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Abstract

The syntactic probing literature has been
largely limited to shallow structures like de-
pendency trees, which are unable to capture
the subtle differences in sub-surface syntactic
structures that yield semantic nuances. These
structures are captured by theories of syntax
like generative syntax, but have not been re-
searched in the LLM literature due to the dif-
ficulties in probing these complex structures
that have many silent, covert nodes. Our
work presents a method for overcoming this
limitation by deploying Hewitt and Manning
(2019)’s dependency-trained probe on sentence
constructions whose structural representation
is identical in a dependency parse, but dif-
fers in theoretical syntax. If a pretrained lan-
guage model has captured the theoretical syn-
tax structure, then the probe’s predicted dis-
tances should vary in syntactically-predicted
ways. Using this methodology and a novel
dataset, we find evidence that LL.Ms have cap-
tured syntactic structures far richer than pre-
viously realized, indicating LLMs are able to
capture the nuanced meanings that result from
sub-surface differences in structural form.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable language capabilities that have
been steadily increasing ever since BERT (Devlin
et al., 2019). This impressive performance has
prompted a body of research interested in investi-
gating why these models are so successful. From
this came a subset of research seeking to under-
stand what, if any, linguistic features or knowledge
these models have acquired (Jawahar et al., 2019;
Belinkov and Glass, 2019; He et al., 2024; Kallini
et al., 2024) as means to better understand their lan-
guage performance. The focus of linguistic inquiry
can vary from the semantic (Nikolaev and Pado,
2023; Kamath et al., 2024) to the morphological
(Coleman, 2020; Anh et al., 2024) to the syntactic

(Clark et al., 2019; Chi et al., 2020; Kulmizev et al.,
2020; Maudslay and Cotterell, 2021), the latter of
which our current research seeks to extend.

Much of the research into syntactic representa-
tion in LLMs have utilized dependency parses to
represent a sentence’s syntactic structure (Hewitt
and Manning, 2019; Maudslay and Cotterell, 2021;
Tucker et al., 2022; Eisape et al., 2022; Buder-
Grondahl, 2024). However, these relatively shallow
representations can fail to capture features of a sen-
tence and the nuanced differences in meaning that
result from different sub-surface syntactic struc-
tures. Adopting a dependency framework makes
theoretical assumptions and imposes limitations on
the richness of meaning that can be expressed, the
consequences of which are often not addressed.
These simple, compact representations stand in
stark contrast to the deeper, hierarchically-complex
structures that are posited in theoretical syntax, par-
ticularly the generative frameworks, which postu-
late these complexities in order to account for the
difference in semantic meaning and syntactic pat-
terning of certain syntactic constructions. Because
the structures posed by theoretical syntax are far
more complex with more tree nodes than words in
the sentence, attempts to probe for generative syn-
tactic structures have been stymied, and it remains
unclear whether LLMs have captured these richer
sub-surface structures.

Our work seeks to overcome this through our
unprecedented application of Hewitt and Man-
ning (2019)’s dependency-trained probe to test
for theory-backed syntactic structures. To imple-
ment this, we identified two sentences structures—
Subject Raising (SR) and Subject Control (SC)—
whose surface and dependency representations are
identical, but whose generative structures differ as
their complement sizes differ (control predicates
take larger complements than raising predicates).
Using this method, we are able to circumvent the
issue of handling empty nodes in the syntactic tree



as the probe only recovers dependency distances.
Our hypothesis holds that if the probe predicts dis-
tances for the two sentence types that significantly
differ in syntactically-predicted ways, then this is
evidence that LLMs have captured the more com-
plex structures of generative syntax, which can
yield structures to explain the pattern variations
and semantic nuances of certain constructions.

To test this, we developed a novel dataset of over
33,000 SR/SC sentences, which we fed into our
dependency-trained probes using pretrained mod-
els of BERT, RoBERTa, GPT2, and Qwen2.5.
When we probe the content words, our results find
strong evidence of the SR/SC difference that aligns
with SC taking a larger complement than SR as
generative syntax proposes. However, probing
the distances with infinitival "to" suggest that the
functional word may encode syntactic structure in
an aberrant manner. Together, our work suggests
LLMs have encoded structure that is more com-
plex than previously realized, and provides a novel
method to probe for theoretical syntactic structure
in LLMs.

2 Related Work

The impressive language abilities of recent LLMs
have prompted researchers to ask whether this per-
formance is due to some probabilistic modeling, or
if these language models have managed to capture
linguistic structures. To answer this question, a
line of research known as probing was developed.
This methodology feeds the model’s contextualized
vector representations into a neural network whose
training objective is to predict a targeted linguistic
structure from the representations alone (see Alain
and Bengio, 2017 or Conneau et al., 2018 for ex-
ample). The argument follows that if such a neural
network probe is in fact able to predict the target
pattern or structure, then it can be concluded that
the language model has indeed implicitly learned
that linguistic feature; otherwise, the probe task
would have been doomed to failure.

This area of research has largely focused specifi-
cally on investigating whether models have learned
to properly encode syntactic phenomenon (Mueller
et al., 2020; Hu et al., 2020; Warstadt et al., 2020;
Ravfogel et al., 2021; Davis et al., 2022). Howeyver,
much of this structural syntactic research has relied
on dependency parses as a means of representing
syntactic structure (Hewitt and Manning, 2019; Chi
et al., 2020; Maudslay and Cotterell, 2021; Tucker
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Figure 1: An example of the dependency tree (left)
and generative syntax tree (right) for the sentence "The
moose ate my pumpkin.” Note how the dependency tree
has a flatter structure with a one-to-one mapping of
words to nodes in the tree. Compare this to the deeper
generative tree where there are far more nodes in the
tree than words in the sentence.

et al., 2022; Eisape et al., 2022), with one notable
exception being Arps et al. (2022), which sought
to (and largely succeeded) in training a probe to
reconstruct a skeletal constituency tree. While this
line of research is of value and great interest, there
are theoretical assumptions made by using depen-
dency parses, and there are limitations to using that
particular syntactic framework.

2.1 Syntactic Theories

Dependency parses derive from French linguist Lu-
cien Tesniere’s (1959) theory of syntax known as
Dependency Grammar (DG), which focuses on the
head-dependent relationship between words (see
Figure 1). In these trees, each word can have one
and only one incoming arc that indicates it is the
dependent of its head, excepting the root of the sen-
tence (often the matrix verb), which has no head.
DG trees are relatively flat structures with one-
to-one mappings between words in the sentence
and nodes in the tree. The appeal of such trees are
largely three-fold: (1) the representations are com-
pact and efficient due to the one-to-one mapping,
(2) learning to parse a dependency tree is relatively
easy once one understands the head-dependent re-
lationships that exist, and (3) the dependency tree
does not need to capture the sentence’s linear order
of words. The last factor makes DG an appealing
theory for researchers working on languages with



freer word-order (Miiller, 2019); however, this "fea-
ture" can become a bug when it loses nuance or
creates ambiguous parses (see Figure 2).

