang
et al., 2017). A variety of methods uses graph-based representations to learn properties of dynamic
physical systems, e.g. for climate prediction (Seo & Liu, 2019), with an emphasis on individual
objects (Chang et al., 2016) and their relations (Sanchez-Gonzalez et al., 2018), for partially observ-
able systems (Li et al., 2018), the prevalent interactions within physical systems (Kipf et al., 2018),
hierarchically-organized particle systems (Mrowca et al., 2018), or – more generally – physical sim-
ulation (Sanchez-Gonzalez et al., 2019; 2020). While many of the existing approaches learn the
time integration of physical systems in an end-to-end manner, we use a graph network to predict the
outcome of a PBD solver for rod dynamics to enable more efficient computations.

2

Under review as a conference paper at ICLR 2021

Discretized Rod Forward Integration Constraint Projection

Figure 2: Illustration of the discretization of a single rod using several rod segments arranged along
its centerline (left). Each rod segment is described by its position and orientation within the gener-
alized coordinates pi. The Lagrange multipliers λi represent the interaction between rod segments.
The forward integration path is illustrated in red (middle) and constraint projection in green (right).
Position-based Dynamics and Elastic Rods. PBD is a robust and efficient approach for simulating
position changes of connected sets of vertices (Bender et al., 2017; 2014b; Macklin et al., 2016;
Müller et al., 2007). Compared to forced-based methods that compute the force directly, the inter-
action between different vertices in PBD is realized by a constraint projection step in an iterative
manner. To avoid the dependency of the system’s stiffness on the number of iterations and the time
step size, an extended position-based dynamics approach was introduced (XPBD) (Macklin et al.,
2016). A number of methods exist that model the dynamic properties of rods that can even simulate
more complicated rod mechanics (Pai, 2002). Moreover, particle systems were employed to simulate
the dynamics of rods (Michels et al., 2017) and, in particular, for the physically accurate simulation
of thin fibers (Michels et al., 2015) such as present in human hair or textiles. On a different tra-
jectory, it has been recognized that rods can be simulated based on PBD (Umetani et al., 2014).
The initial formulation was improved (Kugelstadt & Schoemer, 2016) by including the orientation
of rod segments in the system’s state to account for torsion effects. Later, the XPBD framework
was utilized (Deul et al., 2018) to address the non-physical influence of iteration numbers and steps
sizes, which enables the more accurate simulation of elastic rods.

3 METHODOLOGY

We propose a novel approach to simulate the temporal evolution of a dynamic system which consists
of elastic rods. Each rod is discretized using several rod segments arranged along its centerline (Fig-
ure 2). For each rod segment, its state is described by its position, orientation, velocity and angular
velocity. The state of the system is given as the set of the individual states of all rod segments.
The simulation is carried out by employing PBD (Müller et al., 2007) directly manipulating the sys-
tem’s state. Orientations are represented as quaternions allowing for a convenient implementation
of bending and twisting effects (Kugelstadt & Schoemer, 2016). Extended PBD (XPBD) (Macklin
et al., 2016) is implemented to avoid that the rods’ stiffnesses depends on the time step size and the
number of iterations (Deul et al., 2018).
The generalized coordinates of a rod segment i at time t is given by pi,t ∈ R3 ×H, which includes
its position xi,t ∈ R3 given in Cartesian coordinates and its orientation described by a quaternion
qi,t ∈ H. Correspondingly, υi,t ∈ R6 refers to the generalized velocity of the rod segment, which
includes velocity and angular velocity. The system is continuously updated during the simulation
by applying corrections ∆pi = (∆xi,∆φi)

T ∈ R6 with position shifts ∆xi ∈ R3 and orientation
shifts ∆φi ∈ R3 representing the integration of the angular velocity.1
A single time integration step is presented in Algorithm 1. In the beginning (lines 1 to 4), generalized
velocity and generalized coordinates are updated by employing a symplectic Euler integration step.
In this regard, aext denotes the generalized acceleration due to the external net force, e.g., given by
gravity. XPBD (Macklin et al., 2016) employs the Lagrange multiplier λ which is initialized as zero
(line 5) along with the integrated generalized coordinates p∗. Collision detection results are stored
in Collr-r and Collr-p (line 6), where Collr-r includes all the pairs of two rod segments that poten-
tially collide with each other and Collr-p includes information of all rod segments that potentially
collide with another object such as a plane. Within several solver iterations, we alternate between
rod constraint projection and the collision constrain projection (lines 7 to 15). The rod constraints
include shear-stretch and bend-twist constraints representing the corresponding elastic energy. The
Lagrange multiplier represents the interaction between rod segments. Figure 2 illustrated the dis-
cretization for a single rod into several interacting segments. The correction values ∆p and ∆λ in
line 9 are computed by constraint projection (Deul et al., 2018; Kugelstadt & Schoemer, 2016). The
generalized coordinates and Lagrange multipliers are updated for each rod (lines 8 to 12), and rod-
rod and rod-plane collisions are addressed to update the generalized coordinates. For details about
the collision projection procedure, we refer to Macklin et al. (2014). For the non-collision case, the
steps within line 6 and 13 are not needed.

1Please note, that ∆qi = G(q)∆φi ∈ R4, in which the matrix G(q) ∈ R4×3 describes the relationship
between quaternion velocity and angular velocity (Bender et al., 2014a).

