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Abstract

The syntactic probing literature has been
largely limited to shallow structures like de-
pendency trees, which are unable to capture
the subtle differences in sub-surface syntactic
structures that yield semantic nuances. These
structures are captured by theories of syntax
like generative syntax, but have not been re-
searched in the LLM literature due to the dif-
ficulties in probing these complex structures
that have many silent, covert nodes. Our
work presents a method for overcoming this
limitation by deploying Hewitt and Manning
(2019)’s dependency-trained probe on sentence
constructions whose structural representation
is identical in a dependency parse, but dif-
fers in theoretical syntax. If a pretrained lan-
guage model has captured the theoretical syn-
tax structure, then the probe’s predicted dis-
tances should vary in syntactically-predicted
ways. Using this methodology and a novel
dataset, we find evidence that LL.Ms have cap-
tured syntactic structures far richer than pre-
viously realized, indicating LLMs are able to
capture the nuanced meanings that result from
sub-surface differences in structural form.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable language capabilities that have
been steadily increasing ever since BERT (Devlin
et al., 2019). This impressive performance has
prompted a body of research interested in investi-
gating why these models are so successful. From
this came a subset of research seeking to under-
stand what, if any, linguistic features or knowledge
these models have acquired (Jawahar et al., 2019;
Belinkov and Glass, 2019; He et al., 2024; Kallini
et al., 2024) as means to better understand their lan-
guage performance. The focus of linguistic inquiry
can vary from the semantic (Nikolaev and Pado,
2023; Kamath et al., 2024) to the morphological
(Coleman, 2020; Anh et al., 2024) to the syntactic

(Clark et al., 2019; Chi et al., 2020; Kulmizev et al.,
2020; Maudslay and Cotterell, 2021), the latter of
which our current research seeks to extend.

Much of the research into syntactic representa-
tion in LLMs have utilized dependency parses to
represent a sentence’s syntactic structure (Hewitt
and Manning, 2019; Maudslay and Cotterell, 2021;
Tucker et al., 2022; Eisape et al., 2022; Buder-
Grondahl, 2024). However, these relatively shallow
representations can fail to capture features of a sen-
tence and the nuanced differences in meaning that
result from different sub-surface syntactic struc-
tures. Adopting a dependency framework makes
theoretical assumptions and imposes limitations on
the richness of meaning that can be expressed, the
consequences of which are often not addressed.
These simple, compact representations stand in
stark contrast to the deeper, hierarchically-complex
structures that are posited in theoretical syntax, par-
ticularly the generative frameworks, which postu-
late these complexities in order to account for the
difference in semantic meaning and syntactic pat-
terning of certain syntactic constructions. Because
the structures posed by theoretical syntax are far
more complex with more tree nodes than words in
the sentence, attempts to probe for generative syn-
tactic structures have been stymied, and it remains
unclear whether LLMs have captured these richer
sub-surface structures.

Our work seeks to overcome this through our
unprecedented application of Hewitt and Man-
ning (2019)’s dependency-trained probe to test
for theory-backed syntactic structures. To imple-
ment this, we identified two sentences structures—
Subject Raising (SR) and Subject Control (SC)—
whose surface and dependency representations are
identical, but whose generative structures differ as
their complement sizes differ (control predicates
take larger complements than raising predicates).
Using this method, we are able to circumvent the
issue of handling empty nodes in the syntactic tree



as the probe only recovers dependency distances.
Our hypothesis holds that if the probe predicts dis-
tances for the two sentence types that significantly
differ in syntactically-predicted ways, then this is
evidence that LLMs have captured the more com-
plex structures of generative syntax, which can
yield structures to explain the pattern variations
and semantic nuances of certain constructions.

