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ABSTRACT

Bilevel optimization (BO) has recently gained significant attention in various ma-
chine learning applications due to its ability to model the hierarchical structures
inherent in these problems. Several gradient-free methods have been proposed to
address stochastic black-box bilevel optimization problems, where the gradients of
both the upper and lower-level objective functions are unavailable. However, these
methods suffer from high query complexity and do not accommodate more general
bilevel problems involving nonsmooth regularization. In this paper, we present a
query-efficient method that effectively leverages Bregman distance to solve nons-
mooth stochastic black-box bilevel optimization problems. More importantly, we
provide a non-asymptotic convergence analysis, showing that our method requires
only O(d;(dy + dg)?e¢~2) queries to reach the e-stationary point. Additionally,
we conduct experiments on data hyper-cleaning and hyper-representation learning
tasks, demonstrating that our algorithms outperform existing bilevel optimization
methods.

1 INTRODUCTION

Bilevel optimization (BO) (Bard, 2013} |Colson et al.,|2007)) plays a central role in various significant
machine learning applications, including hyper-parameter optimization (Pedregosa, [2016; Bergstra
et al.,|2011; Bertsekas|, |1976} |Shi & Gul, 2021} [Shi et al., [2024), meta-learning (Feurer et al., [2015}
Franceschi et al[2018; Rajeswaran et al., 2019), reinforcement learning (Hong et al., 2023; [Konda &
Tsitsiklis, [2000). Generally speaking, the BO can be formulated as follows,

min ®(x) = f(x,y*(x)) + h(x) s.t. y*(x) = argmin g(x,y),
XEX yey

where X and ) are convex subsets in R and R%2, respectively; f is smooth and possibly nonconvex;
g is smooth and strongly convex; h(x) is convex and possibly nonsmooth. This problem involves
a competition between two parties or two objectives, and if one party makes its choice first, it will
affect the optimal choice of the other party.

Recently, hypergradient methods have shown great effectiveness in solving various white-box bilevel
optimization problems. Specifically, Franceschi et al.| (2017); [Pedregosa) (2016); Ji et al.| (2021)
proposed the double-loop algorithms, which use the gradient methods to approximate the solution
to the lower-level problem and then use the implicit differentiable methods (Pedregosal 2016} Ji
et al.l 2021)) or explicit differentiable methods (Franceschi et al.,|2017) to approximate the gradient
of the upper-level objective w.r.t x to update . However, in some real-world applications, such as
in a sequential game, the problems must be updated simultaneously, which makes these methods
unsuitable. To solve this problem, Hong et al.| (2023)); Khanduri et al.| (2021); (Chen et al.|(2021b);
Guo et al.|(2021a)); Shi et al.|(2024) designed the single-loop methods, which use the Neumann series
to approximate the hypergradient and then update x and y simultaneously. To further improve the
performance, Dagréou et al.| (2022)); |Yang et al.| (2023)); Chu et al.| (2024)); Huang| (2024) proposed a
fully single-loop method by introducing an auxiliary variable.

In many real-world applications, both the upper- and lower-level objectives may be black-box
functions where gradient information is unavailable. Consequently, the abovementioned methods
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cannot be directly applied to solve such black-box bilevel optimization problems. Researchers have
increasingly focused on developing approaches to address this challenge in recent years, as shown in
Table[I] [Gu et al| (2021) use the Gaussian convolution approach for the upper-level function while
assuming a good solution to the lower-level problem is available through an optimization algorithm
such as the zeroth-order (proximal) gradient method. However, no convergence analysis is provided.
Aghasi & Ghadimi| (2024) use Gaussian smoothing on both upper and lower-level objectives and
propose a zeroth-order hypergradient estimation of hypergradient by solving a linear system. In
((dlt;bf leErd2)

addition, the authors also show their method needs O log queries to obtain the
stationary point of the original problem (i.e., | VF(x)||? < ¢, where F'(x) = f(x,y*(x))). However,
this method needs to solve the lower-level problem using the zeroth-order gradient method, which
can result in high query complexity. Additionally, it is limited to addressing only the specific case of
stochastic bilevel optimization where h(x) = 0. Thus, developing methods to tackle the nonsmooth
black-box bilevel optimization with reduced query requirements remains an open challenge.

Table 1: Summary of stochastic black-box bilevel optimization methods (The fourth and fifth
columns show the property of the upper and lower-level problem e.g., S denotes smooth, NS denotes
nonsmooth, NC denotes nonconvex, SC denotes strongly convex; in the fifth column, we ignore the
loop of approximating the zeroth-order gradient of all the methods; the last column shows the query
complexity to achieve the stationary point ||[VF(x)||? < e or 1 [x"T1 — x!||> < ¢).

Methods Ref. UL LL  Loops Query Complexity

. . (di+dp)* 1 di+ds
ZDSBA  |Aghasi & Ghadimi|(2024) S,NC SC  Double O(T log =122
HOZOG Gu et al. 7(202I) S,NC NC  Triple X
BreSB30 Ours NS,NC SC  Single O(alditda)”

€

To fill this gap, in the paper, we propose a query-efficient bilevel optimization method to solve the
nonsmooth stochastic black-box bilevel optimization problem. Specifically, we first approximate
the bilevel optimization by using the Gaussian smoothing and then propose a fully single-loop
framework with the zeroth-order gradient method to solve the new problem. We incorporate the
Bregman distance and apply the mirror descent on the upper-level variables to solve the nonsmooth
term. Theoretically, we present our method can converge to the stationary point of the original
problem with O(dl(dlsiflﬁ) queries. We conduct experiments on data hyper-cleaning and hyper-
representation learning tasks to demonstrate that our new algorithms outperform related bilevel
optimization approaches.

2 RELATED WORKS

2.1 HYPERGRADIENT BASED BILEVEL OPTIMIZATION

Bilevel optimization |Bracken & McGill| (1973) has been extensively studied for decades. Various
strategies have emerged in recent years for addressing stochastic bilevel optimization problems. The
first class of methods relies on a two-loop structure: an inner loop solves the lower-level problem,
and an outer loop updates the upper-level variable using an approximate stochastic hypergradient.
Bracken & McGilll (1973)); (Chen et al.| (2021a); [Ji et al.| (2021) employed SGD updates for the
lower-level problem, where each outer-loop iteration estimates the Hessian-inverse-vector product
by solving a linear system or use the explicit gradient method. Another class of methods focuses
on single-loop algorithms, which alternately/simultaneously update the upper-level and lower-level
variables. Specifically, Hong et al.|(2023) introduced a method that uses Neumann approximations
for the inverse Hessian, coupled with a single SGD step for the lower-level problem. |Shi et al.| (2024)
proposed a new definition of the stationary point and proposed a new method for the lower-level
constrained bilevel optimization problem. |Guo et al.| (2021b); [Yang et al.| (2021)); Khanduri et al.
(2021)) incorporated momentum acceleration to improve convergence rates. However, these methods
are not truly single-loop, as estimating the Hessian-inverse-vector product via the Neumann series
requires an additional iterative subroutine. More recently, |Dagréou et al.| (2022)) proposed a novel
framework for bilevel optimization that allows simultaneous updates of the lower-level variables, the
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linear system loss variables, and the upper-level variables. However, its applicability to black-box
bilevel optimization has not yet been explored.

2.2 BREGMAN DISTANCE-BASED METHODS

The Bregman distance-based method (Bregman, [1967; |(Censor & Lent, 1981} |Censor & Zenios,
1992; Beck & Teboulle, |2003) is an approach commonly used in optimization and machine learning,
particularly in settings where traditional Euclidean distances are not the most suitable measure of
divergence or similarity between points. This method leverages Bregman divergences, a generalization
of distance measures tailored for convex functions and widely applied in problems such as convex
optimization, iterative algorithms, and regularization techniques. Recently, the mirror descent method
has been extended to address minimax or bilevel optimization challenges. Specifically, Babanezhad &
Lacoste-Julien| (2020) proposed an algorithm rooted in mirror descent principles for tackling convex-
concave minimax scenarios. [Rafique et al.| (2022) designed a series of mirror descent strategies
suitable for minimax optimization in weakly convex contexts. Additionally, a novel approach
based on mirror descent principles (Mertikopoulos et al.,[2019) has emerged for addressing certain
nonconvex-nonconcave minimax issues characterized by non-monotonic variational inequalities.
More recently, [Huang et al.| (2022) proposed a class of enhanced bilevel optimization methods
based on Bregman distance to solve the nonconvex-strongly-convex stochastic bilevel optimization
problems. In addition to first-order algorithms, some existing works focus on zeroth-order algorithms
for solving minimax/mini optimization problems. For example, Paul et al.|(2023) proposed almost
sure convergence of zeroth-order mirror descent algorithm and can find an e-stationary point with the
total complexity of O(e~2). Maheshwari et al.[(2022) proposed a gradient descent-ascent algorithm
with random reshuffling under convex-concave setting and obtained an e-stationary point with the
total complexity of O(e~*). Under the nonconvex-concave setting, |Xu et al.| (2024) proposed the
ZO-AGP algorithm and its iteration complexity of obtaining an e-staitionary point is bounded by
O(e~*). However, the Bregman distance-based method in the black-box bilevel optimization has not
been fully discussed.