An alternative, more structurally-rich approach
to syntax has built off the theories of Chomsky
(1957; 1981; 1986; 1995) and others who have
refined this phrase-structure (also known as a
constituency-based) framework to build up the syn-
tactic framework known as generative syntax (GS).
This family of syntactic theories are built on the
X-bar theory, which proposes the operations Ex-
ternal Merge and Internal Merge (formerly known
as "Move"), and stipulates that nodes are binary-
branching and that every phrase has a head (Chom-
sky, 1995). After all operations are applied in the
course of derivation, the end result is the lineariza-
tion of the sentence when read from left to right
along the children nodes.! The generative frame-
work is concerned with identifying the operations
and rules that together generate licit sentences but
do not generate illict constructions.

Unlike DG, generative syntax and other phrase-
structure grammars thus yield deeper, more com-
plex trees with hierarchical structures and phono-
logically null nodes whose presence must be de-
duced through testing. While this complexity is
well-warranted (in that it can generate sentences
that are grammatical and explain what causes un-
grammaticality), the tree’s size and complexity cre-
ates a complicated and unwieldy structure that is
difficult for non-linguists to implement.

The result of this has been a limitation in the
scope of feasible GS research in Natural Language
Processing (NLP). Even work that has sought to
test for the deeper, more complex phrase-structures
in NLP has largely focused either on only seek-
ing to recover a phrase’s boundaries (Tenney et al.,
2019; Kallini et al., 2024) or has otherwise trained
their probe on the overly-simplified, n-branching
constituency trees of the English Penn Treebank
(PTB) (Marcus et al., 1993), which are only an-
notated with “skeletal” syntactic structure schema
that is relatively atheoretical. The PTB’s annotation
is often used for automatic conversion into a de-

'In earlier versions of GS, it was argued that when an
element moves, it leaves behind a coindexed trace element
(Chomsky, 1973; Fiengo, 1977). Because such an deriva-
tion introduces a new element, Chomsky (1993) revised the
approach to the Copy Theory of Movement, claiming that
movement leaves behind a copied element that is not phonolog-
ically realized. Thus, the sentence used above would be "Do
you [do] [you] know [know] who [who] [who] stole [stole]

the Crown Jewels?" For a discussion on which elements are
phonologically realized and why, see Corver (2007).

(1) Do you know who stole the Crown Jewels?

) Who do you know stole the Crown Jewels?

know

<,

> oy o,%
2
do you stole
O @,
$ &
who Crown
¥ %
the Jewels

Figure 2: Above are two different sentences that yield
identical dependency parses. While similar, the sen-
tences have different meanings (imagine you are being
questioned about the theft of the Crown Jewels: the first
question merely seeks to inquire whether or not you
know who the thief is, while the latter presumes you
know who the thief is and seeks to learn the identity).
This illustrates both the ways in which dependency trees
do not capture linear order, and highlights some of the
limitations of dependency trees.

pendency parse with little issue since the simplicity
of PTB syntax is non-problematic for the simpler
structures and principles of an NLP dependency
parse. However, the result of this is a corpora that
is not theoretically-sound for many of the deeper
linguistic inquiries into phrase-structure grammars.

Because of this, it has yet to be discovered
whether LLMs have managed to capture the deeper,
hierarchical structures of GS. However, there are
three major barriers to testing whether models have
captured the richer hierarchical structures as pro-
posed by generative frameworks:

1. GS and similar frameworks often have
"empty" nodes that are not overtly realized.
As such, they are not overtly present in the
texts LLMs train on, and so probing at their
presence is difficult because it raises the ques-
tion: how can you probe at something that is
not overtly represented?

2. Probes largely require a gold tree that indi-
cates the correct structure or parse. Human
annotation, while crucial when handling such

This can be due to movement (see Footnote 1) or the
feature not having an overt representation (e.g., there is no
specific word or morpheme that indicates present tense for
plural subjects as in "They walkyres to the store"). See Figure
1 for demonstration.



fine-grained analysis, is laborious and costly
in resources and time.

3. Even if one is able to secure the resources nec-
essary to create such a gold standard, there are
competing theories even within the generative
framework that would change a sentence’s rep-
resentation. As such, a gold parse would be
subject to great theoretical scrutiny and likely
face present or future dissenting opinions.

Our research develops a method that circum-
vents these obstacles while still addressing the fun-
damental research question of whether LLMs have
captured something of the deeper, sub-surface syn-
tactic representation theorized by many linguists.

3 Methodology
3.1 Probing Method

To combat the first issue of accounting for struc-
tures that are not phonologically realized, we have
opted for the novel approach of re-purposing the
original Hewitt and Manning (2019), which was
trained to recover dependency trees, to investi-
gate whether LLMs have encoded theoretically-
motivated generative phrase-structure trees.

The structural probe developed by Hewitt and
Manning (2019) proposes a model M that encodes
a sequence of vector representations hé pn from an

input sequence of n words w{:n where [ identifies
the sentence index. From there, they define a linear
transformation matrix B € R**" to parameterize
the parse tree-encoding distances:

dp(hi,h})® = (B(h; - h;))" (B(hj —h}))

where i and j are the words in the sentence and
where the transformation matrix B’s objective is to
reproduce the gold parse distances between each
pair of words (wﬁ, wé-) for all sentences [ in the
parsed training corpus 7". The training uses a gra-
dient descent objective:

) 1
min > o O s (wduf) — i 16|
l 2%

In this equation, | s' | is the length of sen-
tences, which the function normalizes using the
square of the sentence’s length as each sentence
contains | s' |2 pairs of words. The probe’s objec-
tive thus seeks to approximate a matrix of distances

that most closely resembles the gold-standard dis-
tances. Because Hewitt and Manning (2019) use a
dependency parse, gold-standard parses were con-
verted into gold-standard distance matrices where
distances are defined such that the distance between
a parent node and its child nodes is 1, the distance
between a child node and its grandparent node is
2, the distance between a child node and a so to
speak “aunt” or “uncle” node is 3, and so on and so
forth. Evaluation of the probe involved calculating
the minimum spanning tree for each sentence’s pre-
dicted distances to derive the sentence’s predicted
undirected, unlabeled attachment score (UUAS)
compared to the gold tree, and the average Spear-
man correlation of the predicted matrix of distances
compared to the gold-standard matrix.