3

Under review as a conference paper at ICLR 2021

Algorithm 1 Numerical integration procedure updating pi,t 7→ pi,t+∆t and υi,t 7→ υi,t+∆t.
1: for all rod segments do
2: υ∗

i ← υi,t + ∆taext
3: p∗

i ← pi,t + ∆t H(qi,t)υ
∗
i with H(qi,t) := [13×3,03×3;04×3,G(qi,t)]

4: end for
5: λ0 ← 0,p0 ← p∗

6: (Collr-r,Collr-p)← generateCollisionConstraints(p,p∗)
7: for j ← 0 to number of required solver iterations do
8: for all rods do
9: (∆p,∆λ)← rodConstraintProjection(pj ,λj)

10: λj+1 ← λj + ∆λ
11: pj+1 ← pj + ∆p
12: end for
13: pj+1 ← updateCollisionConstraintProjection(pj+1,Collr-r,Collr-p)
14: j ← j + 1
15: end for
16: for all rod segments do
17: pi,t+∆t ← pj

i

18: υi,t+∆t ← HT(qi,t)(pi,t+∆t − pi,t)/∆t
19: end for

D
ecoder

GN1 GN2 GNM

...En
co

de
r

rodConstrainedProjection

correction Guess

Output

Figure 3: Illustration of our approach incorporating a network which consists of M graph networks
(GN-blocks) into the position-based dynamics framework.

The most expensive part of Algorithm 1 involves the computation of the corrections of generalized
coordinates and Lagrange multipliers (line 9). This projection step requires the solution of a linear
system which is a linearization of a non-linear one so that the matrix depends on the system’s state
making it impossible to precompute its inverse. Instead, a new system at every point in time is
solved iteratively using the conjugated gradient (CG) solver. Such iterative solvers are widely used
in the context of physical simulations and regularly described as the de facto standard (Barrett et al.,
1994; Saad, 2003) since they often show superior performance and usually scale well allowing for
exploiting parallel hardware. However, we would like to point out that also highly efficient direct
solvers can be found in the literature (Deul et al., 2018).

Instead of fully replacing the projection step in an end-to-end learning manner, we follow the strategy
of accelerating it by first computing a guess

(∆p0,∆λ0)← correctionGuess(pj) , (1)

for the iterative procedure (line 9)

(∆p,∆λ)← rodConstraintProjection(pj ,λj ,∆p0,∆λ0) . (2)

A neural network is employed to compute the initial guess in Eq. (1) for the constraint projection.
The motivation for this approach is to reduce the number of iterations required for the convergence
of the CG solver which solves the linear system in Eq. (2) compared to the canonical initialization
with zeros. We obtain our final framework by replacing line 9 in Algorithm 1 with Eq. (1) and
Eq. (2) as illustrated in Figure 3, which is inherently as accurate as the traditional PBD method.
We name the data-driven part COPINGNet (“COnstraint Projection INitial Guess Network”) which
learns to compute the correction guess.

4

Under review as a conference paper at ICLR 2021

3.1 GRAPH ENCODING

COPINGNet is a graph network based architecture which we apply in order to compute initial
guesses for ∆p and ∆λ. In this regard, we need to incorporate the rods’ state into a graph de-
scription (Battaglia et al., 2018). A graph G = (V,E,U) usually consists of nodes (or vertices)
V , edges E as well as global features U . However, in our framework, global features U are not
used. For example, gravity could be a potentially meaningful global feature, but it also can be eas-
ily included as an external acceleration. Hence, U = ∅ and the graph can just be represented as
G = G(V,E). In our case, the rods’ segments within the scene are represented by the graph’s nodes
while the interactions between the rods’ segments are represented by the edges.
COPINGNet provides a graph-to-graph mapping: Gin → Gout, from an input graph Gin ∈ Gin to an
output graph Gout ∈ Gout. Nodes and edges of both graphs are equipped with specific features. In
the case of the input graph, the node features describe the state of the rods’ segments, i.e.

vin,i = (xi,qi, ri, ρi, `i, αi, f0i
, f1i

, f2i
)T ∈ Vin ⊆ R14 ,

in which the positions are denoted with xi ∈ R3, the orientations with qi ∈ H, the radii with
ri ∈ R>0, the densities with ρi ∈ R>0, and the segment lengths with `i ∈ R>0. Moreover, a
segment position indicator αi ∈ [0, 1] ⊂ R is included corresponding to a parameterization by
arc length.2 Binary segment flag f0i

∈ {0, 1}, “left” end flag f1i
∈ {0, 1} and “right” end flag

f2i
∈ {0, 1} are set to zero if the specific segment respectively the left or right segment of the rod

is fixed and to one otherwise. The nodes of Gin are given as the set of Vin = ∪ni=1{vin,i}, in which
n = |Vin| denotes the number of segments in the scene. The nodes of Gout contain the correction
values of the generalized coordinates, i.e.

vout,i = ∆pi ∈ Vout ⊆ R6 and Vout = ∪ni=1{vout,i}.
While rod segments are represented as node features, we represent constraints between rod segments
as edge features:

ein,i = (ωi, Yi, Ti)
T ∈ Ein ⊆ R5 ,

in which the (rest) Darboux vector ω ∈ R3 describes the static angle of two rod segments, and
Young’s modulus Y ∈ R>0 and torsion modulus T ∈ R>0 are corresponding to extension,
bending, and twist constraint parameters. The set of edges of the input graph is then given by
Ein = ∪mi=1{ein,i}, in which m = |Ein| denotes the number of interactions between different seg-
ments. The correction of the Lagrange multiplier ∆λi ∈ R6 is stored in the output edges:

eout,i = ∆λi ∈ Eout ⊆ R6 .
The set of output edges is then given by Eout = ∪mi=1{eout,i}.
The connectivity information C of each graph is stored in two vectors csd and crv containing the
sender node index and the receiver node index of each corresponding edge. This concludes the
specification of the input graph Gin = G(Vin, Ein) and the output graph Gout = G(Vout, Eout) with
connectivity information C = (csd, crv).