To test this, we developed a novel dataset of over
33,000 SR/SC sentences, which we fed into our
dependency-trained probes using pretrained mod-
els of BERT, RoBERTa, and GPT2. When we
probe the content words, our results find strong ev-
idence of the SR/SC difference that aligns with SC
taking a larger complement than SR as generative
syntax proposes. However, probing the distances
with infinitival "to" suggest that the functional word
may encode syntactic structure in an aberrant man-
ner. Together, our work suggests LLMs have en-
coded structure that is more complex than previ-
ously realized, and provides a novel method to
probe for theoretical syntactic structure in LLMs.

2 Related Work

The impressive language abilities of recent LLMs
have prompted researchers to ask whether this per-
formance is due to some probabilistic modeling, or
if these language models have managed to capture
linguistic structures. To answer this question, a
line of research known as probing was developed.
This methodology feeds the model’s contextualized
vector representations into a neural network whose
training objective is to predict a targeted linguistic
structure from the representations alone (see Alain
and Bengio, 2017 or Conneau et al., 2018 for ex-
ample). The argument follows that if such a neural
network probe is in fact able to predict the target
pattern or structure, then it can be concluded that
the language model has indeed implicitly learned
that linguistic feature; otherwise, the probe task
would have been doomed to failure.

This area of research has largely focused specifi-
cally on investigating whether models have learned
to properly encode syntactic phenomenon (Mueller
et al., 2020; Hu et al., 2020; Warstadt et al., 2020;
Ravfogel et al., 2021; Davis et al., 2022). However,
much of this structural syntactic research has relied
on dependency parses as a means of representing
syntactic structure (Hewitt and Manning, 2019; Chi
et al., 2020; Maudslay and Cotterell, 2021; Tucker
et al., 2022; Eisape et al., 2022), with one notable
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Figure 1: An example of the dependency tree (left)
and generative syntax tree (right) for the sentence "The
moose ate my pumpkin.” Note how the dependency tree
has a flatter structure with a one-to-one mapping of
words to nodes in the tree. Compare this to the deeper
generative tree where there are far more nodes in the
tree than words in the sentence.

exception being Arps et al. (2022), which sought
to (and largely succeeded) in training a probe to
reconstruct a skeletal constituency tree. While this
line of research is of value and great interest, there
are theoretical assumptions made by using depen-
dency parses, and there are limitations to using that
particular syntactic framework.

2.1 Syntactic Theories

Dependency parses derive from French linguist Lu-
cien Tesniere’s (1959) theory of syntax known as
Dependency Grammar (DG), which focuses on the
head-dependent relationship between words (see
Figure 1). In these trees, each word can have one
and only one incoming arc that indicates it is the
dependent of its head, excepting the root of the sen-
tence (often the matrix verb), which has no head.
DG trees are relatively flat structures with one-
to-one mappings between words in the sentence
and nodes in the tree. The appeal of such trees are
largely three-fold: (1) the representations are com-
pact and efficient due to the one-to-one mapping,
(2) learning to parse a dependency tree is relatively
easy once one understands the head-dependent re-
lationships that exist, and (3) the dependency tree
does not need to capture the sentence’s linear order
of words. The last factor makes DG an appealing
theory for researchers working on languages with
freer word-order (Miiller, 2019); however, this "fea-



ture" can become a bug when it loses nuance or
creates ambiguous parses (see Figure 2).

An alternative, more structurally-rich approach
to syntax has built off the theories of Chomsky
(1957; 1981; 1986; 1995) and others who have
refined this phrase-structure (also known as a
constituency-based) framework to build up the syn-
tactic framework known as generative syntax (GS).
This family of syntactic theories are built on the
X-bar theory, which proposes the operations Ex-
ternal Merge and Internal Merge (formerly known
as "Move"), and stipulates that nodes are binary-
branching and that every phrase has a head (Chom-
sky, 1995). After all operations are applied in the
course of derivation, the end result is the lineariza-
tion of the sentence when read from left to right
along the children nodes.! The generative frame-
work is concerned with identifying the operations
and rules that together generate licit sentences but
do not generate illict constructions.