3 PRELIMINARIES

3.1 NOTATIONS
Here, we give several important notations used in this paper. || - || denotes the £ norm for vectors and
spectral norm for matrices. I; denotes a d-dimensional identity matrix. || - ||; denotes the ¢; norm for

vectors. AT denotes transpose of matrix A. Given a convex set X', we define a projection operation
to X as Py (2') = argmingex 1/2[|z — 2|

3.2 PROBLEM SETTING

In this paper, we study the following stochastic bilevel optimization problem:

min = f(x,y"(x)) + h(x) = E¢[f(x, y"(x); §)] + h(x), ()
xeX CR%
s.t.y*(x) € argming(x,y) = E¢[g(x,y;¢)],
yER92

where function F'(x) = f(x,y*(x)) is smooth and possibly nonconvex, and function h(x) is convex
and possibly nonsmooth, and function g(x, y) is p4-strongly convex on y.

Then, we introduce several mild assumptions on the Problem

Assumption 1. f and V f are Lipschitz continuous in (x,y) € X x R with Lipschitz constant
Liand L1,

Assumption 2. (1) g,Vg and V*g are L, L and L} Lipschitz continuous in (x,y), respectively;
(2) g(x,-) is pg-strongly convex on'y for any given x € X.

Assumption 3. The function h(x) is convex but possibly nonsmooth for any x € X.
Assumption 4. Function ®(x) = F(x) + h(x) is bounded, i.e., ® = inf, g4, P(x) > —00.
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Assumption 5. In the general expectation setting, there exist positive constant oy, 041 and g2
such that E |[Vf(x,y:€) = Vx| < 0%, E[IVgxy:0) = Vo y)IP] < o2, and

E[[[v2(x,¥:¢) = Vg(x.y)||"] <2,

All these assumptions are commonly used in bilevel optimization problems (Ghadimi & Wang| [2018];
Hong et al.| [2023; J1 et al., 2021} Khanduri et al., 2021} [Shi & Gu, 2021} |Shi et al.,2022; |[Huang et al.,
2022; |Dagréou et al.| 2022} |Yang et al., 2023} (Chu et al.| 2024; Huang), |2024; |Shi et al.,[2024).

3.3 GAUSSIAN SMOOTHING FOR SMOOTH STOCHASTIC BLACK-BOX BILEVEL OPTIMIZATION

The traditional gradient-based methods for bilevel optimization need to calculate first and second-
order gradients. However, upper and lower-level objective functions are black-box problems in this
problem, and their gradient information is unavailable. To solve this problem, |Aghasi & Ghadimi
(2024) proposed a method using the zeroth-order gradient to approximate the gradient of upper and
lower-level objective functions. Specifically, let n = {n1, 72} and . = {1, p2 } be two vectors in
R? and introduce the standard normal vectors u ~ N (0,14,) and v ~ N(0, I,), the Gaussian
smooth approximation to Problem without h(x) can be formulated as

Jnin Frou(%) = Frun (% Y0, (%)) = Buve[f(x +mut vy, 0, (%) + p1v3 )] )
84 Yiaua (X) = AT N Gy (X, ¥) = Euve [9(x + nou,y + pav; ¢)].
yER?2

Then, |Aghasi & Ghadimi| (2024) uses the zeroth-order gradient method to solve the lower-level
problem. However, it is hard to get the (stochastic) gradient VF, () or VE,,,(z;§) since there is
no closed form solution yp . (x). To solve this problem, |Aghasi & Ghadimi| (2024) provides the
gradient estimator of VF,,(z) in the following lemma,

Proposition 1. (Aghasi & Ghadimi|(2024)) Under Assumptionsand for any x € R™, we have
VF”]M (X) :Vl f771 K1 (X7 y7>;2ﬂ2 (X))
* * -1 *
- v%?.g”]zltz (X’ Yngug (X)) I:v§2.g772H2 (X7 Yn2u2 (X))} VQf’fll M1 (X7 y’qgug (X)) . (3)

Since y;,,,,(x) is not available, Aghasi & Ghadimi|(2024) use the results y%g 12 (X) of lower-level
problem after T iterations zeroth-order gradient descent as an estimation of y . (x). To efficiently
approximate the zeroth-order Hessian inverse, Aghasi & Ghadimi| (2024)) solve the following linear
system:

z (X) = argmin 5 <V§297]2H2 (X7 y7]2112 (X))Z, Z> - <v2f771,lt1 (X7 yngp,g (X))7 Z> . (4)

The key challenge lies in solving the lower-level problem, as performing 7" iterations of zeroth-order
gradient descent typically result in a high query count. Moreover, it focuses on smooth optimization
problems, and its theoretical results cannot be directly extended to bilevel problems where the
upper-level objective is nonsmooth.

4 ZEROTH-ORDER STOCHASTIC BILEVEL ALGORITHM VIA BREGMAN
DISTANCE

In this section, we introduce our query efficient Zeroth-Order Stochastic Bilevel Algorithm via the
Bregman distance (BreZOSBA) to solve the black-box nonsmooth stochastic BO problems. The
algorithm is present in Algorithm 1]

4.1 FULLY SINGLE-LOOP ZEROTH-ORDER GRADIENT METHOD FOR BLACK-BOX BILEVEL
OPTIMIZATION

Before presenting our proposed method, we highlight key properties of y; . (x) and z*(x) in the
following lemmas (detailed proof is available in our appendix), which play a crucial role in the design
of our algorithm.
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Algorithm 1 BreZOSBA: Zeroth-Order Stochastic Bilevel Algorithm via Bregman Distance

Input: xlex C Rdl,yl S Rd2,z1 € R%2, number of iterations 7', r,, batch size B and B, 0 < « <1,
0<pB<1,0<7<land0< A<1

1: fort=1,...,T do

2 Compute Dt Dt , DL

3 Update x: 12 arg min, . ycpa, {(Df(, x) 4 h(x) + LBy, (x,x") }.

4: Update y: y'*' = y* — 8D}, vyt =yt 7 FT —yh).
5 Update z: z' 7! = P,ez(z" — AD}).
6: end for

Lemma 1. (Lipschitz continuity of yy . (x) and z*(x)) Under the Assumptions |I| and
Lg

y*(x) and z*(x) are Ly and L,«-Lipschitz continuous, where Ly. = o and Ly =
(528 1+ ).