3.2 NETWORK STRUCTURE

In the following, we describe the structure of COPINGNet after we formalized its input and output in
the previous section. As illustrated in Figure 3, the network consists of an encoder network, multiple
stacks of GN-blocks, and a decoder network. The graph network from Battaglia et al. (2018) is used
as a basic element and denoted as a GN-block. Residual connection between blocks could improve
performance of neural networks in both CNN (He et al., 2015), and graph neural network [Li et al.
(2019)]. As in related work (Sanchez-Gonzalez et al., 2020), we employ the residual connection
between the GN-blocks, but our encoder/decoder network directly deals with the graph. The encoder
network performs a mapping: Gin → Glatent and is implemented using two multi-layer perceptrons
(MLPs), MLPedge : Ein → Elatent ⊆ Rl and MLPnode : Vin → Vlatent ⊆ Rl, in which l denotes the
latent size. They work separately and thus Een = MLPedge(Ein) and Ven = MLPnode(Vin). Edge
features Ein from the input are constant for a rod during the simulation and this results in constant
encoded edge features Een, which could be recorded after the first run and used afterwards during
inference. The edge feature ein,i contains the material parameters which could vary by different
orders of magnitude. Hence, we normalize Young’s modulus and torsion modulus before feeding
them into the network. After encoding, the graph Gen(Ven, Een) ∈ Glatent is passed to several
GN-blocks with residual connections. Each GN-block also contains two MLPs. However, they
use message passing taking advantage of neighbourhood nodes/edges information (Battaglia et al.,

2For a single rod in the scene which consists ofN segments of equal lengths, for the i-th segment, we obtain
αi = (i− 1)/(N − 1) for i ∈ {1, 2, . . . , n}.

5

Under review as a conference paper at ICLR 2021

Train/Val #Steps #Nodes N Young’s Modulus Y Initial Angle φ0 Rod Length `
256/100 50 Ud(10, 55) 10a Pa, a ∼ U(4.0, 6.0) U(0◦, 45.0◦) U(1.0 m, 5.0 m)

Train/Val #Steps #Nodes N Torsion Modulus T Helix Radius / Height Winding Number
256/100 50 Ud(45, 105) 10a Pa, a ∼ U(4.0, 6.0) U(0.4 m, 0.6 m) /U(0.4 m, 0.6 m) U(2.0, 3.0)

Table 1: Specification of training and validation datasets for the two scenarios of an initially straight
bending rod (top) and an elastic helix (bottom). The datasets are comprised of a number of data
points (left) each describing the rod’s dynamics within t ∈ [0 s, 50∆t] discretized with a time step
size of ∆t = 0.02 s. The number of nodes N is sampled from a discrete uniform distribution Ud
while the remaining parameters are sampled from a continuous uniform distribution U . We trained
our network for 5 hours for the bending rod scenario and 6 hours for the helix case.

20 40 60 80 100 120 140
Number of Nodes

0.8

1.0

1.2

1.4

1.6

Sp
ee

du
p

25 50 75 100 125 150 175 200
Number of Nodes

0.0

0.1

0.2

0.3

0.4

t in
fe
r/t

CG

Figure 4: Illustration of the ratio of COPINGNet’s inference time tinfer and the vanilla CG solver’s
run time tCG (purple curves; right vertical axis) for the initially straight bending rod (left) and the
elastic helix (right) simulations. The black curves show the CG iteration number ratio while the red
curves show the total speedup of the constraint projection when taking into account COPINGNet’s
inference time (left vertical axis). The pink curves show the total speedup of the entire simulations.
The orange and green dashed line indicate the lower and upper boundaries of the total number of
nodes used in the training data. We can observe a speedup even for rods and helices with greater node
number than the ones used in the the training dataset. The result is averaged from 50 simulations
each running 100 steps.

2018). A number of M GN-blocks enable the use of neighbourhood information with distances
smaller or equal to M . The graph network performs a mapping within the latent space: Glatent →
Glatent, and after M GN-blocks, we obtain G

′

en(V
′

en, E
′

en) ∈ Glatent. The decoder network performs
a mapping: Glatent → Gout, which has a similar structure as the encoder network. Two MLPs
MLPedge : Elatent → Eout and MLPnode : Vlatent → Vout compute Eout = MLPedge(E

′

en) and
Vout = MLPnode(V

′

en). A tanh-function at the end of MLPedge and MLPnode is used restricting
the output to the interval [−1, 1] ⊂ R. COPINGNet learns the relative correction values. The
generated dataset is normalized, and the maximum correction value of the generalized coordinates
and the Lagrange multipliers will be recorded as norms. The final correction value is achieved by
multiplying the relative correction values and the norms. This normalization process damps the
noise caused by the network and leads to a more stable performance. For simplicity, all the MLPs in
different blocks have the same number of layers, and the same width as latent size l within the latent
layers. The input and output sizes of each MLP are consistent with the corresponding node/edge
feature dimensions. The loss L is computed from both parts, nodes and edges,

L := MSE(Vout, Ṽout) + MSE(Eout, Ẽout) ,

in which (Vout, Eout) is the output graph’s ground truth in contrast to COPINGNet’s prediction
(Ṽout, Ẽout). The mean squared error between χ and χ̃ is denoted with MSE(χ, χ̃).

For evaluation purposes, we also incorporated the k-nearest neighbor (k-NN) algorithm as described
in the supplementary material setting k = 3.

4 EVALUATION
We generate training and validation datasets based on two scenarios: an initially straight bending rod
and an elastic helix each fixed at one end oscillating under the influence of gravity. The specification
of these datasets is provided in Table 1. The PBD code is written in C++, while the COPINGNet
is implemented in PyTorch. The training is performed on an NVIDIA R© Tesla R© V100 GPU. The
training time varies from 8 to 30 hours for different architecture parameters. A constant learning
rate of η = 0.001 was used and a mean square loss function was employed. Our approach gen-
eralizes across different initial conditions, geometries, discretizations, and material parameters. In
the supplementary material we show that it is possible to robustly generate various dynamical re-
sults (Figure 9). For a discussion on the network architecture please see Figure 11 (supplementary
material).