Unlike DG, generative syntax and other phrase-
structure grammars thus yield deeper, more com-
plex trees with hierarchical structures and phono-
logically null nodes whose presence must be de-
duced through testing. While this complexity is
well-warranted (in that it can generate sentences
that are grammatical and explain what causes un-
grammaticality), the tree’s size and complexity cre-
ates a complicated and unwieldy structure that is
difficult for non-linguists to implement.

The result of this has been a limitation in the
scope of feasible GS research in Natural Language
Processing (NLP). Even work that has sought to
test for the deeper, more complex phrase-structures
in NLP has largely focused either on only seek-
ing to recover a phrase’s boundaries (Tenney et al.,
2019; Kallini et al., 2024) or has otherwise trained
their probe on the overly-simplified, n-branching
constituency trees of the English Penn Treebank
(PTB) (Marcus et al., 1993), which are only an-
notated with “skeletal” syntactic structure schema
that is relatively atheoretical. The PTB’s annotation
is often used for automatic conversion into a de-
pendency parse with little issue since the simplicity

'In earlier versions of GS, it was argued that when an
element moves, it leaves behind a coindexed trace element
(Chomsky, 1973; Fiengo, 1977). Because such an deriva-
tion introduces a new element, Chomsky (1993) revised the
approach to the Copy Theory of Movement, claiming that
movement leaves behind a copied element that is not phonolog-
ically realized. Thus, the sentence used above would be "Do
you [do] [you] know [know] who [who] [who] stole [stole]

the Crown Jewels?" For a discussion on which elements are
phonologically realized and why, see Corver (2007).

(1) Do you know who stole the Crown Jewels?

) Who do you know stole the Crown Jewels?

know
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Figure 2: Above are two different sentences that yield
identical dependency parses. While similar, the sen-
tences have different meanings (imagine you are being
questioned about the theft of the Crown Jewels: the first
question merely seeks to inquire whether or not you
know who the thief is, while the latter presumes you
know who the thief is and seeks to learn the identity).
This illustrates both the ways in which dependency trees
do not capture linear order, and highlights some of the
limitations of dependency trees.

of PTB syntax is non-problematic for the simpler
structures and principles of an NLP dependency
parse. However, the result of this is a corpora that
is not theoretically-sound for many of the deeper
linguistic inquiries into phrase-structure grammars.

Because of this, it has yet to be discovered
whether LLMs have managed to capture the deeper,
hierarchical structures of GS. However, there are
three major barriers to testing whether models have
captured the richer hierarchical structures as pro-
posed by generative frameworks:

1. GS and similar frameworks often have
"empty" nodes that are not overtly realized.
As such, they are not overtly present in the
texts LLMs train on, and so probing at their
presence is difficult because it raises the ques-
tion: how can you probe at something that is
not overtly represented?

2. Probes largely require a gold tree that indi-
cates the correct structure or parse. Human
annotation, while crucial when handling such
fine-grained analysis, is laborious and costly

This can be due to movement (see Footnote 1) or the
feature not having an overt representation (e.g. there is no
specific word or morpheme that indicates present tense for
plural subjects as in "They walkyres to the store"). See Figure
1 for demonstration.



in resources and time.

3. Even if one is able to secure the resources nec-
essary to create such a gold standard, there are
competing theories even within the generative
framework that would change a sentence’s rep-
resentation. As such, a gold parse would be
subject to great theoretical scrutiny and likely
face present or future dissenting opinions.

Our research develops a method that circum-
vents these obstacles while still addressing the fun-
damental research question of whether LLMs have
captured something of the deeper, sub-surface syn-
tactic representation theorized by many linguists.

3 Methodology
3.1 Probing Method

To combat the first issue of accounting for struc-
tures that are not phonologically realized, we have
opted for the novel approach of re-purposing the
original Hewitt and Manning (2019), which was
trained to recover dependency trees, to investi-
gate whether LLMs have encoded theoretically-
motivated generative phrase-structure trees.