Lemma 2. (Boundness of z*(x)) Under the Assumptzonsland I ) is bounded by r, = % ie.,
2 ()| < &

Then, based on the above properties, we first show our query-efficient method for solving the Problem
(2) where the nonsmooth term is ignored. Specifically, instead of using the results after 7T iterations
of the lower-level variable updating, we use y to replace the y; (x) and define a practical hyper
gradient estimator:

= -1

mel/(xv y) = Vlfm/u (x,y) - V%Z.gmuz (va) [v§2gn2u2 (va)] v2f171/t1 (x,y). (5)

To avoid calculating the Hessian inverse, one can solve the following linear system:

. 1
z (XvY) = [V§29772u2 (XaY)] Vyfmm (Xv y)

. 1
=arg rgm R(Xv Y.z ) = arg r;un <v229n2,u2 (X Y)z Z> - <v2f?71#1 (X7 y)’ Z> ) (6)
FAS bAS

where Z = {z € R%]|||z|| < r,}. This constraint is obtained from Lemma [2| Although this
problem is relatively simple, obtaining solution z*(x,y) for each given x and y still takes high time
complexity. Therefore, as in (Dagréou et al.,|2022} |Yang et al., 2023} (Chu et al.| |2024; [Huang| [2024)),
we define the following hypergradient surrogates using z as an estimation of z*(x,y):

?fnu(xa Y, Z) =V fmul (Xv Y) - v%2g772u2 (Xa Y)Z7 @)

where z € Z is an auxiliary vector to approximate the solution of Problem (€. Therefore, we can
update x, y and z at the same time for solving Problem (2):

xTh =xt — oDl y"t =yt — BD;, 2! = P,ez(z' — ADY), fort > 1, 8)

where0 < a <1,0< B <1L0<A<L & =[¢f,¢f].ul = [uf j,ub ], v =[vi, v} ]and

B B’
Dy BB’ szfnu ,yt,zt;§f7ﬁ§-,\‘f§-)
=1 j=1
B B’
BB/ ZZ [vlfmm ,y 5,,111 J’Vl J) V%QQ%ltz(xtvyt;Cz't,ug7j,vé7j)zt , 9)
i=1 j=1
B B’
Dy BB' DD Vana (' ¢ 5 vE ), (10)
i=1 j=1
B B’
DL =2 3 S VARG Y g €l )
i=1 j=1
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B B’

BB/ZZ[V229772,U«2( ?y Cf7u2]7v2_]) ?Qf"hﬂl( 7y £17u1]7v1j) . (11)

=1 j=1

Here, B > 0 and B’ > 0 denote the batch sizes; ﬁlf’ﬂlltl’ ﬁgfmm, @ggnwz, ?%29,,,2;@ and
V390n,p, are the stochastic zeroth-order gradient estimations defined as follows,

Vi (o 36u¥) =g [ xyi) = £ xyi6)] (12)
Yl (o3 6e0¥) = [y €) = - (xwi€)] v, (13)
Vs (%, ¥ ¢, 1, V) =i 97 (x,y;0) — 9~ (x,y;0)] v, (14)
Vi Gnae (%, y3 ¢, 0, V) = [07(xy;0) + 97 (x,y:¢) — 29(x,y; Q)] uv ', (15)
V32 Tnaus (%, ¥ ¢, 1, V) —2;3 (97 (x,y:O) + 9 (x,y:0) —20(x,y:¢)] (v —1Ia,), (16)

where f(x,y;€) = f(x+mu,y+mvi€), f(x,y;€) = fx—mu,y —puvi§), g7 (x,y;€) =
g(x 4+ mu,y 4+ p2v;¢) and g~ (x,y;&) = g(x — mu,y — pav;(). Obviously, D, Dy
and D} are unbiased estimations of Vf,,(x!,y’,z'), Vaog(x',y') and V R( byt ! ), ie.,
E[Dy] = Vf(x',y" 2") = Vif(x',y") — Vig(x',y")z", E[Dy] = Vag(x',y"), and E[D}] =
V.R(xt,yt, zt) = Vi,g(xt, y')z! — Vaf(x!, y!). In addition, we have the bounded variance of
our batch zeroth-order estimations in the following lemma,

Lemma 3. Under Assumption 5] the batch zeroth order gradient estimations have bounded vari-

ance such that E {HDt Vf,m X,V,2 || } < 55 {HDt — Valnus (X, y H2] < g—g, and

E ||D: — V,R(x,y,2)| } < F&, where 02 > 0, 02 > 0 and o} > 0 are defined in our Ap-
pendix.
Remark 1. Lemma 3| indicates that the bound of variance is related to dy and da. Settmg 771 =

H1 = O(m) and N2 = o = O(m), we have U = O(dl(dl +d2) ), y =
O(dl(dl + dg)z) and Jg = O(dl(dl + dg)z).

4.2 MIRROR DESCENT FOR UPPER-LEVEL VARIABLES

In this subsection, we present our method based on Bregman distance for solving the following
Gaussian smoothing approximation of the nonsmooth bilevel optimization problem.
ity @, (%) = Buvel (< +m, ¥, (%) + p1vi )] + h(x) (17)
8. Y as (X) = QTG MN Gy (X, ¥) = Euvelg(x +mau, y + p2v; O)].
yceR*2

Given a p-strongly convex and continuously-differentiable function ¥ (x), i.e., (X1 — X2, Vi)(x1) —
Vi)(x2)) > pllx1 — x2||?, we can define a Bregman distance (Censor & Lent, 1981} [Censor &
Zenios}, |1992) for any x1,x0 € X:

By, (x1,%2) = i(x1) — ¥e(x2) — (Vihe(x2), X1 — X2). (18)

Then, for the nonsmooth bilevel optimization problem, we can replace the update rule of x in Eqn.(8)
with the following mirror descent rule:

x'! = argmin {<D;,X> + h(x) + l8¢t (x, Xt)} . (19)
x€XCRI1 «

Let ¢(x) = i||x|%, we have By, (x1,%2) = 3|21 — 22]|%. If X = R%, the Problem is

equivalent to the proximal gradient descent. If X C R% and h(x) = 0, Problem is equivalent

to the projection gradient descent. When Bregman function v (x,x?) = 1 (x*)TH;x?, we have

By, (x,x") = $(x — x') T Hy(x — x"). If H, is an adaptive matrix, Problem (19) is equivalent to the
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proximal adaptive gradient decent. For example, we can generate the matrix H; like in Adam-type
algorithms (Kingmal 2014).

In addition, instead of directly using the update rule of y in Eqn.(8), we introduce an addition
parameter 0 < 7 < 1 and modify the update rule as follows

y =y =BDy, yt =y 43T -y (20)
Note that this rule is used to derive the convergence result in the next section.

5 CONVERGENCE ANALYSIS

In this section, we discuss the convergence performance of our proposed BreZOSBA. All proofs
are provided in our Appendix. We begin with introducing the metric [|G!||?> < e or E||G!||?> < e to
evaluate the convergence performance (Huang et al.| [2022} (Ghadimi et al., |2016), where Gt is defined
as: Gt = ( 1 xt),

Then, we present several useful lemmas to derive our final result. (Detailed proofs are presented in
our appendix.)

Lemma 4. Under Assumptions and setting 0 < A < ﬁ and z; = z*(xt,y*'), we have
2

Elz" — i

g . 3
< (1- 22 Ellat - 517 - JEl+ - 211

2502 20 (L]  L{L§
2% 22 Elllxt+! — xt12] + E[llvi+t — vt2]). 21
" 6u,BB 3 (Mg i | B =P ENY -y ). @
Lemma 5. Under Assumptions and setting 0 < o < 443;:PF, we have
(I)(Xt+1)
3ap 16a(LY)* 2 2« 4ac?
t t 2 1 t * X
<@(x") — —[|"| sz —z;| +7A+pBB’

2 f1r9y2
+ 2704 (8(L{)2 + S(L‘grz)Z + 8(Lg)2 (2([/;) i 2([/04[’2) >> Hyt - y;kmuz (Xt)||27 22)

Hy Hg
2L LI+(L))2 LY LI +2Lf LILg L2y T
where LF — L{ + 1 27;5 0) 2 4 1( 1) :q 012 0(#13) 2 and A —
c E 9

g f 1 1 <
Lf\/% n3ds + p3da) + 5 (01 (dy + 3)F 4 Lldodf + Tdyd] + o (dy+3)3).
Lemma 6. Under Assumpuonsl I II andl semng 0<p< GLg and T <1< 21— we have

Efly™" = ¥y, xI]

< <1 - M94T5> Elly" — ¥, OI2) = TE[I5 - )2 +

258102 L.
20y g -
61, BB 3

Using the above lemmas and assumptions, we can provide the following convergence performance of

our method.

Theorem 1. Under Assumptions andEI setting 0 < a < i—’;, 0<p< ﬁ, T <

1< 6# L 0 < A < g7, and defining the following Lyapunov function for any t > 1: H' =
2

E[®(x")] + E[Hy = Yrous (xH|1?] + E[||z" — z}||?], we have

8H' 16 202 200870, 20002
— Y E[|G" <7 — (A X Y Z_ 23
Z [19°11) + P> ( + BB’) + 6app, BB’ + 6appg BB’ 23)
Remark 2. Accordlng to our lemmas, setting 1 = p1 = O(W) and Ny = g =

c 2 2 2 _ 2 _ 2
O(m), we have oy + oy + 0, = O(di(d1 + d2)*) and A = O(€°). If we take
BB’ = O(di(dy + do)?¢ ) and T = O(e"), we have L 31 E[|G||?] < ¢. Therefore, the total

query complexity of our method is O(dy(dy + d2)?e=2).
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6 EXPERIMENT

In this section, we evaluate the performance of our method in two applications: data hyper-cleaning
and hyper-representation learning.