We chose this method specifically because it is
a probe trained only to capture dependency parses
with their one-to-one mappings between a sen-
tence’s words and a tree’s nodes. Though there
are critical limitations to dependency parses as dis-
cussed in Section 2.1, we argue that its simplicity
and overgeneralization can in fact be converted into
a benefit. It is because the probe is superficially
only supposed to capture shallow-level, generalized
syntactic structures that we can use the method to
tease apart syntactic structures whose representa-
tions are identical in a dependency parse but vary
in a generative framework.

3.2 Syntactic Structures of Interest

Our method hinges on testing syntactic structures
whose representations are crucially different in gen-
erative accounts, but are invariant in a dependency
parse. In doing so, we propose turning the limi-
tations of a dependency probe to an asset. If the
probe’s predicted dependency distances vary be-
tween the sentences in question in ways that align
with generative theoretical predictions, then we
have evidence that not only do LLMs’ contextual-
ized vector representations capture generative syn-
tactic structures, but that a probe trained only to
recover dependency parses is additionally sensitive
to hierarchical phrase-structure distances.

To test this, we have selected the well-researched
Subject Control (SC) and Subject Raising (SR) con-
structions as our experimental condition. Observed
first by Rosenbaum (1967), SR constructions are
those that consist of two clauses: a matrix clause
and an infinitival Tense Phrase (TP) complement.
Since its initial observation by Rosenbaum (1967),
it’s largely been accepted that the subject position



of the embedded clause is occupied by a trace ele-
ment (later revised to a copy element, see footnote
1) due to the subject being raised into the matrix
clause by the EPP features® in the matrix clause.
SC constructions, meanwhile, are assumed to take
a larger complement than a raising verb, with many
typically assuming an SC complement to be a Com-
plement Phrase (CP). Many theories follow Chom-
sky and Lasnik (1993) and posit a silent PRO ele-
ment that is co-indexed with and controlled by the
matrix’s subject. This PRO receives its theta-role
from the embedded verb while the matrix subject
receives its theta-role from the matrix verb, thus
satisfying the Theta Criterion (Chomsky, 1957).*

For the purposes of our experiment, the crucial
things to know are: Subject Raising takes a Tense
Phrase (TP) as its complement, while Subject Con-
trol takes the larger Complement Phrase (CP) as
its complement, which inherently contains a TP
itself. Thus, the result are two structures whose
surface forms and dependency parses are identical,
but whose hierarchical syntactic representations are
different. Thus, we would expect that if the LLM
has not acquired any knowledge of deeper syntactic
representations or if the dependency-trained probe
is insensitive to phrase-structure representations,
then the probe’s predicted distances between rele-
vant word-pairs should not differ between the two
structures. However, if such hierarchical repre-
sentations are indeed captured and if the probe is
sensitive to these structures, then we would antici-
pate that the distances between certain word-pairs
in an SC construction are longer than the equiva-
lent word-pairs in an SR construction due to SCs
containing the larger CP complement as opposed
to the smaller TP complement of SR predicates.

4 Experiments

4.1 Generating Data

For our experiment, we identified 6 SR verbs and 6
SC verbs, which we permutationally paired with a
set of 8 subject words, 61 embedded verbs, and
a set of possible direct objects (either a single
pronominal direct object or a two-word definite

3Chomsky (1995) proposed the Extended Projection Prin-
ciple, which stipulates that Tense bears a strong D-feature
that requires a subject in its Specifier. This can be satisfied
by either moving the subject to Spec, TP or by inserting an
expletive like "it."

*For further discussion on Subject Control and Subject
Raising and their structural and semantic differences, see Ap-
pendix A.

wanted/seemed

They annoy
S\
to him

Figure 3: Dependency parse for the two sentences "They
seemed/wanted to annoy him." The two trees are identi-
cal, and the distance between the subject and embedded
verb is 2 while the distance between the subject and the
infinitive or direct object is 3. This is true even if one
were to use extended Universal Dependencies, which
also conflates SC and SR verbs.

object that was matched to a specific embedded
verb). Thus, we yielded 33,120 unique sentences,
such as "They wanted/seemed to annoy him."

Metrics Should the LLMs not have any aware-
ness of the deeper hierarchies or should the probe
be insensitive to such differences, then should be
no difference between SR’s and SC’s distances be-
tween words in the matrix clauses and words in
the complement clauses. However, if such struc-
tures are captured and if the probe is sensitive to
this, then we anticipate that the distance between a
word in the matrix clause and a word in the comple-
ment clause will be longer in an SC construction
compared to an SR construction since the CP com-
plement is larger (see Figure 4).

For this reason, we opted to investigate the
probe’s predicted distances between the following
word-pairs: subject and the infinitive (subj-infin,
e.g., "they" and "to"), subject and the embedded
verb (subj-embed, e.g., "they" and "annoy"), sub-
ject and the direct object (subj-dobj, e.g., "they"
and "him"), and lastly, embedded verb and the di-
rect object (embed-dobj, e.g., "annoy" and "him"),
which serves as our baseline. We should acknowl-
edge at this point that excepting our baseline com-
parison, none of our word-pairs have any direct de-
pendent or syntactic relationship to each other. This
is not a problem. Recall that the probe was trained
on a the gold parses for dependency trees where the
distance between two nodes can be counted as the
number of edges between the two. Because of this
design, we are able to probe the distances between
the words in the matrix clause and the words in the
complement clause despite there being no direct
dependency or syntactic relationship.

As the dependency parses do not differ between
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Figure 4: Syntactic trees of the SR sentence "They seemed to annoy him" (left) and the SC sentence "They wanted
to annoy him" (right). The two structures are nearly identical, except SC contains a CP above the TP (red), which
makes the hierarchical distances between the subject and the embedded clause’s elements (i.e., the infinitive "to",
the embedded verb "annoy", and the direct object "him") longer in the SC sentence.

the two structures, the gold-parse distances are also
stable: subj-embed has a dependency distance of
2 while subj-infin and subj-dobj have depen-
dency distances of 3 (see Figure 3). For this reason,
if the LLLMs do not capture generative syntactic
hierarchies or if the probe is insensitive to such
differences, then we should see no difference in
predicted distances between the two experimental
conditions. If, however, the models do capture this
deep structural difference and if the probe is an
adequate tool to measure this, then we should antic-
ipate that the SC distances should be longer than
their equivalent SR distances. To verify that our
probe is working as anticipated, we included the
baseline word-pair embed-dobj, which should not
show any differences in distances as these words
are not affected by the SC/SR distinction.

