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Abstract001

The syntactic probing literature has been002
largely limited to shallow structures like de-003
pendency trees, which are unable to capture004
the subtle differences in sub-surface syntactic005
structures that yield semantic nuances. These006
structures are captured by theories of syntax007
like generative syntax, but have not been re-008
searched in the LLM literature due to the dif-009
ficulties in probing these complex structures010
that have many silent, covert nodes. Our011
work presents a method for overcoming this012
limitation by deploying Hewitt and Manning013
(2019)’s dependency-trained probe on sentence014
constructions whose structural representation015
is identical in a dependency parse, but dif-016
fers in theoretical syntax. If a pretrained lan-017
guage model has captured the theoretical syn-018
tax structure, then the probe’s predicted dis-019
tances should vary in syntactically-predicted020
ways. Using this methodology and a novel021
dataset, we find evidence that LLMs have cap-022
tured syntactic structures far richer than pre-023
viously realized, indicating LLMs are able to024
capture the nuanced meanings that result from025
sub-surface differences in structural form.026

1 Introduction027

Large Language Models (LLMs) have demon-028

strated remarkable language capabilities that have029

been steadily increasing ever since BERT (Devlin030

et al., 2019). This impressive performance has031

prompted a body of research interested in investi-032

gating why these models are so successful. From033

this came a subset of research seeking to under-034

stand what, if any, linguistic features or knowledge035

these models have acquired (Jawahar et al., 2019;036

Belinkov and Glass, 2019; He et al., 2024; Kallini037

et al., 2024) as means to better understand their lan-038

guage performance. The focus of linguistic inquiry039

can vary from the semantic (Nikolaev and Padó,040

2023; Kamath et al., 2024) to the morphological041

(Coleman, 2020; Anh et al., 2024) to the syntactic042

(Clark et al., 2019; Chi et al., 2020; Kulmizev et al., 043

2020; Maudslay and Cotterell, 2021), the latter of 044

which our current research seeks to extend. 045

Much of the research into syntactic representa- 046

tion in LLMs have utilized dependency parses to 047

represent a sentence’s syntactic structure (Hewitt 048

and Manning, 2019; Maudslay and Cotterell, 2021; 049

Tucker et al., 2022; Eisape et al., 2022; Buder- 050

Gröndahl, 2024). However, these relatively shallow 051

representations can fail to capture features of a sen- 052

tence and the nuanced differences in meaning that 053

result from different sub-surface syntactic struc- 054

tures. Adopting a dependency framework makes 055

theoretical assumptions and imposes limitations on 056

the richness of meaning that can be expressed, the 057

consequences of which are often not addressed. 058

These simple, compact representations stand in 059

stark contrast to the deeper, hierarchically-complex 060

structures that are posited in theoretical syntax, par- 061

ticularly the generative frameworks, which postu- 062

late these complexities in order to account for the 063

difference in semantic meaning and syntactic pat- 064

terning of certain syntactic constructions. Because 065

the structures posed by theoretical syntax are far 066

more complex with more tree nodes than words in 067

the sentence, attempts to probe for generative syn- 068

tactic structures have been stymied, and it remains 069

unclear whether LLMs have captured these richer 070

sub-surface structures. 071

Our work seeks to overcome this through our 072

unprecedented application of Hewitt and Man- 073

ning (2019)’s dependency-trained probe to test 074

for theory-backed syntactic structures. To imple- 075

ment this, we identified two sentences structures— 076

Subject Raising (SR) and Subject Control (SC)— 077

whose surface and dependency representations are 078

identical, but whose generative structures differ as 079

their complement sizes differ (control predicates 080

take larger complements than raising predicates). 081

Using this method, we are able to circumvent the 082

issue of handling empty nodes in the syntactic tree 083
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as the probe only recovers dependency distances.084

Our hypothesis holds that if the probe predicts dis-085

tances for the two sentence types that significantly086

differ in syntactically-predicted ways, then this is087

evidence that LLMs have captured the more com-088

plex structures of generative syntax, which can089

yield structures to explain the pattern variations090

and semantic nuances of certain constructions.091

To test this, we developed a novel dataset of over092

33,000 SR/SC sentences, which we fed into our093

dependency-trained probes using pretrained mod-094

els of BERT, RoBERTa, and GPT2. When we095

probe the content words, our results find strong ev-096

idence of the SR/SC difference that aligns with SC097

taking a larger complement than SR as generative098

syntax proposes. However, probing the distances099

with infinitival "to" suggest that the functional word100

may encode syntactic structure in an aberrant man-101

ner. Together, our work suggests LLMs have en-102

coded structure that is more complex than previ-103

ously realized, and provides a novel method to104

probe for theoretical syntactic structure in LLMs.105

2 Related Work106

The impressive language abilities of recent LLMs107

have prompted researchers to ask whether this per-108

formance is due to some probabilistic modeling, or109

if these language models have managed to capture110

linguistic structures. To answer this question, a111

line of research known as probing was developed.112

This methodology feeds the model’s contextualized113

vector representations into a neural network whose114

training objective is to predict a targeted linguistic115

structure from the representations alone (see Alain116

and Bengio, 2017 or Conneau et al., 2018 for ex-117

ample). The argument follows that if such a neural118

network probe is in fact able to predict the target119

pattern or structure, then it can be concluded that120

the language model has indeed implicitly learned121

that linguistic feature; otherwise, the probe task122

would have been doomed to failure.123

This area of research has largely focused specifi-124

cally on investigating whether models have learned125

to properly encode syntactic phenomenon (Mueller126

et al., 2020; Hu et al., 2020; Warstadt et al., 2020;127

Ravfogel et al., 2021; Davis et al., 2022). However,128

much of this structural syntactic research has relied129

on dependency parses as a means of representing130

syntactic structure (Hewitt and Manning, 2019; Chi131

et al., 2020; Maudslay and Cotterell, 2021; Tucker132

et al., 2022; Eisape et al., 2022), with one notable133
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Figure 1: An example of the dependency tree (left)
and generative syntax tree (right) for the sentence "The
moose ate my pumpkin." Note how the dependency tree
has a flatter structure with a one-to-one mapping of
words to nodes in the tree. Compare this to the deeper
generative tree where there are far more nodes in the
tree than words in the sentence.