6.1 BASELINES
We compare our method with the following black-box bilevel methods:

1. ZDSBA: The method proposed in (Aghasi & Ghadimi, 2024)) uses the Gaussian smoothing
method to approximate upper and lower-level objectives and then solve a linear system to
approximate the hypergradient.

2. HOZOG: The method proposed in (Gu et al., 2021) uses the zeroth-order gradient to
solve the lower-level with perturbed upper-level variables and then use all the solutions to
approximate the hypergradient.

We implement all the methods by Pytorch (Paszke et al.,[2019) for hyper-representation learning and
implement all the methods by Jax (Bradbury et al.,[2018) and BenchmarkBilevel (Dagréou et al.,
2022)for data hyper-cleaning. We run all the methods 5 times on a PC with four RTX3090 GPUs.

6.2 APPLICATIONS

Table 2: Test accuracy of all the methods on data hyper-cleaning

MNIST FashionMNIST Cifar10 SVHN
BreZOSBA  86.42 +0.25 76.92 £0.19 38.08 £0.25 19.49 +£0.45
ZDSBA 86.34 +£0.17  76.92+£0.37 35.87+£0.15 16.15+£0.39

HOZOG 85.44+047 76.29+0.24 36.11£0.03 16.98+0.79
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Figure 1: Test accuracy against Queries of all the methods in hyper data-cleaning (We stop all the
methods if the training time is more than 600 seconds).

Data Hyper-cleaning. In many real-world applications, the training and testing sets often follow
different distributions, leading to performance discrepancies. To mitigate this issue, each data point is
assigned an importance weight to bridge the gap between these distributions, which is referred to as
data hyper-cleaning. This problem can be formulated as

min ((y*(x)Ta;, b)) +c|x|1 st y*(z)=argminy [o(x)]: (v ai,b;),

e e g )
where ¢ = 0.1 is the regularization parameter, Dy, and D,,; denote the training set and validation
set respectively; (a;, b;) denotes the data sample and label; o(-) := 1/(1 4 exp(—-)) is the Sigmoid
function; £(-, -) is the loss function; £(-, -) is the black-box loss function.

In this experiment, we compare our method with ZDSBA and HPZOG on datasets MNIST, Fash-
1onMNIST (Xiao et al., 2017), Cifar10, and SVHN. For ZDSBA and HOZOG, we set the inner
iteration 7" = 20 and search the learning rate of upper and lower-level variables from the set
{0.0001, 0.001,0.01,0.1, 1}. For our method, we set 7, = 10, 78 = X and choose A and « from the
set {0.0001,0.001,0.01,0.1,1}. We set 1 = 12 = p1 = g2 = 0.0001 and B = 64 and B’ = 10
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Table 3: Test accuracy of all the methods on hyper-representation learning

MNIST FashionMNIST Cifarl0 SVHN
BreZOSBA  89.31 +£0.37 77.96 + 0.31 22.81 +£0.42 14.26 +0.86
ZDSBA 85.76 &+ 0.59 76.36 = 0.10 20.90 £0.08 14.51 £1.62

HOZOG 82.79 £1.08 75.11 £0.42 2094+044 14.48+£0.46
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Figure 2: Test accuracy against Queries of all the methods in hyper-representation learning (We stop
all the methods if the training time is more than 3600 seconds or the queries are more than 1e5).

for all the methods. In this experiment, we run all the methods for 512 epochs. We stop all the
methods if the running time exceeds 600 seconds.

Hyper-representation Learning. In this experiment, we perform the hyper-representation learning
task over MNIST, FashionMNIST, Cifar10, and SVHN. The formulation of this problem is as follows:

min 14 (y*(x)TqS(x,aZ-), bi) + x| st y*(x) = argminZ€ (yngS(x, ai),bi) + eyl
xER1 do
Dy yeR Dr
where ¢ denotes the black-box loss function, Dy, and D are training and validation datasets for
randomly sampled meta task; ¢(x,-) is a neural network parameterized by x, which denotes a
representation mapping; y denotes the parameters of the classifier; c; = 0.0001 and ¢y = 0.0001 are

the regularization parameters.

We use the LeNet-5 (LeCun et al., |1998) as ¢ to capture the features in this experiment. For ZDSBA
and HOZOG, we set the inner iteration 7' = 10 and search the learning rate of upper and lower-level
variables from the set {0.0001,0.001,0.01,0.1, 1}. For our method, we set r, = 10, 78 = A and
choose A and « from the set {0.0001,0.001,0.01,0.1,1}. We set 1 = n2 = 1 = po = 0.0001,
B = 256, and B’ = 5 for all the methods. In this experiment, we run all the methods for 1000
epochs. We stop all the methods if the running time is larger than 3600 seconds or queries are larger
than 100, 000.

6.3 RESULTS AND DISCUSSION

All the results are presented in Figure [T] 2] and Table 2] 3] Across all experiments, our method
consistently demonstrates superior performance compared to ZDSBA and HOZOG, both in terms
of test accuracy and query efficiency. This performance advantage is particularly evident when
considering query costs, where our approach significantly reduces the number of queries required to
achieve comparable or better accuracy. One key reason for this improvement is that HOZOG, while
effective, depends on zeroth-order gradient approximations to compute the lower-level solution for
each perturbed upper-level variable. This process inherently results in a much higher query demand,
as zeroth-order methods are typically less query-efficient due to their reliance on sampling techniques.
Similarly, ZDSBA employs a zeroth-order method for solving the lower-level problem, further
exacerbating the query overhead and slowing convergence. In contrast, our method introduces a more
query-efficient framework by reducing the reliance on expensive zeroth-order computations. The
observed improvements in query efficiency and accuracy strongly support the theoretical convergence
guarantees we established in Theorem[I] These findings not only validate the effectiveness of our
approach but also highlight its potential for application in large-scale problems where query efficiency
is critical.
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Table 4: Test accuracy of our method on hyper data-cleaning with different B’
MNIST FashionMNIST Cifarl0 SVHN

B =1 85.19£0.30 75.04£0.63 34.15+£0.17 15.64+0.54
B'=3 86.34£0.16 76.39+£0.32 36.64+£0.42 18.13+0.40
B'=5 86.30 £0.12  76.73£0.41 36.98+£0.32 18.85+0.52
B'=10 86.42+0.25 76.92 +0.19 38.08 £0.25 19.49 £0.45
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Figure 3: Test accuracy against Queries of our method in hyper data-cleaning with different B’.

6.4 ABLATION STUDIES

We conduct ablation studies on the hyperparameters B’
and r, to systematically evaluate their influence on per-
formance. To maintain controlled conditions, we vary

one hyperparameter while keeping all others fixed at their 80
default values, ensuring a clear understanding of each pa-
rameter’s effect. Additionally, we tune the step size for g — MNIST
each configuration, as specified in the experimental setup, 560 FashionMNIST
to optimize performance. The results of these experiments < —— Cifar10
are presented in Tables 4] Figure [3] and Figure [4] with &40 — SVHN
further supplementary results provided in the Appendix
for additional insights. 2
10t 102 103 10

From the experiments, it is evident that increasing B’
consistently leads to both higher query requirements and
improved test accuracy. This behaviour can be attributed ~ Figure 4: Test accuracy with different r,,
to a larger B’ reducing the variance of gradient estimates, of our method in hyper data-cleaning.
resulting in smoother updates and better overall convergence. Moreover, the improved convergence
performance from a larger B’ suggests that the model can benefit from more stable gradients,
facilitating more accurate learning, especially in scenarios with noisy or uncertain data. These
findings highlight the importance of tuning B’ to balance queries and model accuracy. In addition,
We can find that our method exhibits considerable stability to the parameter 7.

Iz

7 CONCLUSION

In this paper, we propose a query-efficient algorithm for stochastic black-box nonsmooth bilevel
optimization, named BreZOSBA, and provide a comprehensive theoretical analysis. Our main result,
Theorem[I} demonstrates that, under specific assumptions and hyperparameter settings, the output
of BreZOSBA satisfies 7 Z;‘F:l E[||G||?] < e with the query complexity of O (d"(dlei;w), which
surpasses the performance of existing methods. We further validate the effectiveness of BreZOSBA
through experiments on two applications, where our method consistently demonstrates superior
performance.