4.2 Experimental Setup

Models We probed three pre-trained Transformer
(Vaswani et al., 2017) models: BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019), GPT-
2 (Radford et al., 2019), and Qwen2.5 (Team,
2024). We constrained our probing to mod-
els with hidden dimensions of 768 and 1024,
which corresponded to the bert-base-cased,

roberta-base, and gpt2-small for the smaller
models and bert-large-cased, roberta-large,
and gpt2-medium for the larger models. Per the
suggestions of our reviewers, we also included two
newer models: gqwen2.5-0.5 and gwen2.5-1.5
(referred to in this paper as "Qwen2.5Baby" and
"Qwen2.5Small", respectively). All models were
accessed using the Huggingface Transformers li-
brary (Wolf et al., 2020), and the probe was devel-
oped using the parsing train/dev/test splits of the
Penn Treebank (Marcus et al., 1993).

Following Hewitt and Manning (2019),> a probe
was trained to convergence (maximum of 40
epochs) on each layer with a batch size of 20. Anal-
ysis was conducted on the best-performing layer.

Once the best-performing layer® was selected,
we fed our novel dataset to that probe and obtained
the predicted distances for our word-pairs of in-
terest. Analysis was conducted on the predicted

SHewitt and Manning (2019)’s original code can
be found at https://github.com/john-hewitt/
structural-probes, which includes the BERT
models. A helpful starting point to modify the
code for RoBERTa and GPT2 can be found at
https://github.com/leoier/structural-probes.

See Appendix C, Figures 5, 6, and 7 for model perfor-
mances.
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distances for our word-pairs if and only if the probe
properly established the necessary dependency rela-
tionships. That is to say, if the probe misparsed the
tree in a relevant manner, that word-pair’s predicted
distance was excluded from analysis. Using Figure
3 as a gold-parse, if the probe’s minimum spanning
tree situated "him" as a dependent of "wanted,"
then we excluded the subj-dobj word-pair as the
tree was misparsed in a critical way for that word-
pair. We currently do not have strong reason to
suspect that such a misparse would affect non-
impacted word-pairs; therefore, the subj-embed
and subj-infin’s predicted distances would still
be used for analysis since the probe would have
correctly parsed the subject and embedded verb
as being dependents of "wanted" and parsed the
infinitive as the dependent of "annoy."’

5 Results

As mentioned, we generated 33,120 sentences for
which we gathered a total of 935,419 distances
across our four word-pairs and all eight language
models. Overall, this represents an 88.05% ac-
curacy score for correctly parsed word-pairs. The
accuracy for our four word-pairs can be found in Ta-
ble 1 where we may observe that while the accuracy
for the SC condition is slightly higher, both showed
high accuracy with the lowest being attributable to
the subj-dobj word-pair, which was due to the
direct object not being tied to the embedded verb,
hence the equivalent scores with embed-dobj.
Due to the large size of the data, we split the data
by word-pair for statistical analyses. Mixed effect
models were developed with the Imer function from
Ime4 (v. 1.1-31) (Bates et al., 2015) and ImerTest (v.
3.1-3) (Kuznetsova et al., 2017). Fixed effects were
identified as the condition (SC or SR) and the linear
distance (the number of intervening words plus 1
to avoid issues of O multiplication) as well as their
interaction. The latter two only applied to word-
pairs with the direct object as the direct object could
be a single pronominal like "it" (in which case the
linear distance would be 1) or a full nominal phrase

"For our current study, the best-performing layer was se-
lected as the probe with the highest UUAS. As such, we opted
only to use word-pairs in which the minimum spanning tree es-
tablished the correct necessary dependencies for the word-pair
in question. However, future work may investigate selecting
the probe based on the Spearman correlation, in which case,
the motivation to reject data based on improper parses disap-
pears as the Spearman metric does not utilize the minimum
spanning tree and instead seeks to globally reduce the differ-
ences between the gold distances and the predicted distances.

like "the car" (in which case the linear distance
would be 2). For the other word-pairs, there was no
variation in linear distance, hence its exclusion as
a fixed effect. Condition was contrast-coded with
SC being -0.5 and SR being 0.5.

Model comparison via anova was used to de-
termine the random effects of by-Matrix Verb, by-
SubjectWord, by-EmbedVerb, by-ObjectWord, and
by-LanguageModel as well as random slopes for
Condition (and LinDist for dobj). For the full lin-
ear models, see Appendix B.

To recap, our hypothesis is that the probe’s pre-
dicted distances between the matrix subject and
elements in the embedded clause (i.e., the infinitive,
the embedded verb, and the direct object) should
be longer in the SC condition compared to the
SR condition. Should this be the case, this effect
should appear in all of our word-pairs (excepting
our baseline of embed-dobj). In this regard, our
study uses conjunction testing in that we require
all tests be significant in order to reject the null
hypothesis (Weber, 2007). We thus follow Rubin
(2021) and do not adjust our alpha level.

Table 1 reports our results where we find a
main effect for Condition in our subj-embed,
subj-infin, and subj-dobj data (p = 2.77¢ >, p
=0.035, and p = 1.90e~12). Thus we find evidence
that the predicted distances from an SC construc-
tion are significantly longer than an SR construc-
tion when considering the distance between the
subject and a word within the embedded clause.

Crucially, we do net find Condition to be a sig-
nificant predictor for our baseline, suggesting the
probe is not spuriously attributing higher distances
to SCs than SRs in ways that are not predicted by
the syntax. However, interaction between Linear
Distance and Condition is found to be a main effect
for embed-dobj. To conduct follow-up models to
investigate this result, we split the data by linear dis-
tance, meaning sentences were grouped into those
that took a pronominal direct object such as "it"
(linear distance of 1) and those that took a nominal
phrase object such as "the car" (linear distance of
2). In doing so, we do net find Condition to be a
main effect in either group.

Analysis of the data further reveals that linear
distance decreases the predicted distance for sub-
ject raising verbs only. When we control for linear
distance by splitting up the data by direct object
type, though, our follow-up analyses find that the
predicted distance between the embedded verb and
the direct object do not significantly vary between



Fixed Effects
WordPair Condition Acc PredDist (avg) | Coefficient 8 SE(B) df t p
Subj-Embed Cont 96.01% 2.04 (Intercept) 1.93655 0.10610 13.24239  18.253  8.9%e-11
Raise 94.35% 1.82 Condition -0.22879 0.04147 18.53383  -5.517  2.77e-05
Subj-Infin Cont 89.50% 2.86 (Intercept) 2.81437 0.07561 13.77291  37.221 3.2le-15
Raise 84.75% 2.74 Condition -0.13397 0.05517 10.25726  -2.428 0.035
Subj-Dobj Cont 86.29% 2.98 (Intercept) 2.823 0.3260 24.68 8.659  6.01e-09
Raise 84.45% 2.76 Condition  -4.805e-01  4.309¢-02 31.38 -11.152 1.90e-12
LinDist 2.572e-03  6.602e-02 22.62 0.039 0.969
Interaction  6.023e-02  5.436e-03 2.260e+05 11.081 <2e-16
Embed-Dobj Cont 86.29% 1.50 (Intercept) 1.54498 0.08508  75.04190 18.160  <2e-16
(baseline) Raise 84.45% 1.50 Condition -0.04512 0.02990  41.13811  -1.509 0.138948
LinDist -0.04085 0.05312  44.15045  -0.769 0.445915
Interaction  0.03901 0.01095  48.82859 3.561  0.000835

Table 1: Results of the probes’ predicted squared Euclidean distances between the word-pairs of interest. Accuracy
records what percentage of the sentences properly established the necessary dependency relationships for that
particular word-pair. The right side of the table reports the fixed effects findings for the linear mixed-effect models
that were built for each word-pair. See Appendix C, Figures 8 and 9 for visuals.

the two conditions (p = 0.816 for pronominal direct
objects and p = 0.238 for nominal phrase objects).