exception being Arps et al. (2022), which sought 134

to (and largely succeeded) in training a probe to 135

reconstruct a skeletal constituency tree. While this 136

line of research is of value and great interest, there 137

are theoretical assumptions made by using depen- 138

dency parses, and there are limitations to using that 139

particular syntactic framework. 140

2.1 Syntactic Theories 141

Dependency parses derive from French linguist Lu- 142

cien Tesnière’s (1959) theory of syntax known as 143

Dependency Grammar (DG), which focuses on the 144

head-dependent relationship between words (see 145

Figure 1). In these trees, each word can have one 146

and only one incoming arc that indicates it is the 147

dependent of its head, excepting the root of the sen- 148

tence (often the matrix verb), which has no head. 149

DG trees are relatively flat structures with one- 150

to-one mappings between words in the sentence 151

and nodes in the tree. The appeal of such trees are 152

largely three-fold: (1) the representations are com- 153

pact and efficient due to the one-to-one mapping, 154

(2) learning to parse a dependency tree is relatively 155

easy once one understands the head-dependent re- 156

lationships that exist, and (3) the dependency tree 157

does not need to capture the sentence’s linear order 158

of words. The last factor makes DG an appealing 159

theory for researchers working on languages with 160

freer word-order (Müller, 2019); however, this "fea- 161
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ture" can become a bug when it loses nuance or162

creates ambiguous parses (see Figure 2).163

An alternative, more structurally-rich approach164

to syntax has built off the theories of Chomsky165

(1957; 1981; 1986; 1995) and others who have166

refined this phrase-structure (also known as a167

constituency-based) framework to build up the syn-168

tactic framework known as generative syntax (GS).169

This family of syntactic theories are built on the170

X-bar theory, which proposes the operations Ex-171

ternal Merge and Internal Merge (formerly known172

as "Move"), and stipulates that nodes are binary-173

branching and that every phrase has a head (Chom-174

sky, 1995). After all operations are applied in the175

course of derivation, the end result is the lineariza-176

tion of the sentence when read from left to right177

along the children nodes.1 The generative frame-178

work is concerned with identifying the operations179

and rules that together generate licit sentences but180

do not generate illict constructions.181

Unlike DG, generative syntax and other phrase-182

structure grammars thus yield deeper, more com-183

plex trees with hierarchical structures and phono-184

logically null nodes whose presence must be de-185

duced through testing. While this complexity is186

well-warranted (in that it can generate sentences187

that are grammatical and explain what causes un-188

grammaticality), the tree’s size and complexity cre-189

ates a complicated and unwieldy structure that is190

difficult for non-linguists to implement.191

The result of this has been a limitation in the192

scope of feasible GS research in Natural Language193

Processing (NLP). Even work that has sought to194

test for the deeper, more complex phrase-structures195

in NLP has largely focused either on only seek-196

ing to recover a phrase’s boundaries (Tenney et al.,197

2019; Kallini et al., 2024) or has otherwise trained198

their probe on the overly-simplified, n-branching199

constituency trees of the English Penn Treebank200

(PTB) (Marcus et al., 1993), which are only an-201

notated with “skeletal” syntactic structure schema202

that is relatively atheoretical. The PTB’s annotation203

is often used for automatic conversion into a de-204

pendency parse with little issue since the simplicity205

1In earlier versions of GS, it was argued that when an
element moves, it leaves behind a coindexed trace element
(Chomsky, 1973; Fiengo, 1977). Because such an deriva-
tion introduces a new element, Chomsky (1993) revised the
approach to the Copy Theory of Movement, claiming that
movement leaves behind a copied element that is not phonolog-
ically realized. Thus, the sentence used above would be "Do
you [do] [you] know [know] who [who] [who] stole [stole]
the Crown Jewels?" For a discussion on which elements are
phonologically realized and why, see Corver (2007).

(1) Do you know who stole the Crown Jewels?

(2) Who do you know stole the Crown Jewels?

know

do you stole

who Crown

the Jewels

aux

ns
ub

j

ccomp

ns
ub

j dobj

de
t nn

Figure 2: Above are two different sentences that yield
identical dependency parses. While similar, the sen-
tences have different meanings (imagine you are being
questioned about the theft of the Crown Jewels: the first
question merely seeks to inquire whether or not you
know who the thief is, while the latter presumes you
know who the thief is and seeks to learn the identity).
This illustrates both the ways in which dependency trees
do not capture linear order, and highlights some of the
limitations of dependency trees.

of PTB syntax is non-problematic for the simpler 206

structures and principles of an NLP dependency 207

parse. However, the result of this is a corpora that 208

is not theoretically-sound for many of the deeper 209

linguistic inquiries into phrase-structure grammars. 210

Because of this, it has yet to be discovered 211

whether LLMs have managed to capture the deeper, 212

hierarchical structures of GS. However, there are 213

three major barriers to testing whether models have 214

captured the richer hierarchical structures as pro- 215

posed by generative frameworks: 216

1. GS and similar frameworks often have 217

"empty" nodes that are not overtly realized.2 218

As such, they are not overtly present in the 219

texts LLMs train on, and so probing at their 220

presence is difficult because it raises the ques- 221

tion: how can you probe at something that is 222

not overtly represented? 223

2. Probes largely require a gold tree that indi- 224

cates the correct structure or parse. Human 225

annotation, while crucial when handling such 226

fine-grained analysis, is laborious and costly 227

2This can be due to movement (see Footnote 1) or the
feature not having an overt representation (e.g. there is no
specific word or morpheme that indicates present tense for
plural subjects as in "They walkpres to the store"). See Figure
1 for demonstration.
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in resources and time.228

3. Even if one is able to secure the resources nec-229

essary to create such a gold standard, there are230

competing theories even within the generative231

framework that would change a sentence’s rep-232

resentation. As such, a gold parse would be233

subject to great theoretical scrutiny and likely234

face present or future dissenting opinions.235

Our research develops a method that circum-236

vents these obstacles while still addressing the fun-237

damental research question of whether LLMs have238

captured something of the deeper, sub-surface syn-239

tactic representation theorized by many linguists.240

3 Methodology241

3.1 Probing Method242

To combat the first issue of accounting for struc-243

tures that are not phonologically realized, we have244

opted for the novel approach of re-purposing the245

original Hewitt and Manning (2019), which was246

trained to recover dependency trees, to investi-247

gate whether LLMs have encoded theoretically-248

motivated generative phrase-structure trees.249

The structural probe developed by Hewitt and250

Manning (2019) proposes a model M that encodes251

a sequence of vector representations hl
1:n from an252

input sequence of n words wl
1:n where l identifies253

the sentence index. From there, they define a linear254

transformation matrix B → Rk↑n to parameterize255

the parse tree-encoding distances:256

dB(h
l
i, h

l
j)

2 = (B(hl
i ↑ h

l
j))

T (B(hl
i ↑ h

l
j))257

where i and j are the words in the sentence and258

where the transformation matrix B’s objective is to259

reproduce the gold parse distances between each260

pair of words (wl
i, w

l
j) for all sentences l in the261

parsed training corpus T l. The training uses a gra-262

dient descent objective:263

min
B

∑

l

1

| sl |2
∑

i,j

| dT l(wl
i, w

l
j)↑ dB(h

l
i, h

l
j)