10
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A ADDITIONAL EXPERIMENTAL RESULTS

A.1 IMPACT OF B’ AND 7y,

In this section, we show the results of our method using different B’ and r, in hyper-representation
learning in Figure |5| and Table |5|and Figure @ We can find using a larger B’ can obtain a better
performance and increase the query. We can find that our method exhibits considerable stability to

the parameter 7.
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Figure 5: Test accuracy against Queries of our method in hyper-representation learning using different
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Figure 6: Test accuracy of our method in hyper-representation learning using different .

Table 5: Test accuracy of our method on hyper-representation learning with different B’

MNIST FashionMNIST Cifarl0 SVHN
B =1 78.96 £ 1.45 70.52 £ 0.55 18.37 £0.23 14.01 +£1.22
B' = 86.93 £ 0.59 76.05 £ 0.93 21.42+1.43 14.51+0.36

B' =5 89.31 £0.37  77.96 £0.31 22.81£0.42 14.26 +0.86
B'=10 91.03+0.58 79.57 £ 0.08 24.09 £ 0.06  15.06 £ 1.81

A.2 IMPACT OF u

We conduct ablation studies on the hyperparameters 11 = 12 = 1 = pe = pu to systematically
evaluate their influence on performance. To maintain controlled conditions, we vary one hyperpa-
rameter while keeping all others fixed at their default values, ensuring a clear understanding of each
parameter’s effect. Additionally, we tune the step size for each configuration, as specified in the
experimental setup, to optimize performance. We present the results in Table [f]and Table[7] We can
find that our method exhibits considerable stability to the parameter .
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Table 6: Test accuracy of our method on data hyper-clean with different p
MNIST FashionMNIST Cifar10 SVHN

©=0.001 85.32 £0.21 76.88£0.23  38.11+£0.34 18.45+0.25
©=0.0001 86.42 £ 0.25 76.92£0.19 38.08£0.25 19.4940.45
p=0.00001 86.45£0.18 76.43 £0.21 38.07+£0.21 19.52+0.33

Table 7: Test accuracy of our method on hyper-representation learning with different .

MNIST FashionMNIST Cifar10 SVHN

p=0.001 88.32 £0.15 75.52+£0.33 21.11+1.34 13.44+1.12
©=0.0001 88.38 £0.20 75.74£0.26 21.51+£1.13 14.26 +£0.86
p=0.00001 88.43+£0.16 75.81 £0.31 21.46 £0.78 14.56 +0.63

B ADDITIONAL LEMMAS

Lemma 7. UnderAssumptionsand we have (1) f,,, and V f,,,, are Lipschitz continuous in (X,y)

with Lipschitz constant Lg and L{ 7 (3) Vnaus and NV2g,, ., are L{ and L3 Lipschitz continuous in
(x,y), respectively; (4) g, . IS [tg-strongly convex on'y for any given x.

Proof. The results can be easily obtained according to (Aghasi & Ghadimi, [2024)). O

Lemma 8. (Smoothness of function F (Chu et al.}[2024)) Under Assumptions[I|and 2] the function
Fis Lp-Lipschitz continuous, where

2L{L§ + (L})*L§ N L{(L{)? + 2L§ L{L} Lf(L9)2L9

Lp=1L]+ (24)
Hg Hg ,ug
C DETAILED PROOF OF IMPORTANT LEMMAS
C.1 PROOF OF LEMMA[I]
Proof. Using definition 6ynw2( ) = [V%lgnzw (x,y;;w2 (x))]—lvgng (x, Yiaus (x)) and

LY
Lemmal we have Ly« = H—l
g

For z*(x), we have

2" (x1) — 2" (x2)|
=V T Gnasan (K0 Yo O] T Vafo i (%0, Y1 (1)) = [V Gmgin (X2, Vi o (%2)] 7 Va fipy iy (X2, ¥, 0 (%2))]
<H[v%19n2uz (x1, y;kmm (Xl))]_l(VQfmm (x1, y;;zuz (x1)) = Vafyu (X2, YTWZ (x2))l

F (V1m0 Vi KON T = (V3100102 (X2, Yy (2] ™) Vi iy (X2, Y5, 05 (%2)) |

L Lng
< ( 2 ) || X17Y172,u2 1))) - (X2ay;;2u2(x2)))”
9
L *
< ( ) X1 = X2l + [[y7, 0 (X1)) = Y20 (X2) 1)
f g
s( Lol ) 1+— le—mll (25)

frg
Then defining L« = (4 4+ Lol:

By oy

) (1 + %) concludes the proof. O
g

15



Under review as a conference paper at ICLR 2025

C.2 PROOF OF LEMMA[Z]

Proof. Using the definition of z*(x), and Lemma we can easily obtain

L
2" (x)| < == =1 (26)
Hg
O
D DETAILED PROOF OF LEMMA 3]
Here, we given the bound on the variance of the stochastic gradient estimation.
Lemma 9. The stochastic zeroth-order gradients have bounded variance as follows
E |:va’l7M(X7Y7Z;giaﬁj7‘_fj> vfnu X,Y,z H :| (27)
E [H@Q%uz (%,¥;Ciru2,5,v25) — Valnou, (X,Y)H ] < Uf, (28)
E[[[VaR(xy. 26,85, %)) - VaR(x,y,2)[*] < 02 29)

where 0% = 2(L{)? (173 (dy-+6)+ £ d (do-+4)*)+4(ds +2) (4 + s
8)4+2n—*§d1(d2+12)3]r2+12(d1+2)(’72 (dh+4)+ 6+ 24 (da+2)) (dy +d2) (02 5+ (14)?)r, 02 =
(L9)? (u3(d2+6)° + "2 bdy(dy +4)? ) (d2+2)(ﬁ +1)(02 1+ (L§)?) and 0% = 2(L{)?(p3 (da +
6)3+Z—%d2(d1+4) )+4(d2+2)( 1)(02+(L 5) )+4(Lg) (207 (dr +16)" + £ (do +6)*(ds +
3))r2 +6(dy +6)(3(dy +6) + 3“1+;—( +2))(d1 + do) (025 + (L§)?)r2

)

1) (03 + (L)) +16(L§)* [ (d +
)

+
+
Proof. We have

BTER 2
E [|V2gnous (X, 55 Gin g j, Vo j) — v?anHz(X,Y)H ]

[ 2
- 2
=E ||| Vg2 063 G125, v2,5)| ] ~ [ Vagaps (%, )

o 2
<E |||Vagnps (X, ¥; CiaUQ,jaVQ,j)H ]
;7 2( 2 3 773 2 477% 2 2

<(L7)7 ( pa(d2 +6)° + ?dQ(dl +4)° | + ?dgEHVlg(x,y; C)II” +4(da + 2)E|Vag(x, ;5 Gl
5 5
4 2

<(L9)? (,u%(dQ +6)3 + %dz(dl + 4)2) + 4(dy + 2) (ZZ + 1> E(Vg(x,y;G)IIP
5

4
<(L9)* (u%(da 6"+ Laa(ay +4>2) T A(dy +2) (Z 4 1) (02, + (L2)?) (30)
2 2

where the third inequality is due to Corollary 2.1 in (Aghasi & Ghadimil, [2024)); the last inequality is
due to Assumption[2]and[3].