The significantly longer predicted distances of
the SC condition in subj-embed, subj-infin, and
subj-dobj, paired with Condition not being a sig-
nificant predictor for our baseline comparison of
embed-dobj (even when accounting for interaction
effects), together show strong evidence to reject
our null hypothesis.

5.1 Results by LLM

While our results indicate that the probe is sensitive
on some level to syntactic hierarchies, this is not
equally true for all word-pairs across all models.
As can be seen in Table 2 in Appendix C, a sig-
nificant main effect for the SC/SR Condition for
word-pairs subj-embed and subj-dobj was found
for the probes of all models except gpt2-medium,
which revealed Condition to be marginal (p =
0.0818), though the reason for this is unclear. As
for subj-infin however, Condition was signifi-
cant only for the Qwen2.5-1.5 model (p = 0.0419),
and roberta-large (p = 0.00345).3 For all other
models, Condition was not a significant predictor.

If the structures proposed by generative syn-
tax to account for Subject Raising and Subject
Control are indeed captured by LLMs and sub-
sequently by the probe, then we would antici-
pate that all three word-pairs of interest across
all LLMs should show significantly longer pre-
dicted distances in the SCs compared to SRs while
the baseline comparison of embed-dobj (which is
not affected by an SC or SR construction) should
not. While these predictions are largely borne

8For gpt2-small, Condition was marginal (p = 0.0688).

out by subj-embed and subj-dobj along with our
baseline of embed-dobj, it does not hold true for
subj-infin for many models.

This finding is particularly puzzling. Should it
be that the LLMs do not capture the SC/SR dis-
tinction, then none of the word-pairs should have
significant differences in distances rather than just
one (namely, subj-infin). Additionally, there is
no theory in any school of syntax (generative or
otherwise) we are aware of that suggests SC verbs
take larger complements below the TP head of "to."
We might then posit that the infinitive’s seemingly
imperviousness to the SC/SR distinction may arise
from these LL.Ms somehow building a novel and
alien structure in which the infinitival "to" sits in
the matrix clause while the complement size dis-
tinctions are displayed beneath it. Again, however,
we resist this notion as we know of no theory pos-
tulating such an arbitrary and alien structure.

It is evident this matter requires further inves-
tigation, but it is possible the aberrant behavior
of the infinitive is due to the nature of infinitives
themselves. Infinitival "to" is semantically vacu-
ous: there is little to any rich semantic meaning to
the word, which is entirely functional in nature—
denoting either non-finiteness as an infinitive® or
directionality or telicity as a preposition. For this
reason, we suspect the lack of semantic-richness of
purely functional words may impact how structure
is captured by embedding vectors.!?

°See (Satik, 2022) for discussion on the subtle semantic
differences between different types of infinitives.

1%We exempt pronouns from this hypothesis. Our dataset
subjects were pronominal and our single-word direct objects
were also pronouns. Unlike infinitival "to," pronouns pick
out referents in the real world, and can furthermore carry



We also cannot attribute the lack of significant
findings amid subj-infin to model complexity or
novelty. While the model with the highest num-
ber of parameters (qwen2.5-1.5 at 1.54B param-
eters) did find Condition to be a significant pre-
dictor for subj-infin, so did the 340m parameter
roberta-large. Despite this, models with simi-
lar parameter sizes as roberta-large did not find
the SC/SR distinction to significantly predict the
distance for subj-infin. Nor can we suggest that
it is the newer models whose embedding represen-
tations capture linguistic aspects that correlate to
syntactic hierarchy; the 2024 Qwen2.5-0. 5 failed
to find Condition to be significant for subj-infin.
Further research is needed done to understand
why only a select few models’ (Qwen2.5-1.5 and
roberta-large) embedding representations for in-
finitives appear to capture linguistic aspects corre-
sponding to syntactic hierarchies.

6 Discussion

While the matter of infinitives remains murky, our
findings suggest that models are capable of en-
coding some linguistic aspects corresponding to
the syntactic hierarchies as proposed in generative
syntax. That SC verbs yield longer predicted Eu-
clidean distances than SR (as opposed to the re-
verse) already aligns with generative theories that
control verbs take larger, more complex comple-
ments (Chomsky and Lasnik, 1993; Landau, 2007,
2013, 2024) than raising verbs.

It may be asked whether these results are merely
a product of semantics rather than syntax. How-
ever, we maintain that seeking to entirely divorce
syntax from semantics should not be the main goal.
As Leivada and Murphy (2021) comments, "syntax,
semantics, and the other levels of linguistic anal-
ysis are not undecomposable modules that work
autonomously," which makes it difficult to separate
the two when researching the neural processing of
the human mind, and, we argue, when research-
ing the artificial neural processing of an LLM. Our
findings may be due to hierarchical distance be-
ing larger in SC, or it may be due to the genera-
tive syntactic theory that SCs assign an extra theta
role(Chomsky and Lasnik, 1993; Landau, 2024;
Beockx and Hornstein, 2010). Both explanations
speak to LLMs being able to encode deeper linguis-
tic aspects that interface with syntactic structure.

information such as Case, Gender, and Number as opposed to
infinitival "to," which indicates non-finiteness only.

In order to determine if these findings are in
fact indicative of syntactic hierarchical distance
or merely a quirk of the SC/SR constructions, fu-
ture work should aim to test other syntactic struc-
tures. Preliminary work by Kennedy (2025) tests
wh-extraction from different sized complements
(e.g., "What did she see him eat" vs "What did
she expect him to eat" vs "What did she think he
ate") and finds that Hewitt and Manning (2019)’s
probe’s predicted distance between the extracted
wh-word and its embedded verb (e.g., "What" and
"eat") increases as the size of the complement in-
creases. With continued research like this, should
multiple different sentence structures all converge
on larger syntactic hierarchical distances yielding
longer predicted probe distances, then we can say
with even greater confidence that LLLMs are capa-
ble of encoding linguistic attributes that correspond
to the structures propose by generative syntax.