6

Under review as a conference paper at ICLR 2021

Figure 5: Realistic biomechanical simulation of a 3D tree model composed of over 1k nodes
swaying in a wind field. Our GN approach performs correctly even under a large number of rod
segments while increasing performance of the original PBD method.

0 200 400 600 800 1000
Time Frame Number

1.0

1.5

2.0

2.5

CG
 It
er
at
io
n
Ra

tio

0 200 400 600 800 1000
Time Frame Number

1.0

1.5

2.0

2.5

CG
 It
er
at
io
n
Ra

tio

Figure 6: The dashed horizontal lines show the benchmark CG solver’s constant performance for an
initially straight bending rod simulation (left) and an elastic helix simulation (right). The parameters
φ0 = 0◦, N = 30, ` = 3.0 m, Y = 1.0 · 105 Pa (left), and HR = 0.5 m, HH = 0.5 m, HW = 2.5,
G = 1.0 · 105 Pa, N = 60 (right) are applied. We are comparing our COPINGNet-assisted PBD
approach (orange) to a simplified version in which the k-NN (green) is used to predict the initial
guess. Moreover (left), we added a performance measurement in which we restricted the solution to
be in a two-dimensional plane (black). The results are averages over 20 simulations and smoothed
with a window of 10 frames. The dashed vertical lines mark the number of 50 frames contained in
the training data set. For the helix simulation we observe a speed up of approximately 50% even
beyond the training data (50 time frames). For the bending rod simulation we observe a speedup
that further decreases with increasing time frame number.

Discretization. Our approach addresses the acceleration of the most expensive part within PBD by
providing an accurate initial guess of the constraint projection. We measure the system’s complexity
by the number of nodes in a rod. Figure 4 shows the ratio of COPINGNet’s inference run time
(black and red curves) compared to the run time of the vanilla CG solver (purple curves) for different
numbers of nodes. The increasing black and red curves indicate that the speedup of COPINGNet
is more significant with greater number of nodes. With only a few nodes the CG solver performs
better due to the inference overhead. Once the number of nodes is increasing, a significant speedup
can be obtained of up to 50% for the constraint projection. Surprisingly, our approach also performs
well when going far beyond the sampling range (orange to green dashed lines). Since the constraint
projection is the most time-consuming part of the entire simulation, the speedup converges to that
of the whole simulation (pink curves) with increasing number of nodes as shown in Figure 4.
Temporal Evolution. In addition to the complexity analysis, we also analyze the required number
of CG iterations for the vanilla constraint projection compared to the one accelerated using COP-
INGNet over time as shown in Figure 6. We obtain a significant total speedup compared to the CG
solver (dashed blue line). As stated in Table 1, our training data contains dynamical simulations of
50 time steps. In this range we observe the highest speedup. As was the case for the complexity anal-
ysis, we again obtain a significant speedup for simulations beyond 50 time steps. This performance
gain is more present for the helix (green curve) compared to the rod simulation (orange curve).
Long-term Stability. In case the constraint projection is completely replaced by COPINGNet (end-
to-end approach), stability of the PBD method decreases as error accumulation takes place. This is
illustrated in Figure 7 showing the temporal evolution of the relative change of the total rod length.
An initially straight rod bending under the influence of gravity is simulated using the parameters
φ0 = 0◦, N = 30, ` = 4.0 m, and varying Young’s modulus Y . In this scenario the rod length is
expected to stay constant during the mechanical simulation. In case COPINGNet is used in an end-
to-end manner (colored lines), where the whole constraint projection step is replaced, we observe
that the rod length changes incorrectly. In fact, the divergence of using COPINGNet to replace the
constraint projection step increases exponentially beyond the range of the training data (50 steps). To
the contrary, when COPINGNet is used to only estimate the initial guess of the constraint projection
(black lines), no rod deformation takes place even beyond the training data range.

7

Under review as a conference paper at ICLR 2021

Collisions. Figure 1 illustrates a collision of an elastic helix with the ground plane and a collision be-
tween two rods. Collision detection is efficiently implemented using the hierarchical spatial hashing
scheme according to Eitz & Gu (2007). Rod-rod collisions are then treated with line-to-line distance

0 20 40 60 80 100
Time Frame Number

0

2

4

6

8

10

l/l
0

Y = 1.0 104 Pa
Y = 2.0 104 Pa
Y = 5.0 104 Pa
Y = 1.0 105 Pa
Y = 2.0 105 Pa
Y = 5.0 105 Pa
Y = 1.0 106 Pa

Figure 7: Illustration of the relative
change of the total rod length (l/l0)
for different values of Young’s moduli
(Y). Colored lines show different re-
sults for COPINGNet replacing the con-
straint projection. The thick black line
represent the result for COPINGNet re-
placing only the initial guess. This indi-
cates that the end-to-end approach does
not generalize past the 50 time steps
used in preparing the training data.