Then, according to the definition of V f,,,,(x,y, z; &, i, V;), we have

E [V fun (5,2 €605, 95) = ¥ fu(x, 7. 2)|

R . 2

=E [Hvlfn1u1(x7Y§§i7u1,j)vl,j) - V%29n2u2 (%,¥;CisU2,5,v2,5)Z — Vi fo 0 (X,y) + V§2g772l12 (x,y)z ]
. 2
<2E [Hvlfmm (X7y;§i,u1,j7V1,j) - Vlfm/h (X’ Y>H ]
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|

+2E |:HV%29772M2 (x,y)z — ?%29772;12 (%,¥;Gi,uz,j, va )z
(3D

For the first term, we have

~ 2
E |:Hv1f'f]1u1 (X7Y;§i7u1,jyvl,j) - vlf?hul (Xay)H :|

e (.2 3 Pﬁ 2 f\2
<(L]) (m(d1+6) + B +) >+4<dl+2>(77 +1)< Ly 3

where the inequality is due to Assumption [T]and[5] For the second term, we have
2}

g\2 77% 4 2#% 3] .2 677% 2 2
<8(L3) ?(dl +8)" + - di(dz +12)°| 1, + el (di +4)(d1 + 2)E[|Vi19(x,¥; G) I 7
2 2 2

E |:Hv%2g7lzli2 (X7 y)Z - V%Q-gnzltz (X, v G, uz j, V27j)z

~ 2
SE |:Hv%2g772#«2 (X7 Yy Civ U.2,j; Vz’j)ZH :|

3012
+ 36(d1 + Q)Evag XY Cz)HzF + 77722d1 (d2 + Q)E\\ngg(xy; Cz)%‘) 7“2
(3 2415
<8(LE)? | -5 (dy + 8)* + ZFdy(dy +12)° | 17
LH2 77
,'72 5 2
+6(dy +2) (M‘g(dl +4)+ 6+ 12
2 2

(ds +2>) E|[V2g(x, v )32

g\2 77% 4 ZM% 3- 2
<8(L3) F(dl +8)% + EY di(dy +12)°| r;
LH2 2 i

6(d; +2) (u (dy +4) +6+ =2 5113 2 (da + 2)) (dy + do) (o2 5 + (LY)*)rs (33)

2

where the third inequality is due to Proposition 2.5 b) in (Aghasi & Ghadimil [2024); the last inequality
is due to Assumption 2] and [3} Therefore, we have

E |:”vf7],u(xay7z;§_i7ﬁja‘7]) vfw X,y,2 H ] (34)

According to the definition V,R(X,y,z&,0;,V;) =  V3ygnu, (X, ¥;(i 02, va;)z —
Vanwl(XQ’%&yU1,j,V1,j),wehave

E[‘IVZR(X?Y7Z;€i7ﬁj)‘_’j) v RX y,z H :|
v o 2 2
=K |:Hv22.g7721i2 (X7 y; Civ uz ;, V2,j)Z — VQfmul (X, y; §i, ui,j, V17j) — V229n2u2 (X,y)Z + V2fmu1 (X,Y)H :|
~ 2
<2E |:Hv2f771l1«1(xvy;£iaul,j7vl,j) —Vofmm (x,y>H ]

N 27
+2E {Hnggnzua (x,¥)z — v§29n2u2 (x,y; G, uz 5, V2,j)zH (35)

For the first term, we have

E U’V2fmm(an) - @2fn1m (x,y:&, 111,j,V1,j)H2

<(L{)? (u%(d2+6>3+;gdz<d1+4)2)+4(d2+2) <u1+1>( +(L)?) 36

17
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For the second term, we have
N 2
E {Hnggnwa (x,y)z — Vg2gnzu2 (x,¥;Gi»ug 4, V2,j)zH ]
N 2
<E |:Hv2297]2,u2(xay§Ciau2,j7V2,j)zH ]

6
5
<21)? (2t + 10/ + L 02 + (s +3>) 2+ (5 + 07BNVl yi ) I
1
3 3
+ 28 o, - 19T 0,33 G+ Sk 0+ 2) e + DB Vgl vi )

118
2 (do +6)*(d1 + 3)> 72

<2(L§)? (mﬁ(dl +16)* + ;
1

5 3
+ 3(dy + 6) (2(d1+6)+:1+ d2+2) roE(|V2g(x,y; ¢l
1
<2(L3)? (znf(dl +16)* + - (d2 +6)*(d1 + 3) >
1
5 3
+ 3(dy + 6) (2(d1 +6) + % + L d2 +2) ) (dy + d2)(07 5 + (LY)*)r2 (37
1
Therefore, we have
B[V, R0y, 26,55, 9) - VaR(cy,2)|*] <o (38)

Using the above lemma, we can easily obtain the results in Lemma 3]

Proof. Using the results in Lemma 9} we have bounded variance as follows

B MD ~ Vu(x,y,2 H } BB’ (39)
0.2
E U|Dt VoG (%, 5) || } Bé, (40)

E || D - VaR(x.y,2)|’] < =

D.1 DETAILED PROOF OF LEMMA [4]

. —1
Proof. Since zj = z*(x",y") = [V3390,4, (X, ¥)] Vafpiu (x',¥"), we have

1 Zt+1||2

— 2y + 2y — 2|

=zt — 2 |* 4+ 2(z"" — 2], 2] — Zip) + l|zf — z:+1H2

<1+ BB = g+ (1 Dl — 2, @)

(41)

where the first inequality follows from Young’s inequality and Cauchy-Schwarz inequality; the second

follows from our Algorithm 1]

First, we discuss the bounds of the first term. Since R(x,y,z) = <v229n2u2 (x,y)z,2) —
(Vafmum(X,¥),2), we can easily obtain R(x,y,z) is j14-strongly convex and L§-smooth on z.

Then, we have

R(x'y',z)

18
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>Ry, 2") + (VaR(x',y' 7).z~ 2') + |2 — 2|
=R(x',y",2") + (Dy,z —2'") + (V,R(x",y",2") - D}z — 2'")
+ (VL R(x', y", z"), 2" — 2) + %Hz — 2z (43)
Using R(x,y,z) is LJ-smooth on z, we have
R(Xt’yt’zt+1)

Lg
SR(Xy' ) + (VR v, 2), 25 = a) + 22— 1|2

(44)
Combining the above inequalities, we can obtain
R(x',y',2)
>R(x",y', 2™ + (Dy,z — 2"™) + (VL,R(x',y",2") - D,z — 2'*)
LQ
+ 2|z — 2|2 - )zt - 2|2 (45)

According to the update rule 2'*! = Pz (2! — AD.) = argmin.cz (D!, z — z') + 55|z — z'|?

where Z = {z € R%|||z|| < r,} we have

)

1
(DL + X(ZHl —z'),z 2" > 0. (46)
Then, we have
1 1 1
(D! 7 — 2"t > X<Zt+1 —z' 72" ) = XHZ“‘1 —z'|* + X<Zt+1 —z'. 72" — 7) (47)
Using the above inequalities, we have
R(x',y',2)
1 1
ZR(Xt,yt,ZH_l) + X”ZH_l _ Zt||2 + X<Zt—‘,-1 _ Zt,Zt _ Z>
L.‘]
+(VaR(xy' 7))~ Dyz— 2 ) 4 Bz =2 = 22 2P @8

Letz =z = 2" (x', y") = [V320m,u. (X', y")] - Vo fom (Xt y"), then we have
R(x',y",2;)
1 1
SRy + g L g )

L9
(VR y'a!) = Dz =2 4 B = oP = E = @)

Due to the strongly convexity of R(x!,y!,z), we have R(x!,y’,z;) < R(x!,y!,z'"1). Thus, we
can obtain

1 L 1
0= ( - 2) 12" —2'|]? + S (2 — 2" 2t — 7)) + (V,R(x', ¥ 2") — Dy 2 —2'7)

X2 y
e (50)
For (z!*! — 2t z! — ), we have
1 1 1
(@ gt gl = a) = Sa = P - e P S - 6D

For (V,R(x!,yt,z") — D}, z; — z**1), we have

<VZR(Xtayta Zt) - D;7Z: - Zt+1>

19
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:<VZR(Xtayt7 zt) - Divz: - Zt> + <sz(xt7yt7Zt) - Dia z' — Zt+1>
2

> — —||V,R(x",y",2) = DL = H2|jz; — 2|2 = B2 " — 2+
Hg

B B’

2 _ *
Ziinsz(Xtvyth BB/ZZV R ,y va j? ])”2 g”zt 7Zt||2
Hg

=1 j=1
o A &

(52)
Taking expectations on both sides, we have
E<VZR(Xt7 yt7 Zt) - D;? Z: - Zt+1>
9 B B’
> = ZEIVLR( Y 2) — 5 3030 VR € VDI~ S — o
Hg =1 j=1
— B2g|z — 2+
202 K 192
= Elle — a1 Rt et (53
Using the above inequalities, we have
Bl = 2 )
L 1 1 u 202
=2 29 _ R t+1 _ t)2 - Mg E t_ 2 Yz
<(F+ k- g ) Bl -2+ (5 2 ) Bl - e+ g
3L 1 : 1 pu 202
<=2 _ __\E +1 _ t)2 - _ P9 E t_ x|2 z
< (3 - 55) Bl - 217+ (5 - 52 ) Blle zm]+uBR
1 Hyg ¢ (|2 3 1 3L3 tHl_ o,
=l—=——-—"]E — —|==+-—-—=|E —=z
(35~ %) Bl — a1 - (5 + g5~ 202 ) Bl 21 + 2
1 Hyg t (|2 3 tHl _ o,
<|{=—=-=)E[|z"' - - —E 4
< (g5 — %) Bl =117 - Bl -]+ g (54)

where the second inequality holds by Lg > g, and the last inequality is due to 0 < A < —Gig.
2
Therefore, we have