2 |264

In this equation, | sl | is the length of sen-265

tences, which the function normalizes using the266

square of the sentence’s length as each sentence267

contains | sl |2 pairs of words. The probe’s objec-268

tive thus seeks to approximate a matrix of distances269

that most closely resembles the gold-standard dis-270

tances. Because Hewitt and Manning (2019) use a271

dependency parse, gold-standard parses were con- 272

verted into gold-standard distance matrices where 273

distances are defined such that the distance between 274

a parent node and its child nodes is 1, the distance 275

between a child node and its grandparent node is 276

2, the distance between a child node and a so to 277

speak “aunt” or “uncle” node is 3, and so on and so 278

forth. Evaluation of the probe involved calculating 279

the minimum spanning tree for each sentence’s pre- 280

dicted distances to derive the sentence’s predicted 281

undirected, unlabeled attachment score (UUAS) 282

compared to the gold tree, and the average Spear- 283

man correlation of the predicted matrix of distances 284

compared to the gold-standard matrix. 285

We chose this method specifically because it is 286

a probe trained only to capture dependency parses 287

with their one-to-one mappings between a sen- 288

tence’s words and a tree’s nodes. Though there 289

are critical limitations to dependency parses as dis- 290

cussed in Section 2.1, we argue that its simplicity 291

and overgeneralization can in fact be converted into 292

a benefit. It is because the probe is superficially 293

only supposed to capture shallow-level, generalized 294

syntactic structures that we can use the method to 295

tease apart syntactic structures whose representa- 296

tions are identical in a dependency parse but vary 297

in a generative framework. 298

3.2 Syntactic Structures of Interest 299

Our method hinges on testing syntactic structures 300

whose representations are crucially different in gen- 301

erative accounts, but are invariant in a dependency 302

parse. In doing so, we propose turning the limi- 303

tations of a dependency probe to an asset. If the 304

probe’s predicted dependency distances vary be- 305

tween the sentences in question in ways that align 306

with generative theoretical predictions, then we 307

have evidence that not only do LLMs’ contextual- 308

ized vector representations capture generative syn- 309

tactic structures, but that a probe trained only to 310

recover dependency parses is additionally sensitive 311

to hierarchical phrase-structure distances. 312

To test this, we have selected the well-researched 313

Subject Control (SC) and Subject Raising (SR) con- 314

structions as our experimental condition. Observed 315

first by Rosenbaum (1967), SR constructions are 316

those that consist of two clauses: a matrix clause 317

and an infinitival Tense Phrase (TP) complement. 318

Since its initial observation by Rosenbaum (1967), 319

it’s largely been accepted that the subject position 320

of the embedded clause is occupied by a trace ele- 321

ment (later revised to a copy element, see footnote 322
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1) due to the subject being raised into the matrix323

clause by the EPP features3 in the matrix clause.324

SC constructions, meanwhile, are assumed to take325

a larger complement than a raising verb, with many326

typically assuming an SC complement to be a Com-327

plement Phrase (CP). Many theories follow Chom-328

sky and Lasnik (1993) and posit a silent PRO ele-329

ment that is co-indexed with and controlled by the330

matrix’s subject. This PRO receives its theta-role331

from the embedded verb while the matrix subject332

receives its theta-role from the matrix verb, thus333

satisfying the Theta Criterion (Chomsky, 1957).4334

For the purposes of our experiment, the crucial335

things to know are: Subject Raising takes a Tense336

Phrase (TP) as its complement, while Subject Con-337

trol takes the larger Complement Phrase (CP) as338

its complement, which inherently contains a TP339

itself. Thus, the result are two structures whose340

surface forms and dependency parses are identical,341

but whose hierarchical syntactic representations are342

different. Thus, we would expect that if the LLM343

has not acquired any knowledge of deeper syntactic344

representations or if the dependency-trained probe345

is insensitive to phrase-structure representations,346

then the probe’s predicted distances between rele-347

vant word-pairs should not differ between the two348

structures. However, if such hierarchical repre-349

sentations are indeed captured and if the probe is350

sensitive to these structures, then we would antici-351

pate that the distances between certain word-pairs352

in an SC construction are longer than the equiva-353

lent word-pairs in an SR construction due to SCs354

containing the larger CP complement as opposed355

to the smaller TP complement of SR predicates.356

4 Experiments357

4.1 Generating Data358

For our experiment, we identified 6 subject-raising359

verbs and 6 subject-control verbs, which we permu-360

tationally paired with a set of 8 subject words, 61361

embedded verbs, and a set of possible direct objects362

(either a single pronominal direct object or a two-363

word definite nominal object that was matched to a364

specific embedded verb). Thus, we yielded 33,120365

3Chomsky (1995) proposed the Extended Projection Prin-
ciple, which stipulates that Tense bears a strong D-feature
that requires a subject in its Specifier. This can be satisfied
by either moving the subject to Spec,TP or by inserting an
expletive like "it."

4For further discussion on Subject Control and Subject
Raising and their structural and semantic differences, see Ap-
pendix B.
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Figure 3: Syntactic trees of the SR sentence "They
seemed to annoy him" (left) and the SC sentence "They
wanted to annoy him" (right). The two structures are
nearly identical, except SC contains a CP above the TP
(red), which makes the hierarchical distances between
the subject and the embedded clause’s elements (i.e.,
the infinitive "to", the embedded verb "annoy", and the
direct object "him") longer in the SC sentence.

unique sentences, such as "They wanted/seemed to 366

annoy him." 367

Metrics Should the LLMs not have any aware- 368

ness of the deeper hierarchies or should the probe 369

be insensitive to such differences, then should be 370

no difference between SR’s and SC’s distances be- 371

tween words in the matrix clauses and words in 372

the complement clauses. However, if such struc- 373

tures are captured and if the probe is sensitive to 374

this, then we anticipate that the distance between a 375

word in the matrix clause and a word in the comple- 376

ment clause will be longer in an SC construction 377

compared to an SR construction since the CP com- 378

plement is larger (see Figure 3). 379

For this reason, we opted to investigate the 380

probe’s predicted distances between the following 381

word-pairs: subject and the infinitive (subj-infin, 382

e.g., "they" and "to"), subject and the embedded 383

verb (subj-embed, e.g., "they" and "annoy"), sub- 384

ject and the direct object (subj-dobj, e.g., "they" 385

and "him"), and lastly, embedded verb and the di- 386

rect object (embed-dobj, e.g., "annoy" and "him"), 387

which serves as our baseline. We should acknowl- 388

edge at this point that excepting our baseline com- 389

parison, none of our word-pairs have any direct 390

dependent or syntactic relationship to each other. 391

This is not a problem. Recall that the probe was 392

trained on a the gold parses for dependency trees 393

in which the distance between two nodes can be 394

counted as the number of edges between the two. 395

Because of this design, we are able to probe the dis- 396

tances between the words in the matrix clause and 397
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Figure 4: Dependency parse for the two sentences "They
seemed/wanted to annoy him." The two trees are identi-
cal, and the distance between the subject and embedded
verb is 2 while the distance between the subject and the
infinitive or direct object is 3.