The structural probe developed by Hewitt and
Manning (2019) proposes a model M that encodes
a sequence of vector representations h{:n from an

input sequence of n words w{:n where [ identifies
the sentence index. From there, they define a linear
transformation matrix B € R**" to parameterize
the parse tree-encoding distances:

dp(hi,h})® = (B(h; - h}))"(B(h - h}))

where i and j are the words in the sentence and
where the transformation matrix B’s objective is to
reproduce the gold parse distances between each
pair of words (wﬁ, wé-) for all sentences [ in the
parsed training corpus 7". The training uses a gra-
dient descent objective:

, 1
min > 1o O | dps(wduf) — i 16|
l i,J

In this equation, | s' | is the length of sen-
tences, which the function normalizes using the
square of the sentence’s length as each sentence
contains | s' |2 pairs of words. The probe’s objec-
tive thus seeks to approximate a matrix of distances
that most closely resembles the gold-standard dis-
tances. Because Hewitt and Manning (2019) use a

dependency parse, gold-standard parses were con-
verted into gold-standard distance matrices where
distances are defined such that the distance between
a parent node and its child nodes is 1, the distance
between a child node and its grandparent node is
2, the distance between a child node and a so to
speak “aunt” or “uncle” node is 3, and so on and so
forth. Evaluation of the probe involved calculating
the minimum spanning tree for each sentence’s pre-
dicted distances to derive the sentence’s predicted
undirected, unlabeled attachment score (UUAS)
compared to the gold tree, and the average Spear-
man correlation of the predicted matrix of distances
compared to the gold-standard matrix.

We chose this method specifically because it is
a probe trained only to capture dependency parses
with their one-to-one mappings between a sen-
tence’s words and a tree’s nodes. Though there
are critical limitations to dependency parses as dis-
cussed in Section 2.1, we argue that its simplicity
and overgeneralization can in fact be converted into
a benefit. It is because the probe is superficially
only supposed to capture shallow-level, generalized
syntactic structures that we can use the method to
tease apart syntactic structures whose representa-
tions are identical in a dependency parse but vary
in a generative framework.

3.2 Syntactic Structures of Interest

Our method hinges on testing syntactic structures
whose representations are crucially different in gen-
erative accounts, but are invariant in a dependency
parse. In doing so, we propose turning the limi-
tations of a dependency probe to an asset. If the
probe’s predicted dependency distances vary be-
tween the sentences in question in ways that align
with generative theoretical predictions, then we
have evidence that not only do LLMs’ contextual-
ized vector representations capture generative syn-
tactic structures, but that a probe trained only to
recover dependency parses is additionally sensitive
to hierarchical phrase-structure distances.

To test this, we have selected the well-researched
Subject Control (SC) and Subject Raising (SR) con-
structions as our experimental condition. Observed
first by Rosenbaum (1967), SR constructions are
those that consist of two clauses: a matrix clause
and an infinitival Tense Phrase (TP) complement.
Since its initial observation by Rosenbaum (1967),
it’s largely been accepted that the subject position
of the embedded clause is occupied by a trace ele-
ment (later revised to a copy element, see footnote



1) due to the subject being raised into the matrix
clause by the EPP features® in the matrix clause.
SC constructions, meanwhile, are assumed to take
a larger complement than a raising verb, with many
typically assuming an SC complement to be a Com-
plement Phrase (CP). Many theories follow Chom-
sky and Lasnik (1993) and posit a silent PRO ele-
ment that is co-indexed with and controlled by the
matrix’s subject. This PRO receives its theta-role
from the embedded verb while the matrix subject
receives its theta-role from the matrix verb, thus
satisfying the Theta Criterion (Chomsky, 1957).*
For the purposes of our experiment, the crucial
things to know are: Subject Raising takes a Tense
Phrase (TP) as its complement, while Subject Con-
trol takes the larger Complement Phrase (CP) as
its complement, which inherently contains a TP
itself. Thus, the result are two structures whose
surface forms and dependency parses are identical,
but whose hierarchical syntactic representations are
different. Thus, we would expect that if the LLM
has not acquired any knowledge of deeper syntactic
representations or if the dependency-trained probe
is insensitive to phrase-structure representations,
then the probe’s predicted distances between rele-
vant word-pairs should not differ between the two
structures. However, if such hierarchical repre-
sentations are indeed captured and if the probe is
sensitive to these structures, then we would antici-
pate that the distances between certain word-pairs
in an SC construction are longer than the equiva-
lent word-pairs in an SR construction due to SCs
containing the larger CP complement as opposed
to the smaller TP complement of SR predicates.