7 Conclusion

The implications of this work have impact on both
the field of NLP and the field of linguistics. Our
work suggests that LLMs have learned to capture
elements of deeper and more complex syntactic
structures within their embeddings than previously
realized and thus have the ability to capture the se-
mantic nuances that result from sub-surface struc-
tural differences. Our findings therefore further
the interpretability research of LLMs to discover
what these models have actually learned regarding
the features and structures of language. We also
find evidence that neural networks trained using
the dependency framework can still capture deeper
syntactic features, suggesting these simpler repre-
sentations may be adequate for downstream tasks
as they appear to be capable of reaping the benefits
of deep structure without needing to explicitly train
on deep structure. As for linguists, the findings of
our work warrant further investigation into the via-
bility of using language models as a means to test
syntactic structures. Our work begins to open up
the possibility of utilizing LLMs as another source
of data to help augment, build, and perhaps even
test syntactic theories.

Taken together, we situate our work as a realiza-
tion of Linzen (2019) and Futrell and Mahowald
(2025)’s claim that the skillsets and knowledge of
the fields of NLP and linguistics complement each
other, and that the two stand primed to advance
each other’s respective fields through collaboration.



Limitations

Our work still faces limitations in that it does not
enable a full reconstruction of the hierarchical syn-
tactic tree. This is a limitation currently inherent
to the data and format of LLMs. As can be seen
in Figure 4, the generative syntax trees consist of
branches and nodes that do not overtly appear in the
final derivation. That is to say, trace nodes/moved
elements are not surfaced, nor are all syntactic ele-
ments (such as tense) realized by a separate word.
Because of this, an LLM’s contextualized word
embeddings cannot currently be used to directly
derive the sub-surface syntactic trees. The method-
ology that we’ve deployed allows us to probe for
behaviors that would indicate that LLMs have cap-
tured more complex, hierarchically-rich structural
information within their embeddings, but this can-
not be directly shown the way Hewitt and Manning
(2019) did with the one-to-one mappings of de-
pendency parses. Thus, our work is still largely
in the tradition of much of linguistics. We can-
not directly observe people’s mental grammars, but
we probe for their knowledge and structures using
measurements that indicate how people process and
produce language. Similarly, our use of Hewitt and
Manning (2019)’s probe also provides an apparatus
to measure behaviors that we can use to reverse-
engineer the possible behaviors and mechanisms
that would derive such results. The interpretability
question of LLMs is not far at all from the research
questions of linguistics.
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A Data Generation

Our data was generated through combinatorics of
sets of words for each grammatical role. In short,
our sentences followed the base structure of:

3) [Subject] [past-tense matrix verb] [to] [em-
bedded verb] [direct object].

In order to easily control linear distance, subject
verbs were limited to pronominal subjects. Because
control verbs are typically volitional, all subjects
were prototypically [+HUMAN], but varied in Case,
Gender, and Number (see List (4)).

We additionally selected 61 transitive verbs for
our embedded verb (see List (5)). Of these verbs,
30 verbs implied human direct objects while 31
implied non-human direct objects. That is to say,
a person can flatter the king, but it’s nonsensical
for them to drink the king. Conversely, they can
drink sodas, but it would be hard to flatter an inan-
imate soda. This dichotomy was taken into ac-
count when selecting direct objects. Thus, when
the direct object was a single-word pronominal,
inanimate-coded verbs permutated through it, that,
this, stuff, and things while animate-coded verbs
permutated through me, you, him, her, us, them,
everyone, and someone. The animate list is longer;
however, the animates were truncated as we omit-
ted direct objects that were the correspondent of
the subject. That is to say, if the subject was "she",
the direct object would not be her. Additionally,
to avoid scope ambiguities, we excluded instances
where the subject was "someone" and the direct
object was "everyone".!! Nominal direct objects

Twe did, however, include the distributive scopal alter-
native in which "someone" is the subject" of an "everyone"
object. The two readings of this can either be there is some
person X who [verbs] everyone, or it can be the distributive
reading where for every person X, they are [verbed] by some-
one (not necessarily the same someone). The inclusion of a
scopal ambiguity was due to an oversight on our part; how-
ever, because there were proportionally fewer of these pairings
and because these pairings occurred in both conditions, the

("the" + the noun) were more limited as we selected
only one plausible noun to pair with the embedding
verb.

4) Subjects: You, He, She, We, They, Every-
one, Someone

5) Embedded Verbs

a. Inanimate-coded Verbs: say, yell,
whisper, shout, think, write, read,
cook, eat, drink, buy, sell, rent, pro-
vide, offer, collect, grab, steal, bump,
move, kick, break, destroy, build,
wash, wear, sew, mend, fix, enjoy

b.  Animate-coded Verbs: Kiss, hug, slap,
wrestle, fight, bully, harass, intimidate,
insult, slander, annoy, tease, seduce,
flatter, comfort, compliment, question,
interrogate, interview, meet, fire, hire,
pay, reward, punish, scold, teach, train,
serve, admire

(6) Pronominal Direct Objects

a. Inanimates: it, that, this, stuff, things
b.  Animates: me, you, him, her, us, them,
everyone, someone

(7) Nominal Direct Objects and Their Corre-
sponding Embedded Verb: say the words,
yell the answer, whisper the clues, shout
the lyrics, think the worst, write the essay,
read the book, cook the meal, eat the food,
drink the sodas, buy the clothes, sell the
toy, rent the apartment, provide the sup-
plies, offer the bribes, collect the rocks,
grab the keys, steal the gold, bump the ta-
ble, move the chairs, kick the ball, break
the glass, destroy the house, build the tower,
wash the socks, wear the uniform, sew a
shirt, mend the tears, fix the issue, enjoy
the dessert, kiss the puppy, hug the baby,
slap the clown, wrestle the children, fight
the administration, bully the student, harass
the reporter, intimidate the intern, insult the
actress, slander the politician, annoy the
teenagers, tease the toddlers, seduce the ac-
tor, flatter the king, comfort the victims,
compliment the model, question the judge,
interrogate the witness, interview the sus-
pect, meet the manager, fire the employee,
hire the applicant, pay the consultant, re-
ward the winner, punish the cheaters, scold

possible scopal ambiguity should not have an impact on our
results.
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the liars, teach the trainees, train the re-
cruits, serve the queen, admire the hero

We utilized the following suite of diagnostics to
select our condition matrix verbs:

1. SR predicates can be replaced by an exple-
tive it; SCs cannot. (Polinsky, 2013; Landau,
2024)

* Base: John seems/wants to annoy his
brother.