N g A 4)\o?
Blla**! =2 ] < (1- 4 ) Ellat - 5P - JEl -2 + g 69
For the second term in Eqn. @2), since z;, = | zZ(xTLy") =
[nggnzua(xtﬂ H_l)] Vanlul(Xt+17yt+1) and  z] = z*(x",y") =

[v%anzuz( ¢ )] Vafoim (Xt’yt)’we have

|z _Zt+1||2

-1 —1 2
= H [V§29n2/t2 (xt+1’ yt+1)] v2f7]1lt1( t+1? yt+1) - [nggnzlm (Xt7 yt)} v2f7]1/t1 (xt7 yt)
1 2
<2 (Va3 )] 7 (T s (34 = Vo fyp ()|
-1 -1 2
2| ([Vagmaps 4y )] ™ = [T (3] Ve (31|
4Lf AL LY
S =P+ lyT =y P+ 22 X+ (T -y
,LLg /J‘g
4Lt 4rl18
==L+ =02 ) (=P T -y, (56)
Mg /’Lg
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where the second inequality holds by Lemmal[7]
Combining Eqn. (33), Eqn. (36) and Eqn. {@2), we have
Elz" - 25|

LgA

* 4 * *
<+ =2 - 27+ (1+ Nz - zi |

figA fgA t 2 [\ 3 1 _ 2
< 79” _ P9~ _ _ Ll A _

oA\ 4Ao2 4\ (4Ld 4ar!r
# (1 22) o (e o5 ) (S S ) R P 4 Bl - )

pg BB’ BA Ig g
(57
Since 0 < A <3 g and L2 > g, we have A < GLg < i. Then, we have
g A g A PgA | PgA PN g A
14— 1- =L |=1-="L""4+L - _<<1-=
(u)( e S SR TR RN
AN 3 3
‘(”“5’1)45‘47 (59)
42 1 402 2 2
|y lod) BAoy () 1) Ao, 250, (60)
4 g BB’ 24 ) uyBB'"  6usBB’
4 5
(1 + M) < 3 (61)
g
Therefore, we have
Elz* — 27, 1°
< (1-22) Eljat - ) - B[22
4 4
2502 20 (LI LILY
BT T (@ + B2 i xR -y @)
g
O
D.2 DETAILED PROOF OF LEMMA
Proof. In our algorithm, we have
x*! = arg min {(ch, x) + h(x) + By, (x, Xt)} (63)

x€eR91
where By, (x1,%2) = 1h(x1) — th(x2) — (Vib(x2),x1 — X2). Since ' = L (x'*! — x'), we have
forallt > 1,
1

(D%, %) = pllG'|1” + — (h(x") = h(x")) (64)
where p > 0 depends on p-strongly convex function ;(x).
According to Lemma 8] using the above result, we have

F(Xt+1)
L
SF(xt) + (VF(xt),xtH _ Xt> + 7F”Xt-irl _ Xt||2

OéLF

—F(x") — a(VF(x'),6") + == 16"

OéLF

—F(x!) — a(DL,G") + a(DL — VF(x"), ¢! + 2L gt)12
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<) = apl G — hx) + ) + (D — TF(x).G) + L g

<F(x') = ap|[6"1|° = h(x*1) + h(x') + af| Dy = VE ()6 + LF g1

SF() = apllG1P = h(x ) + (') + DL = VR + Ingtn? oLr g
<F(x) + (D20 30y 611 (1) 4 hix) + SIDL = VEG)?

<F()+ (T = SGH? — hxt ) 4 hi) + 22D~ V()

2c0
+ 7||VFW(Xt) - VF(x")|?

2

o?L 3a 2
2 p)llgtll2 h(x t“)+h(xt)+7||Di*VFnu( )H2+?A

2

<F(x") +(
(65)

where the last inequality is due to Proposition 3.1 in (Aghasi & Ghadimi, 2024) and VA =
f 2 1 2 1
mdy + p3dz) + 5 (m(dy + 3)% + Ldyd? + Lodyd} + pa(da +3)3).

FOI' HD; - VF’VII»L(Xt)H2’ SinCC Df( = BB’ Zz 12] 1vf’r//t( 7y z 15@7 K j)
Vlfﬁl#l(xtﬂyt;§f7uihjvvi,j) - v%2gn2#2( XLy anu27g?V2,])zt’ anu( 7y 2 ) =
v1f771M1(Xt7yt) - V%2gﬁzuz(xtayt)zt and VF??M(Xt) = Vlfmul(xt’yrnug(xt)) -

ViaGnaus (X', Y7, 0, (X1))2% (x1), we have

|1D5e = VEy (x|

B B’
_2||BB/ szfn” ’y Z g’b’ VRl j) an/_/,( t’yt7zt)||2
=1 j=1
+ 2|V fu(x', ¥, 2°) = VE,, (x|
B B’
BB/ZZVJCT]M 7y Z 617 ]) ]) vf’l’]pb( t7yt7zt)||2
i=1 j=1

+ 20V 1 frun (X5 ¥°) = Vify (X5, 35,, (X5)
+ V%Z.gﬂzltz (Xtv yt)zt - V%29n2uz (Xtv y:;zﬂg (Xt))zt
+ v%2gﬂzu2 (Xta y;zuz (Xt>)zt - V%anzuz (Xtv y;k;wg (Xt))Z*(Xtv yt>

+ ViaGnap (X' ¥, (X)) (X' 3") = VigGnapus (X, 37, 0, (x1))2" (x|
B B’

2||BB/Zva77M ’y Z gzv K g) vfw( t>yt’zt)||2

i=1 j=1
+ 8V frun (5 ¥°) = Vi s (X ¥ (X)) 12
N 2
+8 H (V%297}2M2 (xt7 yt) - v%29n2u2 (Xt7 Ynopo (Xt )) th
* t t 2
+8HV%QWM(Xtaynwz(xf))(zf ( f )H
z"(x

+ 8] VoG (X', ¥, 0, (X)) (27 (X, ) NI?
B B

<2 3D ety 2 V) = Ty )

i=1 j=1

+ (8(L])? + 8(L8r) )y — ¥y o ()]
+ 8([@)2 ||zt — z:;H2
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+8(L9)?||lz" (x",y") — 2" (x")||*
(66)

For the last term, we have

lz* (x", y") — 2" (x")|?
=1 193290102 ("] Vi o (6 3") = [V3aGaian (¥, ()]
<2 [Vngnzuz (xt>yt)} o (Vy foim x'y") - Vyfnlul(xt,YZQuQ (x")))II”

_ _ 2
2| ([F8agnams 3] ™ = [V (X' Y D] ) Ty P (6, ¥, 6|

—1
Yy Fann (X5 ¥ (X))

2(L1)? 2(LIL9)?
< 15" = s NP+ =2y = 37,0 XD
7 7
2(Lf)2 2(Lng)2 .
S( el L 1)
Mg Hg
Combining Eqn (70), Eqn (66) and Eqn (67), we can obtain
F(Xt+1)
2L 3
<F() + (5 = 202 = () + hix!)
2a B B
BB,ZZWW vzt &Lk v = Vi (xyt 2|
i=1 j=1

+ (8(L{)2 +8(LEr))ly" = ¥, (x)II?