the words in the complement clause, despite these398

words not having a direct dependency or syntactic399

relationship.400

As the dependency parses do not differ between401

the two structures, the gold-parse distances are also402

stable: subj-embed has a dependency distance of403

2 while subj-infin and subj-dobj have depen-404

dency distances of 3 (see Figure 4). For this reason,405

if the LLMs do not capture generative syntactic406

hierarchies or if the probe is insensitive to such407

differences, then we should see no difference in408

predicted distances between the two experimental409

conditions. If, however, the models do capture this410

deep structural difference and if the probe is an411

adequate tool to measure this, then we should antic-412

ipate that the SC distances should be longer than413

their equivalent SR distances. To verify that our414

probe is working as anticipated, we included the415

baseline word-pair embed-dobj, which should not416

show any differences in distances as these words417

are not affected by the SC/SR distinction.418

4.2 Experimental Setup419

Models We probed three pre-trained Transformer420

(Vaswani et al., 2017) models: BERT (Devlin et al.,421

2019), RoBERTa (Liu et al., 2019), and GPT-2422

Radford et al. (2019). We constrained our probing423

to models with hidden dimensions of 768 and 1024,424

which corresponded to the bert-base-cased,425

roberta-base, and gpt2 for the smaller mod-426

els and bert-large-cased, roberta-large, and427

gpt2-medium for the larger models, all of which428

were accessed using the Huggingface Transformers429

library (Wolf et al., 2020). The probe was devel-430

oped using the parsing train/dev/test splits of the431

Penn Treebank (Marcus et al., 1993).432

Following Hewitt and Manning (2019), a probe433

was trained to convergence (maximum of 40434

epochs) on each layer with a batch size of 20. Anal-435

ysis was conducted on the best-performing layer. 436

Once the best-performing layer5 was selected, 437

we fed our novel dataset to that probe and obtained 438

the predicted distances for our word-pairs of in- 439

terest. Analysis was conducted on the predicted 440

distances for our word-pairs if and only if the probe 441

properly established the necessary dependency rela- 442

tionships. That is to say, if the probe misparsed the 443

tree in a relevant manner, that word-pair’s predicted 444

distance was excluded from analysis. Using Figure 445

4 as a gold-parse, if the probe’s minimum spanning 446

tree situated "him" as a dependent of "wanted," 447

then we excluded the subj-dobj word-pair as the 448

tree was misparsed in a critical way for that word- 449

pair. We currently do not have strong reason to 450

suspect that such a misparse would have conse- 451

quent effects on non-affected word-pairs; therefore, 452

the subj-embed and subj-infin’s predicted dis- 453

tances would still be used for statistical analysis 454

since the probe would have still correctly parsed the 455

subject and embedded verb as being dependents 456

of "wanted" and still parsed the infinitive as the 457

dependent of "annoy."6 458

5 Results 459

As mentioned, we generated 33,120 sentences for 460

which we gathered a total of 704,761 distances 461

across our four word-pairs and all six language 462

models. Overall, this represents an 88.66% accu- 463

racy score. The accuracy for our four word-pairs 464

can be found in Table 1 where we may observe that 465

while the accuracy for the SC condition is slightly 466

higher, both showed high accuracy with the low- 467

est being attributable to the subj-dobj word-pair, 468

which was due to the direct object not being tied 469

to the embedded verb, hence the equivalent scores 470

with embed-dobj. 471

Due to the large size of the data, we split the data 472

by word-pair for statistical analyses. Mixed effect 473

models were developed with the lmer function from 474

lme4 (v. 1.1-31) (Bates et al., 2015) and lmerTest (v. 475

3.1-3) (Kuznetsova et al., 2017). Fixed effects were 476

identified as the condition (SC or SR) and the linear 477

5See Appendix C, Figures 5 and 6 for model performances.
6For our current study, the best-performing layer was se-

lected as the probe with the highest UUAS. As such, we opted
only to use word-pairs in which the minimum spanning tree es-
tablished the correct necessary dependencies for the word-pair
in question. However, future work may investigate selecting
the probe based on the Spearman correlation, in which case,
the motivation to reject data based on improper parses disap-
pears as the Spearman metric does not utilize the minimum
spanning tree and instead seeks to globally reduce the differ-
ences between the gold distances and the predicted distances.
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Fixed Effects

WordPair Condition Acc PredDist (avg) Coefficient ω̂ SE(ω̂) t df p
Subj-Embed Cont 97.61% 1.93 (Intercept) 1.82691 0.02809 21.75698 65.032 <2.2e-16

Raise 93.44% 1.72 Condition -0.21346 0.04026 15.14671 -5.302 8.58e-5

Subj-Infin Cont 95.99% 2.81 (Intercept) 2.74962 0.06965 9.41633 39.475 8.83e-12
Raise 89.50% 2.70 Condition -0.11665 0.08133 14.66730 -10.434 0.172

Subj-Dobj Cont 85.26% 2.87 (Intercept) 2.64070 0.26273 64.27496 10.051 8.24e-15
Raise 81.12% 2.64 Condition -0.56805 0.07609 47.30316 -7.465 1.56e-9

LinDist 0.01660 0.04944 67.53294 0.336 0.738
Interaction 0.08320 0.01324 35.36045 6.285 3.12e-7

Embed-Dobj Cont 85.26% 1.50 (Intercept) 1.54400 8.921e-2 58.310 17.304 <2e-16
(baseline) Raise 81.12% 1.51 Condition -3.929e-2 2.702e-2 9.254 -1.454 0.179

LinDist -3.964e-2 4.203e-2 64.88 0.943 0.349
Interaction 3.534e-2 3.108e-3 1.652e+5 11.370 <2e-16

Table 1: Results of the probes’ predicted squared Euclidean distances between the word-pairs of interest. Accuracy
records what percentage of the sentences properly established the necessary dependency relationships for that
particular word-pair. The right side of the table reports the fixed effects findings for the linear mixed-effect models
that were built for each word-pair. See Appendix C, Figures 7 and 8 for visuals.