4 Experiments

4.1 Generating Data

For our experiment, we identified 6 subject-raising
verbs and 6 subject-control verbs, which we permu-
tationally paired with a set of 8 subject words, 61
embedded verbs, and a set of possible direct objects
(either a single pronominal direct object or a two-
word definite nominal object that was matched to a
specific embedded verb). Thus, we yielded 33,120

3Chomsky (1995) proposed the Extended Projection Prin-
ciple, which stipulates that Tense bears a strong D-feature
that requires a subject in its Specifier. This can be satisfied
by either moving the subject to Spec, TP or by inserting an
expletive like "it."

*For further discussion on Subject Control and Subject
Raising and their structural and semantic differences, see Ap-
pendix B.

Figure 3: Syntactic trees of the SR sentence "They
seemed to annoy him" (left) and the SC sentence "They
wanted to annoy him" (right). The two structures are
nearly identical, except SC contains a CP above the TP
(red), which makes the hierarchical distances between
the subject and the embedded clause’s elements (i.e.,
the infinitive "to", the embedded verb "annoy", and the
direct object "him") longer in the SC sentence.

unique sentences, such as "They wanted/seemed to
annoy him."

Metrics Should the LLMs not have any aware-
ness of the deeper hierarchies or should the probe
be insensitive to such differences, then should be
no difference between SR’s and SC’s distances be-
tween words in the matrix clauses and words in
the complement clauses. However, if such struc-
tures are captured and if the probe is sensitive to
this, then we anticipate that the distance between a
word in the matrix clause and a word in the comple-
ment clause will be longer in an SC construction
compared to an SR construction since the CP com-
plement is larger (see Figure 3).

For this reason, we opted to investigate the
probe’s predicted distances between the following
word-pairs: subject and the infinitive (subj-infin,
e.g., "they" and "to"), subject and the embedded
verb (subj-embed, e.g., "they" and "annoy"), sub-
ject and the direct object (subj-dobj, e.g., "they"
and "him"), and lastly, embedded verb and the di-
rect object (embed-dobj, e.g., "annoy" and "him"),
which serves as our baseline. We should acknowl-
edge at this point that excepting our baseline com-
parison, none of our word-pairs have any direct
dependent or syntactic relationship to each other.
This is not a problem. Recall that the probe was
trained on a the gold parses for dependency trees
in which the distance between two nodes can be
counted as the number of edges between the two.
Because of this design, we are able to probe the dis-
tances between the words in the matrix clause and
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Figure 4: Dependency parse for the two sentences "They
seemed/wanted to annoy him." The two trees are identi-
cal, and the distance between the subject and embedded
verb is 2 while the distance between the subject and the
infinitive or direct object is 3.

the words in the complement clause, despite these
words not having a direct dependency or syntactic
relationship.

As the dependency parses do not differ between
the two structures, the gold-parse distances are also
stable: subj-embed has a dependency distance of
2 while subj-infin and subj-dobj have depen-
dency distances of 3 (see Figure 4). For this reason,
if the LL.Ms do not capture generative syntactic
hierarchies or if the probe is insensitive to such
differences, then we should see no difference in
predicted distances between the two experimental
conditions. If, however, the models do capture this
deep structural difference and if the probe is an
adequate tool to measure this, then we should antic-
ipate that the SC distances should be longer than
their equivalent SR distances. To verify that our
probe is working as anticipated, we included the
baseline word-pair embed-dobj, which should not
show any differences in distances as these words
are not affected by the SC/SR distinction.