constraints, and collisions with the ground plane using
half-space constraints. Moreover, frictional effects are
implemented according to Macklin et al. (2014). This
approach allows us to handle discontinuous events such
as collisions between individual rods and other objects.
Moreover, for this experiment we use the neural net-
works trained on the rod and helix simulations. Em-
ploying COPINGNet trained on the helix data to simulate
the collision of the ground plane (HR = HH = 0.5 m,
HW = 2.5, G = 1.0 · 106 Pa, N = 50), we measure a
total speedup of approx. 10%. In the case of two collid-
ing rods (φ0 = 0◦, N ∈ {20, 30}, ` ∈ {4.0 m, 4.5 m},
Y = 1.0 · 106 Pa), we obtain a speedup of approx. 6%.
Complex Scenarios. Our method is also capable to deal
with complex scenarios such as 3D tree models swaying
in wind fields as shown in Figure 5. We represent trees
using the extended Cosserat rod theory introduced in Pirk
et al. (2017). This method allows us to simulate realistic
biomechanics of thousands of rod segments at interactive
rates. We generated 100 different tree topologies using
70 individual rods (average node number: 1056) and sim-
ulate the swaying motions of these tree models with vanilla PBD to generate the training dataset.
For the evaluation, 30 different tree topologies have been generated for each of the following four
experiments using 10 rods (204 nodes), 20 rods (355 nodes), 40 rods (654 nodes), and 70 rods (1061
nodes). We were able to significantly improve the runtime performance of the method by 17.0% (10
rods), 15.8% (20 rods), 13.0% (40 rods), and 11.1% (70 rods). This takes into account the inference
time introduced by the neural network.
Generalization. Figure 7 and Figure 10 (supplementary material) indicate that using COPINGNet
in an end-to-end manner does not generalize beyond the training data. Specifically, the end-to-end
setup diverges in terms of rod geometry and segment position from the correct solution. This effect
increases significantly beyond the training data range. Although, we only use COPINGNet as a
benchmark for this evaluation, other GNs are expected to perform similarly. Common workarounds
to increase the stability of dynamical systems with neural networks are temporal skip-connections,
recurrent training, and data augmentation. However, these approaches focus on runtime speed and
memory performance rather than stability (Holden et al., 2019). Interestingly, replacing just the ini-
tial guess with a GN does not deform the rod or introduces discontinuities at any observed stage of
the bending simulation. This means that employing GNs can result in a performance increase with-
out a loss of stability. Furthermore, a GN that only provides initial guesses seems to also generalize
to other scenarios. We observed performance improvements for the collision and complex tree case,
although the network was never trained on these different rod discretizations and topologies. This
indicates that our method is capable to generalize within a specific physical scenario and to a lesser
extent to other scenarios.

5 CONCLUSION
We discovered that applying GNs for replacing the initial guess has fundamental advantages over
end-to-end approaches. First, our network-enabled solver ensures long-term stability inherited from
traditional solvers for physical systems, while improving runtime performance. Second, our ap-
proach is able to generalize across different initial conditions, rod discretizations, and material
parameters, and it handles discontinuous effects such as collisions. While end-to-end approaches
offer more significant speedups, our method is superior in cases where stability is an essential re-
quirement. Our approach to accelerate iterative solvers with GNs opens multiple avenues for future
work. For one, it would be interesting to explore mechanical systems describing general deformable
(e.g. textiles) or volumetric objects, which have been simulated with PBD. Second, our approach
can be applied to other iterative methods, such as in finite elements analysis or in the context of lin-
ear complementarity problems (LCP). This would allow us to accelerate physical simulations, when
iterative solvers are applied, without compromising stability.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Jernej Barbič and Doug L. James. Real-time subspace integration for st. venant-kirchhoff de-
formable models. ACM Transactions on Graphics, 24(3):982–990, July 2005.

Richard Barrett, Michael Berry, Tony F. Chan, James Demmel, June Donato, Jack Dongarra, Victor
Eijkhout, Roldan Pozo, Charles Romine, and Henk van der Vorst. Templates for the Solution of
Linear Systems: Building Blocks for Iterative Methods, 2nd Edition. SIAM, Philadelphia, PA,
1994.

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinı́cius Flores
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner,
Çaglar Gülçehre, H. Francis Song, Andrew J. Ballard, Justin Gilmer, George E. Dahl, Ashish
Vaswani, Kelsey R. Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan
Wierstra, Pushmeet Kohli, Matthew Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu.
Relational inductive biases, deep learning, and graph networks. CoRR, abs/1806.01261, 2018.
URL http://arxiv.org/abs/1806.01261.

Jan Bender, Kenny Erleben, and Jeff Trinkle. Interactive Simulation of Rigid Body Dynamics in
Computer Graphics. Computer Graphics Forum, 33(1):246–270, 2014a.

Jan Bender, Matthias Müller, Miguel A. Otaduy, Matthias Teschner, and Miles Macklin. A survey
on position-based simulation methods in computer graphics. Computer Graphics Forum, 33(6):
228–251, 2014b.

Jan Bender, Matthias Müller, and Miles Macklin. Position-based simulation methods in computer
graphics. In EUROGRAPHICS 2017 Tutorials. Eurographics Association, 2017.

Jens Berg and Kaj Nyström. A unified deep artificial neural network approach to partial differential
equations in complex geometries. Neurocomputing, 317:28 – 41, 2018.

Miklós Bergou, Max Wardetzky, Stephen Robinson, Basile Audoly, and Eitan Grinspun. Discrete
elastic rods. ACM Transactions on Graphics, 27(3):63:1–63:12, 2008.

Michael B. Chang, Tomer Ullman, Antonio Torralba, and Joshua B. Tenenbaum. A compositional
object-based approach to learning physical dynamics. arXiv preprint arXiv:1612.00341, 2016.

Mengyu Chu and Nils Thuerey. Data-Driven Synthesis of Smoke Flows with CNN-Based Feature
Descriptors. ACM Transactions on Graphics, 36(4), July 2017.

Crispin Deul, Tassilo Kugelstadt, Marcel Weiler, and Jan Bender. Direct position-based solver for
stiff rods. Computer Graphics Forum, 37(6):313–324, 2018.

Gamini Dissanayake and Nhan Phan-Thien. Neural-network-based approximations for solving par-
tial differential equations. Communications in Numerical Methods in Engineering, 10(3):195–
201, 1994.

Mathias Eitz and Lixu Gu. Hierarchical spatial hashing for real-time collision detection. IEEE
International Conference on Shape Modeling and Applications 2007 (SMI ’07), pp. 61–70, 2007.