2 2LH?2  2LiLy)? i 20
L7) ||2* — 7| +8<L€>2< T Y =Y GO + =
g

1y
2Ly 3
=F(x!) + (5 = 2D = hx ) + h(x)
B B’
7||BB/ZZVf7”L ’y z7§’b7 j’ j) Vf””‘f( t7yt7zt)||2
=1 j=1
L 20 2?2 2(LfL9)? .
<8<Lf> +8(Lgrz>2+8<L§>2< (L), 2o L) )) Iy —yo )
p 2 1y
16a(L9)2 2
4 16a(Ly)” ||zt—z;‘||2+7o‘A (68)
Then, taking expectation on both sides, we have
F(Xt+1)
oL 3ap
<F(x") + ( 2F —)E[IGH1?] — h(x") 4 h(x")
2« f\2 g..\2 g Q(L{) (Lng) t * (12
+ = | 8(L{)* + 8(Lfrz)* + 8(LY)? >+ Ellly" = y5,, )]
p 2 1y
16a H . |2 2a dao?
pBB’
SF(x) - %pmugfu | = A + A
L 20 2L 2Ll L9)? .
(8( I 4 8(L4r,)? +8<Lf{>2( (L), 2(ols) ))En|ytyw2<xt>||21
p 2 1y
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16c(L ¢ 2a dao?
zi || ]+ —A x 69
4 00D e g+ e )
where the last inequality is due to 0 < a < ;72 Since ®(x") = F(x") + h(x"), we have
o(x!h)

16 (LY)?

3ap *
<a(x') - “SLR[|G|P) + Ella’ - 2| + = A+

fy2 fr9\2
+ 27(1 <8(L{)2 + S(Lgrz)Z + 8(L_c11)2 (2(L;) 1 Z(LOLLLQ) )) E[”yt . y:;2M2 (Xt)”Z] (70)

Hg Hg
O
D.3 DETAILED PROOF OF LEMMA
Proof. Here, we rewrite the rule y**! = y* — 37D! in our algorithm as y**! = y* + 7(y'*! —y*)
and y1 ! =yt — ﬂD;. Then, using the p4-smoothness of gy, ., in Lemma we have
Inz 2 (Xt’ y)
1
zgnzlm (xt7 yt) + <v29?7211«2 (Xt7 yt)a y — yt> + 79“3’ - ytH2
=Gnanz (X5 ¥") + (DY, y = 5 + (Vg (X', ¥") = Dy, y — )
. 1
+ (Vagno (<, ¥"), 771 =y + Ty = ¥'I1° (71)

Using the LJ-smoothness of gy, ,, in Lemma we have

- L. .
Gopn (X 7yt+1) < naps (Xtvyt) + (Vagnaps (Xt7yt)ayt+1 - yt> =2 || i ytHQ- (72)

Then, combining the above inequalities, we can obtain

LI .
Inzpz (Xt’y) 29772#2( 7yt+1> + <Dt Y — yt+1> =2 H s ytll2

1
+ (Voo (x',y") — DYy — yt+1> + Sy =y (73)

Since y'*! = y* — BD?, we have

B
1, . 1 .
=[5 =y P+ T -y ) (74)
B B
Thus, we can obtain
gY]zM2(Xt7y)
1, . 1 .
> G (X, 7 + BllyHl -y + B<yt+1 —yhyl—y) - Ly Sy =y
1
+ (Vo (< ¥") = DYy =30 + Ty = y'I1% (75)
Then, settingy =y, ., (x'), we have
Inopio (Xta Y;;ng (Xt))
> ~t41 LT T S IR L S S t _L;27~t+1_ 12
> Gnos (X', ¥ )+5Hy vl +5<y Yoy = Yo (X)) |y vl

24



Under review as a conference paper at ICLR 2025

. 1
+{Vagnaps (x5 = Dy, Y3, () = 371) 4 Sy 70, () = 5117 (76)

Due to the strong convexity of gy, .,, We have gy, ., (X', y7, ., (X)) < gyop (', 5'11). Therefore,
we can obtain

1 L 1, N
0> (5 - 2) 77—yt + B<yt+1 =¥y = Y (X))
* ~ M *
+ (Voo (X5 y") = DYy (x) — 1) + fllynw2 (x") —y'|I%. (77)

For (y!1 — yt, yt — Yo (x')), we have

nd * 1 * i 1 *
<yt+1 - yt’yt - y’l’]z/_l,g (Xt)> = E”yt—‘rl - y’l’]zy,g (Xt)”2 || i+ ytH2 - ;”yt - yngyg (Xt)||2'
(78)
For (Vagn,u, (X', ¥") — Db,y 1, (xF) — §'H), we have
<v297]2/12 (Xtv yt) - D;: y:]2ll2 (Xt) - 5’t+1>
:<v29n2u2 (Xtayt) - Dimyr]zuz (Xt) - yt> + <v2gnzuz (Xtayt) - Dyvy - S’t+1>
2 w o -
> - ;||V29n2u2 (x",y") = Dg* — ¥ () = y'* - 2y = v (79)
)

Using the above inequalities, we have

7” t+1

213

Ly 1 1 m
i = Sthl )2 R b % 6112
(5 -5+ 2) 15 =y 1P+ (05 - 22 ) Iy = ¥3 O
2
+ ;||V2gn2u2 (Xt7yt) - D;HZ
g

< (32 _ LY g —yr s o) Iyt —y2 )P+ [V (< ¥') — DL
—\ 4 25 4 n2p2 g nap2 (X v

1
27
1 u 31 309\,
< _ Hg o NI S t+1 )2
< (5= 2) Iy = v - (S 55 - 22 ) 15 - vl

2
+ 7||V29n2u2 (Xt7yt) - D;”z
Hg

= Yo (X2

1 Hg t * (2 t+1 2 L 2 tot 2
< (505 = 52 ) I = ¥ P = G515 =5+ 2 Va9 - DY (80

where the first inequality is due to 0 < 7 < 1 and the second inequality is due to L§ > j,; the last
inequality is due to 0 < 3 < Lg Then, taking expectation on both sides and rearranging the above
inequality, we have

t+1 * )2 pgTB t * ~t4+1 )2 y
Blly ™ - V(I < (1= 2570 ) Blly* - v O - B0 -y

Next, we decompose the E[||y*? (xt+1)||?] as follows:

Ellly"™ =y}, ., <7
=E[lly"™ = 5 (X) + U0 (K1) = 0 KT
=Elly"™ = 4, P+ 2By ™ = 50 (K Uiy (K1) = 9y (1))
+ Elllys, 0 (X7 = Uy e (D17

“ Ynops
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pgTP , B 4 ,
< (1 25 ) By P+ 1+ w) L3, Bl
2
pgTh pgTPB t NI pr1 ez, ABTOy
< (1427 ((1 72 ) Blly* = ¥ ) = 05 -y 2
4 2 t 1|2
+ (1 + HgTﬁ> Lyme[Hx —xH7]
pgTh pgTP . pgTh .
—(1+ 272 (1= 222 By - v3, P - 2 (14 222 ) g -y
2
pgTBY 4By 4 2 t 12
1 1 LZ. — 82
+( + 5 ) wmm (g ) s Bl =X (82)
where the first inequality is due to Young’s inequality and Lemmal Since 0 < 8 < 6%9 and
2
L§ > g, we have § < GLg < 6 -and 7 < 1 < 5. Then, we have
lfngB MQTB lfngB ,UgTB /1427_252 MgTﬂ
14— 1-— =1- — <1- 83
( Ty ) ( 2 ) 3 4 8 = 4 (83)
g8\ 3T 3T
—(1 T 84
< + 4 > 4 — 4’ (84)
41 B0 1)\ 4 2 25 2
4 ) u,BB 24) u BB’ 6u,BB
4 5
) <8 (36)
< UgTB 3

Therefore, we have

Elly " =y, (xH7]

pgTf . .
< (1= 22 Blly' - v, 1P - SR - 51
25BTU§, 5L32,;;
LE t_ t+12 87
O
D.4 THE DETAILED PROOF OF THEOREM [T]
Proof. According to Lemmal[5] we have
O(x"") - (x")
3ap 2 16a(L9)? |, L2 2« dao?
Hg ” T HZ _ZtH +7A+ pBB’
L 20 2(L{)? . 2(L{L8)? .
5 ((Lf) +8(L§rz)2+8(Li)2< u% + 232 15" = ¥ (X
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where L? = 8(L{)? + 8(L§r,)? + 8(LY)> (2(i;)2 + Z(szg)Q). According to LemmaH we have
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According to Lemma] we have
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where L2 = “—1 +
g

Then, we define the following Lyapunov function for any ¢ > 1,

H' =E[@(x")] + E[ly" — ¥y, )" + E[llz" — z;|°] o1
By using the above inequalities, we have
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Then, setting a < mm{4(5L§*dp+20i2)’ p;igf’ Géf(ul?f)Q } and 0 < 7 < 80%, we have
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Taking the average over t = 1, - - - , T  on both sides of the above inequality, we have
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