4.2 Experimental Setup

Models We probed three pre-trained Transformer
(Vaswani et al., 2017) models: BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), and GPT-2
Radford et al. (2019). We constrained our probing
to models with hidden dimensions of 768 and 1024,
which corresponded to the bert-base-cased,
roberta-base, and gpt2 for the smaller mod-
els and bert-large-cased, roberta-large, and
gpt2-medium for the larger models, all of which
were accessed using the Huggingface Transformers
library (Wolf et al., 2020). The probe was devel-
oped using the parsing train/dev/test splits of the
Penn Treebank (Marcus et al., 1993).

Following Hewitt and Manning (2019), a probe
was trained to convergence (maximum of 40
epochs) on each layer with a batch size of 20. Anal-

ysis was conducted on the best-performing layer.

Once the best-performing layer® was selected,
we fed our novel dataset to that probe and obtained
the predicted distances for our word-pairs of in-
terest. Analysis was conducted on the predicted
distances for our word-pairs if and only if the probe
properly established the necessary dependency rela-
tionships. That is to say, if the probe misparsed the
tree in a relevant manner, that word-pair’s predicted
distance was excluded from analysis. Using Figure
4 as a gold-parse, if the probe’s minimum spanning
tree situated "him" as a dependent of "wanted,"
then we excluded the subj-dobj word-pair as the
tree was misparsed in a critical way for that word-
pair. We currently do not have strong reason to
suspect that such a misparse would have conse-
quent effects on non-affected word-pairs; therefore,
the subj-embed and subj-infin’s predicted dis-
tances would still be used for statistical analysis
since the probe would have still correctly parsed the
subject and embedded verb as being dependents
of "wanted" and still parsed the infinitive as the
dependent of "annoy."®

5 Results

As mentioned, we generated 33,120 sentences for
which we gathered a total of 704,761 distances
across our four word-pairs and all six language
models. Overall, this represents an 88.66% accu-
racy score. The accuracy for our four word-pairs
can be found in Table 1 where we may observe that
while the accuracy for the SC condition is slightly
higher, both showed high accuracy with the low-
est being attributable to the subj-dobj word-pair,
which was due to the direct object not being tied
to the embedded verb, hence the equivalent scores
with embed-dobj.

Due to the large size of the data, we split the data
by word-pair for statistical analyses. Mixed effect
models were developed with the Imer function from
Ime4 (v. 1.1-31) (Bates et al., 2015) and ImerTest (v.
3.1-3) (Kuznetsova et al., 2017). Fixed effects were
identified as the condition (SC or SR) and the linear

3See Appendix C, Figures 5 and 6 for model performances.

®For our current study, the best-performing layer was se-
lected as the probe with the highest UUAS. As such, we opted
only to use word-pairs in which the minimum spanning tree es-
tablished the correct necessary dependencies for the word-pair
in question. However, future work may investigate selecting
the probe based on the Spearman correlation, in which case,
the motivation to reject data based on improper parses disap-
pears as the Spearman metric does not utilize the minimum
spanning tree and instead seeks to globally reduce the differ-
ences between the gold distances and the predicted distances.



Fixed Effects
WordPair Condition Acc PredDist (avg) | Coefficient 153 SE(B) t df p
Subj-Embed Cont 97.61% 1.93 (Intercept)  1.82691  0.02809 21.75698 65.032 <2.2e-16
Raise 93.44% 1.72 Condition  -0.21346  0.04026 15.14671 -5.302  8.58e-5
Subj-Infin Cont 95.99% 2.81 (Intercept)  2.74962  0.06965 9.41633 39475 8.83e-12
Raise 89.50% 2.70 Condition  -0.11665 0.08133 14.66730 -10.434 0.172
Subj-Dobj Cont 85.26% 2.87 (Intercept)  2.64070  0.26273 64.27496 10.051 8.24e-15
Raise 81.12% 2.64 Condition  -0.56805 0.07609 47.30316 -7.465  1.56e-9
LinDist 0.01660  0.04944 67.53294  0.336 0.738
Interaction  0.08320  0.01324 35.36045  6.285 3.12e-7
Embed-Dobj Cont 85.26% 1.50 (Intercept)  1.54400 8.921le-2  58.310 17.304  <2e-16
(baseline) Raise 81.12% 1.51 Condition ~ -3.929e-2  2.702e-2 9.254 -1.454 0.179
LinDist -3.964e-2  4.203e-2 64.88 0.943 0.349
Interaction  3.534e-2  3.108e-3 1.652e+5 11.370 <2e-16