Stefan Feess, Kathrin Kurfiss, and Dominik L. Michels. Accurate Simulation of Wound Healing
and Skin Deformation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, SCA ’16, pp. 129–137, Goslar, DEU, 2016. Eurographics Association.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. CoRR, abs/1704.01212, 2017.

Radek Grzeszczuk, Demetri Terzopoulos, and Geoffrey Hinton. Neuroanimator: Fast neural net-
work emulation and control of physics-based models. In Proceedings of the 25th Annual Confer-
ence on Computer Graphics and Interactive Techniques, SIGGRAPH ’98, pp. 9–20, New York,
NY, USA, 1998. Association for Computing Machinery.

Xiaoxiao Guo, Wei Li, and Francesco Iorio. Convolutional neural networks for steady flow ap-
proximation. In Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, pp. 481–490, New York, NY, USA, 2016. ACM.

9

http://arxiv.org/abs/1806.01261

Under review as a conference paper at ICLR 2021

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. CoRR, abs/1512.03385, 2015.

Daniel Holden, Bang Chi Duong, Sayantan Datta, and Derek Nowrouzezahrai. Subspace neural
physics: Fast data-driven interactive simulation. In Proceedings of the 18th Annual ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, SCA ’19, New York, NY, USA, 2019.
Association for Computing Machinery.

Ruben Ibañez, Domenico Borzacchiello, Jose Vicente Aguado, Emmanuelle Abisset-Chavanne,
Elias Cueto, Pierre Ladeveze, and Francisco Chinesta. Data-driven non-linear elasticity: Con-
stitutive manifold construction and problem discretization. Computational Mechanics, 60(5):
813–826, November 2017.

Byungsoo Kim, Vinicius C. Azevedo, Nils Thuerey, Theodore Kim, Markus Gross, and Barbara
Solenthaler. Deep fluids: A generative network for parameterized fluid simulations. CGF, 38(2):
59–70, 2019.

Byungsoo Kim, Vinicius C. Azevedo, Markus Gross, and Barbara Solenthaler. Lagrangian neural
style transfer for fluids. ACM Transaction on Graphics (SIGGRAPH), 2020.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural relational
inference for interacting systems. arXiv preprint arXiv:1802.04687, 2018.

Tassilo Kugelstadt and Elmar Schoemer. Position and orientation based cosserat rods. In Pro-
ceedings of the 2016 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Euro-
graphics Association, 2016.

L’ubor Ladický, SoHyeon Jeong, Barbara Solenthaler, Marc Pollefeys, and Markus Gross. Data-
driven fluid simulations using regression forests. ACM Transactions on Graphics, 34(6), 2015.

Isaac E. Lagaris, Aristidis Likas, and Dimitrios I. Fotiadis. Artificial neural networks for solving
ordinary and partial differential equations. IEEE Transactions on Neural Networks, 9(5):987–
1000, 1998.

Guohao Li, Matthias Müller, Ali Thabet, and Bernard Ghanem. DeepGCNs: Can GCNs Go as Deep
as CNNs? In The IEEE International Conference on Computer Vision (ICCV), 2019.

Yunzhu Li, Jiajun Wu, Jun-Yan Zhu, Joshua B. Tenenbaum, Antonio Torralba, and Russ Tedrake.
Propagation networks for model-based control under partial observation, 2018.

Miles Macklin, Matthias Müller, Nuttapong Chentanez, and Tae-Yong Kim. Unified particle physics
for real-time applications. ACM Transactions on Graphics, 33(4), July 2014.

Miles Macklin, Matthias Müller, and Nuttapong Chentanez. Xpbd: Position-based simulation of
compliant constrained dynamics. In Proceedings of the 9th International Conference on Motion
in Games, MIG ’16, pp. 49–54, New York, NY, USA, 2016. ACM.

Dominik L. Michels and Mathieu Desbrun. A Semi-analytical Approach to Molecular Dynamics.
Journal of Computational Physics, 303:336 – 354, 2015.

Dominik L. Michels, Gerrit A. Sobottka, and Andreas G. Weber. Exponential Integrators for Stiff
Elastodynamic Problems. ACM Transactions on Graphics, 33(1):7:1–7:20, 2014.

Dominik L. Michels, J. Paul T. Mueller, and Gerrit A. Sobottka. A Physically Based Approach to the
Accurate Simulation of Stiff Fibers and Stiff Fiber Meshes. Comput. Graph., 53(PB):136–146,
December 2015.

Dominik L. Michels, Vu Thai Luan, and Mayya Tokman. A Stiffly Accurate Integrator for Elasto-
dynamic Problems. ACM Transactions on Graphics, 36(4), July 2017.

Siddhartha Mishra. A machine learning framework for data driven acceleration of computations of
differential equations, 2018.

Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li Fei-Fei, Joshua B. Tenenbaum, and
Daniel L. K. Yamins. Flexible neural representation for physics prediction, 2018.

10

Under review as a conference paper at ICLR 2021

Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. Position based dynamics.
Journal of Visual Communication and Image Representation, 18(2):109 – 118, 2007.

Andrew Nealen, Matthias Müller, Richard Keiser, Eddy Boxerman, and Mark Carlson. Physically
based deformable models in computer graphics. Computer Graphics Forum, 25(4):809–836,
2006.

Dinesh K. Pai. Strands: Interactive simulation of thin solids using cosserat models. Computer
Graphics Forum, 21(3):347–352, 2002.

Sören Pirk, Michal Jarzabek, Torsten Hädrich, Dominik L. Michels, and Wojciech Palubicki. In-
teractive wood combustion for botanical tree models. ACM Transactions on Graphics, 36(6):
197:1–197:12, November 2017.

Maziar Raissi and George Em Karniadakis. Hidden physics models: Machine learning of nonlinear
partial differential equations. Journal of Computational Physics, 357:125 – 141, 2018.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686 – 707, 2019.