distance (the number of intervening words plus 1478

to avoid issues of 0 multiplication) as well as their479

interaction. The latter two only applied to word-480

pairs with the direct object as the direct object could481

be a single pronominal like "it" (in which case the482

linear distance would be 1) or a full nominal phrase483

like "the car" (in which case the linear distance484

would be 2). For the other word-pairs, there was no485

variation in linear distance, hence its exclusion as486

a fixed effect. Condition was contrast-coded with487

SC being -0.5 and SR being 0.5.488

Random effects were identified via model489

comparison and included by-MatrixVerb, by-490

SubjectWord, by-EmbedVerb, by-ObjectWord, and491

by-LanguageModel random slopes for our factor492

of interest (Condition), excepting by-MatrixVerb,493

which warranted only a random intercept.7494

To recap, our hypothesis is that the probe’s pre-495

dicted distances between the matrix subject and496

elements in the embedded clause (i.e., the infinitive,497

the embedded verb, and the direct object) should498

be longer in the SC condition compared to the499

SR condition. Should this be the case, this effect500

should appear in all of our word-pairs (excepting501

our baseline of embed-dobj). In this regard, our502

study uses conjunction testing in that we require503

all tests be significant in order to reject the null504

hypothesis (Weber, 2007). We thus follow Rubin505

(2021) and do not adjust our alpha level.506

7Word-pairs with direct objects made for more complicated
linear models due to the addition of a by-ObjectWord grouping
factor for random effects. Because of this, the linear model
for subj-dobj included random intercepts for all grouping
factors mentioned, but only warranted random slopes for the
grouping factor of language model.

Table 1 reports our results where we find a 507

main effect for Condition in our subj-embed and 508

subj-dobj data (p = 8.58e↓5 and p = 1.56e↓9), 509

but not for subj-infin (p = 0.172). This paints 510

a puzzling picture, which we discuss further in 511

Section 6. For now, it is abundantly clear that the 512

predicted distances from an SC construction are 513

significantly longer than an SR construction when 514

considering the distance between the subject and 515

either the embedded verb or the direct object. 516

Crucially, we do not find Condition to be a sig- 517

nificant predictor for our baseline, suggesting the 518

probe is not spuriously attributing higher distances 519

to SCs than SRs in ways that are not predicted 520

by the syntax. However, interaction between Lin- 521

ear Distance and Condition is found to be a main 522

effect for embed-dobj. To conduct follow-up mod- 523

els to investigate this result, we split the data by 524

linear distance, meaning sentences were grouped 525

into those that took a pronominal direct object such 526

as "it" (linear distance of 1) and those that took 527

a nominal phrase object such as "the car" (linear 528

distance of 2). In doing so, we do not find Condi- 529

tion to be a main effect in either group. Analysis 530

of the data further reveals that linear distance de- 531

creases the predicted distance for subject raising 532

verbs only. When we control for linear distance by 533

splitting up the data by direct object type, though, 534

our follow-up analyses find that the predicted dis- 535

tance between the embedded verb and the direct 536

object do not significantly vary between the two 537

conditions (p = 0.875 for pronominal direct objects 538

and p = 0.346 for nominal phrase objects). 539

The significantly longer predicted distances of 540
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the SC condition in subj-embed and subj-dobj,541

paired with Condition not being a significant pre-542

dictor for our baseline comparison of embed-dobj543

(even when accounting for interaction effects), to-544

gether show strong evidence to reject our null hy-545

pothesis. However, the SC/SR condition anoma-546

lously does not significantly predict the probe dis-547

tance. Though this result does not negate the sig-548

nificant findings in our other word-pairs, it is an549

outcome which is not predicted by the syntax, nor550

is it one that is readily explained when combined551

with the significant findings in subj-embed and552

subj-dobj.553

6 Discussion & Conclusion554

If the structures proposed by generative syntax to555

account for Subject Raising and Subject Control556

are indeed captured by LLMs and subsequently by557

the probe, then we would anticipate that all three558

word-pairs of interest should show significantly559

longer predicted distances in the SCs compared to560

SRs while the baseline comparison of embed-dobj561

(which is not affected by an SC or SR construction)562

should not. While these predictions are evidently563

borne out by subj-embed and subj-dobj along564

with our baseline of embed-dobj, it does not hold565

true for subj-infin.566

This finding is particularly puzzling. Should it be567

that the language models do not capture the SC/SR568

distinction, then none of the word-pairs should have569

significant differences in distances. Additionally,570

there is no theory in any school of syntax (genera-571

tive or otherwise) we are aware of that suggests SC572

verbs take larger complements below the TP head573

of "to." We might then posit that the infinitive’s574

seemingly imperviousness to the SC/SR distinc-575

tion may arise from the language models somehow576

building a novel and alien structure in which the577

infinitival "to" sits in the matrix clause while the578

complement size distinctions are displayed beneath579

it. Again, however, we are resistant to such a no-580

tion as we know of no theory postulating such an581

arbitrary and alien structure.582

It is evident this matter requires further inves-583

tigation, but it is possible the aberrant behavior584

of the infinitive is due to the nature of infinitives585

themselves. Infinitival "to" is semantically vacu-586

ous: there is little to any rich semantic meaning to587

the word, which is entirely functional in nature—588

denoting either non-finiteness as an infinitive8 or589

8See (Satik, 2022) for discussion on the subtle semantic

directionality or telicity as a preposition. For this 590

reason, we suspect the lack of semantic-richness 591

of purely functional words may impact the ways in 592

which structure is encoded by embedding vectors.9 593

While further work is needed to investigate the 594

outlier behavior of the infinitive, we overall find 595

strong support that LLMs have captured the deep 596

syntactic hierarchies proposed by generative syntax. 597

We furthermore demonstrate that a dependency- 598

trained probe is sensitive to such structures and 599

can provide a means by which to probe for more 600

complex syntactic representations that do not enjoy 601

the benefits of a one-to-one mapping. 602

The implications of this work have impact on 603

both the field of NLP and the field of linguistics. 604

Our work suggests that LLMs have learned to cap- 605

ture deeper and more complex syntactic structures 606

within their embeddings than previously realized 607

and thus have the ability to capture the semantic 608

nuances that result from sub-surface structural dif- 609

ferences. Our findings therefore further the inter- 610

pretability research of language models to discover 611

what these models have actually learned regarding 612

the features and structures of language. We also 613

find evidence that neural networks trained using 614

the dependency framework can still capture deeper 615

syntactic structures, suggesting these simpler repre- 616

sentations may be adequate for downstream tasks 617

as they appear to be capable of reaping the benefits 618

of deep structure without needing to explicitly train 619

on deep structure. As for linguists, the findings 620

of our work warrant further investigation into the 621

viability of using language models as a means to 622

test syntactic structures. There are many competing 623

theories to explain different syntactic phenomenon, 624

which researchers have spent decades gathering 625

data and judgments to help explain. Our work be- 626

gins to open up the possibility of utilizing LLMs as 627

another source of data to help augment, build, and 628

perhaps even test syntactic theories. 629

Taken together, we situate our work as a realiza- 630

tion of Linzen (2019) and Futrell and Mahowald 631

(2025)’s claim that the skillsets and knowledge of 632

the fields of NLP and linguistics complement each 633

other, and that the two stand primed to advance 634

each other’s respective fields through collaboration. 635

differences between different types of infinitives.
9We exempt pronouns from this hypothesis. Our dataset

subjects were pronominal and our single-word direct objects
were also pronouns. Unlike infinitival "to," pronouns pick
out referents in the real world, and can furthermore carry
information such as Case, Gender, and Number as opposed to
infinitival "to," which indicates non-finiteness only.