Table 1: Results of the probes’ predicted squared Euclidean distances between the word-pairs of interest. Accuracy
records what percentage of the sentences properly established the necessary dependency relationships for that
particular word-pair. The right side of the table reports the fixed effects findings for the linear mixed-effect models
that were built for each word-pair. See Appendix C, Figures 7 and 8 for visuals.

distance (the number of intervening words plus 1
to avoid issues of O multiplication) as well as their
interaction. The latter two only applied to word-
pairs with the direct object as the direct object could
be a single pronominal like "it" (in which case the
linear distance would be 1) or a full nominal phrase
like "the car" (in which case the linear distance
would be 2). For the other word-pairs, there was no
variation in linear distance, hence its exclusion as
a fixed effect. Condition was contrast-coded with
SC being -0.5 and SR being 0.5.

Random effects were identified via model
comparison and included by-MatrixVerb, by-
SubjectWord, by-Embed Verb, by-ObjectWord, and
by-LanguageModel random slopes for our factor
of interest (Condition), excepting by-Matrix Verb,
which warranted only a random intercept.’

To recap, our hypothesis is that the probe’s pre-
dicted distances between the matrix subject and
elements in the embedded clause (i.e., the infinitive,
the embedded verb, and the direct object) should
be longer in the SC condition compared to the
SR condition. Should this be the case, this effect
should appear in all of our word-pairs (excepting
our baseline of embed-dobj). In this regard, our
study uses conjunction testing in that we require
all tests be significant in order to reject the null
hypothesis (Weber, 2007). We thus follow Rubin
(2021) and do not adjust our alpha level.

"Word-pairs with direct objects made for more complicated
linear models due to the addition of a by-ObjectWord grouping
factor for random effects. Because of this, the linear model
for subj-dobj included random intercepts for all grouping
factors mentioned, but only warranted random slopes for the
grouping factor of language model.

Table 1 reports our results where we find a
main effect for Condition in our subj-embed and
subj-dobj data (p = 8.58¢7° and p = 1.56e~?),
but not for subj-infin (p = 0.172). This paints
a puzzling picture, which we discuss further in
Section 6. For now, it is abundantly clear that the
predicted distances from an SC construction are
significantly longer than an SR construction when
considering the distance between the subject and
either the embedded verb or the direct object.

Crucially, we do net find Condition to be a sig-
nificant predictor for our baseline, suggesting the
probe is not spuriously attributing higher distances
to SCs than SRs in ways that are not predicted
by the syntax. However, interaction between Lin-
ear Distance and Condition is found to be a main
effect for embed-dobj. To conduct follow-up mod-
els to investigate this result, we split the data by
linear distance, meaning sentences were grouped
into those that took a pronominal direct object such
as "it" (linear distance of 1) and those that took
a nominal phrase object such as "the car" (linear
distance of 2). In doing so, we do not find Condi-
tion to be a main effect in either group. Analysis
of the data further reveals that linear distance de-
creases the predicted distance for subject raising
verbs only. When we control for linear distance by
splitting up the data by direct object type, though,
our follow-up analyses find that the predicted dis-
tance between the embedded verb and the direct
object do not significantly vary between the two
conditions (p = 0.875 for pronominal direct objects
and p = 0.346 for nominal phrase objects).