Yousef Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied
Mathematics, USA, 2nd edition, 2003.

Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller,
Raia Hadsell, and Peter Battaglia. Graph networks as learnable physics engines for inference and
control, 2018.

Alvaro Sanchez-Gonzalez, Victor Bapst, Kyle Cranmer, and Peter Battaglia. Hamiltonian graph
networks with ode integrators, 2019.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter W.
Battaglia. Learning to simulate complex physics with graph networks, 2020.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, Jan
2009.

Sungyong Seo and Yan Liu. Differentiable physics-informed graph networks. CoRR,
abs/1902.02950, 2019.

Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving partial
differential equations. Journal of Computational Physics, 375:1339 – 1364, 2018.

Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. Accelerating eulerian
fluid simulation with convolutional networks. CoRR, abs/1607.03597, 2016.

Rahul Trivedi, Logan Su, Jesse Lu, Martin F Schubert, and Jelena Vuckovic. Data-driven accelera-
tion of photonic simulations, 2019.

Kiwon Um, Xiangyu Hu, and Nils Thuerey. Liquid splash modeling with neural networks, 2017.

Nobuyuki Umetani, Ryan Schmidt, and Jos Stam. Position-based elastic rods. In Proceedings of
the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’14, pp. 21–30,
Aire-la-Ville, Switzerland, Switzerland, 2014. Eurographics Association.

Benjamin Ummenhofer, Lukas Prantl, Nils Thuerey, and Vladlen Koltun. Lagrangian fluid simu-
lation with continuous convolutions. In International Conference on Learning Representations,
2020.

Huamin Wang, James F. O’Brien, and Ravi Ramamoorthi. Data-driven elastic models for cloth:
Modeling and measurement. In ACM SIGGRAPH 2011 Papers, SIGGRAPH ’11, pp. 71:1–71:12,
New York, NY, USA, 2011. ACM.

11

Under review as a conference paper at ICLR 2021

Xiaolong Wang, Ross B. Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks.
CoRR, abs/1711.07971, 2017.

Steffen Wiewel, Moritz Becher, and Nils Thuerey. Latent-space physics: Towards learning the
temporal evolution of fluid flow. CoRR, abs/1802.10123, 2018.

Xiangyun Xiao, Yanqing Zhou, Hui Wang, and Xubo Yang. A novel cnn-based poisson solver for
fluid simulation. IEEE Transactions on Visualization and Computer Graphics, 26(3):1454–1465,
2020.

12

Under review as a conference paper at ICLR 2021

SUPPLEMENTARY MATERIAL

DYNAMIC RESULTS

a)

b)

c)

d)

e)

f)

g)

Figure 8: Illustration of the temporal evolution of scenarios (a) to (d) for the initially straight bending
rod, and (e) to (f) for the elastic helix. The different cases represent various material property
configurations.

13

Under review as a conference paper at ICLR 2021

In Figure 8 we show the temporal evolution of different scenarios (a) to (d) for the initially
straight bending rod, and (e) to (f) for the elastic helix. The default parameters of the ini-
tially straight bending rod are φ0 = 0◦, N = 30, ` = 4.0 m, and Y = 1.0 · 105 Pa. In
(a), we modify φ0 ∈ {0.0◦, 15.0◦, 30.0◦, 45.0◦}. In (b), we modify N ∈ {10, 20, 40, 60}. In
(c), we modify ` ∈ {1.0 m, 2.0 m, 3.0 m, 4.0 m, 5.0 m, 6.0 m}. In (d), we modify Y ∈ {2.0 ·
104 Pa, 5.0 · 104 Pa, 1.0 · 105 Pa, 2.0 · 105 Pa, 5.0 · 105 Pa, 1.0 · 106 Pa}. The default parameters
of the elastic helix are HR = 0.5 m (helix radius), HH = 0.5 m (helix height), HW = 2.5
(winding number), T = 1.0 · 105 Pa, and N = 60. In (e), we modify (HR,HH,HW) ∈
{(0.4 m, 0.4 m, 2.0 m), (0.4 m, 0.4 m, 3.0 m), (0.5 m, 0.5 m, 2.0 m), (0.5 m, 0.5 m, 3.0 m)}. In (f),
we modifyN ∈ {30, 60, 80, 100}. In (g), we modifyG ∈ {2.0 ·104 Pa, 5.0 ·104 Pa, 1.0 ·105 Pa, 1.0 ·
106 Pa}. For each experiment, the rod colors indicate the corresponding parameters in the following
(ascending) order: blue, orange, green, red, purple, brown.

Dynamic results of our graph learning assisted simulations can be found in the video

GraphLearningPhysicalSystems.mp4 (2:20 min, 20.6 MB, 1920× 1080, H.264)

provided as additional supplementary material. These results are obtained by employing three GN
blocks, two MLP layers, and a MLP width of 32. Parameters have been used which are are not
covered within the training dataset.

Moreover, to further demonstrate general applicability, Figure 9 shows an additional simulation of
a tightening knot for which COPINGNet-based PBD shows a total speedup of 10.4% compared to
vanilla PBD. COPINGNet is trained using a dataset containing 20 simulations of the same knot
scenario with different discretizations over 100 frames. It can clearly be observed that COPINGNet
generalizes beyond the training data.

Frame 000 Frame 006 Frame 013 Frame 020 Frame 027 Frame 034

Frame 041 Frame 048 Frame 055 Frame 062 Frame 068 Frame 075

Frame 082 Frame 089 Frame 096 Frame 103 Frame 110 Frame 117

Frame 124 Frame 131 Frame 137 Frame 144 Frame 151 Frame 158

Frame 165 Frame 172 Frame 179 Frame 186 Frame 193 Frame 200

Figure 9: Illustration of the temporal evolution of a knot scenario. The rod is fixed at both ends
and the knot is pulled tight. The predicted results by end-to-end COPINGNet-based learning are
shown in red while the results computed with COPINGNet-assisted PBD are shown in black. The
visualization of the last frame contains a close-up to demonstrate that the knot structure is still
preserved. The rod parameters are N = 110, R = 0.01 m, ` = 11.0 m, and Y = T = 1.0 · 104 Pa.