* SR: It seems John annoys his brother.

* SC: *It wants John annoys his brother.

2. SR predicates can be replaced by an expletive
there; SCs cannot. (Polinsky, 2013; Landau,
2024)

¢ Base: A mouse seemed/wanted to be
stuck in the house.

¢ SR: There seemed to be a mouse stuck
in the house.

¢ SC: *There wanted to be a mouse stuck
in the house.

3. SR predicates allow for idioms to retain their
idiomatic meanings; SCs can only retrieve
the literal meaning. (Polinsky, 2013; Landau,
2024)

* Idiom: Every time my friend pet-sits, my
fish go belly up. (meaning: my fish die)

* SR: My fish seem to go belly up every
time my friend pet-sits. (Die meaning:
still easily accessible)

* SC: My fish want to go belly up every
time my friend pet-sits. (Die meaning:
less accessible if at all)

4. When SR sentences are passivized, the mean-
ing is equivalent. Passivization of the SC
yields asymmetric meanings. (Sanchez et al.,
2016)

¢ SR: The teachers seemed to select the
volunteers. = The volunteers seemed to
be selected by the teachers.

¢ SC: The teachers wanted to select the

volunteers. # The volunteers wanted to
be selected by the teachers.

5. SRs allow for scope ambiguity, but SCs do
not. (Polinsky, 2013; Landau, 2024)

¢ SC: Someone from HR seems to win the
office raffle every year.

— De re reading: There is someone spe-
cific in HR who seems to win the
raffle each year.

— De dicto reading: It seems that the
winner of the office raffle each year
is someone from HR.

¢ SR: Someone from HR wants to win the
office raffle every year.

— De re reading: There is someone spe-
cific in HR who wants to win the raf-
fle each year.

— De dicto reading: inaccessible.

6. Singular subjects of SC predicates can partici-
pate in plural-coded verbs,'? but SRs cannot.
(Landau, 2024). By plural-coded verbs, we
mean those that necessitate multiple partici-
pants (e.g., it’s ungrammatical to say "I met at
midnight" as "meeting" requires two or more
participants).

* SR: *The student seemed to meet in the
library.

* SC: The student wanted to meet in the
library.

From this, we selected 6 SC verbs—all of which
met Landau (2024)’s criteria for logophoric control
predicates—and 6 SR verbs, listed in List (8).13

8) Matrix Verbs

a. Subject Control Verbs: wanted, ex-
pected, wished, liked, hated, promised

b.  Subject Raising Verbs: appeared,
seemed, happened, began, continued,
tended

B Linear Mixed Effect Models

Below are the linear mixed effect models fit for re-
sults reported in Table 1. Random effects were
identified via model comparison and included
by-Matrix Verb, by-SubjectWord, by-EmbedVerb,
by-ObjectWord, and by-LanguageModel random

"2This is known as "partial control," and is a diagnostic for
(Landau, 2024)’s logophoric control predicates.

3We acknowledge that three of our raising verbs are con-
tentious: begin and continue, though they do appear as raising
verbs in Postal (1974). There are instances of both appearing
in the expletive construction (e.g., “It continued that the re-
serve would be ‘a back-up solution only”” and “There began
to be fewer men who paid taxes,” both taken from Davies
(2008-)).



slopes for our factor(s) of interest (Condition and
LinDist). Word-pairs with direct objects made for
more complicated linear models due to the addi-
tion of a by-ObjectWord grouping factor for ran-
dom effects. Because of this, the linear model
for subj-dobj included random intercepts for all
grouping factors mentioned, but only warranted
random slopes for the grouping factor of language
model and linear distance. The linear model for
subj-dobj included the same as well as a ran-
dom slope for the group factor of the direct object
noun/pronoun.

"Cond" refers to the Condition (SC vs SR),
"CondVerb" refers to the matrix verb (6 in each
condition); "Subjword" refers to the word used as
the subject; "Objword" refers to the word used as
the object; "Embed" refers to the embedded verb;
and "Model" refers to the LLM.

¢ subj-embed: PredDist Cond + (1 | Cond-
Verb) + (1 + Cond | SubjWord) + (1 + Cond |
Embed) + (1 + Cond | Model)

e subj-infin: PredDist Cond + (1 | Cond-
Verb) + (1 + Cond | SubjWord) + (1 + Cond |
Embed) + (1 | Model)

¢ subj-dobj: PredDist Cond * LinDist + (1 |
CondVerb) + (1 | ObjWord) + (1 | SubjWord)
+ (1  Embed) + (1 + Cond + LinDistl Model)

¢ embed-dobj: PredDist Cond * LinDist + (1
| CondVerb) + (1 + Cond | ObjWord) + (1
| SubjWord) + (1 | Embed) + (1 + Cond +
LinDist | Model)

C Figures



Probe Performance by Layer and Model (Small Models)
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Figure 5: Probe performance for all small models. The solid lines are plotted against the left-hand y-axis and display
the performance by Unlabeled Unattached Accuracy Score (UUAS) while the dotted lines plot the average Spearman
correlation between the predicted and gold distances (DSpr.) along the right-hand y-axis. Highest-performing

probes were BERT-base-1layer7, RoBERTa-base-layer4, and GPT2-1layer7.



Probe UUAS Performance by Layer and Model (Large Models)
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els. Highest-performing probes were BERT-large-layer15, RoBERTa-large-layer5, GPT2-med-layerii,
Qwen2.5-0.5-1ayer13 "Qwen25Baby", and Qwen2.5-1.5-1ayer19 "Qwen25Small".



Probe DSpr Performance by Layer and Model (Large Models)
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Figure 7: Probe average Spearman correlation (DSpr) performance for all of the larger models. Highest-performing
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Predicted Disance as a Func of WordPair (All Models)
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Figure 8: Predicted distances by WordPair for all LLMs. While the SC condition yields longer predicted distances
than the SR condition, the baseline of embed-dobj shows no difference in the probes’ predicted distance for the two
conditions.
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Fixed Effects