8



References636

Guillaume Alain and Yoshua Bengio. 2017. Understand-637
ing intermediate layers using linear classifier probes.638
In The 5th International Conference on Learning639
Representations.640

Dang Anh, Limor Raviv, and Lukas Galke. 2024. Mor-641
phology matters: Probing the cross-linguistic mor-642
phological generalization abilities of large language643
models through a wug test. In Proceedings of the644
Workshop on Cognitive Modeling and Computational645
Linguistics, pages 177–188, Bangkok, Thailand. As-646
sociation for Computational Linguistics.647

David Arps, Younes Samih, Laura Kallmeyer, and Has-648
san Sajjad. 2022. Probing for constituency structure649
in neural language models. In Findings of the Associ-650
ation for Computational Linguistics: EMNLP 2022,651
pages 6738–6757, Abu Dhabi, United Arab Emirates.652
Association for Computational Linguistics.653

Douglas Bates, Martin Mächler, Ben Bolker, and Steve654
Walker. 2015. Fitting linear mixed-effects models655
using lme4. Journal of Statistical Software, 67(1):1–656
48.657

Yonatan Belinkov and James Glass. 2019. Analysis658
methods in neural language processing: A survey.659
Transactions of the Association for Computational660
Linguistics, 7:49–72.661

Tommi Buder-Gröndahl. 2024. What does parameter-662
free probing really uncover? In Proceedings of the663
62nd Annual Meeting of the Association for Compu-664
tational Linguistics (Volume 2: Short Papers), pages665
327–336, Bangkok, Thailand. Association for Com-666
putational Linguistics.667

Ethan A. Chi, John Hewitt, and Christopher D. Man-668
ning. 2020. Finding universal grammatical relations669
in multilingual BERT. In Proceedings of the 58th670
Annual Meeting of the Association for Computational671
Linguistics, pages 5564–5577, Online. Association672
for Computational Linguistics.673

Noam Chomsky. 1957. Syntactic Structures. Mouton.674

Noam Chomsky. 1973. Conditions on transformations.675
In A Festschrift for Morris Halle. Hole, Rinehard676
Winston.677

Noam Chomsky. 1981. Lectures on government and678
binding. Foris Publications.679

Noam Chomsky. 1986. Knowledge of Language: Its680
Nature, Origin, and Use. Praeger.681

Noam Chomsky. 1993. A minimalist program for682
linguistic theory. In Kenneth Locke Hale and683
Samuel Jay Keyser, editors, The View From Build-684
ing 20: Essays in Linguistics in Honor of Sylvain685
Bromberger. MIT Press.686

Noam Chomsky. 1995. The Minimalist Program. MIT687
Press, Cambridge, MA.688

Noam Chomsky and Howard Lasnik. 1993. Syntax: 689
An international handbook of contemporary research. 690
In Joachim Jacobs, Arnim von Stechow, Wolfgang 691
Sternefeld, and Theo Vennemann, editors, The theory 692
of principles and parameters. De Gruyter. 693

Kevin Clark, Urvashi Khandelwal, Omer Levy, and 694
Christopher D. Manning. 2019. What does BERT 695
look at? an analysis of BERT‘s attention. In Pro- 696
ceedings of the 2019 ACL Workshop BlackboxNLP: 697
Analyzing and Interpreting Neural Networks for NLP, 698
pages 276–286, Florence, Italy. Association for Com- 699
putational Linguistics. 700

Haley Coleman. 2020. This is a BERT. now there are 701
several of them. can they generalize to novel words? 702
In Proceedings of the Third BlackboxNLP Workshop 703
on Analyzing and Interpreting Neural Networks for 704
NLP, pages 333–341, Online. Association for Com- 705
putational Linguistics. 706

Alexis Conneau, German Kruszewski, Guillaume Lam- 707
ple, Loïc Barrault, and Marco Baroni. 2018. What 708
you can cram into a single $&!#* vector: Probing 709
sentence embeddings for linguistic properties. In 710
Proceedings of the 56th Annual Meeting of the As- 711
sociation for Computational Linguistics (Volume 1: 712
Long Papers), pages 2126–2136, Melbourne, Aus- 713
tralia. Association for Computational Linguistics. 714

N.F.M. Corver. 2007. From trace theory to copy the- 715
ory. In The Copy theory of movement, pages 1–10, 716
Netherlands. John Benjamins. 717

Mark Davies. 2008–. The corpus of contemporary amer- 718
ican english (coca). 719

Christopher Davis, Christopher Bryant, Andrew Caines, 720
Marek Rei, and Paula Buttery. 2022. Probing for 721
targeted syntactic knowledge through grammatical 722
error detection. In Proceedings of the 26th Confer- 723
ence on Computational Natural Language Learning 724
(CoNLL), pages 360–373, Abu Dhabi, United Arab 725
Emirates (Hybrid). Association for Computational 726
Linguistics. 727

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 728
Kristina Toutanova. 2019. BERT: Pre-training of 729
deep bidirectional transformers for language under- 730
standing. In Proceedings of the 2019 Conference of 731
the North American Chapter of the Association for 732
Computational Linguistics: Human Language Tech- 733
nologies, Volume 1 (Long and Short Papers), pages 734
4171–4186, Minneapolis, Minnesota. Association for 735
Computational Linguistics. 736

Tiwalayo Eisape, Vineet Gangireddy, Roger Levy, and 737
Yoon Kim. 2022. Probing for incremental parse 738
states in autoregressive language models. In Find- 739
ings of the Association for Computational Linguistics: 740
EMNLP 2022, pages 2801–2813, Abu Dhabi, United 741
Arab Emirates. Association for Computational Lin- 742
guistics. 743