The significantly longer predicted distances of



the SC condition in subj-embed and subj-dobj,
paired with Condition not being a significant pre-
dictor for our baseline comparison of embed-dob j
(even when accounting for interaction effects), to-
gether show strong evidence to reject our null hy-
pothesis. However, the SC/SR condition anoma-
lously does not significantly predict the probe dis-
tance. Though this result does not negate the sig-
nificant findings in our other word-pairs, it is an
outcome which is not predicted by the syntax, nor
is it one that is readily explained when combined
with the significant findings in subj-embed and
subj-dobj.

6 Discussion & Conclusion

If the structures proposed by generative syntax to
account for Subject Raising and Subject Control
are indeed captured by LLMs and subsequently by
the probe, then we would anticipate that all three
word-pairs of interest should show significantly
longer predicted distances in the SCs compared to
SRs while the baseline comparison of embed-dob j
(which is not affected by an SC or SR construction)
should not. While these predictions are evidently
borne out by subj-embed and subj-dobj along
with our baseline of embed-dobj, it does not hold
true for subj-infin.

This finding is particularly puzzling. Should it be
that the language models do not capture the SC/SR
distinction, then none of the word-pairs should have
significant differences in distances. Additionally,
there is no theory in any school of syntax (genera-
tive or otherwise) we are aware of that suggests SC
verbs take larger complements below the TP head
of "to." We might then posit that the infinitive’s
seemingly imperviousness to the SC/SR distinc-
tion may arise from the language models somehow
building a novel and alien structure in which the
infinitival "to" sits in the matrix clause while the
complement size distinctions are displayed beneath
it. Again, however, we are resistant to such a no-
tion as we know of no theory postulating such an
arbitrary and alien structure.

It is evident this matter requires further inves-
tigation, but it is possible the aberrant behavior
of the infinitive is due to the nature of infinitives
themselves. Infinitival "to" is semantically vacu-
ous: there is little to any rich semantic meaning to
the word, which is entirely functional in nature—
denoting either non-finiteness as an infinitive® or

8See (Satik, 2022) for discussion on the subtle semantic

directionality or telicity as a preposition. For this
reason, we suspect the lack of semantic-richness
of purely functional words may impact the ways in
which structure is encoded by embedding vectors.’

While further work is needed to investigate the
outlier behavior of the infinitive, we overall find
strong support that LL.Ms have captured the deep
syntactic hierarchies proposed by generative syntax.
We furthermore demonstrate that a dependency-
trained probe is sensitive to such structures and
can provide a means by which to probe for more
complex syntactic representations that do not enjoy
the benefits of a one-to-one mapping.

The implications of this work have impact on
both the field of NLP and the field of linguistics.
Our work suggests that LLMs have learned to cap-
ture deeper and more complex syntactic structures
within their embeddings than previously realized
and thus have the ability to capture the semantic
nuances that result from sub-surface structural dif-
ferences. Our findings therefore further the inter-
pretability research of language models to discover
what these models have actually learned regarding
the features and structures of language. We also
find evidence that neural networks trained using
the dependency framework can still capture deeper
syntactic structures, suggesting these simpler repre-
sentations may be adequate for downstream tasks
as they appear to be capable of reaping the benefits
of deep structure without needing to explicitly train
on deep structure. As for linguists, the findings
of our work warrant further investigation into the
viability of using language models as a means to
test syntactic structures. There are many competing
theories to explain different syntactic phenomenon,
which researchers have spent decades gathering
data and judgments to help explain. Our work be-
gins to open up the possibility of utilizing LLMs as
another source of data to help augment, build, and
perhaps even test syntactic theories.

Taken together, we situate our work as a realiza-
tion of Linzen (2019) and Futrell and Mahowald
(2025)’s claim that the skillsets and knowledge of
the fields of NLP and linguistics complement each
other, and that the two stand primed to advance
each other’s respective fields through collaboration.

differences between different types of infinitives.

“We exempt pronouns from this hypothesis. Our dataset
subjects were pronominal and our single-word direct objects
were also pronouns. Unlike infinitival "to," pronouns pick
out referents in the real world, and can furthermore carry
information such as Case, Gender, and Number as opposed to
infinitival "to," which indicates non-finiteness only.
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