Model WordPair Condition Acc PredDist (avg) | Coefficient B SE(5) df t p
BB7 Subj-Embed Cont 94.95% 1.96 (Intercept)  1.82245  0.04081 19.77873 44.655 <2e-16
Raise 85.34% 1.69 Condition ~ -0.28385 0.04832 12.41598 -5.874 6.58e-05
Subj-Infin Cont 89.53% 2.56 (Intercept)  2.83493  0.08243 13.12998 3439  2.97e-14
Raise 81.48% 2.38 Condition  -0.11851 0.10040 12.28409 -1.18 0.26
Subj-Dobj Cont 68.54% 2.90 (Intercept)  2.77837 0.33444 69.00598 8307 5.47e-12
Raise 58.51% 2.81 Condition  -0.58313 0.13924 53.28816 -4.188 0.000106
LinDist -0.08603 0.06823 66.18457 -1.261 0.211758
Interaction  0.09568  0.02659 43.99406 3.598  0.000808
BL15 Subj-Embed Cont 96.51% 2.00 (Intercept)  1.84524  0.04304 24.16131 42.87 <2e-16
Raise 90.34% 1.69 Condition  -0.31813 0.06931 13.65580 -4.59  0.000448
Subj-Infin Cont 95.22% 2.46 (Intercept)  2.92094 0.08590 12.97574 34.002 4.54e-14
Raise 90.16% 2.28 Condition ~ 0.02512  0.16398 11.02102 0.153 0.881
Subj-Dobj Cont 55.15% 291 (Intercept)  2.48195 0.26788 69.34548 9.265 9.42e-14
Raise 58.58% 2.96 Condition  -0.38234 0.12774 39.42419 -2.993  0.00475
LinDist -0.03076  0.05465 66.48586 -0.563  0.57547
Interaction  0.05318  0.02370 29.59535 2243  0.03251
RB4 Subj-Embed Cont 96.42% 1.89 (Intercept)  0.03251 0.02186 45.07316 81.24 <2e-16
Raise 91.27% 1.68 Condition ~ -0.20958 0.01251 13.41216 -16.75 2.23e-10
Subj-Infin Cont 96.31% 2.54 (Intercept)  2.51492  0.04079 19.76975 61.652 <2e-16
Raise 91.18% 2.49 Condition ~ -0.04289 0.06567 10.36167 -0.653 0.528
Subj-Dobj Cont 96.21% 2.75 (Intercept)  2.44086 0.46053 67.63892 5300 1.37e-06
Raise 90.68% 2.58 Condition  -0.55603 0.10135 5391938 -5.486 1.12e-06

LinDist 0.05054 0.09478 67.00031 0.533 0.596
Interaction  0.09185 0.01952 4536245 4705 2.41e-05

RL5 Subj-Embed Cont 98.61% 1.97 (Intercept)  1.88802  0.03756 71.54606 50.261  <2e-16
Raise 96.61% 1.81 Condition  -0.15973  0.03398 11.28757 -4.701 0.000605
Subj-Infin Cont 96.91% 2.74 (Intercept)  0.000605 0.02767 24.94310 96.339  <2e-16
Raise 93.80% 2.60 Condition  -0.14062 0.03783 10.90377 -3.717  0.00345
Subj-Dobj Cont 95.31% 2.99 (Intercept)  1.84384  0.66272 69.63534 2.782  0.00694
Raise 91.96% 2.83 Condition  -0.62076 0.10333 52.19872 -6.008 1.85e-07

LinDist 0.25798  0.13658 69.36638 1.889  0.06308
Interaction ~ 0.10951  0.02027 45.48663 5.402  2.32¢-06

GS7 Subj-Embed Cont 99.52% 1.86 (Intercept)  1.77275 0.03519 32.62122 50.379  <2e-16
Raise 98.88% 1.69 Condition  -0.17882 0.05412 13.69496 -3.304  0.00536
Subj-Infin Cont 99.22% 2.90 (Intercept)  2.76690  0.06601 11.33192 41.91 8.7e-14
Raise 87.23% 2.67 Condition  -0.26820 0.13411 11.95000 -2.00 0.0688
Subj-Dobj Cont 98.85% 3.04 (Intercept)  3.02957  0.44599 69.57371 6.793  3.05e-09
Raise 96.32% 2.73 Condition  -0.66348 0.14587 54.34750 -4.548 3.07e-05
LinDist -0.03567 0.09176 68.84865 -0.389  0.69867
Interaction  0.08601  0.02911 48.70634 2.954  0.00481
GM11 Subj-Embed Cont 99.67% 1.92 (Intercept)  1.84576  0.05312 19.30353 34.745 <2e-16
Raise 98.18% 1.77 Condition  -0.16218 0.08630 13.61600 -1.879  0.0818
Subj-Infin Cont 98.74% 2.89 (Intercept)  2.77503  0.07324 14.28224 37.891 9.76e-16
Raise 93.16% 2.69 Condition ~ -0.18272  0.13783 12.19611 -1.326 0.209
Subj-Dobj Cont 97.49% 3.15 (Intercept)  2.93307  0.05039 54.90142 58.210 <2e-16
Raise 90.68% 2.83 Condition ~ -0.33108 0.07295 17.11412 4.538  0.000286
QB13  Subj-Embed Cont 95.14% 2.10 (Intercept)  2.01250  0.06700 11.27262 30.039 4.08e-12
Raise 99.32% 1.91 Condition ~ -0.18818 0.06758 12.38379 -2.785  0.0161
Subj-Infin Cont 72.19% 2.95 (Intercept) 2.8575 0.1087  12.3465 26.276 3.27e-12
Raise 72.32% 2.78 Condition -0.2119  0.1363  11.6518  -1.555 0.147
Subj-Dobj Cont 92.73% 3.12 (Intercept)  2.39605 0.40124 68.76982 5972  9.24e-08
Raise 95.83% 2.93 Condition  -0.19786 0.06810 12.92618 -2.905  0.0123
LinDist 0.15452  0.08148 65.01205 1.896 0.0624
QS19  Subj-Embed Cont 87.29% 2.66 (Intercept)  2.55208 0.43185 6.06759  5.910  0.00100
Raise 94.86% 2.30 Condition  -0.31453  0.08549 14.93464 -3.679  0.00225
Subj-Infin Cont 67.86% 3.23 (Intercept) 3.2211 0.3615 6.1781 8911  9.44e-05
Raise 68.65% 2.95 Condition -0.2839  0.1270  14.2346  -2.236  0.0419
Subj-Dobj Cont 86.06% 3.50 (Intercept)  3.98534  0.53651 13.82113 7.428  3.47e¢-06
Raise 93.00% 3.18 Condition ~ -0.27527 0.05825 11.01648 -4.726 0.000621
LinDist -0.14038 0.06518 66.57211 -2.154 0.034893

Table 2: From top to bottom, models are: BERT-base-layer7, BERT-large-layer15, RoBERT-base-layer4,
RoBERT-large-layer5, GPT2-small-layer7, GPT2-medium-layerl1l, Qwen2.5-@.5-layer13, and
Qwen2.5-1.5-1layer19. Model comparison using anova revealed LinDist did not significantly improve
the linear mixed-effects model for GPT2-medium; this method also showed the interaction between the Condition
(SC vs SR) and LinDist was not a main effect for the Qwen2.5 models.
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