Robert Fiengo. 1977. On trace theory. Linguistic In- 744
quiry, 8:35–61. 745

9

https://doi.org/10.18653/v1/2024.cmcl-1.15
https://doi.org/10.18653/v1/2024.cmcl-1.15
https://doi.org/10.18653/v1/2024.cmcl-1.15
https://doi.org/10.18653/v1/2024.cmcl-1.15
https://doi.org/10.18653/v1/2024.cmcl-1.15
https://doi.org/10.18653/v1/2024.cmcl-1.15
https://doi.org/10.18653/v1/2024.cmcl-1.15
https://doi.org/10.18653/v1/2022.findings-emnlp.502
https://doi.org/10.18653/v1/2022.findings-emnlp.502
https://doi.org/10.18653/v1/2022.findings-emnlp.502
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1162/tacl_a_00254
https://doi.org/10.1162/tacl_a_00254
https://doi.org/10.1162/tacl_a_00254
https://doi.org/10.18653/v1/2024.acl-short.31
https://doi.org/10.18653/v1/2024.acl-short.31
https://doi.org/10.18653/v1/2024.acl-short.31
https://doi.org/10.18653/v1/2020.acl-main.493
https://doi.org/10.18653/v1/2020.acl-main.493
https://doi.org/10.18653/v1/2020.acl-main.493
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/2020.blackboxnlp-1.31
https://doi.org/10.18653/v1/2020.blackboxnlp-1.31
https://doi.org/10.18653/v1/2020.blackboxnlp-1.31
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://doi.org/10.18653/v1/P18-1198
https://www.english-corpora.org/coca/
https://www.english-corpora.org/coca/
https://www.english-corpora.org/coca/
https://doi.org/10.18653/v1/2022.conll-1.25
https://doi.org/10.18653/v1/2022.conll-1.25
https://doi.org/10.18653/v1/2022.conll-1.25
https://doi.org/10.18653/v1/2022.conll-1.25
https://doi.org/10.18653/v1/2022.conll-1.25
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2022.findings-emnlp.203
https://doi.org/10.18653/v1/2022.findings-emnlp.203
https://doi.org/10.18653/v1/2022.findings-emnlp.203


Richard Futrell and Kyle Mahowald. 2025. How linguis-746
tics learned to stop worrying and love the language747
models. Preprint, arXiv:2501.17047.748

Linyang He, Peili Chen, Ercong Nie, Yuanning Li, and749
Jonathan R. Brennan. 2024. Decoding probing: Re-750
vealing internal linguistic structures in neural lan-751
guage models using minimal pairs. In Proceedings of752
the 2024 Joint International Conference on Compu-753
tational Linguistics, Language Resources and Eval-754
uation (LREC-COLING 2024), pages 4488–4497,755
Torino, Italia. ELRA and ICCL.756

John Hewitt and Christopher D. Manning. 2019. A757
structural probe for finding syntax in word represen-758
tations. In Proceedings of the 2019 Conference of759
the North American Chapter of the Association for760
Computational Linguistics: Human Language Tech-761
nologies, Volume 1 (Long and Short Papers), pages762
4129–4138, Minneapolis, Minnesota. Association for763
Computational Linguistics.764

Jennifer Hu, Jon Gauthier, Peng Qian, Ethan Wilcox,765
and Roger Levy. 2020. A systematic assessment766
of syntactic generalization in neural language mod-767
els. In Proceedings of the 58th Annual Meeting of768
the Association for Computational Linguistics, pages769
1725–1744, Online. Association for Computational770
Linguistics.771

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.772
2019. What does BERT learn about the structure of773
language? In Proceedings of the 57th Annual Meet-774
ing of the Association for Computational Linguistics,775
pages 3651–3657, Florence, Italy. Association for776
Computational Linguistics.777

Julie Kallini, Isabel Papadimitriou, Richard Futrell,778
Kyle Mahowald, and Christopher Potts. 2024. Mis-779
sion: Impossible language models. In Proceedings780
of the 62nd Annual Meeting of the Association for781
Computational Linguistics (Volume 1: Long Papers),782
pages 14691–14714, Bangkok, Thailand. Association783
for Computational Linguistics.784

Gaurav Kamath, Sebastian Schuster, Sowmya Vajjala,785
and Siva Reddy. 2024. Scope ambiguities in large786
language models. Transactions of the Association for787
Computational Linguistics, 12:738–754.788

Artur Kulmizev, Vinit Ravishankar, Mostafa Abdou,789
and Joakim Nivre. 2020. Do neural language mod-790
els show preferences for syntactic formalisms? In791
Proceedings of the 58th Annual Meeting of the Asso-792
ciation for Computational Linguistics, pages 4077–793
4091, Online. Association for Computational Lin-794
guistics.795

Alexandra Kuznetsova, Per B. Brockhoff, and Rune796
H. B. Christensen. 2017. lmerTest package: Tests in797
linear mixed effects models. Journal of Statistical798
Software, 82(13):1–26.799

Idan Landau. 2024. Elements in Generative Syntax,800
chapter Control. Cambridge University.801

Tal Linzen. 2019. What can linguistics and deep learn- 802
ing contribute to each other? response to pater. Lan- 803
guage, 95(1):e99–e108. Publisher Copyright: © 804
2019, Linguistic Society of America. All rights re- 805
served. 806

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 807
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 808
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 809
Roberta: A robustly optimized bert pretraining ap- 810
proach. Preprint, arXiv:1907.11692. 811

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann 812
Marcinkiewicz. 1993. Building a large annotated cor- 813
pus of English: The Penn Treebank. Computational 814
Linguistics, 19(2):313–330. 815

Rowan Hall Maudslay and Ryan Cotterell. 2021. Do 816
syntactic probes probe syntax? experiments with 817
jabberwocky probing. In Proceedings of the 2021 818
Conference of the North American Chapter of the 819
Association for Computational Linguistics: Human 820
Language Technologies, pages 124–131, Online. As- 821
sociation for Computational Linguistics. 822

Aaron Mueller, Garrett Nicolai, Panayiota Petrou- 823
Zeniou, Natalia Talmina, and Tal Linzen. 2020. 824
Cross-linguistic syntactic evaluation of word predic- 825
tion models. In Proceedings of the 58th Annual Meet- 826
ing of the Association for Computational Linguistics, 827
pages 5523–5539, Online. Association for Computa- 828
tional Linguistics. 829

Stefan Müller. 2019. Superseded: Grammatical the- 830
ory. Number 1 in Textbooks in Language Sciences. 831
Language Science Press, Berlin. 832

Dmitry Nikolaev and Sebastian Padó. 2023. Investi- 833
gating semantic subspaces of transformer sentence 834
embeddings through linear structural probing. In 835
Proceedings of the 6th BlackboxNLP Workshop: An- 836
alyzing and Interpreting Neural Networks for NLP, 837
pages 142–154, Singapore. Association for Compu- 838
tational Linguistics. 839

Maria Polinsky. 2013. The Cambridge Handbook of 840
Generative SYntax: Grammar and Syntax, chapter 841
Raising and Control. Cambridge University Press. 842

Paul M. Postal. 1974. On raising: One rule of English 843
and its theoretical implications. MIT Press. 844

Alec Radford, Jeff Wu, Rewon Child, David Luan, 845
Dario Amodei, and Ilya Sutskever. 2019. Language 846
models are unsupervised multitask learners. 847