14

COMPARISONS

Figure 10 illustrates the temporal evolution of a bending rod and elastic helix scenarios using dif-
ferent approaches. For the bending rod case, the parameters φ0 = 0◦, N = 30, ` = 4.0 m, and
Y = 1.0 · 105 Pa are used. In the helix case, HR = 0.5 m (helix radius), HH = 0.5 m (helix height),
HW = 2.5 (winding number), T = 1.0 · 105 Pa, and N = 60 were applied. The temporal evolution
of the positions’ normalized root mean square error (NRMSE) is shown in Figure 11.

0 1 2 3 4
−4

−3

−2

−1

0
t=0.0s

0 1 2 3 4

t=0.2s

0 1 2 3 4

t=0.4s

0 1 2 3 4

t=0.8s

0 1 2 3 4

t=1.6s

−0.5 0.0 0.5
−2.0

−1.5

−1.0

−0.5

0.0
t=0.0s

−0.5 0.0 0.5

t=0.2s

−0.5 0.0 0.5

t=0.4s

−0.5 0.0 0.5

t=0.8s

−0.5 0.0 0.5

t=1.6s

Figure 10: Illustration of the temporal evolution of bending rod (upper row) and elastic helix (lower
row) scenarios simulated using our COPINGNet-assisted PBD approach (blue curves), vanilla PBD
(orange dotted curves), k-NN-based end-to-end learning (purple curves) and GN-based end-to-end
learning (green curves). While the COPINGNet-assisted approach and the vanilla PBD solver allow
us to simulate both cases in a stable manner, both end-to-end learning approaches diverge with
increasing time due to error accumulation.

0 20 40 60 80 100
Time Frame Number

0.0

0.5

1.0

1.5

Po
sit
io
n
NR

M
SE

0 20 40 60 80 100
Time Frame Number

0

1

2

3

Po
sit
io
n
NR

M
SE

Figure 11: Illustration of the positions’ normalized root mean square error (NRMSE) compared
to vanilla PBD using our COPINGNet-assisted PBD approach (blue curves), k-NN-based end-to-
end learning (purple curves), and GN-based end-to-end learning (green curves) for the bending
rod (left) and the elastic helix (right) scenarios. While the COPINGNet-assisted PBD approach
converges to an almost correct solution, both end-to-end learning approaches show large error rates
with increasing time frame number.

ARCHITECTURE

The evaluation of COPINGNet’s architecture, introduced in Section 3.2, is presented in Figure 12.
The performance is studied for different numbers of GN-blocks and MLP layers, and different MLP
widths (latent sizes). The measurements demonstrate that a larger number of GN-blocks usually
increases the performance while the performance improvement is not longer significant for more
than four GN-blocks. This is plausible and can be considered analogously to the size of the stencil of
a numerical integrator: a larger number of GN-blocks means that a specific node can take advantage
of information gained from neighbourhoods further away. Correspondingly, a larger stencil can do

Under review as a conference paper at ICLR 2021

so as well. However, increasing the size of the stencil usually does not result in more accurate
results once the critical size is reached. This can be observed here as well. In contrast, it can be
clearly observed that deeper MLP networks do not improve the performance. This is consistent with
other research on graph networks (Sanchez-Gonzalez et al., 2020). However, increasing the MLP
width can increase the network’s ability to generalize. It is shown that the highest performance is
achieved with the largest MLP width, especially in the case of the helix scenarios. Since increasing
the number of GN-blocks and MLP width will lead to longer inference time, we compromise by
choosing medium numbers. For further evaluations, we employ three GN-blocks, two MLP layers,
and a MLP width of 32.

1 2 3 4 5 6 7 8
Number of GN-blocks

1.0

1.2

1.4

1.6

CG
 It
er
at
io
n
Ra

tio
 (B

en
di
ng

 R
od
)

1 2 3
MLP Layers

16 32 64
MLP Width

1 2 3 4 5 6 7 8
Number of GN-blocks

1.0

1.2

1.4

1.6

CG
 It
er
at
io
n
Ra

tio
 (H

el
ix
)

1 2 3
MLP Layers

16 32 64
MLP Width

Figure 12: Illustration of the evaluation of COPINGNet’s architecture (blue: benchmark architec-
ture). The result is averaged from 50 test simulations each running for 100 time steps.

k-NEAREST NEIGHBOR ALGORITHM

For evaluation purposes, we also incorporated the k-nearest neighbor (k-NN) algorithm into our
framework to compute an initial guess for the constraint projection step.

Consider a k-NN data point (xi,yi). Its components contain node and edge feature information:

xi = (vin,i, ein,ik , . . .)
T, yi = (vout,i, eout,ik , . . .)

T , k ∈ N0 .

Simulation data is collected to form a dataset {(xi,yi)}. During inference, the nearest k data points
of x∗

i are picked and linear interpolations are performed to obtain the predicted y∗
i .

For each input node feature v∗
in,i, we obtain the corresponding output node feature ṽout,i = v∗

out,i.
The output edge feature is averaged from the information of the corresponding component y∗

j :

ẽout,i =
1

M

∑
j

e∗out,jk ,

in which M denotes the number of nodes.

The k-NN algorithm is applied as an end-to-end method completely replacing constraint projection
or to predict an initial guess.

16

	Introduction
	Related Work
	Methodology
	Graph Encoding
	Network Structure

	Evaluation
	Conclusion