Shauli Ravfogel, Grusha Prasad, Tal Linzen, and Yoav 848
Goldberg. 2021. Counterfactual interventions re- 849
veal the causal effect of relative clause representa- 850
tions on agreement prediction. In Proceedings of 851
the 25th Conference on Computational Natural Lan- 852
guage Learning, pages 194–209, Online. Association 853
for Computational Linguistics. 854

Peter Rosenbaum. 1967. The grammar of English pred- 855
icate complement constructions. MIT Press. 856

10

https://arxiv.org/abs/2501.17047
https://arxiv.org/abs/2501.17047
https://arxiv.org/abs/2501.17047
https://arxiv.org/abs/2501.17047
https://arxiv.org/abs/2501.17047
https://aclanthology.org/2024.lrec-main.402/
https://aclanthology.org/2024.lrec-main.402/
https://aclanthology.org/2024.lrec-main.402/
https://aclanthology.org/2024.lrec-main.402/
https://aclanthology.org/2024.lrec-main.402/
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.18653/v1/2024.acl-long.787
https://doi.org/10.18653/v1/2024.acl-long.787
https://doi.org/10.18653/v1/2024.acl-long.787
https://doi.org/10.1162/tacl_a_00670
https://doi.org/10.1162/tacl_a_00670
https://doi.org/10.1162/tacl_a_00670
https://doi.org/10.18653/v1/2020.acl-main.375
https://doi.org/10.18653/v1/2020.acl-main.375
https://doi.org/10.18653/v1/2020.acl-main.375
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.1353/lan.2019.0015
https://doi.org/10.1353/lan.2019.0015
https://doi.org/10.1353/lan.2019.0015
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://doi.org/10.18653/v1/2021.naacl-main.11
https://doi.org/10.18653/v1/2021.naacl-main.11
https://doi.org/10.18653/v1/2021.naacl-main.11
https://doi.org/10.18653/v1/2021.naacl-main.11
https://doi.org/10.18653/v1/2021.naacl-main.11
https://doi.org/10.18653/v1/2020.acl-main.490
https://doi.org/10.18653/v1/2020.acl-main.490
https://doi.org/10.18653/v1/2020.acl-main.490
https://doi.org/10.5281/zenodo.1193241
https://doi.org/10.5281/zenodo.1193241
https://doi.org/10.5281/zenodo.1193241
https://doi.org/10.18653/v1/2023.blackboxnlp-1.11
https://doi.org/10.18653/v1/2023.blackboxnlp-1.11
https://doi.org/10.18653/v1/2023.blackboxnlp-1.11
https://doi.org/10.18653/v1/2023.blackboxnlp-1.11
https://doi.org/10.18653/v1/2023.blackboxnlp-1.11
https://doi.org/10.18653/v1/2021.conll-1.15
https://doi.org/10.18653/v1/2021.conll-1.15
https://doi.org/10.18653/v1/2021.conll-1.15
https://doi.org/10.18653/v1/2021.conll-1.15
https://doi.org/10.18653/v1/2021.conll-1.15


Mark Rubin. 2021. When to adjust alpha during multi-857
ple testing: A consideration of disjunction, conjunc-858
tion, and individual testing. Synthese, 199:10969–859
11000.860

Deniz Satik. 2022. The semantics of infinitival tense.861
Under review.862

M.E. Sánchez, Y. Sevilla, and A. Bachrach. 2016.863
Agreement processing in control and raising struc-864
tures. evidence from sentence production in spanish.865
Lingua, 177:60–77.866

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,867
Adam Poliak, R Thomas McCoy, Najoung Kim,868
Benjamin Van Durme, Samuel R. Bowman, Dipan-869
jan Das, and Ellie Pavlick. 2019. What do you870
learn from context? probing for sentence structure871
in contextualized word representations. Preprint,872
arXiv:1905.06316.873

Lucien Tesnière. 1959. Eléments de Syntaxe Structurale.874
Klincksieck, Paris.875

Mycal Tucker, Tiwalayo Eisape, Peng Qian, Roger876
Levy, and Julie Shah. 2022. When does syntax me-877
diate neural language model performance? evidence878
from dropout probes. In Proceedings of the 2022879
Conference of the North American Chapter of the880
Association for Computational Linguistics: Human881
Language Technologies, pages 5393–5408, Seattle,882
United States. Association for Computational Lin-883
guistics.884

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob885
Uszkoreit, Llion Jones, Aidan N Gomez, ! ukasz886
Kaiser, and Illia Polosukhin. 2017. Attention is all887
you need. In Advances in Neural Information Pro-888
cessing Systems, volume 30. Curran Associates, Inc.889

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-890
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.891
Bowman. 2020. BLiMP: The benchmark of linguis-892
tic minimal pairs for English. Transactions of the893
Association for Computational Linguistics, 8:377–894
392.895

Rene Weber. 2007. Responses to matsunaga: To adjust896
or not to adjust alpha in multiple testing: That is the897
question. guidelines for alpha adjustment as response898
to o’keefe’s and matsunaga’s critiques. Communica-899
tion Methods and Measures, 1:281–289.900

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien901
Chaumond, Clement Delangue, Anthony Moi, Pier-902
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-903
icz, Joe Davison, Sam Shleifer, Patrick von Platen,904
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,905
Teven Le Scao, Sylvain Gugger, Mariama Drame,906
Quentin Lhoest, and Alexander Rush. 2020. Trans-907
formers: State-of-the-art natural language processing.908
In Proceedings of the 2020 Conference on Empirical909
Methods in Natural Language Processing: System910
Demonstrations, pages 38–45, Online. Association911
for Computational Linguistics.912

11

https://ling.auf.net/lingbuzz/006545
https://doi.org/10.1016/j.lingua.2015.12.014
https://doi.org/10.1016/j.lingua.2015.12.014
https://doi.org/10.1016/j.lingua.2015.12.014
https://arxiv.org/abs/1905.06316
https://arxiv.org/abs/1905.06316
https://arxiv.org/abs/1905.06316
https://arxiv.org/abs/1905.06316
https://arxiv.org/abs/1905.06316
https://doi.org/10.18653/v1/2022.naacl-main.394
https://doi.org/10.18653/v1/2022.naacl-main.394
https://doi.org/10.18653/v1/2022.naacl-main.394
https://doi.org/10.18653/v1/2022.naacl-main.394
https://doi.org/10.18653/v1/2022.naacl-main.394
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

	Introduction
	Related Work
	Syntactic Theories

	Methodology
	Probing Method
	Syntactic Structures of Interest

	Experiments
	Generating Data
	Experimental Setup

	Results
	Discussion & Conclusion
	Limitations
	Data Generation
	Figures

